437 research outputs found

    Quantifying Fundamental Vegetation Traits over Europe Using the Sentinel-3 OLCI Catalogue in Google Earth Engine

    Get PDF
    Thanks to the emergence of cloud-computing platforms and the ability of machine learning methods to solve prediction problems efficiently, this work presents a workflow to automate spatiotemporal mapping of essential vegetation traits from Sentinel-3 (S3) imagery. The traits included leaf chlorophyll content (LCC), leaf area index (LAI), fraction of absorbed photosynthetically active radiation (FAPAR), and fractional vegetation cover (FVC), being fundamental for assessing photosynthetic activity on Earth. The workflow involved Gaussian process regression (GPR) algorithms trained on top-of-atmosphere (TOA) radiance simulations generated by the coupled canopy radiative transfer model (RTM) SCOPE and the atmospheric RTM 6SV. The retrieval models, named to S3-TOA-GPR-1.0, were directly implemented in Google Earth Engine (GEE) to enable the quantification of the traits from TOA data as acquired from the S3 Ocean and Land Colour Instrument (OLCI) sensor. Following good to high theoretical validation results with normalized root mean square error (NRMSE) ranging from 5% (FAPAR) to 19% (LAI), a three fold evaluation approach over diverse sites and land cover types was pursued: (1) temporal comparison against LAI and FAPAR products obtained from Moderate Resolution Imaging Spectroradiometer (MODIS) for the time window 2016–2020, (2) spatial difference mapping with Copernicus Global Land Service (CGLS) estimates, and (3) direct validation using interpolated in situ data from the VALERI network. For all three approaches, promising results were achieved. Selected sites demonstrated coherent seasonal patterns compared to LAI and FAPAR MODIS products, with differences between spatially averaged temporal patterns of only 6.59%. In respect of the spatial mapping comparison, estimates provided by the S3-TOA-GPR-1.0 models indicated highest consistency with FVC and FAPAR CGLS products. Moreover, the direct validation of our S3-TOA-GPR-1.0 models against VALERI estimates indicated good retrieval performance for LAI, FAPAR and FVC. We conclude that our retrieval workflow of spatiotemporal S3 TOA data processing into GEE opens the path towards global monitoring of fundamental vegetation traits, accessible to the whole research community.We gratefully acknowledge the financial support by the European Space Agency (ESA) for airborne data acquisition and data analysis in the frame of the FLEXSense campaign (ESA Contract No. 4000125402/18/NL/NA). The research was also supported by the Action CA17134 SENSECO (Optical synergies for spatiotemporal sensing of scalable ecophysiological traits) funded by COST (European Cooperation in Science and Technology, www.cost.eu, accessed on: 8 January 2022). This publication is also the result of the project implementation: “Scientific support of climate change adaptation in agriculture and mitigation of soil degradation” (ITMS2014+313011W580) supported by the Integrated Infrastructure Operational Programme funded by the ERDF

    Extracting ecological and biophysical information from AVHRR optical data: An integrated algorithm based on inverse modeling

    Get PDF
    Satellite remote sensing provides the only means of directly observing the entire surface of the Earth at regular spatial and temporal intervals

    Extracting ecological and biophysical information from AVHRR optical data: An integrated algorithm based on inverse modeling

    Get PDF
    Satellite remote sensing provides the only means of directly observing the entire surface of the Earth at regular spatial and temporal intervals

    Inconsistencies of interannual variability and trends in long-term satellite leaf area index products

    Full text link
    Understanding the long-term performance of global satellite leaf area index (LAI) products is important for global change research. However, few effort has been devoted to evaluating the long-term time-series consistencies of LAI products. This study compared four long-term LAI products (GLASS, GLOBMAP, LAI3g, and TCDR) in terms of trends, interannual variabilities, and uncertainty variations from 1982 through 2011. This study also used four ancillary LAI products (GEOV1, MERIS, MODIS C5, and MODIS C6) from 2003 through 2011 to help clarify the performances of the four long-term LAI products. In general, there were marked discrepancies between the four long-term LAI products. During the pre-MODIS period (1982-1999), both linear trends and interannual variabilities of global mean LAI followed the order GLASS>LAI3g>TCDR>GLOBMAP. The GLASS linear trend and interannual variability were almost 4.5 times those of GLOBMAP. During the overlap period (2003-2011), GLASS and GLOBMAP exhibited a decreasing trend, TCDR no trend, and LAI3g an increasing trend. GEOV1, MERIS, and MODIS C6 also exhibited an increasing trend, but to a much smaller extent than that from LAI3g. During both periods, the R2 of detrended anomalies between the four long-term LAI products was smaller than 0.4 for most regions. Interannual variabilities of the four long-term LAI products were considerably different over the two periods, and the differences followed the order GLASS>LAI3g>TCDR>GLOBMAP. Uncertainty variations quantified by a collocation error model followed the same order. Our results indicate that the four long-term LAI products were neither intraconsistent over time nor interconsistent with each other. These inconsistencies may be due to NOAA satellite orbit changes and MODIS sensor degradation. Caution should be used in the interpretation of global changes derived from the four long-term LAI products

    Using Low Resolution Satellite Imagery for Yield Prediction and Yield Anomaly Detection

    Get PDF
    Low resolution satellite imagery has been extensively used for crop monitoring and yield forecasting for over 30 years and plays an important role in a growing number of operational systems. The combination of their high temporal frequency with their extended geographical coverage generally associated with low costs per area unit makes these images a convenient choice at both national and regional scales. Several qualitative and quantitative approaches can be clearly distinguished, going from the use of low resolution satellite imagery as the main predictor of final crop yield to complex crop growth models where remote sensing-derived indicators play different roles, depending on the nature of the model and on the availability of data measured on the ground. Vegetation performance anomaly detection with low resolution images continues to be a fundamental component of early warning and drought monitoring systems at the regional scale. For applications at more detailed scales, the limitations created by the mixed nature of low resolution pixels are being progressively reduced by the higher resolution offered by new sensors, while the continuity of existing systems remains crucial for ensuring the availability of long time series as needed by the majority of the yield prediction methods used today.JRC.H.4-Monitoring Agricultural Resource

    Assessing uncertainties of in situ FAPAR measurements across different forest ecosystems

    Get PDF
    Carbon balances are important for understanding global climate change. Assessing such balances on a local scale depends on accurate measurements of material flows to calculate the productivity of the ecosystem. The productivity of the Earth's biosphere, in turn, depends on the ability of plants to absorb sunlight and assimilate biomass. Over the past decades, numerous Earth observation missions from satellites have created new opportunities to derive so-called “essential climate variables” (ECVs), including important variables of the terrestrial biosphere, that can be used to assess the productivity of our Earth's system. One of these ECVs is the “fraction of absorbed photosynthetically active radiation” (FAPAR) which is needed to calculate the global carbon balance. FAPAR relates the available photosynthetically active radiation (PAR) in the wavelength range between 400 and 700 nm to the absorption of plants and thus quantifies the status and temporal development of vegetation. In order to ensure accurate datasets of global FAPAR, the UN/WMO institution “Global Climate Observing System” (GCOS) declared an accuracy target of 10% (or 0.05) as acceptable for FAPAR products. Since current satellite derived FAPAR products still fail to meet this accuracy target, especially in forest ecosystems, in situ FAPAR measurements are needed to validate FAPAR products and improve them in the future. However, it is known that in situ FAPAR measurements can be affected by significant systematic as well as statistical errors (i.e., “bias”) depending on the choice of measurement method and prevailing environmental conditions. So far, uncertainties of in situ FAPAR have been reproduced theoretically in simulations with radiation transfer models (RTMs), but the findings have been validated neither in field experiments nor in different forest ecosystems. However, an uncertainty assessment of FAPAR in field experiments is essential to develop practicable measurement protocols. This work investigates the accuracy of in situ FAPAR measurements and sources of uncertainties based on multi-year, 10-minute PAR measurements with wireless sensor networks (WSNs) at three sites on three continents to represent different forest ecosystems: a mixed spruce forest at the site “Graswang” in Southern Germany, a boreal deciduous forest at the site “Peace River” in Northern Alberta, Canada and a tropical dry forest (TDF) at the site “Santa Rosa”, Costa Rica. The main statements of the research results achieved in this thesis are briefly summarized below: Uncertainties of instantaneous FAPAR in forest ecosystems can be assessed with Wireless Sensor Networks and additional meteorological and phenological observations. In this thesis, two methods for a FAPAR bias assessment have been developed. First, for assessing the bias of the so-called two-flux FAPAR estimate, the difference between FAPAR acquired under diffuse light conditions and two-flux FAPAR acquired during clear-sky conditions can be investigated. Therefore, measurements of incoming and transmitted PAR are required to calculate the two-flux FAPAR estimate as well as observations of the ratio of diffuse-to-total incident radiation. Second, to assess the bias of not only the two- but also the three-flux FAPAR estimate, four-flux FAPAR observations must be carried out, i.e. measurements of top-of-canopy (TOC) PAR albedo and PAR albedo of the forest background. Then, to quantify the bias of the two and three-flux estimate, the difference with the four-flux estimate can be calculated. Main sources of uncertainty of in situ FAPAR measurements are high solar zenith angle, occurrence of colored leaves and increased wind speed. At all sites, FAPAR observations exhibited considerable seasonal variability due to the phenological development of the forests (Graswang: 0.89 to 0.99 ±0.02; Peace River: 0.55 to 0.87 ±0.03; Santa Rosa: 0.45 to 0.97 ±0.06). Under certain environmental conditions, FAPAR was affected by systemic errors, i.e. bias that go beyond phenologically explainable fluctuations. The in situ observations confirmed a significant overestimation of FAPAR by up to 0.06 at solar zenith angles above 60° and by up to 0.05 under the occurrence of colored leaves of deciduous trees. The results confirm theoretical findings from radiation transfer simulations, which could now for the first time be quantified under field conditions. As a new finding, the influence of wind speed could be shown, which was particularly evident at the boreal location with a significant bias of FAPAR values at wind speeds above 5 ms-1. The uncertainties of the two-flux FAPAR estimate are acceptable under typical summer conditions. Three-flux or four-flux FAPAR measurements do not necessarily increase the accuracy of the estimate. The highest average relative bias of different FAPAR estimates were 2.1% in Graswang, 8.4% in Peace River and -4.5% in Santa Rosa. Thus, the GCOS accuracy threshold of 10% set by the GCOS was generally not exceeded. The two-flux FAPAR estimate was only found to be biased during high wind speeds, as changes in the TOC PAR albedo are not considered in two-flux FAPAR measurements. Under typical summer conditions, i.e. low wind speed, small solar zenith angle and green leaves, two-flux FAPAR measurements can be recommended for the validation of satellite-based FAPAR products. Based on the results obtained, it must be emphasized that the three-flux FAPAR estimate, which has often been preferred in previous studies, is not necessarily more accurate, which was particularly evident in the tropical location. The discrepancies between ground measurements and the current Sentinel-2 FAPAR product still largely exceed the GCOS target accuracy at the respective study sites, even when considering uncertainties of FAPAR ground measurements. It was found that the Sentinel-2 (S2) FAPAR product systematically underestimated the ground observations at all three study sites (i.e. negative values for the mean relative bias in percent). The highest agreement was observed at the boreal site Peace River with a mean relative deviation of -13% (R²=0.67). At Graswang and Santa Rosa, the mean relative deviations were -20% (R²=0.68) and -25% (R²=0.26), respectively. It was argued that these high discrepancies resulted from both the generic nature of the algorithm and the higher ecosystem complexity of the sites Graswang and Santa Rosa. It was also found that the temporal aggregation method of FAPAR ground data should be well considered for comparison with the S2 FAPAR product, which refers to daily averages, as overestimation of FAPAR during high solar zenith angles could distort validation results. However, considering uncertainties of ground measurements, the S2 FAPAR product met the GCOS accuracy requirements only at the boreal study site. Overall, it has been shown that the S2 FAPAR product is already well suited to assess the temporal variability of FAPAR, but due to the low accuracy of the absolute values, the possibilities to feed global production efficiency models and evaluate global carbon balances are currently limited. The accuracy of satellite derived FAPAR depends on the complexity of the observed forest ecosystem. The highest agreement between satellite derived FAPAR product and ground measurements, both in terms of absolute values and spatial variability, was achieved at the boreal site, where the complexity of the ecosystem is lowest considering forest structure variables and species richness. These results have been elaborated and presented in three publications that are at the center of this cumulative thesis. In sum, this work closes a knowledge gap by displaying the interplay of different environmental conditions on the accuracy of situ FAPAR measurements. Since the uncertainties of FAPAR are now quantifiable under field conditions, they should also be considered in future validation studies. In this context, the practical recommendations for the implementation of ground observations given in this thesis can be used to prepare sampling protocols, which are urgently needed to validate and improve global satellite derived FAPAR observations in the future.Projektionen zukünftiger Kohlenstoffbilanzen sind wichtig für das Verständnis des globalen Klimawandels und sind auf genaue Messungen von Stoffflüssen zur Berechnung der Produktivität des Erdökosystems angewiesen. Die Produktivität der Biosphäre unserer Erde wiederum ist abhängig von der Eigenschaft von Pflanzen, Sonnenlicht zu absorbieren und Biomasse zu assimilieren. Über die letzten Jahrzehnte haben zahlreiche Erdbeobachtungsmissionen von Satelliten neue Möglichkeiten geschaffen, sogenannte „essentielle Klimavariablen“ (ECVs), darunter auch wichtige Variablen der terrestrischen Biosphäre, aus Satellitendaten abzuleiten, mit deren Hilfe man die Produktivität unseres Erdsystems computergestützt berechnen kann. Eine dieser „essenziellen Klimavariablen“ ist der Anteil der absorbierten photosynthetisch aktiven Strahlung (FAPAR) die man zur Berechnung der globalen Kohlenstoffbilanz benötigt. FAPAR bezieht die verfügbare photosynthetisch aktive Strahlung (PAR) im Wellenlängenbereich zwischen 400 und 700 nm auf die Absorption von Pflanzen und quantifiziert somit Status und die zeitliche Entwicklung von Vegetation. Um möglichst präzise Informationen aus dem globalen FAPAR zu gewährleisten, erklärte die UN/WMO-Institution zur globalen Klimabeobachtung, das “Global Climate Observing System“ (GCOS), ein Genauigkeitsziel von 10% (bzw. 0.05) FAPAR-Produkte als akzeptabel. Da aktuell satellitengestützte FAPAR-Produkte dieses Genauigkeitsziel besonders in Waldökosystemen immer noch verfehlen, werden dringen in situ FAPAR-Messungen benötigt, um die FAPAR-Produkte validieren und in Zukunft verbessern zu können. Man weiß jedoch, dass je nach Auswahl des Messsystems und vorherrschenden Umweltbedingungen in situ FAPAR-Messungen mit erheblichen sowohl systematischen als auch statistischen Fehlern beeinflusst sein können. Bisher wurden diese Fehler in Simulationen mit Strahlungstransfermodellen zwar theoretisch nachvollzogen, aber die dadurch abgeleiteten Befunde sind bisher weder in Feldversuchen noch in unterschiedlichen Waldökosystemen validiert worden. Eine Unsicherheitsabschätzung von FAPAR im Feldversuch ist allerdings essenziell, um praxistaugliche Messprotokolle entwickeln zu können. Die vorliegende Arbeit untersucht die Genauigkeit von in situ FAPAR-Messungen und Ursachen von Unsicherheit basierend auf mehrjährigen, 10-minütigen PAR-Messungen mit drahtlosen Sensornetzwerken (WSNs) an drei verschiedenen Waldstandorten auf drei Kontinenten: der Standort „Graswang“ in Süddeutschland mit einem Fichten-Mischwald, der Standort „Peace River“ in Nord-Alberta, Kanada mit einem borealen Laubwald und der Standort „Santa Rosa“, Costa Rica mit einem tropischen Trockenwald. Die Hauptaussagen der in dieser Arbeit erzielten Forschungsergebnisse werden im Folgenden kurz zusammengefasst: Unsicherheiten von FAPAR in Waldökosystemen können mit drahtlosen Sensornetzwerken und zusätzlichen meteorologischen und phänologischen Beobachtungen quantifiziert werden. In dieser Arbeit wurden zwei Methoden für die Bewertung von Unsicherheiten entwickelt. Erstens, um den systematischen Fehler der sogenannten „two-flux“ FAPAR-Messung zu beurteilen, kann die Differenz zwischen FAPAR, das unter diffusen Lichtverhältnissen aufgenommen wurde, und FAPAR, das unter klaren Himmelsbedingungen aufgenommen wurde, untersucht werden. Für diese Methode sind Messungen des einfallenden und transmittierten PAR sowie Beobachtungen des Verhältnisses von diffuser zur gesamten einfallenden Strahlung erforderlich. Zweitens, um den systematischen Fehler nicht nur der „two-flux“ FAPAR-Messung, sondern auch der „three-flux“ FAPAR-Messung zu beurteilen, müssen „four-flux“ FAPAR-Messungen durchgeführt werden, d.h. zusätzlich Messungen der PAR Albedo des Blätterdachs sowie des Waldbodens. Zur Quantifizierung des Fehlers der „two-flux“ und „three-flux“ FAPAR-Messung kann die Differenz zur „four-flux“ FAPAR-Messung herangezogen werden. Die Hauptquellen für die Unsicherheit von in situ FAPAR-Messungen sind ein hoher Sonnenzenitwinkel, Blattfärbung und erhöhte Windgeschwindigkeit. An allen drei Untersuchungsstandorten zeigten die FAPAR-Beobachtungen natürliche saisonale Schwankungen aufgrund der phänologischen Entwicklung der Wälder (Graswang: 0,89 bis 0,99 ±0,02; Peace River: 0,55 bis 0,87 ±0,03; Santa Rosa: 0,45 bis 0,97 ±0,06). Unter bestimmten Umweltbedingungen war FAPAR von systematischen Fehlern, d.h. Verzerrungen betroffen, die über phänologisch erklärbare Schwankungen hinausgehen. So bestätigten die in situ Beobachtungen eine signifikante Überschätzung von FAPAR um bis zu 0,06 bei Sonnenzenitwinkeln von über 60° und um bis zu 0,05 bei Vorkommen gefärbter Blätter der Laubbäume. Die Ergebnisse bestätigen theoretische Erkenntnisse aus Strahlungstransfersimulationen, die nun erstmalig unter Feldbedingungen quantifiziert werden konnten. Als eine neue Erkenntnis konnte der Einfluss der Windgeschwindigkeit gezeigt werden, der sich besonders am borealen Standort mit einer signifikanten Verzerrung der FAPAR-Werte bei Windgeschwindigkeiten über 5 ms-1 äußerte. Die Unsicherheiten der „two-flux“ FAPAR-Messung sind unter typischen Sommerbedingungen akzeptabel. „Three-flux“ oder „four-flux“ FAPAR-Messungen erhöhen nicht unbedingt die Genauigkeit der Abschätzung. Die höchsten durchschnittlichen relativen systematischen Fehler verschiedener Methoden zur FAPAR-Messung betrugen 2,1% in Graswang, 8,4% in Peace River und -4,5% in Santa Rosa. Damit wurde der durch GCOS festgelegte Genauigkeitsschwellenwert von 10% im Allgemeinen nicht überschritten. Die „two-flux“ FAPAR-Messung wurde nur als fehleranfällig bei hohe Windgeschwindigkeiten befunden, da Änderungen der PAR-Albedo des Blätterdachs bei der „two-flux“ FAPAR-Messung nicht berücksichtigt werden. Unter typischen Sommerbedingungen, also geringe Windgeschwindigkeit, kleiner Sonnenzenitwinkel und grüne Blätter, kann die „two-flux“ FAPAR-Messung für die Validierung von satellitengestützten FAPAR-Produkten empfohlen werden. Auf Basis der gewonnenen Ergebnisse muss betont werden, dass die „three-flux“ FAPAR-Messung, die in bisherigen Studien häufig bevorzugt wurde, nicht unbedingt weniger fehlerbehaftet sind, was sich insbesondere am tropischen Standort zeigte. Die Abweichungen zwischen Bodenmessungen und dem aktuellen Sentinel-2 FAPAR-Produkt überschreiten auch unter Berücksichtigung von Unsicherheiten in der Messmethodik immer noch weitgehend die GCOS-Zielgenauigkeit an den jeweiligen Untersuchungsstandorten. So zeigte sich, dass das S2 FAPAR-Produkt die Bodenbeobachtungen an allen drei Studienstandorten systematisch unterschätzte (d.h. negative Werte für die mittlere relative Abweichung in Prozent). Die höchste Übereinstimmung wurde am borealen Standort Peace River mit einer mittleren relativen Abweichung von -13% (R²=0,67) beobachtet. An den Standorten Graswang und Santa Rosa betrugen die mittleren relativen Abweichungen jeweils -20% (R²=0,68) bzw. -25% (R²=0,26). Es wurde argumentiert, dass diese hohen Abweichungen auf eine Kombination sowohl des generisch ausgerichteten Algorithmus als auch der höheren Komplexität beider Ökosysteme zurückgeführt werden können. Es zeigte sich außerdem, dass die zeitlichen Aggregierung der FAPAR-Bodendaten zum Vergleich mit S2 FAPAR-Produkt, das sich auf Tagesmittelwerte bezieht, gut überlegt sein sollte, da die Überschätzung von FAPAR während eines hohen Sonnenzenitwinkels in den Bodendaten die Validierungsergebnisse verzerren kann. Unter Berücksichtigung der Unsicherheiten der Bodendaten erfüllte das S2 FAPAR Produkt jedoch nur am boreale Untersuchungsstandort die Genauigkeitsanforderungen des GCOS. Insgesamt hat sich gezeigt, dass das S2 FAPAR-Produkt bereits gut zur Beurteilung der zeitlichen Variabilität von FAPAR geeignet ist, aber aufgrund der geringen Genauigkeit der absoluten Werte sind die Möglichkeiten, globale Produktionseffizienzmodelle zu speisen und globale Kohlenstoffbilanzen zu bewerten, derzeit begrenzt. Die Genauigkeit von satellitengestützten FAPAR-Produkten ist abhängig von der Komplexität des beobachteten Waldökosystems. Die höchste Übereinstimmung zwischen satellitengestütztem FAPAR und Bodenmessungen, sowohl hinsichtlich der Darstellung von absolutem Werten als auch der räumlichen Variabilität, wurde am borealen Standort erzielt, für den die Komplexität des Ökosystems unter Berücksichtigung von Waldstrukturvariablen und Artenreichtum am geringsten ausfällt. Die dargestellten Ergebnisse wurden in drei Publikationen dieser kumulativen Arbeit erarbeitet. Insgesamt schließt diese Arbeit eine Wissenslücke in der Darstellung des Zusammenspiels verschiedener Umgebungsbedingungen auf die Genauigkeit von situ FAPAR-Messungen. Da die Unsicherheiten von FAPAR nun unter Feldbedingungen quantifizierbar sind, sollten sie in zukünftigen Validierungsstudien auch berücksichtigt werden. In diesem Zusammenhang können die in dieser Arbeit genannten praktische Empfehlungen für die Durchführung von Bodenbeobachtungen zur Erstellung von Messprotokollen herangezogen werden, die dringend erforderlich sind, um globale satellitengestützte FAPAR-Beobachten validieren und zukünftig verbessern zu können

    Investigating the relationship between the inter-annual variability of satellite-derived vegetation phenology and a proxy of biomass production in the Sahel

    Get PDF
    In the Sahel region, moderate to coarse spatial resolution remote sensing time series are used in early warning monitoring systems with the aim of detecting unfavorable crop and pasture conditions and informing stakeholders about impending food security risks. Despite growing evidence that vegetation productivity is directly related to phenology, most approaches to estimate such risks do not explicitly take into account the actual timing of vegetation growth and development. The date of the start of the season (SOS) or of the peak canopy density can be assessed by remote sensing techniques in a timely manner during the growing season. However, there is limited knowledge about the relationship between vegetation biomass production and these variables at regional scale. This study describes a first attempt to increase our understanding of such a relationship through the analysis of phenological variables retrieved from SPOT-VEGETATION time series of the Fraction of Absorbed Photosynthetically Active Radiation (FAPAR). Two key phenological variables (growing season length, GSL; timing of SOS) and the maximum value of FAPAR attained during the growing season (Peak) are analyzed as potentially related to a proxy of biomass production (CFAPAR, the cumulative value of FAPAR during the growing season). GSL, SOS and Peak all show different spatial patterns of correlation with CFAPAR. In particular, GSL shows a high and positive correlation with CFAPAR over the whole Sahel (mean r = 0.78). The negative correlation between delays in SOS and CFAPAR is stronger (mean r = -0.71) in the southern agricultural band of the Sahel, while the positive correlation between Peak FAPAR and CFAPAR is higher in the northern and more arid grassland region (mean r = 0.75). The consistency of the results and the actual link between remote-sensing derived phenological parameters and biomass production were evaluated using field measurements of aboveground herbaceous biomass of rangelands in Senegal. This study demonstrates the potential of phenological variables as indicators of biomass production. Nevertheless, the strength of the relation between phenological variables and biomass production is not universal and indeed quite variable geographically, with large scattered areas not showing a statistically significant relationship.JRC.H.4-Monitoring Agricultural Resource

    Evaluation of MODIS LAI/FPAR product Collection 6. Part 2: Validation and intercomparison

    Get PDF
    The aim of this paper is to assess the latest version of the MODIS LAI/FPAR product (MOD15A2H), namely Collection 6 (C6). We comprehensively evaluate this product through three approaches: validation with field measurements, intercomparison with other LAI/FPAR products and comparison with climate variables. Comparisons between ground measurements and C6, as well as C5 LAI/FPAR indicate: (1) MODIS LAI is closer to true LAI than effective LAI; (2) the C6 product is considerably better than C5 with RMSE decreasing from 0.80 down to 0.66; (3) both C5 and C6 products overestimate FPAR over sparsely-vegetated areas. Intercomparisons with three existing global LAI/FPAR products (GLASS, CYCLOPES and GEOV1) are carried out at site, continental and global scales. MODIS and GLASS (CYCLOPES and GEOV1) agree better with each other. This is expected because the surface reflectances, from which these products were derived, were obtained from the same instrument. Considering all biome types, the RMSE of LAI (FPAR) derived from any two products ranges between 0.36 (0.05) and 0.56 (0.09). Temporal comparisons over seven sites for the 2001–2004 period indicate that all products properly capture the seasonality in different biomes, except evergreen broadleaf forests, where infrequent observations due to cloud contamination induce unrealistic variations. Thirteen years of C6 LAI, temperature and precipitation time series data are used to assess the degree of correspondence between their variations. The statistically-significant associations between C6 LAI and climate variables indicate that C6 LAI has the potential to provide reliable biophysical information about the land surface when diagnosing climate-driven vegetation responses.Help from MODIS and VIIRS Science team members is gratefully acknowledged. This work is supported by the MODIS program of NASA and partially funded by the National Basic Research Program of China (Grant No. 2013CB733402) and the key program of NSFC (Grant No. 41331171). Kai Yan gives thanks for the scholarship from the China Scholarship Council. (MODIS program of NASA; 2013CB733402 - National Basic Research Program of China; 41331171 - NSFC; China Scholarship Council

    Mediterranean-wide Green Vegetation Abundance for Land Degradation Assessment Derived from AVHRR NDVI and Surface Temperature 1989 to 2005

    Get PDF
    NOAA AVHRR data stemming from the MEDOKADS archive and ranging from 1989 to 2005 was processed and decomposed into their fractions of the vegetated, non-vegetated and the so called ÂżcoldÂż endmember. Decomposition occurred via Linear Unmixing within a triangle spanned up by NDVI (y-axis) and surface temperature (x-axis), separately for each of the 612 10-day composites. Endmembers were derived statistically using percentiles and the inverse relationship between NDVI and Ts. The cold endmember was fixed at -20 degrees Celsius, the vegetated endmember at NDVI = 0.7, the latter was then empirically corrected for illumination effects. Linear Unmixing occurred for the whole Mediterranean area, separately for a western and eastern window. Outcomes are the vegetation abundance, soil abundance and ÂżcoldÂż abundance, indicating the individual coverage of a pixel by each of these. The vegetation abundance was re-scaled to the so-called Grenn Vegetation Fraction (GVF), re-distributing the ÂżcoldÂż abundance on vegetation and soil abundance proportionally. Unmixing led to a higher stability of GVF data in comparison to NDVI data with regard to atmospheric effects. The data was post-processed for missing values and outliers and it was filtered. The GVF shows close parallelism on several test sites in comparison to a re-scaled NDVI within the endmember limits. The positive effect of the cold abundance, which is amongst other accounting for negative effects from poor atmospheric conditions and which was used to improve the GVF, could be clearly shown. Comparison with high and low resolution SPOT data shows a linear relationship and higher values for GVF. Squared GVF values were found to be closely correlated with independently derived high and low resolution vegetation cover (fCover), confirming this relationship known from literature. Coefficients of determination (R2), slope and offset of linear relations between squared GVF on one side and the two validation data sets on the other side were 0.69, 0.91, 0.07 and 0.58, 1.27, 0.06, respectively. In addition to the Âżper seÂż value of the derived abundances, validation results indicate that squared GVF may be used as approximation for vegetation cover.JRC.H.7-Land management and natural hazard

    Assessing uncertainties of in situ FAPAR measurements across different forest ecosystems

    Get PDF
    Carbon balances are important for understanding global climate change. Assessing such balances on a local scale depends on accurate measurements of material flows to calculate the productivity of the ecosystem. The productivity of the Earth's biosphere, in turn, depends on the ability of plants to absorb sunlight and assimilate biomass. Over the past decades, numerous Earth observation missions from satellites have created new opportunities to derive so-called “essential climate variables” (ECVs), including important variables of the terrestrial biosphere, that can be used to assess the productivity of our Earth's system. One of these ECVs is the “fraction of absorbed photosynthetically active radiation” (FAPAR) which is needed to calculate the global carbon balance. FAPAR relates the available photosynthetically active radiation (PAR) in the wavelength range between 400 and 700 nm to the absorption of plants and thus quantifies the status and temporal development of vegetation. In order to ensure accurate datasets of global FAPAR, the UN/WMO institution “Global Climate Observing System” (GCOS) declared an accuracy target of 10% (or 0.05) as acceptable for FAPAR products. Since current satellite derived FAPAR products still fail to meet this accuracy target, especially in forest ecosystems, in situ FAPAR measurements are needed to validate FAPAR products and improve them in the future. However, it is known that in situ FAPAR measurements can be affected by significant systematic as well as statistical errors (i.e., “bias”) depending on the choice of measurement method and prevailing environmental conditions. So far, uncertainties of in situ FAPAR have been reproduced theoretically in simulations with radiation transfer models (RTMs), but the findings have been validated neither in field experiments nor in different forest ecosystems. However, an uncertainty assessment of FAPAR in field experiments is essential to develop practicable measurement protocols. This work investigates the accuracy of in situ FAPAR measurements and sources of uncertainties based on multi-year, 10-minute PAR measurements with wireless sensor networks (WSNs) at three sites on three continents to represent different forest ecosystems: a mixed spruce forest at the site “Graswang” in Southern Germany, a boreal deciduous forest at the site “Peace River” in Northern Alberta, Canada and a tropical dry forest (TDF) at the site “Santa Rosa”, Costa Rica. The main statements of the research results achieved in this thesis are briefly summarized below: Uncertainties of instantaneous FAPAR in forest ecosystems can be assessed with Wireless Sensor Networks and additional meteorological and phenological observations. In this thesis, two methods for a FAPAR bias assessment have been developed. First, for assessing the bias of the so-called two-flux FAPAR estimate, the difference between FAPAR acquired under diffuse light conditions and two-flux FAPAR acquired during clear-sky conditions can be investigated. Therefore, measurements of incoming and transmitted PAR are required to calculate the two-flux FAPAR estimate as well as observations of the ratio of diffuse-to-total incident radiation. Second, to assess the bias of not only the two- but also the three-flux FAPAR estimate, four-flux FAPAR observations must be carried out, i.e. measurements of top-of-canopy (TOC) PAR albedo and PAR albedo of the forest background. Then, to quantify the bias of the two and three-flux estimate, the difference with the four-flux estimate can be calculated. Main sources of uncertainty of in situ FAPAR measurements are high solar zenith angle, occurrence of colored leaves and increased wind speed. At all sites, FAPAR observations exhibited considerable seasonal variability due to the phenological development of the forests (Graswang: 0.89 to 0.99 ±0.02; Peace River: 0.55 to 0.87 ±0.03; Santa Rosa: 0.45 to 0.97 ±0.06). Under certain environmental conditions, FAPAR was affected by systemic errors, i.e. bias that go beyond phenologically explainable fluctuations. The in situ observations confirmed a significant overestimation of FAPAR by up to 0.06 at solar zenith angles above 60° and by up to 0.05 under the occurrence of colored leaves of deciduous trees. The results confirm theoretical findings from radiation transfer simulations, which could now for the first time be quantified under field conditions. As a new finding, the influence of wind speed could be shown, which was particularly evident at the boreal location with a significant bias of FAPAR values at wind speeds above 5 ms-1. The uncertainties of the two-flux FAPAR estimate are acceptable under typical summer conditions. Three-flux or four-flux FAPAR measurements do not necessarily increase the accuracy of the estimate. The highest average relative bias of different FAPAR estimates were 2.1% in Graswang, 8.4% in Peace River and -4.5% in Santa Rosa. Thus, the GCOS accuracy threshold of 10% set by the GCOS was generally not exceeded. The two-flux FAPAR estimate was only found to be biased during high wind speeds, as changes in the TOC PAR albedo are not considered in two-flux FAPAR measurements. Under typical summer conditions, i.e. low wind speed, small solar zenith angle and green leaves, two-flux FAPAR measurements can be recommended for the validation of satellite-based FAPAR products. Based on the results obtained, it must be emphasized that the three-flux FAPAR estimate, which has often been preferred in previous studies, is not necessarily more accurate, which was particularly evident in the tropical location. The discrepancies between ground measurements and the current Sentinel-2 FAPAR product still largely exceed the GCOS target accuracy at the respective study sites, even when considering uncertainties of FAPAR ground measurements. It was found that the Sentinel-2 (S2) FAPAR product systematically underestimated the ground observations at all three study sites (i.e. negative values for the mean relative bias in percent). The highest agreement was observed at the boreal site Peace River with a mean relative deviation of -13% (R²=0.67). At Graswang and Santa Rosa, the mean relative deviations were -20% (R²=0.68) and -25% (R²=0.26), respectively. It was argued that these high discrepancies resulted from both the generic nature of the algorithm and the higher ecosystem complexity of the sites Graswang and Santa Rosa. It was also found that the temporal aggregation method of FAPAR ground data should be well considered for comparison with the S2 FAPAR product, which refers to daily averages, as overestimation of FAPAR during high solar zenith angles could distort validation results. However, considering uncertainties of ground measurements, the S2 FAPAR product met the GCOS accuracy requirements only at the boreal study site. Overall, it has been shown that the S2 FAPAR product is already well suited to assess the temporal variability of FAPAR, but due to the low accuracy of the absolute values, the possibilities to feed global production efficiency models and evaluate global carbon balances are currently limited. The accuracy of satellite derived FAPAR depends on the complexity of the observed forest ecosystem. The highest agreement between satellite derived FAPAR product and ground measurements, both in terms of absolute values and spatial variability, was achieved at the boreal site, where the complexity of the ecosystem is lowest considering forest structure variables and species richness. These results have been elaborated and presented in three publications that are at the center of this cumulative thesis. In sum, this work closes a knowledge gap by displaying the interplay of different environmental conditions on the accuracy of situ FAPAR measurements. Since the uncertainties of FAPAR are now quantifiable under field conditions, they should also be considered in future validation studies. In this context, the practical recommendations for the implementation of ground observations given in this thesis can be used to prepare sampling protocols, which are urgently needed to validate and improve global satellite derived FAPAR observations in the future.Projektionen zukünftiger Kohlenstoffbilanzen sind wichtig für das Verständnis des globalen Klimawandels und sind auf genaue Messungen von Stoffflüssen zur Berechnung der Produktivität des Erdökosystems angewiesen. Die Produktivität der Biosphäre unserer Erde wiederum ist abhängig von der Eigenschaft von Pflanzen, Sonnenlicht zu absorbieren und Biomasse zu assimilieren. Über die letzten Jahrzehnte haben zahlreiche Erdbeobachtungsmissionen von Satelliten neue Möglichkeiten geschaffen, sogenannte „essentielle Klimavariablen“ (ECVs), darunter auch wichtige Variablen der terrestrischen Biosphäre, aus Satellitendaten abzuleiten, mit deren Hilfe man die Produktivität unseres Erdsystems computergestützt berechnen kann. Eine dieser „essenziellen Klimavariablen“ ist der Anteil der absorbierten photosynthetisch aktiven Strahlung (FAPAR) die man zur Berechnung der globalen Kohlenstoffbilanz benötigt. FAPAR bezieht die verfügbare photosynthetisch aktive Strahlung (PAR) im Wellenlängenbereich zwischen 400 und 700 nm auf die Absorption von Pflanzen und quantifiziert somit Status und die zeitliche Entwicklung von Vegetation. Um möglichst präzise Informationen aus dem globalen FAPAR zu gewährleisten, erklärte die UN/WMO-Institution zur globalen Klimabeobachtung, das “Global Climate Observing System“ (GCOS), ein Genauigkeitsziel von 10% (bzw. 0.05) FAPAR-Produkte als akzeptabel. Da aktuell satellitengestützte FAPAR-Produkte dieses Genauigkeitsziel besonders in Waldökosystemen immer noch verfehlen, werden dringen in situ FAPAR-Messungen benötigt, um die FAPAR-Produkte validieren und in Zukunft verbessern zu können. Man weiß jedoch, dass je nach Auswahl des Messsystems und vorherrschenden Umweltbedingungen in situ FAPAR-Messungen mit erheblichen sowohl systematischen als auch statistischen Fehlern beeinflusst sein können. Bisher wurden diese Fehler in Simulationen mit Strahlungstransfermodellen zwar theoretisch nachvollzogen, aber die dadurch abgeleiteten Befunde sind bisher weder in Feldversuchen noch in unterschiedlichen Waldökosystemen validiert worden. Eine Unsicherheitsabschätzung von FAPAR im Feldversuch ist allerdings essenziell, um praxistaugliche Messprotokolle entwickeln zu können. Die vorliegende Arbeit untersucht die Genauigkeit von in situ FAPAR-Messungen und Ursachen von Unsicherheit basierend auf mehrjährigen, 10-minütigen PAR-Messungen mit drahtlosen Sensornetzwerken (WSNs) an drei verschiedenen Waldstandorten auf drei Kontinenten: der Standort „Graswang“ in Süddeutschland mit einem Fichten-Mischwald, der Standort „Peace River“ in Nord-Alberta, Kanada mit einem borealen Laubwald und der Standort „Santa Rosa“, Costa Rica mit einem tropischen Trockenwald. Die Hauptaussagen der in dieser Arbeit erzielten Forschungsergebnisse werden im Folgenden kurz zusammengefasst: Unsicherheiten von FAPAR in Waldökosystemen können mit drahtlosen Sensornetzwerken und zusätzlichen meteorologischen und phänologischen Beobachtungen quantifiziert werden. In dieser Arbeit wurden zwei Methoden für die Bewertung von Unsicherheiten entwickelt. Erstens, um den systematischen Fehler der sogenannten „two-flux“ FAPAR-Messung zu beurteilen, kann die Differenz zwischen FAPAR, das unter diffusen Lichtverhältnissen aufgenommen wurde, und FAPAR, das unter klaren Himmelsbedingungen aufgenommen wurde, untersucht werden. Für diese Methode sind Messungen des einfallenden und transmittierten PAR sowie Beobachtungen des Verhältnisses von diffuser zur gesamten einfallenden Strahlung erforderlich. Zweitens, um den systematischen Fehler nicht nur der „two-flux“ FAPAR-Messung, sondern auch der „three-flux“ FAPAR-Messung zu beurteilen, müssen „four-flux“ FAPAR-Messungen durchgeführt werden, d.h. zusätzlich Messungen der PAR Albedo des Blätterdachs sowie des Waldbodens. Zur Quantifizierung des Fehlers der „two-flux“ und „three-flux“ FAPAR-Messung kann die Differenz zur „four-flux“ FAPAR-Messung herangezogen werden. Die Hauptquellen für die Unsicherheit von in situ FAPAR-Messungen sind ein hoher Sonnenzenitwinkel, Blattfärbung und erhöhte Windgeschwindigkeit. An allen drei Untersuchungsstandorten zeigten die FAPAR-Beobachtungen natürliche saisonale Schwankungen aufgrund der phänologischen Entwicklung der Wälder (Graswang: 0,89 bis 0,99 ±0,02; Peace River: 0,55 bis 0,87 ±0,03; Santa Rosa: 0,45 bis 0,97 ±0,06). Unter bestimmten Umweltbedingungen war FAPAR von systematischen Fehlern, d.h. Verzerrungen betroffen, die über phänologisch erklärbare Schwankungen hinausgehen. So bestätigten die in situ Beobachtungen eine signifikante Überschätzung von FAPAR um bis zu 0,06 bei Sonnenzenitwinkeln von über 60° und um bis zu 0,05 bei Vorkommen gefärbter Blätter der Laubbäume. Die Ergebnisse bestätigen theoretische Erkenntnisse aus Strahlungstransfersimulationen, die nun erstmalig unter Feldbedingungen quantifiziert werden konnten. Als eine neue Erkenntnis konnte der Einfluss der Windgeschwindigkeit gezeigt werden, der sich besonders am borealen Standort mit einer signifikanten Verzerrung der FAPAR-Werte bei Windgeschwindigkeiten über 5 ms-1 äußerte. Die Unsicherheiten der „two-flux“ FAPAR-Messung sind unter typischen Sommerbedingungen akzeptabel. „Three-flux“ oder „four-flux“ FAPAR-Messungen erhöhen nicht unbedingt die Genauigkeit der Abschätzung. Die höchsten durchschnittlichen relativen systematischen Fehler verschiedener Methoden zur FAPAR-Messung betrugen 2,1% in Graswang, 8,4% in Peace River und -4,5% in Santa Rosa. Damit wurde der durch GCOS festgelegte Genauigkeitsschwellenwert von 10% im Allgemeinen nicht überschritten. Die „two-flux“ FAPAR-Messung wurde nur als fehleranfällig bei hohe Windgeschwindigkeiten befunden, da Änderungen der PAR-Albedo des Blätterdachs bei der „two-flux“ FAPAR-Messung nicht berücksichtigt werden. Unter typischen Sommerbedingungen, also geringe Windgeschwindigkeit, kleiner Sonnenzenitwinkel und grüne Blätter, kann die „two-flux“ FAPAR-Messung für die Validierung von satellitengestützten FAPAR-Produkten empfohlen werden. Auf Basis der gewonnenen Ergebnisse muss betont werden, dass die „three-flux“ FAPAR-Messung, die in bisherigen Studien häufig bevorzugt wurde, nicht unbedingt weniger fehlerbehaftet sind, was sich insbesondere am tropischen Standort zeigte. Die Abweichungen zwischen Bodenmessungen und dem aktuellen Sentinel-2 FAPAR-Produkt überschreiten auch unter Berücksichtigung von Unsicherheiten in der Messmethodik immer noch weitgehend die GCOS-Zielgenauigkeit an den jeweiligen Untersuchungsstandorten. So zeigte sich, dass das S2 FAPAR-Produkt die Bodenbeobachtungen an allen drei Studienstandorten systematisch unterschätzte (d.h. negative Werte für die mittlere relative Abweichung in Prozent). Die höchste Übereinstimmung wurde am borealen Standort Peace River mit einer mittleren relativen Abweichung von -13% (R²=0,67) beobachtet. An den Standorten Graswang und Santa Rosa betrugen die mittleren relativen Abweichungen jeweils -20% (R²=0,68) bzw. -25% (R²=0,26). Es wurde argumentiert, dass diese hohen Abweichungen auf eine Kombination sowohl des generisch ausgerichteten Algorithmus als auch der höheren Komplexität beider Ökosysteme zurückgeführt werden können. Es zeigte sich außerdem, dass die zeitlichen Aggregierung der FAPAR-Bodendaten zum Vergleich mit S2 FAPAR-Produkt, das sich auf Tagesmittelwerte bezieht, gut überlegt sein sollte, da die Überschätzung von FAPAR während eines hohen Sonnenzenitwinkels in den Bodendaten die Validierungsergebnisse verzerren kann. Unter Berücksichtigung der Unsicherheiten der Bodendaten erfüllte das S2 FAPAR Produkt jedoch nur am boreale Untersuchungsstandort die Genauigkeitsanforderungen des GCOS. Insgesamt hat sich gezeigt, dass das S2 FAPAR-Produkt bereits gut zur Beurteilung der zeitlichen Variabilität von FAPAR geeignet ist, aber aufgrund der geringen Genauigkeit der absoluten Werte sind die Möglichkeiten, globale Produktionseffizienzmodelle zu speisen und globale Kohlenstoffbilanzen zu bewerten, derzeit begrenzt. Die Genauigkeit von satellitengestützten FAPAR-Produkten ist abhängig von der Komplexität des beobachteten Waldökosystems. Die höchste Übereinstimmung zwischen satellitengestütztem FAPAR und Bodenmessungen, sowohl hinsichtlich der Darstellung von absolutem Werten als auch der räumlichen Variabilität, wurde am borealen Standort erzielt, für den die Komplexität des Ökosystems unter Berücksichtigung von Waldstrukturvariablen und Artenreichtum am geringsten ausfällt. Die dargestellten Ergebnisse wurden in drei Publikationen dieser kumulativen Arbeit erarbeitet. Insgesamt schließt diese Arbeit eine Wissenslücke in der Darstellung des Zusammenspiels verschiedener Umgebungsbedingungen auf die Genauigkeit von situ FAPAR-Messungen. Da die Unsicherheiten von FAPAR nun unter Feldbedingungen quantifizierbar sind, sollten sie in zukünftigen Validierungsstudien auch berücksichtigt werden. In diesem Zusammenhang können die in dieser Arbeit genannten praktische Empfehlungen für die Durchführung von Bodenbeobachtungen zur Erstellung von Messprotokollen herangezogen werden, die dringend erforderlich sind, um globale satellitengestützte FAPAR-Beobachten validieren und zukünftig verbessern zu können
    • …
    corecore