426 research outputs found

    Implant technology and TFS processing in relation to speech discrimination and music perception and appreciation

    Get PDF
    Direct stimulation of the auditory nerve via a Cochlear Implant (CI) enables profoundly deaf subjects to perceive sounds. Many CI users find language comprehension satisfactory in quiet and accessible in the presence of noise. However, music contains different dimensions which need to be approached in different ways. Whilst both language and music take advantage of the modulation of acoustic parameters to convey information, music is an acoustically more complex stimulus than language, demanding more complex resolution mechanisms. One of the most important aspects that contributes to speech perception skills, especially when listening in a fluctuating background, is Temporal Fine Structure processing. TFS cues are pre-dominant in conveying Low Frequency (LF) signals. Harmonic (HI) and Disharmonic (DI) In-tonation are tests of pitch perception in the LF domain which are thought to depend on avail-ability of TFS cues and which are included in the protocol on this group of adult CI recipients. One of the primary aims of this thesis was the production of a new assessment tool, the Italian STARR test which was based on the measurement of speech perception using a roving-level adaptive method where the presentation level of both speech and noise signals varied between each sentence presentation. The STARR test attempts to reflect a better representation of real world listening conditions where background noise is usually present and speech intensity var-ies according to vocal capacity as well as the distance of the speaker. The outcomes for the Italian STARR in NH adults were studied to produce normative data, as well as to evaluate inter-list variability and learning effects. (Chapter 4). The second aim was to investigate LF pitch perception outcomes linked to availability of TFS cues in a group of adult CI recipients including bimodal users in relation to speech perception, in particular Italian STARR outcomes. Here it was seen that age had a significant effect on performance especially in older adults. Similarly, CI recipients (even better performers) showed abnormal findings in comparison to NH subjects. On the other hand, the significant effect of CI thresholds re-emphasized the sensitivity of the test to low intensity speech which a CI user can often encounter under everyday listening conditions. Statistically significant correlations between HI/DI and STARR performance were found. Moreover, bimodal benefit was seen both for HI/DI and STARR tests. Overall findings confirmed the usefulness of evaluating both LF pitch and speech perception in noise in order to track changes in TFS sen-sitivity for CI recipients over time and across different listening conditions which might be provided by future technological progress. (Chapter 5) Finally, the last and main aspect taken into account in this thesis was the study of the difficul-ties experienced by CI users when listening to music. An attempt was made to correlate find-ings resulting from the previous phases of this study both to Speech in Noise and to the com-plex subjective aspects of Music Perception and Appreciation: correlation analysis between HI/DI tests and the main dimensions of Speech in Noise (STARR and OLSA) and Music Ap-preciation was performed. (Chapter 6). Interestingly, positive findings were found for the two most complex types of Music (Classical, Jazz), whereas Soul did not seem to require particular competence in Pitch perception for the appreciation of the subjective variables taken into con-sideration by this study

    Improving the Speech Intelligibility By Cochlear Implant Users

    Get PDF
    In this thesis, we focus on improving the intelligibility of speech for cochlear implants (CI) users. As an auditory prosthetic device, CI can restore hearing sensations for most patients with profound hearing loss in both ears in a quiet background. However, CI users still have serious problems in understanding speech in noisy and reverberant environments. Also, bandwidth limitation, missing temporal fine structures, and reduced spectral resolution due to a limited number of electrodes are other factors that raise the difficulty of hearing in noisy conditions for CI users, regardless of the type of noise. To mitigate these difficulties for CI listener, we investigate several contributing factors such as the effects of low harmonics on tone identification in natural and vocoded speech, the contribution of matched envelope dynamic range to the binaural benefits and contribution of low-frequency harmonics to tone identification in quiet and six-talker babble background. These results revealed several promising methods for improving speech intelligibility for CI patients. In addition, we investigate the benefits of voice conversion in improving speech intelligibility for CI users, which was motivated by an earlier study showing that familiarity with a talker’s voice can improve understanding of the conversation. Research has shown that when adults are familiar with someone’s voice, they can more accurately – and even more quickly – process and understand what the person is saying. This theory identified as the “familiar talker advantage” was our motivation to examine its effect on CI patients using voice conversion technique. In the present research, we propose a new method based on multi-channel voice conversion to improve the intelligibility of transformed speeches for CI patients

    A Fine Structure Stimulation Strategy and Related Concepts

    Get PDF

    Pitch perception and cochlear implants

    Get PDF

    Update On Hearing Loss

    Get PDF
    Update on Hearing Loss encompasses both the theoretical background on the different forms of hearing loss and a detailed knowledge on state-of-the-art treatment for hearing loss, written for clinicians by specialists and researchers. Realizing the complexity of hearing loss has highlighted the importance of interdisciplinary research. Therefore, all the authors contributing to this book were chosen from many different specialties of medicine, including surgery, psychology, and neuroscience, and came from diverse areas of expertise, such as neurology, otolaryngology, psychiatry, and clinical and experimental audiology

    Auf einem menschlichen Gehörmodell basierende Elektrodenstimulationsstrategie für Cochleaimplantate

    Get PDF
    Cochleaimplantate (CI), verbunden mit einer professionellen Rehabilitation, haben mehreren hunderttausenden Hörgeschädigten die verbale Kommunikation wieder ermöglicht. Betrachtet man jedoch die Rehabilitationserfolge, so haben CI-Systeme inzwischen ihre Grenzen erreicht. Die Tatsache, dass die meisten CI-Träger nicht in der Lage sind, Musik zu genießen oder einer Konversation in geräuschvoller Umgebung zu folgen, zeigt, dass es noch Raum für Verbesserungen gibt.Diese Dissertation stellt die neue CI-Signalverarbeitungsstrategie Stimulation based on Auditory Modeling (SAM) vor, die vollständig auf einem Computermodell des menschlichen peripheren Hörsystems beruht.Im Rahmen der vorliegenden Arbeit wurde die SAM Strategie dreifach evaluiert: mit vereinfachten Wahrnehmungsmodellen von CI-Nutzern, mit fünf CI-Nutzern, und mit 27 Normalhörenden mittels eines akustischen Modells der CI-Wahrnehmung. Die Evaluationsergebnisse wurden stets mit Ergebnissen, die durch die Verwendung der Advanced Combination Encoder (ACE) Strategie ermittelt wurden, verglichen. ACE stellt die zurzeit verbreitetste Strategie dar. Erste Simulationen zeigten, dass die Sprachverständlichkeit mit SAM genauso gut wie mit ACE ist. Weiterhin lieferte SAM genauere binaurale Merkmale, was potentiell zu einer Verbesserung der Schallquellenlokalisierungfähigkeit führen kann. Die Simulationen zeigten ebenfalls einen erhöhten Anteil an zeitlichen Pitchinformationen, welche von SAM bereitgestellt wurden. Die Ergebnisse der nachfolgenden Pilotstudie mit fünf CI-Nutzern zeigten mehrere Vorteile von SAM auf. Erstens war eine signifikante Verbesserung der Tonhöhenunterscheidung bei Sinustönen und gesungenen Vokalen zu erkennen. Zweitens bestätigten CI-Nutzer, die kontralateral mit einem Hörgerät versorgt waren, eine natürlicheren Klangeindruck. Als ein sehr bedeutender Vorteil stellte sich drittens heraus, dass sich alle Testpersonen in sehr kurzer Zeit (ca. 10 bis 30 Minuten) an SAM gewöhnen konnten. Dies ist besonders wichtig, da typischerweise Wochen oder Monate nötig sind. Tests mit Normalhörenden lieferten weitere Nachweise für die verbesserte Tonhöhenunterscheidung mit SAM.Obwohl SAM noch keine marktreife Alternative ist, versucht sie den Weg für zukünftige Strategien, die auf Gehörmodellen beruhen, zu ebnen und ist somit ein erfolgversprechender Kandidat für weitere Forschungsarbeiten.Cochlear implants (CIs) combined with professional rehabilitation have enabled several hundreds of thousands of hearing-impaired individuals to re-enter the world of verbal communication. Though very successful, current CI systems seem to have reached their peak potential. The fact that most recipients claim not to enjoy listening to music and are not capable of carrying on a conversation in noisy or reverberative environments shows that there is still room for improvement.This dissertation presents a new cochlear implant signal processing strategy called Stimulation based on Auditory Modeling (SAM), which is completely based on a computational model of the human peripheral auditory system.SAM has been evaluated through simplified models of CI listeners, with five cochlear implant users, and with 27 normal-hearing subjects using an acoustic model of CI perception. Results have always been compared to those acquired using Advanced Combination Encoder (ACE), which is today’s most prevalent CI strategy. First simulations showed that speech intelligibility of CI users fitted with SAM should be just as good as that of CI listeners fitted with ACE. Furthermore, it has been shown that SAM provides more accurate binaural cues, which can potentially enhance the sound source localization ability of bilaterally fitted implantees. Simulations have also revealed an increased amount of temporal pitch information provided by SAM. The subsequent pilot study, which ran smoothly, revealed several benefits of using SAM. First, there was a significant improvement in pitch discrimination of pure tones and sung vowels. Second, CI users fitted with a contralateral hearing aid reported a more natural sound of both speech and music. Third, all subjects were accustomed to SAM in a very short period of time (in the order of 10 to 30 minutes), which is particularly important given that a successful CI strategy change typically takes weeks to months. An additional test with 27 normal-hearing listeners using an acoustic model of CI perception delivered further evidence for improved pitch discrimination ability with SAM as compared to ACE.Although SAM is not yet a market-ready alternative, it strives to pave the way for future strategies based on auditory models and it is a promising candidate for further research and investigation

    Cognitive Auditory Evoked Potentials in Investigation of Hearing Discrimination

    Get PDF
    Preattentive perception of occasional deviating stimuli in the stream of standard stimuli can be recorded with cognitive event-related potential (ERP) mismatch negativity (MMN). The earlier detection of stimuli at the auditory cortex can be examined with N1 and P2 ERPs. The MMN recording does not require co-operation, it correlates with perceptual threshold, and even complex sounds can be used as stimuli. The aim of this study was to examine different aspects that should be considered when measuring discrimination of hearing with ERPs. The MMN was found to be stimulusintensity- dependent. As the intensity of sine wave stimuli was increased from 40 to 80 dB HL, MMN mean amplitudes increased. The effect of stimulus frequency on the MMN was studied so that the pitch difference would be equal in each stimulus block according to the psychophysiological mel scale or the difference limen of frequency (DLF). However, the blocks differed from each other. The contralateral white noise masking (50 dB EML) was found to attenuate the MMN amplitude when the right ear was stimulated. The N1 amplitude was attenuated and, in contrast, P2 amplitude was not affected by contralateral white noise masking. The perception and production of vowels by four postlingually deafened patients with a cochlear implant were studied. The MMN response could be elicited in the patient with the best vowel perception abilities. The results of the studies show that concerning the MMN recordings, the stimulus parameters and recording procedure design have a great influence on the results.Siirretty Doriast
    • …
    corecore