39,587 research outputs found

    What Role Can Process Mining Play in Recurrent Clinical Guidelines Issues? A Position Paper

    Get PDF
    [EN] In the age of Evidence-Based Medicine, Clinical Guidelines (CGs) are recognized to be an indispensable tool to support physicians in their daily clinical practice. Medical Informatics is expected to play a relevant role in facilitating diffusion and adoption of CGs. However, the past pioneering approaches, often fragmented in many disciplines, did not lead to solutions that are actually exploited in hospitals. Process Mining for Healthcare (PM4HC) is an emerging discipline gaining the interest of healthcare experts, and seems able to deal with many important issues in representing CGs. In this position paper, we briefly describe the story and the state-of-the-art of CGs, and the efforts and results of the past approaches of medical informatics. Then, we describe PM4HC, and we answer questions like how can PM4HC cope with this challenge? Which role does PM4HC play and which rules should be employed for the PM4HC scientific community?Gatta, R.; Vallati, M.; FernĂĄndez Llatas, C.; Martinez-Millana, A.; Orini, S.; Sacchi, L.; Lenkowicz, J.... (2020). What Role Can Process Mining Play in Recurrent Clinical Guidelines Issues? A Position Paper. International Journal of Environmental research and Public Health (Online). 17(18):1-19. https://doi.org/10.3390/ijerph17186616S1191718Guyatt, G. (1992). Evidence-Based Medicine. JAMA, 268(17), 2420. doi:10.1001/jama.1992.03490170092032Hripcsak, G., Ludemann, P., Pryor, T. A., Wigertz, O. B., & Clayton, P. D. (1994). Rationale for the Arden Syntax. Computers and Biomedical Research, 27(4), 291-324. doi:10.1006/cbmr.1994.1023Peleg, M. (2013). Computer-interpretable clinical guidelines: A methodological review. Journal of Biomedical Informatics, 46(4), 744-763. doi:10.1016/j.jbi.2013.06.009Van de Velde, S., Heselmans, A., Delvaux, N., Brandt, L., Marco-Ruiz, L., Spitaels, D., 
 Flottorp, S. (2018). A systematic review of trials evaluating success factors of interventions with computerised clinical decision support. Implementation Science, 13(1). doi:10.1186/s13012-018-0790-1Rawson, T. M., Moore, L. S. P., Hernandez, B., Charani, E., Castro-Sanchez, E., Herrero, P., 
 Holmes, A. H. (2017). A systematic review of clinical decision support systems for antimicrobial management: are we failing to investigate these interventions appropriately? Clinical Microbiology and Infection, 23(8), 524-532. doi:10.1016/j.cmi.2017.02.028Greenes, R. A., Bates, D. W., Kawamoto, K., Middleton, B., Osheroff, J., & Shahar, Y. (2018). Clinical decision support models and frameworks: Seeking to address research issues underlying implementation successes and failures. Journal of Biomedical Informatics, 78, 134-143. doi:10.1016/j.jbi.2017.12.005Garcia, C. dos S., Meincheim, A., Faria Junior, E. R., Dallagassa, M. R., Sato, D. M. V., Carvalho, D. R., 
 Scalabrin, E. E. (2019). Process mining techniques and applications – A systematic mapping study. Expert Systems with Applications, 133, 260-295. doi:10.1016/j.eswa.2019.05.003Bhargava, A., Kim, T., Quine, D. B., & Hauser, R. G. (2019). A 20-Year Evaluation of LOINC in the United States’ Largest Integrated Health System. Archives of Pathology & Laboratory Medicine, 144(4), 478-484. doi:10.5858/arpa.2019-0055-oaLee, D., de Keizer, N., Lau, F., & Cornet, R. (2014). Literature review of SNOMED CT use. Journal of the American Medical Informatics Association, 21(e1), e11-e19. doi:10.1136/amiajnl-2013-001636TROTTI, A., COLEVAS, A., SETSER, A., RUSCH, V., JAQUES, D., BUDACH, V., 
 COLEMAN, C. (2003). CTCAE v3.0: development of a comprehensive grading system for the adverse effects of cancer treatment. Seminars in Radiation Oncology, 13(3), 176-181. doi:10.1016/s1053-4296(03)00031-6Daniel, C., & Kalra, D. (2019). Clinical Research Informatics: Contributions from 2018. Yearbook of Medical Informatics, 28(01), 203-205. doi:10.1055/s-0039-1677921Marco-Ruiz, L., Pedrinaci, C., Maldonado, J. A., Panziera, L., Chen, R., & Bellika, J. G. (2016). Publication, discovery and interoperability of Clinical Decision Support Systems: A Linked Data approach. Journal of Biomedical Informatics, 62, 243-264. doi:10.1016/j.jbi.2016.07.011Marcos, C., GonzĂĄlez-Ferrer, A., Peleg, M., & Cavero, C. (2015). Solving the interoperability challenge of a distributed complex patient guidance system: a data integrator based on HL7’s Virtual Medical Record standard. Journal of the American Medical Informatics Association, 22(3), 587-599. doi:10.1093/jamia/ocv003Wulff, A., Haarbrandt, B., Tute, E., Marschollek, M., Beerbaum, P., & Jack, T. (2018). An interoperable clinical decision-support system for early detection of SIRS in pediatric intensive care using openEHR. Artificial Intelligence in Medicine, 89, 10-23. doi:10.1016/j.artmed.2018.04.012Chen, C., Chen, K., Hsu, C.-Y., Chiu, W.-T., & Li, Y.-C. (Jack). (2010). A guideline-based decision support for pharmacological treatment can improve the quality of hyperlipidemia management. Computer Methods and Programs in Biomedicine, 97(3), 280-285. doi:10.1016/j.cmpb.2009.12.004Anani, N., Mazya, M. V., Chen, R., Prazeres Moreira, T., Bill, O., Ahmed, N., 
 Koch, S. (2017). Applying openEHR’s Guideline Definition Language to the SITS international stroke treatment registry: a European retrospective observational study. BMC Medical Informatics and Decision Making, 17(1). doi:10.1186/s12911-016-0401-5Eddy, D. M. (1982). Clinical Policies and the Quality of Clinical Practice. New England Journal of Medicine, 307(6), 343-347. doi:10.1056/nejm198208053070604Guyatt, G. H. (1990). Then-of-1 Randomized Controlled Trial: Clinical Usefulness. Annals of Internal Medicine, 112(4), 293. doi:10.7326/0003-4819-112-4-293CHALMERS, I. (1993). The Cochrane Collaboration: Preparing, Maintaining, and Disseminating Systematic Reviews of the Effects of Health Care. Annals of the New York Academy of Sciences, 703(1 Doing More Go), 156-165. doi:10.1111/j.1749-6632.1993.tb26345.xWoolf, S. H., Grol, R., Hutchinson, A., Eccles, M., & Grimshaw, J. (1999). Clinical guidelines: Potential benefits, limitations, and harms of clinical guidelines. BMJ, 318(7182), 527-530. doi:10.1136/bmj.318.7182.527Grading quality of evidence and strength of recommendations. (2004). BMJ, 328(7454), 1490. doi:10.1136/bmj.328.7454.1490Guyatt, G. H., Oxman, A. D., Vist, G. E., Kunz, R., Falck-Ytter, Y., Alonso-Coello, P., & SchĂŒnemann, H. J. (2008). GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ, 336(7650), 924-926. doi:10.1136/bmj.39489.470347.adHill, J., Bullock, I., & Alderson, P. (2011). A Summary of the Methods That the National Clinical Guideline Centre Uses to Produce Clinical Guidelines for the National Institute for Health and Clinical Excellence. Annals of Internal Medicine, 154(11), 752. doi:10.7326/0003-4819-154-11-201106070-00007Qaseem, A. (2012). Guidelines International Network: Toward International Standards for Clinical Practice Guidelines. Annals of Internal Medicine, 156(7), 525. doi:10.7326/0003-4819-156-7-201204030-00009Rosenfeld, R. M., Nnacheta, L. C., & Corrigan, M. D. (2015). Clinical Consensus Statement Development Manual. Otolaryngology–Head and Neck Surgery, 153(2_suppl), S1-S14. doi:10.1177/0194599815601394De Boeck, K., Castellani, C., & Elborn, J. S. (2014). Medical consensus, guidelines, and position papers: A policy for the ECFS. Journal of Cystic Fibrosis, 13(5), 495-498. doi:10.1016/j.jcf.2014.06.012Clinical Practical Guidelineshttp://www.openclinical.org/guidelines.htmlHaynes, A. B., Weiser, T. G., Berry, W. R., Lipsitz, S. R., Breizat, A.-H. S., Dellinger, E. P., 
 Gawande, A. A. (2009). A Surgical Safety Checklist to Reduce Morbidity and Mortality in a Global Population. New England Journal of Medicine, 360(5), 491-499. doi:10.1056/nejmsa0810119Grigg, E. (2015). Smarter Clinical Checklists. Anesthesia & Analgesia, 121(2), 570-573. doi:10.1213/ane.0000000000000352Hales, B., Terblanche, M., Fowler, R., & Sibbald, W. (2007). Development of medical checklists for improved quality of patient care. International Journal for Quality in Health Care, 20(1), 22-30. doi:10.1093/intqhc/mzm062Greenfield, S. (2017). Clinical Practice Guidelines. JAMA, 317(6), 594. doi:10.1001/jama.2016.19969Vegting, I. L., van Beneden, M., Kramer, M. H. H., Thijs, A., Kostense, P. J., & Nanayakkara, P. W. B. (2012). How to save costs by reducing unnecessary testing: Lean thinking in clinical practice. European Journal of Internal Medicine, 23(1), 70-75. doi:10.1016/j.ejim.2011.07.003Drummond, M. (2016). Clinical Guidelines: A NICE Way to Introduce Cost-Effectiveness Considerations? Value in Health, 19(5), 525-530. doi:10.1016/j.jval.2016.04.020Prior, M., Guerin, M., & Grimmer-Somers, K. (2008). The effectiveness of clinical guideline implementation strategies - a synthesis of systematic review findings. Journal of Evaluation in Clinical Practice, 14(5), 888-897. doi:10.1111/j.1365-2753.2008.01014.xWatts, C. G., Dieng, M., Morton, R. L., Mann, G. J., Menzies, S. W., & Cust, A. E. (2014). Clinical practice guidelines for identification, screening and follow-up of individuals at high risk of primary cutaneous melanoma: a systematic review. British Journal of Dermatology, 172(1), 33-47. doi:10.1111/bjd.13403Woolf, S., SchĂŒnemann, H. J., Eccles, M. P., Grimshaw, J. M., & Shekelle, P. (2012). Developing clinical practice guidelines: types of evidence and outcomes; values and economics, synthesis, grading, and presentation and deriving recommendations. Implementation Science, 7(1). doi:10.1186/1748-5908-7-61Legido-Quigley, H., Panteli, D., Brusamento, S., Knai, C., Saliba, V., Turk, E., 
 Busse, R. (2012). Clinical guidelines in the European Union: Mapping the regulatory basis, development, quality control, implementation and evaluation across member states. Health Policy, 107(2-3), 146-156. doi:10.1016/j.healthpol.2012.08.004Rashidian, A., Eccles, M. P., & Russell, I. (2008). Falling on stony ground? A qualitative study of implementation of clinical guidelines’ prescribing recommendations in primary care. Health Policy, 85(2), 148-161. doi:10.1016/j.healthpol.2007.07.011Yang, W.-S., & Hwang, S.-Y. (2006). A process-mining framework for the detection of healthcare fraud and abuse. Expert Systems with Applications, 31(1), 56-68. doi:10.1016/j.eswa.2005.09.003Kose, I., Gokturk, M., & Kilic, K. (2015). An interactive machine-learning-based electronic fraud and abuse detection system in healthcare insurance. Applied Soft Computing, 36, 283-299. doi:10.1016/j.asoc.2015.07.018Pryor, T. A., Gardner, R. M., Clayton, P. D., & Warner, H. R. (1983). The HELP system. Journal of Medical Systems, 7(2), 87-102. doi:10.1007/bf00995116Shahar, Y., Miksch, S., & Johnson, P. (1998). The Asgaard project: a task-specific framework for the application and critiquing of time-oriented clinical guidelines. Artificial Intelligence in Medicine, 14(1-2), 29-51. doi:10.1016/s0933-3657(98)00015-3Boxwala, A. A., Peleg, M., Tu, S., Ogunyemi, O., Zeng, Q. T., Wang, D., 
 Shortliffe, E. H. (2004). GLIF3: a representation format for sharable computer-interpretable clinical practice guidelines. Journal of Biomedical Informatics, 37(3), 147-161. doi:10.1016/j.jbi.2004.04.002Terenziani, P., Molino, G., & Torchio, M. (2001). A modular approach for representing and executing clinical guidelines. Artificial Intelligence in Medicine, 23(3), 249-276. doi:10.1016/s0933-3657(01)00087-2Sutton, D. R., & Fox, J. (2003). The Syntax and Semantics of the PROformaGuideline Modeling Language. Journal of the American Medical Informatics Association, 10(5), 433-443. doi:10.1197/jamia.m1264Musen, M. A., Tu, S. W., Das, A. K., & Shahar, Y. (1996). EON: A Component-Based Approach to Automation of Protocol-Directed Therapy. Journal of the American Medical Informatics Association, 3(6), 367-388. doi:10.1136/jamia.1996.97084511Ciccarese, P., Caffi, E., Quaglini, S., & Stefanelli, M. (2005). Architectures and tools for innovative Health Information Systems: The Guide Project. International Journal of Medical Informatics, 74(7-8), 553-562. doi:10.1016/j.ijmedinf.2005.02.001Shiffman, R. N., & Greenes, R. A. (1994). Improving Clinical Guidelines with Logic and Decision-table Techniques. Medical Decision Making, 14(3), 245-254. doi:10.1177/0272989x9401400306Peleg, M., Tu, S., Bury, J., Ciccarese, P., Fox, J., Greenes, R. A., 
 Stefanelli, M. (2003). Comparing Computer-interpretable Guideline Models: A Case-study Approach. Journal of the American Medical Informatics Association, 10(1), 52-68. doi:10.1197/jamia.m1135Karadimas, H., Ebrahiminia, V., & Lepage, E. (2018). User-defined functions in the Arden Syntax: An extension proposal. Artificial Intelligence in Medicine, 92, 103-110. doi:10.1016/j.artmed.2015.11.003Peleg, M., Keren, S., & Denekamp, Y. (2008). Mapping computerized clinical guidelines to electronic medical records: Knowledge-data ontological mapper (KDOM). Journal of Biomedical Informatics, 41(1), 180-201. doi:10.1016/j.jbi.2007.05.003German, E., Leibowitz, A., & Shahar, Y. (2009). An architecture for linking medical decision-support applications to clinical databases and its evaluation. Journal of Biomedical Informatics, 42(2), 203-218. doi:10.1016/j.jbi.2008.10.007Marcos, M., Maldonado, J. A., MartĂ­nez-Salvador, B., BoscĂĄ, D., & Robles, M. (2013). Interoperability of clinical decision-support systems and electronic health records using archetypes: A case study in clinical trial eligibility. Journal of Biomedical Informatics, 46(4), 676-689. doi:10.1016/j.jbi.2013.05.004Marco-Ruiz, L., Moner, D., Maldonado, J. A., Kolstrup, N., & Bellika, J. G. (2015). Archetype-based data warehouse environment to enable the reuse of electronic health record data. International Journal of Medical Informatics, 84(9), 702-714. doi:10.1016/j.ijmedinf.2015.05.016Gooch, P., & Roudsari, A. (2011). Computerization of workflows, guidelines, and care pathways: a review of implementation challenges for process-oriented health information systems. Journal of the American Medical Informatics Association, 18(6), 738-748. doi:10.1136/amiajnl-2010-000033Quaglini, S., Stefanelli, M., Cavallini, A., Micieli, G., Fassino, C., & Mossa, C. (2000). Guideline-based careflow systems. Artificial Intelligence in Medicine, 20(1), 5-22. doi:10.1016/s0933-3657(00)00050-6Schadow, G., Russler, D. C., & McDonald, C. J. (2001). Conceptual alignment of electronic health record data with guideline and workflow knowledge. International Journal of Medical Informatics, 64(2-3), 259-274. doi:10.1016/s1386-5056(01)00196-4GonzĂĄlez-Ferrer, A., ten Teije, A., Fdez-Olivares, J., & Milian, K. (2013). Automated generation of patient-tailored electronic care pathways by translating computer-interpretable guidelines into hierarchical task networks. Artificial Intelligence in Medicine, 57(2), 91-109. doi:10.1016/j.artmed.2012.08.008Shabo, A., Parimbelli, E., Quaglini, S., Napolitano, C., & Peleg, M. (2016). Interplay between Clinical Guidelines and Organizational Workflow Systems. Methods of Information in Medicine, 55(06), 488-494. doi:10.3414/me16-01-0006Mulyar, N., van der Aalst, W. M. P., & Peleg, M. (2007). A Pattern-based Analysis of Clinical Computer-interpretable Guideline Modeling Languages. Journal of the American Medical Informatics Association, 14(6), 781-787. doi:10.1197/jamia.m2389Grando, M. A., Glasspool, D., & Fox, J. (2012). A formal approach to the analysis of clinical computer-interpretable guideline modeling languages. Artificial Intelligence in Medicine, 54(1), 1-13. doi:10.1016/j.artmed.2011.07.001Kaiser, K., & Marcos, M. (2015). Leveraging workflow control patterns in the domain of clinical practice guidelines. BMC Medical Informatics and Decision Making, 16(1). doi:10.1186/s12911-016-0253-zMartĂ­nez-Salvador, B., & Marcos, M. (2016). Supporting the Refinement of Clinical Process Models to Computer-Interpretable Guideline Models. Business & Information Systems Engineering, 58(5), 355-366. doi:10.1007/s12599-016-0443-3Decision Model and Notation Version 1.0https://www.omg.org/spec/DMN/1.0Ghasemi, M., & Amyot, D. (2016). Process mining in healthcare: a systematised literature review. International Journal of Electronic Healthcare, 9(1), 60. doi:10.1504/ijeh.2016.078745Rebuge, Á., & Ferreira, D. R. (2012). Business process analysis in healthcare environments: A methodology based on process mining. Information Systems, 37(2), 99-116. doi:10.1016/j.is.2011.01.003Rovani, M., Maggi, F. M., de Leoni, M., & van der Aalst, W. M. P. (2015). Declarative process mining in healthcare. Expert Systems with Applications, 42(23), 9236-9251. doi:10.1016/j.eswa.2015.07.040Rojas, E., Munoz-Gama, J., SepĂșlveda, M., & Capurro, D. (2016). Process mining in healthcare: A literature review. Journal of Biomedical Informatics, 61, 224-236. doi:10.1016/j.jbi.2016.04.007Lenkowicz, J., Gatta, R., Masciocchi, C., CasĂ , C., Cellini, F., Damiani, A., 
 Valentini, V. (2018). Assessing the conformity to clinical guidelines in oncology. Management Decision, 56(10), 2172-2186. doi:10.1108/md-09-2017-0906FernĂĄndez-Llatas, C., Benedi, J.-M., GarcĂ­a-GĂłmez, J., & Traver, V. (2013). Process Mining for Individualized Behavior Modeling Using Wireless Tracking in Nursing Homes. Sensors, 13(11), 15434-15451. doi:10.3390/s131115434Qu, G., Liu, Z., Cui, S., & Tang, J. (2013). Study on Self-Adaptive Clinical Pathway Decision Support System Based on Case-Based Reasoning. Frontier and Future Development of Information Technology in Medicine and Education, 969-978. doi:10.1007/978-94-007-7618-0_95Van de Velde, S., Roshanov, P., Kortteisto, T., Kunnamo, I., Aertgeerts, B., Vandvik, P. O., & Flottorp, S. (2015). Tailoring implementation strategies for evidence-based recommendations using computerised clinical decision support systems: protocol for the development of the GUIDES tools. Implementation Science, 11(1). doi:10.1186/s13012-016-0393-

    Public Health and Epidemiology Informatics: Recent Research and Trends in the United States

    Get PDF
    Objectives To survey advances in public health and epidemiology informatics over the past three years. Methods We conducted a review of English-language research works conducted in the domain of public health informatics (PHI), and published in MEDLINE between January 2012 and December 2014, where information and communication technology (ICT) was a primary subject, or a main component of the study methodology. Selected articles were synthesized using a thematic analysis using the Essential Services of Public Health as a typology. Results Based on themes that emerged, we organized the advances into a model where applications that support the Essential Services are, in turn, supported by a socio-technical infrastructure that relies on government policies and ethical principles. That infrastructure, in turn, depends upon education and training of the public health workforce, development that creates novel or adapts existing infrastructure, and research that evaluates the success of the infrastructure. Finally, the persistence and growth of infrastructure depends on financial sustainability. Conclusions Public health informatics is a field that is growing in breadth, depth, and complexity. Several Essential Services have benefited from informatics, notably, “Monitor Health,” “Diagnose & Investigate,” and “Evaluate.” Yet many Essential Services still have not yet benefited from advances such as maturing electronic health record systems, interoperability amongst health information systems, analytics for population health management, use of social media among consumers, and educational certification in clinical informatics. There is much work to be done to further advance the science of PHI as well as its impact on public health practice
    • 

    corecore