434 research outputs found

    Joint leaf chlorophyll content and leaf area index retrieval from Landsat data using a regularized model inversion system (REGFLEC)

    Get PDF
    Leaf area index (LAI) and leaf chlorophyll content (Chll) represent key biophysical and biochemical controls on water, energy and carbon exchange processes in the terrestrial biosphere. In combination, LAI and Chll provide critical information on vegetation density, vitality and photosynthetic potentials.However, simultaneous retrieval of LAI and Chll fromspace observations is extremely challenging. Regularization strategies are required to increase the robustness and accuracy of retrieved properties and enable more reliable separation of soil, leaf and canopy parameters. To address these challenges, the REGularized canopy reFLECtance model (REGFLEC) inversion system was refined to incorporate enhanced techniques for exploiting ancillary LAI and temporal information derived from multiple satellite scenes. In this current analysis, REGFLEC is applied to a time-series of Landsat data. A novel aspect of the REGFLEC approach is the fact that no site-specific data are required to calibrate the model, which may be run in a largely automated fashion using information extracted entirely from image-based and other widely available datasets. Validation results, based upon in-situ LAI and Chll observations collected over maize and soybean fields in centralNebraska for the period 2001–2005, demonstrate Chll retrievalwith a relative root-mean-square-deviation (RMSD) on the order of 19% (RMSD = 8.42 μg cm−2). While Chll retrievals were clearly influenced by the version of the leaf optical properties model used (PROSPECT), the application of spatio-temporal regularization constraints was shown to be critical for estimating Chll with sufficient accuracy. REGFLEC also reproduced the dynamics of in-situ measured LAI well (r2 = 0.85), but estimates were biased low, particularly over maize (LAI was underestimated by ~36 %). This disparity may be attributed to differences between effective and true LAI caused by significant foliage clumping not being properly accounted for in the canopy reflectance model (SAIL). Additional advances in the retrieval of canopy biophysical and leaf biochemical constituents will require innovative use of existing remote sensing data within physically realistic canopy reflectancemodels along with the ability to exploit the enhanced spectral and spatial capabilities of upcoming satellite systems

    CubeSat constellations provide enhanced crop phenology and digital agricultural insights using daily leaf area index retrievals

    Get PDF
    Satellite remote sensing has great potential to deliver on the promise of a data-driven agricultural revolution, with emerging space-based platforms providing spatiotemporal insights into precisionlevel attributes such as crop water use, vegetation health and condition and crop response to management practices. Using a harmonized collection of high-resolution Planet CubeSat, Sentinel-2, Landsat-8 and additional coarser resolution imagery from MODIS and VIIRS, we exploit a multisatellite data fusion and machine learning approach to deliver a radiometrically calibrated and gap-filled time-series of daily leaf area index (LAI) at an unprecedented spatial resolution of 3 m. The insights available from such high-resolution CubeSat-based LAI data are demonstrated through tracking the growth cycle of a maize crop and identifying observable within-field spatial and temporal variations across key phenological stages. Daily LAI retrievals peaked at the tasseling stage, demonstrating their value for fertilizer and irrigation scheduling. An evaluation of satellite-based retrievals against field-measured LAI data collected from both rain-fed and irrigated fields shows high correlation and captures the spatiotemporal development of intra- and inter-field variations. Novel agricultural insights related to individual vegetative and reproductive growth stages were obtained, showcasing the capacity for new high-resolution CubeSat platforms to deliver actionable intelligence for precision agricultural and related applications

    Augmenting Land Cover/Land Use Classification by Incorporating Information from Land Surface Phenology: An Application to Quantify Recent Cropland Expansion in South Dakota

    Get PDF
    Understanding rapid land change in the U.S. NGP region is not only critical for management and conservation of prairie habitats and ecosystem services, but also for projecting production of crops and biofuels and the impacts of land conversion on water quality and rural transportation infrastructure. Hence, it raises the need for an LCLU dataset with good spatiotemporal coverage as well as consistent accuracy through time to enable change analysis. This dissertation aims (1) to develop a novel classification method, which utilizes time series images from comparable sensors, from the perspective of land surface phenology, and (2) to apply the land cover/land use dataset generated from the phenometrically-based classification approach to quantify crop expansion in South Dakota. A novel classification approach from the perspective of land surface phenology (LSP) uses rich time series datasets. First, surface reflectance products at 30 m spatial resolution from Landsat Collection-1, its newer structure—Landsat Analysis Ready Data, and the Harmonized Landsat Sentinel-2 (HLS) data are used to construct vegetation index time series, including the Enhanced Vegetation Index (EVI), and the 2-band EVI (EVI2), and various spectral variables (spectral band and normalized ratio composites). MODIS Level-3 Land Surface Temperature & Emissivity 8-day composite products at 1 km spatial resolution from both the Aqua and Terra satellites are used to compute accumulated growing degree-days (AGDD) time series. The EVI/EVI2 and AGDD time series are then fitted by two different land surface phenology models: the Convex Quadratic model and the Hybrid Piecewise Logistic Model. Suites of phenometrics are derived from the two LSP models and spectral variables and input to Random Forest Classifiers (RFC) to map land cover of sample areas in South Dakota. The results indicate that classifications using only phenometrics can accurately map major crops in the study area but show limited accuracy for non-vegetated land covers. RFC models using the combined spectralphenological variables can achieve higher accuracies than those using either spectral variables or phenometrics alone, especially for the barren/developed class. Among all sampling designs, the “same distribution” models—proportional distribution of the sample is like proportional distribution of the population—tends to yield best land cover prediction. A “same distribution” random sample dataset covering approximately 0.25% or more of the study area appears to achieve an accurate land cover map. To characterize crop expansion in South Dakota, a trajectory-based analysis, which considers the entire land cover dataset generated from the LSP-based classifications, is proposed to improve change detection. An estimated cropland expansion of 5,447 km2 (equivalent to 14% of the existing cropland area) occurred between 2007 and 2015, which matches more closely the reports from the National Agriculture Statistics Service—NASS (5,921 km2) and the National Resources Inventory—NRI (5,034 km2) than an estimation from a bi-temporal change approach (8,018 km2). Cropland gains were mostly concentrated in 10 counties in northern and central South Dakota. An evaluation of land suitability for crops using the Soil Survey Geographic Database—SSURGO indicates a scarcity in high-quality arable land available for cropland expansion

    Application of the Savitzky-Golay Filter to Land Cover Classification Using Temporal MODIS Vegetation Indices

    Get PDF
    In this study, the Savitzky-Golay filter was applied to smooth observed unnatural variations in the temporal profiles of the Normalized Difference Vegetation Index (NDVI} and the Enhanced Vegetation Index {EVI} time series from the MODerate Resolution Imaging Spectroradiometer (MODIS}. We computed two sets of land cover classifications based 011 the NDVI and EVI time series before and after applying the Savitzky-Golay filter. The resulting classification from the filtered versions of the vegetation indices showed a substantial improvement in accuracy when compared to the classifications from the unfiltered versions. The classification by the EVIsg had the highest K (0.72} for all classes compared to those of the EVI (0.67}, NDVI (0.63}, and NDV/sg (0.62). Therefore, we conclude that the EVIsg is best suited for land cover classification compared to the other data sets in this study

    The contribution of multitemporal information from multispectral satellite images for automatic land cover classification at the national scale

    Get PDF
    Thesis submitted to the Instituto Superior de Estatística e Gestão de Informação da Universidade Nova de Lisboa in partial fulfillment of the requirements for the Degree of Doctor of Philosophy in Information Management – Geographic Information SystemsImaging and sensing technologies are constantly evolving so that, now, the latest generations of satellites commonly provide with Earth’s surface snapshots at very short sampling periods (i.e. daily images). It is unquestionable that this tendency towards continuous time observation will broaden up the scope of remotely sensed activities. Inevitable also, such increasing amount of information will prompt methodological approaches that combine digital image processing techniques with time series analysis for the characterization of land cover distribution and monitoring of its dynamics on a frequent basis. Nonetheless, quantitative analyses that convey the proficiency of three-dimensional satellite images data sets (i.e. spatial, spectral and temporal) for the automatic mapping of land cover and land cover time evolution have not been thoroughly explored. In this dissertation, we investigate the usefulness of multispectral time series sets of medium spatial resolution satellite images for the regular land cover characterization at the national scale. This study is carried out on the territory of Continental Portugal and exploits satellite images acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS) and MEdium Resolution Imaging Spectrometer (MERIS). In detail, we first focus on the analysis of the contribution of multitemporal information from multispectral satellite images for the automatic land cover classes’ discrimination. The outcomes show that multispectral information contributes more significantly than multitemporal information for the automatic classification of land cover types. In the sequence, we review some of the most important steps that constitute a standard protocol for the automatic land cover mapping from satellite images. Moreover, we delineate a methodological approach for the production and assessment of land cover maps from multitemporal satellite images that guides us in the production of a land cover map with high thematic accuracy for the study area. Finally, we develop a nonlinear harmonic model for fitting multispectral reflectances and vegetation indices time series from satellite images for numerous land cover classes. The simplified multitemporal information retrieved with the model proves adequate to describe the main land cover classes’ characteristics and to predict the time evolution of land cover classes’individuals

    Field-scale mapping of evaporative stress indicators of crop yield: An application over Mead, NE, USA

    Get PDF
    The Evaporative Stress Index (ESI) quantifies temporal anomalies in a normalized evapotranspiration (ET) metric describing the ratio of actual-to-reference ET (fRET) as derived from satellite remote sensing. At regional scales (3–10 km pixel resolution), the ESI has demonstrated the capacity to capture developing crop stress and impacts on regional yield variability in water-limited agricultural regions. However, its performance in some regions where the vegetation cycle is intensively managed appears to be degraded due to spatial and temporal limitations in the standard ESI products. In this study, we investigated potential improvements to ESI by generating maps of ET, fRET, and fRET anomalies at high spatiotemporal resolution (30-m pixels, daily time steps) using a multi-sensor data fusion method, enabling separation of landcover types with different phenologies and resilience to drought. The study was conducted for the period 2010–2014 covering a region around Mead, Nebraska that includes both rainfed and irrigated crops. Correlations between ESI and measurements of maize yield were investigated at both the field and county level to assess the potential of ESI as a yield forecasting tool. To examine the role of crop phenology in yield-ESI correlations, annual input fRET time series were aligned by both calendar day and by biophysically relevant dates (e.g. days since planting or emergence). At the resolution of the operational U.S. ESI product (4 km), adjusting fRET alignment to a regionally reported emergence date prior to anomaly computation improves r2 correlations with county-level yield estimates from 0.28 to 0.80. At 30-m resolution, where pure maize pixels can be isolated from other crops and landcover types, county-level yield correlations improved from 0.47 to 0.93 when aligning fRET by emergence date rather than calendar date. Peak correlations occurred 68 days after emergence, corresponding to the silking stage for maize when grain development is particularly sensitive to soil moisture deficiencies. The results of this study demonstrate the utility of remotely sensed ET in conveying spatially and temporally explicit water stress information to yield prediction and crop simulation models

    Intra-Annual land cover mapping: Automatic training sample extraction from old maps for intra-annual land cover mapping at central of Portugal

    Get PDF
    Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial TechnologiesMaking operational e cient the production of Land Use Land cover (LULC) mapping over large areas as the consistency and accuracy keep a high quality is an essential condition for the implementation of applications that require periodic information, such as forest re propagation, crop monitoring or climate models. The increasing spatial and temporal resolution satellite images, such as those provided by Sentinel 2, open new opportunities for producing accurate datasets that can improve the lack of production of global and regional LULC maps with ne scale and up-to-date information. In this context, while this thesis aimed to make automatic the generation of intra-annual maps implementing a work ow that consists of supervised classi cation in synergy with automatic extraction of training samples from an old map, it also aimed to use singular and BAP composites. Therefore, after a preliminary selection and preprocessing of the implemented spectral bands in the classi cation both from single and BAP composites of Sentinel 2 images of 2017, a random selection of training points is extracted from an old reference map; national LULC map of Portugal, COS 2015. We performed a classi cation scheme using support vector machine (SVM) and Random forest (RF) classi ers with two datasets of six and nine di erent number of land cover classes. The out-of-date information derived from the old map led us to evaluate the viability of implementing two re ning procedures over the data to improve accuracy; one based on margins of NDVI signals and another based on an iterative learning procedure. Since the proposed methodologies did not lead to improving OA on the classi cation of any of the images of 2017, we questioned for robustness of the classi ers RF and SVM by injecting di erent levels of noise during the modeling. Finally, the free cloud and phenological maximization of the BAP composites become in a consistent and e cient input for the production of seasonal LULC mapping
    corecore