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ABSTRACT 

AUGMENTING LAND COVER/LAND USE CLASSIFICATION BY 

INCORPORATING INFORMATION FROM LAND SURFACE PHENOLOGY: AN 

APPLICATION TO QUANTIFY RECENT CROPLAND EXPANSION IN SOUTH 

DAKOTA 

LAN HOANG NGUYEN 

2019 

Understanding rapid land change in the U.S. NGP region is not only critical for 

management and conservation of prairie habitats and ecosystem services, but also for 

projecting production of crops and biofuels and the impacts of land conversion on water 

quality and rural transportation infrastructure. Hence, it raises the need for an LCLU dataset 

with good spatiotemporal coverage as well as consistent accuracy through time to enable 

change analysis. This dissertation aims (1) to develop a novel classification method, which 

utilizes time series images from comparable sensors, from the perspective of land surface 

phenology, and (2) to apply the land cover/land use dataset generated from the 

phenometrically-based classification approach to quantify crop expansion in South Dakota. 

A novel classification approach from the perspective of land surface phenology 

(LSP) uses rich time series datasets. First, surface reflectance products at 30 m spatial 

resolution from Landsat Collection-1, its newer structure—Landsat Analysis Ready Data, 

and the Harmonized Landsat Sentinel-2 (HLS) data are used to construct vegetation index 

time series, including the Enhanced Vegetation Index (EVI), and the 2-band EVI (EVI2), 

and various spectral variables (spectral band and normalized ratio composites).  MODIS 



xix 
 

Level-3 Land Surface Temperature & Emissivity 8-day composite products at 1 km spatial 

resolution from both the Aqua and Terra satellites are used to compute accumulated 

growing degree-days (AGDD) time series. The EVI/EVI2 and AGDD time series are then 

fitted by two different land surface phenology models: the Convex Quadratic model and 

the Hybrid Piecewise Logistic Model. Suites of phenometrics are derived from the two 

LSP models and spectral variables and input to Random Forest Classifiers (RFC) to map 

land cover of sample areas in South Dakota. The results indicate that classifications using 

only phenometrics can accurately map major crops in the study area but show limited 

accuracy for non-vegetated land covers. RFC models using the combined spectral-

phenological variables can achieve higher accuracies than those using either spectral 

variables or phenometrics alone, especially for the barren/developed class. Among all 

sampling designs, the “same distribution” models—proportional distribution of the sample 

is like proportional distribution of the population—tends to yield best land cover 

prediction. A “same distribution” random sample dataset covering approximately 0.25% 

or more of the study area appears to achieve an accurate land cover map. 

To characterize crop expansion in South Dakota, a trajectory-based analysis, which 

considers the entire land cover dataset generated from the LSP-based classifications, is 

proposed to improve change detection. An estimated cropland expansion of 5,447 km2 

(equivalent to 14% of the existing cropland area) occurred between 2007 and 2015, which 

matches more closely the reports from the National Agriculture Statistics Service—NASS 

(5,921 km2) and the National Resources Inventory—NRI (5,034 km2) than an estimation 

from a bi-temporal change approach (8,018 km2). Cropland gains were mostly 

concentrated in 10 counties in northern and central South Dakota. An evaluation of land 



xx 
 

suitability for crops using the Soil Survey Geographic Database—SSURGO indicates a 

scarcity in high-quality arable land available for cropland expansion. 
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CHAPTER 1 

 

INTRODUCTION 
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1.1 Background 

Despite low population, the US Northern Great Plains (NGP) region has been 

undergoing substantial land cover/land use change (LCLUC) over the past two decades. 

Federally mandated policies spurring the demand for biofuels, particularly corn-based 

ethanol and biodiesel from soybean (Schnepf & Yacobucci, 2013), coupled with federally 

subsidized crop insurance led to a tripling in market prices for corn and soybean between 

2002 and 2012 (Johnston, 2013). Increases in commodity prices resulted in one of the most 

significant land change episodes in recent US history: the conversion of grasslands and 

wetlands to croplands, primarily in the eastern Dakotas, western Minnesota, and southern 

Iowa (Faber et al., 2012; Johnston, 2013, 2014; Wright & Wimberly, 2013). Johnston 

(2013) estimated wetlands losses of 5,000-6,000 ha per year since 1979 due to cropland 

expansion. Wright & Wimberly (2013) estimated a net loss of 530,000 ha in grass-

dominated lands in the Western Corn Belt from 2006 to 2011 based on analysis of the 

USDA’s Cropland Data Layer (CDL). Remaining intact grassland habitats are also at risk 

of conversion to cropland under projected future demands for food and fuel since ~84% of 

the area is privately owned (WWF, 2016).  

Several efforts have been made to characterize land change dynamics in the Great 

Plains. Much of the extant literature has used either the National Resources Inventory 

(NRI), a periodic statistical survey of land use and natural resource conditions on US non-

federal lands (Claassen et al., 2011; Rashford et al., 2011) that lacks spatial detail, or post-

classification change detection methods using publicly available LCLU databases, 

especially the USDA Cropland Data Layer (Faber et al., 2012; Wright & Wimberly, 
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2013a,b; Johnston, 2013, 2014; Lark et al., 2015; WWF, 2016) due to its finer 

spatiotemporal resolution and high number of thematic classes.  

The use of CDL can be justified by its high overall accuracy of 85% to 95% for 

major crops, and often 97% producer’s and user’s accuracies for corn and soybean (Boryan 

et al., 2011). However, it is important to realize that the CDL is meant to monitor 

agricultural land cover annually; and it has undergone substantial methodological changes 

over time (Mueller & Seffrin, 2006; Boryan et al., 2011). In addition, the conventional 

classification methods, such as ones first applied to the CDL and the more general National 

Land Cover Database (NLCD), were developed in an era of data scarcity and limited 

computational power and thus focused on using just a few cloud/snow-free scenes.  

Understanding rapid land change is not only critical for management and 

conservation of prairie habitats and ecosystem services, but also for projecting production 

of crops and biofuels and the impacts of land conversion on rural infrastructure, such as 

roads and water quality. Hence, there is a need for a land cover/land use dataset with good 

spatiotemporal coverage as well as consistent accuracy through time. In the current era of 

abundant earth observations, a better approach would be able to take advantage of all 

available useful data to accurate map different land cover types. 

Late fall 2016, the U.S. Geological Survey (USGS) announced a science initiative 

called Land Change Monitoring, Assessment, and Projection (LCMAP) to fulfill the 

demand of “even higher quality data, additional land cover and land change variables, more 

detailed legends, and most importantly, more frequent land change information” (Young, 

2017). LCMAP utilizes the global Landsat archive that dates back to 1972 to characterize 

historical, near real-time land change at any location across the entire Landsat record using 
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the Continuous Change Detection and Classification algorithm (Zhu & Woodcock, 2014). 

Although the future of LCMAP is bright, it will be quite some time before those data 

become generally available. Furthermore, LCMAP is restricted to the few classes of 

Anderson Level 1 plus a “transition” class; thus, it will not be suitable for studies needing 

higher levels of detail, for example, monitoring crop types and rotation. 

Shifts in land cover or environmental conditions, management practice, disturbance 

may lead to a spatiotemporal variation of land surface phenology (LSP), i.e., seasonal 

patterns of reflectance from the vegetated land surface as observed using remote sensing 

(Henebry & de Beurs, 2013). Several methods have been used to simulate the temporal 

variation of vegetation index time series (Jönsson & Eklundh, 2003; Zhang et al., 2003; de 

Beurs & Henebry, 2004; Beck et al., 2006; Qader et al., 2016; Roy & Yan, 2018). Among 

those, the double logistic curve (and its modifications) is one of the more commonly used 

fitting methods. Application of the logistic curve seems better suited to landscapes 

dominated by woody vegetation (Zhang et al., 2003; Ahl et al., 2006; Beck et al., 2006; 

Baumann et al, 2017). However, characterizing phenology for herbaceous vegetation is 

more difficult than for woody vegetation due to strong interannual variation in grasslands 

and croplands (Schwartz & Reed, 1999). Another LSP fitting approach originates from 

traditional phenological models that relate to the progression of thermal time during the 

growing season to events in plant development. Studies have shown that the temporal 

development of remotely sensed vegetation indices in temperate and boreal ecosystems can 

be well approximated as a quadratic function of accumulated growing degree-days 

(AGDD) because AGDD captures well the seasonal course of insolation at middle to higher 
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latitudes (de Beurs & Henebry, 2004; Henebry & de Beurs, 2013; Krehbiel & Henebry 

2016; Krehbiel et al., 2016, 2017).  

Modeled vegetation index time series can provide a larger number of sequentially 

related predictor variables to be exploited by classification techniques. Zhong et al. (2011) 

mapped multiple crops in San Joaquin Valley, California using phenometrics derived by 

fitting the double asymmetric sigmoid functions to the smoothed 8-d NDVI at 250-m 

resolution calculated from MOD09Q1 product. The classification accuracies were between 

70% to 80% for all study years. Xue et al. (2014) computed “phenological markers” 

(timings of phenological events) from the seasonal and trend components of the 16-d 

EVI/NDVI time series at 250-m from MOD13Q1 product. Using only those time markers, 

the authors were able to map land covers in Nanjing City, China using different classifiers 

with overall accuracies of between 88% and 98%. Also using MODIS EVI/NDVI time 

series, Yan et al. (2015) calculated various statistical composites as well as amplitude and 

phase information of harmonic components derived from Fourier transform to be used in 

LCLU classification. The entire Northeast China was classified with an overall accuracy 

of 84% and kappa statistics of 0.79. Using similar data and method to Zhong et al. (2011), 

Qader et al. (2016) accurately mapped broad dominant cover classes in Iraq and 

characterized changes from 2002 to 2012. The overall accuracy for 2003, 2006, and 2013 

classifications were 94%, 91% (using Google Earth images), and 88.5% (ground truths), 

respectively. Both Jia et al. (2014) and Kong et al. (2016) attempted to produce land cover 

maps at finer resolution by fusing Landsat NDVI at 30-m and GF-1 NDVI at 16-m 

resolution, respectively, with MODIS NDVI at 250-m resolution. Phenometrics were then 

computed from the fused datasets to be used in land cover classifications with spectral data. 
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Both studies found that phenometrics significantly improved classification accuracy 

compared to those using only spectral data (overall accuracy increased approximate 10%). 

So far, all extant studies were based on MODIS surface reflectance or vegetation index 

time series which have fine temporal but coarse spatial resolution (250 m), and none of 

those study used thermal data. A convex quadratic (CxQ) LSP model linking a vegetation 

index, such as the NDVI or the enhanced vegetation index (EVI), to thermal time as 

measured by accumulated growing degree-days (AGDD) was first applied to compare 

spring green-up dynamics before and after the collapse of the Soviet Union (de Beurs & 

Henebry, 2004) to detect significant change in a noisy AVHRR time series. Krehbiel et al. 

(2016, 2017) using a similar approach with Landsat (for NDVI) and MODIS (for AGDD) 

time series detected the conversion of croplands to residential areas near Omaha, NE and 

Minneapolis-St. Paul, MN. Although de Beurs & Henebry (2004) and Krehbiel et al. (2016, 

2017) successfully detected land cover changes in their study area through significant shifts 

in phenological metrics, these studies did not quantify areal changes or generate spatially 

explicit LCLU change maps. 

1.2 Research questions 

Understanding rapid land change is not only critical for management and 

conservation of prairie habitats and ecosystem services, but also for projecting production 

of crops and biofuels and the impacts of land conversion on water quality and rural 

transportation infrastructure. Hence, it raises the need for an LCLU dataset with good 

spatiotemporal coverage as well as consistent accuracy through time to enable change 

analysis. There are four major questions I want to address: 
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First, how well does land cover mapping perform if phenological metrics alone are 

used for input to the classification algorithm? Multi-temporal classification has proved 

superior to classification relying on just a few scenes (Franklin et al., 2015). Therefore, a 

current rapid increase of accessible Earth Observation data (particularly from the Landsat 

archive and its augmentation by newer sensors, such as Sentinel 2A and 2B) coupled with 

improved computing power is leading to the emergence of methods for generation annual 

land cover products from time series data. Generally, vegetation index (VI) time series at 

different pixels are often not observed at the same set of days due to variation in data 

quality. This limitation prevents a direct comparison between annual VI patterns to 

distinguish between land cover types. Thus, a common approach to utilize multi-temporal 

images is to generate composited images (Hansen et al., 2011; Zhang & Roy, 2017; 

Teluguntla et al., 2018). However, since the composites images may still contain gaps (if 

the composited period is too short) and mixed spectral signals (from multiple observations), 

the use of composited images in LCLU classification is generally limited to one of two 

options: (1) use multi-year data of short-period composites (e.g., monthly) to generate a 

single land cover map with fairly high details (e.g., NLCD Level-2 land cover/land use 

classes; Zhang & Roy, 2017), or (2) use long-period composites (e.g., quarterly) or statistics 

from multiple short-period composites to generate annual land cover map with only few 

broad categories (Hansen et al., 2011; Teluguntla, 2018).  

To exploit multi-temporal data more fully, I propose a novel approach to map land 

cover map accurately in a timely manner using land surface phenology modeling. First, I 

filtered the entire annual vegetation index and AGDD time series using simple functional 

forms (e.g., Convex Quadratic Model; de Beurs & Henebry 2004 or Hybrid Piecewise 
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Logistic Model; Zhang, 2015) so that land surface phenology at every pixel was described 

by a set of phenological metrics (phenometrics). Those phenometrics then were used as the 

only input for land cover/land use classification. I hypothesized that classification using 

only phenometrics could produce consistent and accurate land cover maps. Output of this 

study was cross-compared with the CDL. The newly generated land cover maps were also 

validated using point reference data and compared with reports from the U.S. Department 

of Agriculture. 

Second, what is the rate and spatial pattern of crop expansion in South Dakota over 

the past decade? Agriculture is the leading industry in South Dakota, contributing 

approximate $21 billion to the State’s economy each year (about 20% of our state’s 

economic activity, SDDA, 2018). Over the past decade, the growing demand for biofuel 

production increased agricultural activities in South Dakota, leading to the conversion of 

grassland to cropland. Although shifts in land cover may impact a wide range of 

stakeholders and interest groups, and society in general (Reitsma et al., 2014), there is not 

yet a comprehensive land change analysis available for South Dakota. Most extant studies 

take a “bi-temporal snapshot” approach (Decision Innovation Solutions, 2013; Wright & 

Wimberly, 2013; Reitsma et al., 2014) that only compares data between two isolated points 

in time and disregards intermediate-year data. The bi-temporal approach does not capture 

the regular rotation of lands into and out of cultivation and the approach can be affected by 

misclassification error at either or both time points. Thus, bi-temporal change detection can 

potentially inflate (or deflate) reported rates of conversion. On the other hand, Lark et al. 

(2015) and Arora & Wolter (2018) provided a continuous picture of land change in South 

Dakota. However, while Lark et al. (2015) only examined changes from 2008 to 2012, the 
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long-term analysis from Arora & Wolter (2018) covered only a portion of the state (Landsat 

WRS-2 Path 30, Rows 28-29). Comprehensive land change analysis in South Dakota over 

the past decade will be critical for management and conservation of prairie habitats and 

ecosystem services, as well as for projecting production of crops and of biofuels and 

assessing the impacts of conversion on rural infrastructure, such as roads and water use and 

water quality. 

LSP-based classification is a simple and consistent way to map land cover/land use. 

However, from initial results, three major challenges of the LSP-based classification were 

identified. First, the proposed method only performs well with vegetated land covers, 

especially crops. Estimated areas for non-crop covers can be unreliable (e.g., 

overestimation of grassland and underestimation of urban/built up area). A better land 

cover map would enable detection of changes not in only cropland but in other cover types. 

Second, LSP model fitting may fail due to few valid observations being available as a result 

of obscuring cloud cover and/or sensor artifacts. Those failed models create gaps in the 

outputs preventing direct comparison of land cover maps for change detection. Although 

the gaps can be filled using temporal and/or spatial context, the filling process itself can be 

complicated. The gap filling often works only for small gaps, and/or when classification 

task only retrieves a few broad land cover classes (e.g., I only mapped three land covers in 

South Dakota: cropland, grassland, and others). For example, if before- and after-year 

covers are crop, current-year cover is very likely crop. However, if before- and after-year 

covers are corn, it still not enough information to confirm that current-year cover is corn 

since rotation with soybean is likely but not guaranteed. Finally, the classification accuracy 

may vary due to the chosen model as one may be more suitable for some certain vegetation 
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types than others. Above challenges of LSP-based classification prohibit the creation of 

complete, high detailed land cover maps over a large area with diversity land cover. Thus, 

it will significantly reduce the use of those maps in change analysis as it only able to focus 

on the most accurate class and in small area where coverage is complete (or gaps are small 

enough to be filled). An effort to overcome those limitations leads me to ask the third and 

fourth research questions. Third, how will the classification accuracy be impacted by 

selecting different LSP models to fit annual time series? Fourth, can LSP-based 

classification be improved for non-vegetated surfaces by incorporating information from 

all other spectral bands? 

1.3 Data and Method 

1.3.1  Study Area 

Among the States composing the NGP region, we selected South Dakota as our 

study area for four reasons: (1) it has continental climate with high seasonal and interannual 

variation, pronounced gradients in precipitation (east-west) and temperature (north-south); 

(2) the State has strong livestock, dairy, and row crop production industries that make it 

economically viable to convert grasslands to croplands (Reitsma et al., 2015); (3) unique 

high resolution reference datasets were available for training and validation; and (4) South 

Dakota is the hot spot of grassland conversion to cropland between 2006 and 2011 as 

reported by Wright and Wimberly (2013). 

1.3.2 Input Data 

Several satellite products were used in this research. Surface reflectance products 

at 30 m resolution from Landsat Collection-1 (from Landsat 5, 7 & 8) (USGS, 2016), its 

newer structure—Landsat Analysis Ready Data (ARD) (USGS, 2018), and Harmonized 
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Landsat Sentinel-2 (HLS) (Claverie  et al., 2018) were used to construct vegetation index 

time series, including Enhanced Vegetation Index (EVI) and 2-band EVI (EVI2), and 

spectral variables (spectral band and normalized ratio composites). Collections 5 and 6 of 

the MODIS level-3 global Land Surface Temperature (LST) & Emissivity 8-day composite 

products at 1 km resolution (from both Aqua and Terra satellites) (NASA LP-DAAC, 2013; 

Wan et al., 2015a&b) were used to compute accumulated growing degree-days (AGDD) 

time series. The Cropland Data Layer (CDL; Boryan et al., 2011) was used to generate 

sample datasets and cross-compare with outputs from this study. Beside the CDL, a rich 

reference point dataset derived from high spatial resolution imagery (only cover 3 years: 

2006, 2012 & 2014; Reitsma et al, 2015; 2016) was also used to evaluate accuracy of the 

land cover maps newly generated in this study. 

1.3.3  Technical Approach 

Research question #1 

First, an annual time series of accumulated growing degree-days (AGDD) was built 

from MODIS 8-day composites of land surface temperatures. Using the EVI time series 

derived from Landsat Collection 1’s surface reflectance, a downward convex quadratic 

model to each year’s progression of AGDD (derived from Collection 5 LST) was then fit 

at each pixel (i.e., EVI = α+β×AGDD−γ×AGDD2). Phenological metrics derived from 

fitted model and the goodness of fit then are submitted to a random forest classifier (RFC) 

to characterize LCLU for four sample counties (Roberts, Bon Homme, Codington, 

Walworth: located within the Landsat’s sidelaps to achieve more observations) in South 

Dakota in three years (2006, 2012, 2014) when reference point datasets are available for 

training and validation. To answer research question #1, accuracy of RFC models and 
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predicted land cover maps were evaluated by testing data generated from the CDL. To 

examine the sensitivity of the RFC to sample size and design, land cover classifications 

were performed under different sample selection scenarios. 

Research question #2 

To characterize land changes in the study area, a fine spatiotemporal resolution land 

cover dataset with just three broad categories (“cropland”, “grassland”, and “others”) was 

generated using the phenometrically-based classification developed to answer the research 

question #1. To overcome the limitations of the bi-temporal change detection, a trajectory-

based approach—centers on the logistic regression—was proposed that considers the entire 

land cover/land use time series to determine if there was actual land change at a particular 

location. Crop expansion in South Dakota between 2007 and 2015 were then summarized 

for each county or each NASS reporting district to answer research question #2. The results 

were compared against various official data sources released by the United States 

Department of Agriculture. 

Research questions #3 and #4 

First, several annual time series of remotely sensed data were built, including: 

accumulated growing degree-days from the Collection 6 MODIS 8-day land surface 

temperature product, 2-band Enhanced Vegetation Index (EVI2), and spectral statistics 

from the Harmonized Landsat Sentinel-2 as well as from the U.S. Landsat Analysis Ready 

Data surface reflectance products. Then at each pixel, EVI2 time series were simulated 

using two land surface phenology models: Convex Quadratic model (CxQ) and Hybrid 

Piecewise Logistic Model (HPLM). Phenometrics and spectral variables were submitted 

separately and together to Random Forest Classifiers to depict land cover/land use in 
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Roberts County, South Dakota. Four classification scenarios using different sets of input 

variables were performed: (1) only CxQ phenometrics, (2) only HPLM phenometrics, (3) 

only spectral variables, and (4) the combined spectral-phenological variables. Comparisons 

between classification scenarios, which answer research questions #3 and #4, were 

conducted based on conventional accuracy (Congalton & Green, 2008) metrics and two 

alternatives of kappa statistic (Pontius & Millones, 2011). 

1.4 Significance of the research 

My dissertation research will advance the researcher’s toolkit for land cover 

mapping and change analysis as well as shine fresh light on what has been a controversial 

issue since 2013: the conversion of mixed-grass prairie to commodity crops, particularly 

to corn and soybean, due to the increasing demand for biofuels,  animal feed, and exports 

1.5 Thesis structure 

This research dissertation has five chapters, including this introductory first 

chapter. Chapter Two explores the accuracy of land cover classification using 

phenometrics generated from the Convex Quadratic model solely (research question #1). 

The chapter also examined performance of Random Forest Classifiers (RFC) under 

multiple sampling designs (no-controlled versus controlled samples) and increasing sample 

sizes. Chapter Three provides a comprehensive analysis of cropland expansion in South 

Dakota between 2007 and 2015 (research question #2). To overcome the limitation of the 

conventional bi-temporal method, the trajectory-based change detection approach, which 

utilized the entire land cover time series to separate between true changes and mis-

classifications as well as rotations of land use, was proposed. Chapter Four further explores 

land surface phenology-based classification demonstrated in Chapter Two. In the chapter, 
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I evaluated performance of land cover classification using (1) only phenological metrics 

derived from two different land surface phenology models, (2) only spectral composited 

bands and ratios, and (3) combined phenological-spectral variables. Finally, Chapter Five 

presents the main research summaries and recommendations. 
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CHAPTER 2 

 

CHARACTERIZING LAND COVER/LAND USE FROM MULTIPLE YEARS OF 

LANDSAT AND MODIS TIME SERIES: A NOVEL APPROACH USING LAND 

SURFACE PHENOLOGY MODELING AND RANDOM FOREST CLASSIFIERS 

 

Paper #1:  

Nguyen, L.H.; Joshi, D.R.; Clay, D.E; Henebry, G.M. 2019. Characterizing land cover/land use from multiple 

years of Landsat and MODIS time series: a novel approach using land surface phenology modeling and 

random forest classifiers. Remote Sens. Environ. https://doi.org/10.1016/j.rse.2018.12.016. 

 

2.0 Abstract 

Over the last 20 years, substantial amounts of grassland have been converted to 

other land uses in the Northern Great Plains. Most of land cover/land use (LCLU) 

assessments in this region have been based on the U.S. Department of Agriculture - 

Cropland Data Layer (USDA - CDL), which may be inconsistent. Here, we demonstrate 

an approach to map land cover utilizing multi-temporal Earth Observation data from 

Landsat and MODIS. We first built an annual time series of accumulated growing degree-

days (AGDD) from MODIS 8-day composites of land surface temperatures. Using the 

Enhanced Vegetation Index (EVI) derived from Landsat Collection 1’s surface reflectance, 

we then fit at each pixel a downward convex quadratic model to each year’s progression 

of AGDD (i.e., EVI = α+β×AGDD−γ×AGDD2). Phenological metrics derived from fitted 

model and the goodness of fit then are submitted to a random forest classifier (RFC) to 

characterize LCLU for four sample counties in South Dakota in three years (2006, 2012, 

https://doi.org/10.1016/j.rse.2018.12.016
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2014) when reference point datasets are available for training and validation. To examine 

the sensitivity of the RFC to sample size and design, we performed classifications under 

different sample selection scenarios. The results indicate that our proposed method 

accurately mapped major crops in the study area but showed limited accuracy for non-

vegetated land covers. Although all RFC models exhibit high accuracy, estimated land 

cover areas from alternative models could vary widely, suggesting the need for a careful 

examination of model stability in any future land cover supervised classification study. 

Among all sampling designs, the “same distribution” models (proportional distribution of 

the sample is like proportional distribution of the population) tend to yield best land cover 

prediction. RFC used only the most eight important variables (e.g., three fitted parameter 

coefficients [α, β, and γ]; maximum modeled EVI; AGDD at maximum modeled EVI; the 

number of observations used to fit CxQ model; and the number of valid observations) have 

slightly higher accuracy compared to those using all variables. By summarizing annual 

image time series through land surface phenology modeling, LCLU classification can 

embrace both seasonality and interannual variability, thereby increasing the accuracy of 

LCLU change detection. 

2.1 Introduction 

Since 2000, the US Northern Great Plains region (NGP, embraces five U.S. States: 

North Dakota, South Dakota, Nebraska, Minnesota, and Iowa) has experienced substantial 

land cover/land use (LCLU) change, especially the grassland conversion to cropland 

(Faber et al., 2012; Johnston, 2014; Wright & Wimberly, 2013a), due to contribution of 

many factors including government policy (Lark et al., 2015), an aging workforce of 

farmers, commodity prices (Claassen et al., 2011), energy development (Preston & Kim, 
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2016; Singh et al., 2017), and rental agreements. Johnston (2013) estimated wetlands 

losses of 5,000-6,000 ha per year over the past decade due to cropland expansion. Wright 

& Wimberly (2013b) found a net loss of 530,000 ha in grass-dominated lands from 2006 

to 2011 in the Western Corn Belt (area of the Midwest U.S. dominated by agriculture, 

mostly corn and soybean cultivation) at the rate of 1.0% to 5.4% annually. Those changes 

have caused habitat fragmentation and threaten the loss of regional biodiversity (Stephens 

et al., 2008; Meehan et al., 2010; Mutter et al., 2015; Otto et al., 2016; Wimberly et al., 

2018), increased soil erosion and water pollution (Vache et al., 2002; Montgomery, 2007), 

and increased net carbon debt (Fargione et al., 2008; Searchinger et al., 2008).   

Reliable data sources to quantify land cover changes come from the periodic 

statistical surveys by the USDA, such as the National Resources Inventory (NRI) by the 

Natural Resources Conservation Service (NRCS), and Quick Stats Database by the 

National Agricultural Statistics Service (NASS). However, changes detected from those 

datasets lack sufficient spatial and temporal details preventing identification of where and 

when transitions occur (Claassen et al., 2011; Rashford et al., 2011). These limitations 

prohibit the use of NRI and NASS data for comprehensive analysis of LCLU change. Thus, 

to better understand land cover changes, researchers have turned to geospatial datasets such 

as the National Wetland Inventory, the National Land Cover Datasets (NLCD), and, 

especially, the USDA Cropland Data Layer (CDL) due to finer spatiotemporal resolution 

and high number of classes (Faber et al., 2012; Wright & Wimberly, 2013a,b; Johnston, 

2013, 2014; Lark et al., 2015; WWF, 2016). The relatively high spatiotemporal resolution 

of the CDL enables tracking of not only land cover transitions but also crop rotations on a 

field basis. Use of the CDL can be justified by overall accuracy of 85% to 95% for major 
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crops, and often 97% producer and user accuracies for corn and soybean (Boryan et al., 

2011). However, recent studies have raised concerns about CDL-based analysis, especially 

when using a simple bi-temporal comparison approach with at least one study period before 

2010 (Reitsma et al., 2016; Lark et al, 2017). It is important to aware that the CDL is meant 

to monitor agricultural land cover annually rather than tracking changes over time; and it 

has undergone substantial methodological changes over time (Mueller & Seffrin, 2006; 

Boryan et al., 2011). Independent validation of the 2006 and 2012 South Dakota CDL 

(Reitsma et al., 2016) revealed inconsistencies in the accuracy of generalized cropland and 

grassland classes. Reitsma et al. (2016) reported that the producer and user accuracies were 

dependent on location and land use. For example, in southeastern South Dakota, the 

producer accuracies for cropland and grassland were 88.4% and 38.9%, respectively. The 

importance of land cover knowledge raises the need for a more consistent land cover/land 

use product. 

It is worth to note that the conventional classification methods, such as ones first 

applied to the CDL and the more general NLCD, were developed in an era of data scarcity 

and limited computational power. These methods focused on comparing just a few scenes 

and were challenged by classification error between spectrally-similar covers. 

Additionally, in areas with frequent morning cloud cover, collecting even a few cloud-free 

scenes over a year could be difficult, if not impossible. In the current era, a rapid increase 

of accessible Earth Observation data (particularly from the Landsat archive and its 

augmentation by newer sensors, such as Sentinel 2A and 2B) coupled with improved 

computing and storage capability is leading to the emergence of methods for generation 
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annual land cover products from time series data as multi-temporal classification has been 

proved as superior to classification relying on just a few scenes (Franklin et al., 2015). 

Shifts in land cover or environmental conditions, management practice, disturbance 

may lead to a spatiotemporal variation of land surface phenology (LSP), i.e., seasonal 

patterns of reflectance from the vegetated land surface as observed using remote sensing 

(Henebry & de Beurs, 2013). Several methods have been developed to detect LSP that 

estimate timings of phenophase transitions during the growing season based either on pre-

defined thresholds of vegetation indices (Lloyd, 1990; Reed et al., 1994; White et al., 1997) 

or on features of fitted curves (Zhang et al., 2003; de Beurs & Henebry, 2004). Among 

many proposed LSP models, the logistic curve (and its modifications) is one of the more 

commonly used fitting methods. Application of the logistic curve seems more suitable to 

landscapes dominated by woody vegetation (Zhang et al., 2003; Beck et al., 2006; Ahl et 

al., 2006; Baumann et al, 2017). Characterizing phenology can be more difficult for 

herbaceous than for woody vegetation due to strong interannual variation in grasslands and 

croplands (Schwartz & Reed, 1999). Another LSP fitting approach originates from 

traditional phenological models that relate to the progression of thermal time during the 

growing season to events in plant development. Studies have shown that the temporal 

development of remotely sensed vegetation indices in temperate ecosystems can be well 

approximated as a quadratic function of accumulated growing degree-days (AGDD) 

because AGDD captures well the seasonal course of insolation at mid-latitudes (de Beurs 

& Henebry, 2004; Henebry & de Beurs, 2013; Krehbiel & Henebry 2016; Krehbiel et al., 

2016, 2017). 
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LSP-based classifications that use time series data may be more accurate than 

traditional classification methods. Phenological time series can provide a larger number of 

sequentially related predictor variables to be exploited by machine learning classifiers. 

Over the past decade, LCLU change studies have included LSP information to map 

vegetated land cover and changes at regional to global scales (de Beurs & Henebry, 2004; 

Friedl et al., 2010; Gu et al., 2010; Zhong et al., 2011; Clerici et al., 2012; Zhu & 

Woodcock, 2014; Krehbiel et al., 2016; Qader et al., 2016).  

A downward convex quadratic (CxQ) LSP model linking a vegetation index (such 

as the NDVI) to thermal time as measured by AGDD was first applied to compare spring 

green-up dynamics before and after the collapse of the Soviet Union (de Beurs & Henebry 

2004) to detect land cover change in a noisy AVHRR time series. Using a similar approach 

with Landsat time series for NDVI and MODIS for AGDD, Krehbiel et al. (2016, 2017) 

characterized the conversion of croplands to residential areas near Omaha, NE and 

Minneapolis-St. Paul, MN. Although de Beurs & Henebry (2004) and Krehbiel et al. (2016, 

2017) successfully detected land cover changes in their study area through significant shifts 

in the value of phenometrics, neither studies quantified areal changes and generate spatially 

explicit LCLU change maps. On the other hand, Zhong et al. (2011) differentiated crop 

types in San Joaquin Valley, CA with an overall accuracy of above 70% for all three study 

years using only phenological metrics derived from MODIS NDVI time series. Using a 

very similar approach, Qader et al. (2016) accurately (generally >90%) mapped broad 

dominant vegetation cover classes (cropland, grassland, and shrubland) in Iraq and 

characterized changes from 2002 to 2012. Compared to Zhong et al. (2011), Qader et al. 

(2016) sacrificed the classification detail by fewer classes for higher accuracy. However, 
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both land cover change maps were produced at 250 meters using MODIS NDVI data as 

input and neither used thermal data.  

Understanding rapid land change is not only critical for management and 

conservation of prairie habitats and ecosystem services, but also for projecting production 

of crops and biofuels and the impacts of land conversion on rural infrastructure, such as 

roads and water quality. Hence, there is a need for a LCLU dataset with good 

spatiotemporal coverage as well as consistent accuracy through time. Taking advantage of 

abundant satellite observations, we developed a novel approach to mapping LCLU using 

as input only information derived from LSP modeling. First, we fitted a downward CxQ 

LSP model at each pixel using Landsat EVI and MODIS AGDD co-registered time series. 

Through the model fitting, we described phenological characteristics of each land cover 

type (timing of the growing season, peak EVI, timing of the peak EVI, etc.) as a simple 

functional form to allow cross-comparison. Fitted parameter coefficients and phenometrics 

at each pixel are then submitted to a random forest classifier (RFC) to generate a map 

depicting LCLU. We applied this approach to representative cropland areas in South 

Dakota for three years (2006, 2012, 2014) that reference point datasets are available for 

training and validation. Our objective is to examine how well we can classify land cover 

using only information from the land surface phenology modeling process. By utilizing the 

entire annual time series, we have multiple views of the surface that should help to better 

characterize LSP and thereby improve the classification. 

We started the classification with three broad categories: “cropland”, “grassland”, 

and “others” as used by the reference point datasets. Previous studies have suggested that 

classification by machine learning algorithms are sensitive to a sample size and design 
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(e.g., amount of each land cover type in the sample dataset) (Jin et al, 2014; Colditz, 2015; 

Millard & Richardson, 2015; Lyons et al., 2018). Accordingly, we generated multiple RFC 

models for each county-year using different sample datasets constructed from the CDL and 

the reference points to understand in which scenarios do RFC models perform best. We 

first examined how RFC models respond to increasing sample size with no control in 

sampling design. Next, RFC performances were evaluated using one of the following 

controls: (1) the proportional distribution among classes in the sample dataset was 

equivalent to the proportional distribution found in the re-classified CDL (“same 

distribution”), or (2) each class in the sample dataset contained the same number of pixels 

(“same size”). We also examined the effect of variable importance on RFC performance. 

Lastly, we demonstrate the capability of LSP-based classification to map major crops in 

two representative counties in South Dakota: Roberts and Codington. 

2.2  Study Area and Data 

2.2.1 Study Area 
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Figure 2.1. South Dakota counties that fall mostly (>90%) within Landsat overlap zones are 

indicated in grey. Four counties (1-Roberts, 2-Codington, 3-Bon Homme, and 4-Walworth) are the 

focus of this investigation. 

Among the States composing the NGP region, we selected South Dakota as our 

study area for three reasons: (1) it has continental climate with high seasonal and 

interannual variation, pronounced gradients in precipitation (east-west) and temperature 

(north-south); (2) the State has strong livestock, dairy, and row crop production industries 

that make it economically viable to convert grasslands to croplands (Reitsma et al., 2015); 

and (3) unique high resolution reference datasets were available for training and validation. 

Initially, we intended to focus on all 13 counties in South Dakota that have at least 

90% of county area within overlap zones of Landsat paths (grey counties in Figure 2.1) to 

maximize the potential number of cloud-free Landsat observations. However, due to 

limitations in the training dataset, we restricted our focus to four counties: Bon Homme, 

Codington, Roberts, and Walworth. In each of these four focal counties, we characterized 

LCLU for three years (2006, 2012, 2014) separately. According to 2014 CDL data, 

cropland is a dominant land cover in Roberts, Codington and Bon Homme, accounting for 

approximately 56%, 56% and 67% of county area, respectively (Figure S2.1-S2.4). Major 

crops in these counties include corn, soybean, spring wheat (in Roberts and Codington), 

winter wheat (in Bon Homme), and alfalfa. More than 80% of croplands were used for corn 

and soybean production. On the other hand, grassland is the predominant land cover in 

Walworth, covering 49% of the county area. Croplands, which consist mostly of 

corn/soybean, sunflower and winter wheat, cover 41% of the county. 

2.2.2 Data 

Reference Point Dataset for Training 
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In each NASS region of South Dakota, 1,600 random points were generated 

(Reitsma et al., 2015 and unpublished data) and laid over high-resolution imagery obtained 

from the National Agricultural Imagery Program (NAIP; USDA-FSA, 2013). The NAIP 

data were collected during the growing season at 2-meter resolution for 2006 and 1-meter 

resolution for 2012 and 2014. Information from three visible bands was used to construct 

a natural color image. Based on various features presented in these high-resolution images, 

an analyst classified the dominant land use in 2006, 2012, and 2014 at each location into 

one of five broad categories—cropland, grassland, habitat, not-agriculture, or water. A total 

of 43,200 points (1,600 points in each NASS region × 9 regions × 3 years) were manually 

classified in South Dakota across the three years. For field validation, we randomly selected 

100 points across the entire state for ground-level observations. The image-based 

classification and field observations matched in every case, giving us high confidence in 

the accuracy of the image-based classification.  

There are 270 points in Roberts, 172 points in Codington, 122 points in Walworth, 

and 157 points in Bon Homme (see Figures S2.1-S2.4 for maps of point locations). 

Although the original reference dataset consisted of five broad types, we are only interested 

in the croplands and grasslands; thus, we regrouped the reference dataset into just three 

categories: “cropland”, “grassland”, and “others”. 

Cropland Data Layer 

The USDA Cropland Data Layer is a crop-specific land cover raster created 

annually for the continental United States by the NASS using moderate resolution satellite 

imagery and extensive agricultural ground observations. The CDL, which was first 

produced in 1997 for North Dakota, has covered the entire Great Plains yearly since 2006, 
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with approximately 130 classes and a spatial resolution of 30 m at best (Boryan et al., 

2011). For this study, we regrouped the CDL land covers into three classes to match the 

reference dataset. “Cropland” category contains the CDL’s field crops (including alfalfa), 

vegetables, and tree fruits. All grass-like classes, including native grassland, pasture/hay, 

other hay/non-alfalfa, were combined to create a broad “grassland” category. The 

remaining CDL classes were put into the “others” category. Crosswalk details appear in 

Table S2.1. 

Landsat Collection-1 Surface Reflectance Product 

In 2016, the U.S. Geological Survey (USGS) implemented the new organizational 

method for the Landsat archive called Collections to ensure consistent quality through time 

and across instruments for Landsat Level-1 products (USGS, 2016). This data structure 

provides a consistent archive of known data quality to support time-series analyses and 

data “stacking”. Collection 1 initially consists of Level-1 products generated from Landsat 

4-5 TM, Landsat 7 ETM+, and Landsat 8 OLI/ TIRS instruments that are assigned to one 

of three categories: Tier-1, Tier-2, or Real-Time. Here, we used only the surface reflectance 

product from Landsat scenes in Tier-1 (WRS-2 Paths:28-33 & Rows:29-34), because those 

images are produced with the highest quality data available and, thus, are better suited for 

time series analysis and modeling. 

MODIS Land Surface Temperature (LST) Product 

We used the Collection 5 MODIS level-3 global Land Surface Temperature and 

Emissivity 8-day composite products at 1000 m resolution from both Aqua (MYD11A2) 

and Terra (MOD11A2) satellites (NASA LP-DAAC, 2013). Both the “LST_Day_1km” 

and “LST_Night_1km” scientific datasets from the M{O|Y}D11A2 products were used. 
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Overpass time for daytime (nighttime) observations are about 1030 (2230) local solar time 

for Terra and about 1330 (0130) local solar time for Aqua. The MODIS LST are provided 

in a sinusoidal grid format and display the mean clear-sky LST in Kelvin observed during 

an 8-day time frame. To use these LST products along with Landsat data, we re-projected 

the MODIS products to Albers Equal Area Conic projection, and then resampled the layer 

to 30 m using bilinear interpolation. The LST time series was converted from Kelvin to 

degrees Celsius for calculation of the thermal time used in the LSP modeling. 

2.3  Methods 

2.3.1 Construction of Landsat EVI and MODIS AGDD time series 

The EVI was calculated from Landsat Collection-1 surface reflectance product 

(courtesy of the U.S. Geological Survey) as described in the Landsat Spectral Indices 

Product Guide (USGS, 2017). The outputs were re-projected into Albers Equal Area Conic 

projection to match with other datasets (MODIS LST, CDL). We then applied cloud/snow 

masks delivered with the product to remove “bad” observations (snow, high confidence 

cloud, or cloud shadow pixels). EVI values outside the valid range (from 0 to 1) were also 

excluded. The remaining “good” EVI values at each pixel were then stacked in 

chronological order from the first day of the year (DOY=1) to the final day of the year 

(DOY=365, or 366 in leap years). A number of valid observations was significantly lower 

in 2012 compared to 2006 and 2014 due to the end of Landsat 5 TM sensor operations. 

The AGDD were calculated from MODIS LST as follow: 

 GDDt = max {
Tmax,t+Tmin,t

2
, 0}  (Equation 2.1) 

 AGDDt = AGDDt−1 + 8 × GDDt  (Equation 2.2) 
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where GDDt are the growing degree-days for compositing period (t), Tmax,t and 

Tmin,t are the highest and lowest LST values from available MODIS observations during 

the compositing period. Accumulation of GDD starts at the beginning of the calendar year 

and continues to the end of the year, but the temporal resolution of the LST composites is 

8 d. Thus, we multiply the composite-calculated GDD by 8 to rescale it. 

 While good EVI observations from Landsat may occur at any DOY, there 

are only 46 MODIS composites each year. Although each pixel of the MODIS LST 

composite contains the best possible estimate during an 8 d period, each composite is linked 

to a single DOY, starting from DOY 1 to DOY 361 at 8 d intervals. Here we linked each 

EVI value from a specific DOY to the AGDD value associated with the “nearest” 

compositing period. For example, EVI of DOYs from 11 to 14 were coupled with AGDD 

composite 3 which is tied to DOY 17. If EVI was obtained right in the middle of the two 

MODIS compositing periods, paired AGDD is calculated as the average of the two AGDD 

compositing periods. For example, EVI of DOY 5 is paired with mean AGDD of composite 

1 and 2 (DOY 1 and DOY 9). A complete list of possible EVI×AGDD pairs in a year 

appears in Table S2.2. As multiple EVI values may be linked to a specific AGDD 

compositing period, only the highest EVI of each available DOY will be used for model 

fitting. 

2.3.2 Convex Quadratic (CxQ) Model for Land Surface Phenology 

The CxQ model for land surface phenology first linked the NDVI to AGDD (de 

Beurs & Henebry 2004; Henebry & de Beurs 2013; Krehbiel et al. 2016, 2017). Here, we 

used the EVI—Enhanced Vegetation Index (Huete et al., 2002)—for LSP modeling: 

EVI = α + β×AGDD - γ×AGDD2   (Equation 2.3) 
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where α, β, γ (alpha, beta, and gamma, respectively) are the parameter coefficients 

to be fitted. The negative sign on gamma in Equation 2.3 is to show that we seek a fitted 

curve that is downward arching, since the EVI values will go up and then down over the 

growing season. Only a negative gamma coefficient will produce this shape and, thus, we 

retained only fits with a negative gamma coefficient. Occasionally, we may retrieve model 

fits with positive gamma coefficient for non-vegetated pixels (developed or barren areas). 

However, those fits were both very few and were deemed failed model fit. 

Using the EVI and AGDD time series, we fitted the CxQ model at each pixel over 

the growing season in each year as described in Equation 2.3 (Figure 2.2). To identify the 

breadth of the fitting window of the growing season within year, we first calculated the 

change in EVI (∆EVI) and AGDD (∆AGDD) at each step and the rate-of-change from 

these two variables (∆EVI/∆AGDD, which measures how quickly EVI changes as a 

function of thermal time). We then looked for two transition points (Figure 2.2a). Our 

approach to detecting the two transition points originates from Zhang et al (2003), where 

MODIS EVI time series were fitted as a double logistic function of time. On the DOY axis, 

the two transition points are those with the highest rate-of-change in EVI (∆EVI/∆t, which 

measures how quickly EVI changes as a function of calendar time). If data points are 

distributed equally on the time (t) axis (∆t remains unchanged), we expect to have extreme 

rates-of-change (the two transition points) around the maturity phase (highest EVI 

increasing rate) and the senescence phase (highest EVI decreasing rate) of vegetation as 

absolute changes in EVI (∆EVI) are highest around these times. In our case, Landsat 

observations were not equally distributed along the thermal time axis and vary each year. 

In addition, we calculated the rate-of-change as ∆EVI/∆AGDD. As the thermal time axis 
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(AGDD) was used instead of the DOY axis, our calculated rates-of-change can be very 

high at the beginning or the end of the year due to small changes in temperature. Therefore, 

we cannot use only the ∆EVI or the ∆EVI/∆AGDD values to detect transition points. Here, 

we coupled the rate-of-change with EVI change to detect the transition points. We first 

identified two highest and two lowest values of ∆EVI/∆AGDD (Figure 2.2b). Then, among 

the two highest rates-of-change, the one with maximum ∆EVI (largest increase in EVI) 

was labeled as the first transition point. Similarly, between the two lowest rates-of-change, 

the one with minimum ∆EVI (largest decrease in EVI) was labeled as the second transition 

point (Figure 2.2c). As shown in Figure 2.2b, the lowest point is not the one selected as 

that point does not have high ∆EVI (high ∆EVI/∆AGDD values are due to small ∆AGDD). 

The two transition points consist of one point with highest ∆EVI/∆AGDD value (Figure 

2.2b) and one point with second lowest ∆EVI/∆AGDD but lowest in ∆EVI (Figure 2.2b 

and 2.2c). From the two transition points, we searched outward to find two Landsat 

observations nearest in thermal time that fall below a certain EVI threshold (Figure 2.2a). 

If the highest observed EVI (ymax) is above 0.65, the EVI threshold is 0.3. The EVI 

threshold is 0.2 for ymax ranging from 0.4 to 0.65; and there is no cut-off threshold if ymax 

is smaller than 0.40. In theory, only three points are required to retrieve the unique solution 

for a quadratic fit. However, to achieve a better fitted model, we restricted the fitting to 

pixels with at least five valid data points per year. Hence, we failed to produce proper 

quadratic fits for many pixels, mostly non-vegetated surfaces, and in the Scan Line 

Corrector (SLC) data gaps of Landsat 7 (cf. maps for 2012 in Figures 2.3 and S2.12-S2.14. 

Those pixels were then flagged as no-data.  
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From each fitted model, we derived a suite of 16 metrics including fitted parameter 

coefficients, derived phenometrics, and model fit statistics (Table 2.1) that describe the 

shape and location of the fitted curve in the EVI×AGDD space, the goodness of model fit, 

and other relevant characteristics. These metrics, which were distilled from the pixel time 

series for each year, were then used as input for the LCLU classification task. 

Table 2.1. Fitted parameter coefficients, derived phenometrics, and other metrics from the CxQ 

model. 

Parameters Meaning 

α, β, γ Fitted parameter coefficients of CxQ model (Equation 2,1) 

TTP Thermal time to peak (AGDD at the max fitted EVI) (TTP = -β/2×γ) 

PH Peak height EVI (max fitted EVI) (PH = α − β2/4×γ) 

HTV Value of EVI at half-TTP (HTV = α + β×TTP/2 + γ×TTP2/4) 

ymax Highest observed EVIs 

r2 Coefficient of determination of the fitted model 

lpos, rpos Observation index of start and end of the fitting window 

o_fit Number of observations used to fit the CxQ model 

o_per Ratio of "o_fit" to the total number of observations 

minx, maxx AGDD at left and right ends of the fitted curve in the first quadrant 

peaks Number of high EVI values (≥0.8*ymax) outside the fitting window 

jumps Number of times that ∆EVI ≥ 0.2 



37 
 

 

Figure 2.2. Fitting the CxQ model to EVI and AGDD time series for a 2006 sample corn pixel in 

Roberts County (N45.8090, W96.9028): (a) EVI and AGDD time series, (b) rate-of-change 

(∆EVI/∆AGDD) and (c) EVI changes (∆EVI) along the thermal time axis, and (d) the fitted CxQ 

curve. In (b) and (c), ∆EVI and ∆EVI/∆AGDD between two days were paired with AGDD value 

of the later day. The two transitions are displayed as filled squares (a, b, c) and the fitting window 

is in between the two unfilled square (a). The model was fitted only for valid observations (filled 

circles). 
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2.3.3 Land cover/land use classification using a Random Forest Classifier (RFC) 

2.3.3.1 Blended sample dataset 

To increase the size of sample data, we blended reference points with the CDL. 

Note that overall accuracy of the CDL can be low at some times and places. For example, 

overall accuracy of crop classes (the most accurate classes) in South Dakota are only 61.2% 

in 2006, 74.7% in 2012, and 86.8% in 2014. To increase accuracy of sample data selected 

from the CDL, we first extracted core patches from the CDL, i.e., center pixels surrounded 

by eight pixels (Queen’s neighborhood) of the same type, to reduce misclassification that 

happens more frequently at the edge. We then compared LCLU of those CDL pixels over 

three study years (2006, 2012, 2014) with nearby reference points. Only the CDL core 

pixels that display the same land cover with the reference point and remain unchanged over 

the three study years were selected for training and validation as it is highly likely that 

LCLU types of those pixels from the CDL are correct. Despite known issues with the CDL 

as discussed above, we used it to enhance the reference dataset for three reasons. First, the 

major crops are mapped with very high accuracy. Second, by collapsing CDL classes to 

create broader categories and searching for consistent land cover core patches over years, 

the chance to select “good” pixels (those that show true land cover information) for the 

sample datasets is high. Third, the CDL is the only publicly available LCLU cropland 

dataset with fine spatiotemporal resolution.  

2.3.3.2 Classification and accuracy assessment 

The RFC (Breiman, 2001) is an ensemble classification algorithm that constructs a 

set of decision trees to make a prediction. Each tree is created using a randomly selected 

subset of training samples and variables (Nvar). By growing the forest up to a user-defined 
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number of trees (Ntree), the RFC creates a set of trees with high variance but low bias. The 

final classification result is generated by averaging the class assignment probabilities 

calculated across all produced trees. New un-labelled data inputs are evaluated against all 

decision trees created in the ensemble and each tree votes for a class membership. The 

membership class receiving maximum votes is selected. Conventional accuracy metrics 

(overall accuracy-OA, user accuracy-UA, producer accuracy – PA, and kappa statistics) 

were used to evaluate model performance. Each RFC run was performed using default 

values of Nvar (the square root of the number of predictor variables = √16 = 4 ) and Ntree 

(500) using ‘randomForest’ package in R program (Liaw & Wiener, 2002). 

2.3.3.3 Scenarios for constructing the sample dataset 

To examine the sensitivity of the RFC to sample size and design, we generated 

sample datasets in different scenarios to use in the classification process. For each scenario, 

we generated 20 RFC runs in which 2/3 of the sample data were randomly selected for the 

training phase and the remainder reserved for the validation step. 

(a) Increasing sample size with no control on sampling design 

We first want to examine how RFC performed without any control on sampling 

design. This scenario served as a baseline to evaluate whether or not putting restrictions on 

the sampling design would help improve the RFC model performance. In this scenario, we 

selected CDL core pixels at various distances from the reference points, from 300 m to 

1500 m at 100 m increments. All selected pixels within each buffer were used in the 

classification. Table 2.2 shows the size of sample datasets at 1500 m buffer in the initial 

list of study areas. To enable consistent comparisons of model performance, we excluded 



40 
 

four counties (italics in Table 2.2) that have no data for training/validation in at least one 

land cover category. 

(b) Increasing sample size with control on sampling design 

RFC has been found to perform better with larger sample datasets (Deng & Wu, 

2013; Du et al., 2015). The tradeoffs for better performance are higher costs in data 

collection and longer times in computation. A previous study suggested that the sample 

dataset should represent about 0.25% of the total study area for accurate classification using 

RFC (Colditz, 2015). RFC is also sensitive to the design of the sample dataset. In this 

scenario, we built a sample dataset from the 1500 m data pool so that it followed one of 

two options: either (1) the proportional distribution among classes in the sample dataset 

was equivalent to the proportional distribution found in the re-classified CDL layer (“Same 

Distribution”) or (2) each class in the sample dataset contained the same number of pixels 

(“Same Size”). Both “Same Distribution” and “Same Size” sample datasets were generated 

to represent from 0.15% to 0.35% of the total county area (in 0.05% increments) of the 

total county area. Table 2.3 presents the maximum size of sample datasets constructed from 

1500 m data pool for the two options as a percentage of the corresponding county area. 

Five counties highlighted in italics had sample datasets covering less than 0.35% of their 

county areas in at least one of three years. To compare these sample designs, we examined 

only the four counties that had sufficient sample pixels support both designs: Bon Homme, 

Codington, Roberts, and Walworth.  
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Table 2.2. Number of pixels in each land cover group at 1500 m buffer. Counties with zero pixels 

in at least one land cover group are highlighted in italics. 

County. year Crop Grass Others County. year Crop Gras Others 

Roberts.06 42,447 11,552 19,526 Campbell.06 4,954 59,724 5,397 

Roberts.12 38,218 11,461 17,547 Campbell.12 3,519 78,272 19 

Roberts.14 42,707 11,556 18,601 Campbell.14 4,975 78,342 1,138 

Codington.06 42,471 6,448 9,789 Walworth.06 13,580 107,057 5,572 

Codington.12 37,237 6,425 7,903 Walworth.12 10,292 115,960 2,284 

Codington.14 42,508 6,445 9,355 Walworth.14 13,613 115,711 2,959 

Kingsbury.06 99,221 11,905 8,409     

Kingsbury.12 89,253 11,892 2,448 Hand.06 82,887 150,825 0 

Kingsbury.14 100,400 11,901 1,622 Hand.12 77,461 150,601 0 

Miner.06 37,458 9,224 1,289 Hand.14 83,445 150,228 0 

Miner.12 32,681 9,165 1,218 Hanson.06 51,212 4,695 0 

Miner.14 37,698 9,232 1,304 Hanson.12 45,742 4,695 0 

Hutchinson.06 154,241 16,586 1,562 Hanson.14 51,413 4,689 0 

Hutchinson.12 150,543 16,289 1,478 Jones.06 1,417 469,531 0 

Hutchinson.14 155,510 16,233 1,541 Jones.12 1,405 475,311 0 

Bon_Homme.06 46,719 2,538 13,220 Jones.14 1,416 477,774 0 

Bon_Homme.12 44,574 2,529 9,715 Lawrence.06 0 0 356,281 

Bon_Homme.14 47,176 2,521 12,875 Lawrence.12 0 0 356,979 

Buffalo.06 8,121 195,519 10 Lawrence.14 0 0 356,851 

Buffalo.12 7,522 196,922 12 
    

Buffalo.14 7,943 199,560 16 
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Table 2.3. Maximum size of sample datasets constructed from 1500 m buffer data pool (Table 2.2) 

as a percentage to county area. Counties with the sample size covering less than 0.34% of their 

areas for at least one year are highlighted in italics. 

 
Same Distribution 

 
Same Size 

County 2006 2012 2014 County 2006 2012 2014 

Roberts 0.85 1.39 1.36 Roberts 1.10 1.17 1.11 

Codington 1.06 1.04 1.12 Codington 1.00 1.10 1.02 

Kingsbury 1.76 1.20 0.81 Kingsbury 1.09 0.34 0.21 

Miner 0.51 0.95 1.05 Miner 0.24 0.24 0.24 

Hutchinson 0.52 0.87 0.92 Hutchinson 0.20 0.20 0.20 

Bon Homme 0.64 0.57 0.58 Bon Homme 0.48 0.49 0.47 

Buffalo 0.01 0.03 0.03 Buffalo 0.00 0.00 0.00 

Campbell 0.82 0.02 0.15 Campbell 0.75 0.00 0.16 

Walworth 1.65 0.34 0.36 Walworth 0.83 0.37 0.44 

 

2.3.3.4 Major crops mapping 

To understand classification errors of alternative RFC models (section 2.3.3.3) and 

to examine the capability of LSP-based classification in characterizing major crops, we 

conducted land cover mapping for Codington and Roberts in 2012 and 2014 because they 

have sufficient sample data with good quality derived from the CDL. Three broad land use 

classes from the previous processing were divided into finer classes. “Cropland” had four 

classes: corn, soybean, wheat, and other crops. “Others” was separated into water, 

developed, and other natural (mostly contains forest and wetland). “Grassland” remained 

as grassland.  



43 
 

2.3.4  Cross-comparison between RFC model outputs and the Cropland Data Layer 

 We compared estimated areas from RFC models with those from re-

classified CDL, in addition to using conventional accuracy metrics to evaluate the 

performance of classifications. It is important to note that the CxQ modeling may fail due 

to a lack of valid Landsat observations yielding “no-data” (section 2.3.2, Figure 2.3). These 

“no-data” pixels were not classified in RFC models and generated gaps in the output. We 

masked the reclassified CDL by “valid pixels” from RFC to allow cross-comparison 

between the two datasets. Due to variation in quantity and quality of Landsat data over 

time, the RFC outputs contain gaps in different places across the years. Therefore, direct 

comparison of land cover area between annual RFC outputs is not appropriate and do not 

indicate actual changes in the study area. However, since estimation from RFC and CDL 

each year are based on the same ‘valid pixels’ raster, we can compare changes in land cover 

areas as estimated by RFC and by the re-classified CDL. This indirect measurement gave 

us an idea about how well RFC models performed.  
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Figure 2.3. Coefficients of determination (r2) of the CxQ models for a sample area in Roberts 

County in 2012 (left) and 2014 (right). Black pixels indicate that no CxQ model was fitted due to 

a lack of valid observations. There were almost no observations from Landsat 5 in 2012 (end of 

operation), and the Scan Line Corrector (SLC) issue of Landsat 7 causes missing data generating 

the diagonal stripes. 

2.4  Results 

2.4.1  Increasing Sample Size with No Control on Designs 

We examined how the RFC responses to different sample sizes created by 

collecting pixels within 300 m to 1500 m from reference points. Table 2.4 contains the 

accuracy metrics means, estimated from running the RFC 260 times (20 trials x 13 sample 

scenarios) for each count-year. Accuracy metrics indicate good performance of the RFC 

for the four counties in 2006, 2012, and 2014. Performance in 2012 is slightly weaker than 

the other two years, possibly due to drier, warmer weather and early crop planting in eastern 

SD in 2012. Standard deviation values are always less than 5% of mean values for all cases 

indicating that different sample sizes did not significantly affect RFC accuracy (Table 2.4). 
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Figure 2.4 presents predicted areas (mean and standard deviation from 20 runs) for 

each land cover type by the RFC based on sample datasets collected within 300 m to 1500 

m (in 100-m increments) of reference points. Although accuracy metrics of those models 

are all quite good with only small variations, their predicted values can be very different 

from each other and from the CDL value, especially for the “grassland” and “others” 

categories. Among the three classes, predicted cropland areas are the most consistent 

among different sample scenarios and they are closest to CDL values. There is no surprise 

that cropland is the best predicted class due to more pronounced phenological 

characteristics and the higher accuracy of crops in the CDL. The “others” class is the least 

accurate group; again, not surprising as there are many non-vegetated surfaces included in 

this heterogeneous residual category. Figure 2.4 also indicates that larger sample size, in 

some cases, does not lead to better prediction: predicted values departed from the baseline 

at longer buffer distances. Across all trials, the RFC generally overestimated land cover 

class with the largest area.  
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Table 2.4. Accuracy assessment of the RFC models with no control on design. OA is overall 

accuracy; PA is producer’s accuracy; UA(σ) is user’s accuracy and its standard deviation in percent 

to mean value; and kappa is Cohen’s kappa. 

 
 

 
Cropland Grassland Others 

Year kappa OA(σ) PA UA PA UA PA UA 

(a) Bon Homme 

2006 0.96 0.98 (0.08%) 0.98 0.99 0.91 0.95 0.99 0.96 

2012 0.87 0.94 (0.64%) 0.93 0.98 0.93 0.91 0.96 0.84 

2014 0.98 0.99 (0.07%) 0.99 0.99 0.93 0.95 0.99 0.98 

(b) Codington 

2006 0.98 0.99 (0.06%) 0.99 0.99 0.96 0.94 0.98 0.98 

2012 0.81 0.90 (1.08%) 0.86 0.99 0.89 0.87 0.97 0.77 

2014 0.97 0.98 (0.37%) 0.99 0.99 0.92 0.88 0.97 0.98 

(c) Roberts 

2006 0.96 0.97 (0.18%) 0.98 0.98 0.97 0.96 0.97 0.96 

2012 0.87 0.92 (0.59%) 0.88 0.99 0.94 0.94 0.97 0.83 

2014 0.95 0.97 (0.26%) 0.98 0.99 0.95 0.92 0.95 0.96 

(d) Walworth 

2006 0.93 0.96 (0.39%) 0.95 0.98 0.98 0.96 0.90 0.96 

2012 0.89 0.94 (1.13%) 0.76 0.99 0.99 0.97 0.92 0.82 

2014 0.96 0.98 (0.18%) 0.99 0.99 0.99 0.97 0.91 0.98 
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Figure 2.4. Predicted areas for each land cover type (mean ± 1σ) by the RFC in 2006 (square), 

2012 (circle), and 2014 (triangle). Dashed, dotted, and dot-dash lines present estimated areas using 

re-classified 2006, 2012, and 2014 CDL, respectively, as baselines for evaluation. 
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2.4.2   “Same Distribution” vs. “Same Size” Models 

Table 2.5. Accuracy assessment of RFC for “Same Distribution” and “Same Size” models. OA is 

overall accuracy; PA is producer’s accuracy; UA is user’s accuracy; and kappa is Cohen’s kappa. 

Accuracy metrics of less than 0.7 are highlighted in bold. 

Year 

SAME DISTRIBUTION SAME SIZE 

  Crop Grass Others   Crop Grass Others 

kappa OA PA UA PA UA PA UA kappa OA PA UA PA UA PA UA 

 (a) Bon Homme  

2006 0.95 0.97 0.98 0.99 0.95 0.95 0.93 0.93 0.94 0.96 0.97 0.98 0.95 0.95 0.95 0.94 

2012 0.90 0.94 0.96 0.95 0.97 0.93 0.78 0.93 0.90 0.93 0.90 0.92 0.98 0.94 0.91 0.94 

2014 0.96 0.97 0.99 0.99 0.97 0.96 0.90 0.92 0.94 0.96 0.98 0.99 0.96 0.95 0.95 0.95 

 (b) Codington  

2006 0.95 0.97 0.98 0.99 0.94 0.94 0.95 0.95 0.95 0.96 0.98 0.99 0.96 0.95 0.95 0.95 

2012 0.91 0.95 0.98 0.99 0.96 0.92 0.77 0.85 0.88 0.92 0.96 0.98 0.91 0.88 0.89 0.90 

2014 0.93 0.96 0.99 0.99 0.96 0.92 0.77 0.89 0.88 0.92 0.98 0.99 0.92 0.86 0.86 0.92 

 (c) Roberts  

2006 0.91 0.95 0.95 0.96 0.92 0.92 0.94 0.94 0.92 0.95 0.95 0.96 0.97 0.95 0.92 0.93 

2012 0.91 0.94 0.98 0.97 0.94 0.92 0.85 0.89 0.89 0.93 0.96 0.96 0.93 0.92 0.89 0.90 

2014 0.91 0.94 0.97 0.98 0.96 0.92 0.84 0.87 0.89 0.93 0.95 0.98 0.94 0.90 0.89 0.90 

 (d) Walworth  

2006 0.87 0.92 0.95 0.95 0.94 0.93 0.78 0.82 0.86 0.90 0.94 0.95 0.90 0.89 0.88 0.87 

2012 0.90 0.95 0.99 0.99 0.99 0.93 0.23 0.78 0.82 0.88 0.98 0.99 0.82 0.83 0.84 0.83 

2014 0.92 0.96 0.99 0.99 0.98 0.94 0.40 0.84 0.86 0.90 0.99 0.99 0.85 0.86 0.86 0.86 

 

Table 2.5 contains the RFC models accuracy metrics using “Same Distribution” 

and “Same Size” sample datasets (mean values calculated from 5x20=100 models). The 

high accuracy values indicate that the RFC performed well in almost every case, except 
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producer’s accuracies of “others” class for 2012 and 2014 in Walworth County (bold in 

Table 2.5). Both producer’s and user’s accuracies of cropland are consistently higher than 

the other two classes in all years and every county. The “Same Distribution” RFC tends to 

perform better than ‘Same Size’ models, as shown in higher overall accuracy as well as 

kappa scores. 

Figure 2.5 provides the RFC performance of “Same Distribution” and “Same Size” 

sample scenarios for Codington. In both cases, these RFC models seemed to have better 

cropland and grassland area estimates than the models from Figure 2.4 (i.e., increasing 

sample size due to larger buffer and no control on sample designs) as predicted values of 

control scenarios are located closer to the baseline value from CDL. Overall, “Same Size” 

models tend to underestimate cropland area compared to “Same Distribution” models. 

However, there is no clear improvement between “Same Distribution” and “Same Size” in 

cropland area estimation, as one scenario can be better in some cases but worse in the others 

(Figure 2.5, S2.1-S2.3). However, “Same Distribution” models clearly perform better for 

the other two groups: the “Same Distribution” values (squares) tend to locate closer to the 

CDL baseline than the “Same Size” values (circles). 
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Figure 2.5. Area of each land cover type (mean ± 1σ) estimated by ‘Same Distribution’ (square) 

and ‘Same Size’ (circle) RFC models for Codington. Dashed lines present areas of corresponding 

land cover types estimated by re-classified CDL.  

2.4.3  Influence of Variable Importance on Model Performance 

Published studies have indicated that although the RFC can work with a large 

amount of input variable, high dimensional input may weaken performance of the RFC 

(Millard & Richardson, 2013, 2015). To better understand the output of previous analyses 

and to improve the RFC performance, we evaluated variable importance from 720 RFC 

models (4 counties x 3 years x 3 sample sizes x 20 runs) in the ‘Same Distribution’ models 
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(since these had performed better in earlier evaluation scenarios) in seven groups including 

four by-county groups (Roberts, Codington, Walworth, and Bon Homme) and three by-

year groups (2006, 2012, 2014). In each group, we calculated the sum of “Mean Decrease 

Gini” to evaluate variable importance. To treat variable importance in each group equally, 

we graded each variable by its “Mean Decrease in Gini” from 16 to 1 in descending order 

of importance. A higher summation of grade over the seven groups (rescaled to 0-1) 

indicated a more overall important variable. From the seven groups, we also counted a 

number of times each variable placed in the top eight ranked important variables. The top 

eight important variables appear in Table 2.6. It is no surprise that the three parameter 

coefficients of the quadratic curve are three most important variables as shape of the fitted 

curve is defined by these coefficients. Other phenometrics were calculated from the fitted 

values of α, β, γ, including TTP, PH, HTV, xmin, xmax. Histograms of α, β, γ fitted values 

for each county-year are presented in Table S2.8-S2.11. 

We compared performance of the RFC with all 16 variables (‘full’) and the top 

eight important variables (‘reduced’) in estimation of cropland area for all study counties 

in three years due to much higher and consistent accuracy of cropland prediction over the 

other two land cover type. Figure 2.6 indicates that the ‘reduced variable’ models might 

perform slightly better than the ‘full variable’ models, but differences between the two are 

not striking. In 2006 and 2012, cropland areas seem to be underestimated by the reduced 

models compared to the full one: unfilled circles tend to fall closer to the dashed line 

(Figure 2.6). In 2014, estimations from both sets of models were very similar. Sample land 

cover maps produced by “reduced variables” models are provided in Figures S2.12-S2.15. 
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Table 2.6. Top eight important variables for the Random Forest Classification. 

Variables Meaning 

Count  

(max of 7) 

Grade 

(range: 0-1) 

α Constant component of the CxQ model 7 0.92 

β Linear component of the CxQ model 7 0.91 

γ Quadratic component of the CxQ curve 7 0.82 

o_per Ratio of ‘o_fit’ to the total number of observations 5 0.49 

minx AGDD at the left end of the fitted curve 5 0.47 

ttp AGDD at the max fitted EVI 5 0.46 

ph Max fitted EVI 4 0.37 

o_fit Number of observations used to fit the CxQ model 4 0.34 

 

Considering that the reduced variable models were more likely to return the better 

estimation of cropland area, we used the output of those models to compare changes of 

cropland areas as predicted by our study with the re-classified CDL layers. Table 2.7 & 2.8 

present estimated cropland for the full spatiotemporal coverage by RFC and CDL as well 

as differences in cropland areas between different periods. Cropland area estimates were 

similar for the ‘reduced variable’ and the ‘full variable’ models. The changes in cropland 

areas were very different between RFC and CDL for the 2006-2012 period, possibly due 

to (1) lower accuracy of the 2006, 2012 CDLs than the 2014 CDL (USDA-NASS 2018), 

and (2) the crop failures due to widespread drought in 2012. The changes in cropland areas 

were more similar for the 2012-2014 period (Table 2.8). In the 2012-2014, the CDL tends 

to underestimate the increase of cropland compared to RFC estimation possibly due to area 

of crop failure areas in 2012 detected by the RFC as “grassland” or “others”. 
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Table 2.7. Comparison between cropland areas (in km2) estimated by the “full variable” and the 

“reduced variable” RFC models and those from re-classified CDL for the four study counties. 

 2006  2012  2014 

 Full Reduced  Full Reduced  Full Reduced 

BonHomme_RFC 843 796  898 881  940 936 

BonHomme_CDL 790 790  861 861  914 914 

Diff w/CDL (%) 6.7% 0.8%  4.3% 2.3%  2.9% 2.4% 

Codington_RFC 906 860  881 879  1053 1062 

Codington_CDL 845 845  863 863  1022 1022 

Diff w/CDL (%) 7.3% 1.8%  2.0% 1.8%  3.0% 3.9% 

Roberts_RFC 1175 1159  1228 1211  1453 1447 

Roberts_CDL 1192 1192  1348 1348  1528 1528 

Diff w/CDL (%) -1.5% -2.8%  -9.0% -10.2%  -4.9% -5.3% 

Walworth_RFC 549 540  644 633  794 799 

Walworth_CDL 641 641  611 611  474 747 

Diff w/CDL (%) -14.5% -15.8%  5.31 3.7  6.2% 6.9% 
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Table 2.8. Changes in cropland (in km2) estimated by the “full variable” and “reduced variable” 

RFC models and percent difference from changes in cropland estimated by the re-classified CDL. 

 ∆2006-2012  ∆2012-2014 

 Full Reduced  Full Reduced 

BonHomme_RFC 55.33 84.63  41.86 54.47 

BonHomme_CDL 71.23 71.23  52.30 52.30 

Diff w/CDL(%)  -22.3% 18.8%  -20.0% 4.2% 

Codington_RFC -25.45 18.93  172.00 182.86 

Codington_CDL 18.60 18.60  158.60 158.60 

Diff w/CDL (%) -236.8% 1.8%  8.5% 15.3% 

Roberts_RFC 52.80 51.79  224.79 236.11 

Roberts_CDL 156.19 156.19  179.66 179.66 

Diff w/CDL (%) -66.2% -66.8%  25.1% 31.4% 

Walworth_RFC 94.95 93.74  150.04 165.35 

Walworth_CDL -30.16 -30.16  136.01 136.01 

Diff w/CDL (%) -414.8% -410.8%  10.3% 21.6% 
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Figure 2.6. Comparison between cropland areas (mean ± 1σ) estimated by “full variable” (square) 

and “reduced variable” (circle) RFC models. Dashed lines present cropland areas estimated by re-

classified CDL.  
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2.4.4  Mapping of Major Crops 

We performed land cover classification with more detailed cover types (corn, 

soybean, wheat, other crops, grassland, other natural, developed, and water) for Roberts 

and Codington counties. Tables 2.9 and 2.10 show accuracy metrics and estimated land 

cover areas of RFC models. Overall accuracies for all four scenarios are greater than 0.75. 

The 2014 models performed much better than the 2012 models, not a surprise considering 

that the 2014 CDL has higher accuracy than the 2012 CDL. Among the land cover types, 

“water” has the highest user’s/producer’s accuracy despite the poor CxQ fit, since the EVI 

time series of water pixels always nearly flat. On the other hand, “other natural” and 

“developed” were classified with lower accuracy due to their complex phenological 

characteristics. While “other natural” consists of minor vegetation classes with quite 

different LSP pattern, e.g., forest and wetland, “developed” encompasses by heterogeneous 

surfaces and materials, including both vegetated and non-vegetated surfaces. Estimated 

land cover areas are most accurate for corn and soybean due to their distinctive 

phenological characteristics and high CxQ fits. Many vegetated pixels within the urban 

boundary are identified as either grassland or other vegetation leading to underestimation 

of the urban area. On the other hand, RFC models overestimated grassland area because 

other land cover types could be misclassified as “grassland”, e.g., green spaces within the 

urban area, failed crop pixels or dry wetland pixels.   
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Table 2.9. Accuracy assessment of RFC models (mean of 60 models with sample dataset covering 

0.15%, 0.25%, 0.35% of the total area) for Codington and Roberts counties. PA is producer’s 

accuracy; UA is user’s accuracy; kappa is Cohen’s kappa. 

 
Codington 

2012 

Codington 

2014 

Roberts 

2012 

Roberts 

2014 

Overall Accuracy 0.763 0.871 0.796 0.844 

kappa 0.696 0.837 0.743 0.804 

 PA UA PA UA PA UA PA UA 

Corn 0.80 0.77 0.90 0.89 0.86 0.80 0.90 0.89 

Soybean 0.66 0.71 0.89 0.91 0.80 0.89 0.89 0.91 

Wheat 0.69 0.76 0.93 0.90 0.74 0.81 0.92 0.88 

Other Crops 0.62 0.78 0.77 0.82 0.57 0.82 0.67 0.87 

Water 0.89 0.88 0.95 0.96 0.93 0.92 0.96 0.96 

Developed 0.29 0.51 0.43 0.68 0.27 0.47 0.30 0.51 

Other Natural 0.30 0.63 0.28 0.61 0.66 0.63 0.66 0.66 

Grassland 0.92 0.79 0.93 0.84 0.89 0.81 0.91 0.83 
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Table 2.10. Land cover areas (in km2) estimated by RFC and by reclassified CDL and percent 

difference in area estimated for Codington (C) and Roberts (R) counties. 

 

Corn Soybean Wheat 

Other 

Crops 

Water Developed 

Other 

Natural 

Grassland 

Total 

Area 

C.RFC.2012 417 296 59 44 50 51 17 637 1571 

C.CDL.2012 419 307 76 63 17 98 36 555 1571 

%Diff -0.3 -3.6 -21.8 -29.6 200.7 -48.2 -54.3 14.8 -- 

C.RFC.2014 454 366 101 66 39 54 12 620 1721 

C.CDL.2014 419 430 91 82 39 103 27 518 1709 

%Diff 8.2 -15.0 11.1 -19.9 -1.0 -48.0 -56.1 19.8 -- 

R.RFC.2012 613 504 68 17 43 65 510 836 2656 

R.CDL.2012 637 597 79 36 40 126 398 741 2654 

%Diff -3.7 -15.6 -14.3 -54.3 7.4 -48.3 28.0 12.8 -- 

R.RFC.2014 624 688 96 29 42 83 424 820 2806 

R.CDL.2014 604 788 90 50 51 129 330 765 2807 

%Diff 3.3 -12.7 6.5 -41.0 -16.5 -35.6 28.7 7.1 -- 

 

2.5 Discussion 

Sensitivity of Random Forest Classification to Sample Size, Design and Quality 

Our findings confirm previous findings that RFC is sensitive to sample size (Deng 

& Wu, 2013; Du et al., 2015; Millard & Richardson, 2015). However, while previous 

studies indicated that larger sample size increases RFC accuracy, our results show that is 

not always the case. Sometimes, larger sample dataset may reduce RFC accuracy 

depending on the quality of the sample dataset. Our study showed that a sample dataset 
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covering 0.15% - 0.35% of the study area is adequate to achieve an accurate land cover 

classification, similar to the findings of Colditz (2015).  

As published studies suggest that the proportional distribution of classes in the 

sample dataset should represent the proportional distribution of those classes in the target 

population (Dalponte et al., 2015; Millard & Richardson, 2013; 2015), we tested RFC 

performance with different sample designs. Our results also showed that sample dataset 

created by controlling the proportional distribution of data in each land cover group (“Same 

Distribution”) yielded better RFC performance than those with no control (“Same Size”). 

However, we did not find substantial differences between ‘Same Distribution’ and ‘Same 

Size’ models, possibly because the performance of the “Same Size” models were already 

quite good.  

We leveraged the CDL dataset to augment the number of training samples; thus, 

our results strongly depend on the accuracy of the CDL layers. Although we sought pixels 

with correct land cover information by using reference data, avoiding edge pixels and 

matching information for multiple years, there is a good chance that the training sample 

dataset still contains a considerable but unquantifiable amount of classification error. The 

overall accuracy of crop classes (the most accurate classes) in South Dakota are only 61.2% 

in 2006, 74.7% in 2012 and 86.8% in 2014 (USDA-NASS, 2018). The 2006 and 2012 CDLs 

have lower accuracies than the 2014 CDL, possibly due to the start of a new CDL 

classification system in 2006 (Boryan et al., 2011), and the unusually early spring, 

subsequent drought (Ault et al. 2013) as well as the lack of observations due to the end of 

Landsat 5 operation in 2012 

Accuracy Metrics and Prediction Consistency of RFC 
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Generally, land cover/land use studies must work with limited samples due to the 

high cost of conducting field observations. Thus, most attention focuses on retrieving an 

accurate classification model using a single sample dataset. The RFC performance depends 

on the actual sample dataset in hand and how it is used to train the RFC. So, an important 

question is how the model accuracy and predicted land cover map might change were we 

to have the opportunity to collect the second sample dataset independent of the first. By 

performing multiple RFC models on different sample sizes and scenarios, we were able to 

test something that has received relatively little attention in the literature (but see Jin et al, 

2014; Colditz, 2015; Millard & Richardson, 2015; Lyons et al., 2018). Our results show 

that even if the RFC models have quite good accuracy, their predicted values still can be 

quite different from each other and from the real population. This pattern of performance 

suggests that an ensemble RFC output generated over multiple scenarios is important, even 

if there is just one training sample dataset available. 

Here, we have assumed that RFC models with outputs closer to the re-classified 

CDL are better. However, this assumption may not be true due to low accuracies in the 

CDL, even in some crop classes. Despite the differences between our estimates with those 

from CDL, the performance of RFC in our study is quite consistent through multiple 

scenarios and runs. It means that predicted land cover maps derived from different sample 

selections would be very similar to each other, and the only option to get a better model 

would be to improve the quality of sample data. 

Weaknesses and Prospects for the Proposed Classification Approach 

Due to variation in data quality, EVI time series at different locations are often not 

observed at the same set of days, preventing a direct comparison between annual EVI 
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patterns. Here, we distilled the entire annual AGDD and EVI time series into a simple 

functional form so that land surface phenology at every pixel was described by the same 

set of parameters (though different fitted parameter coefficients). The attempt to use a 

single function for every land cover was only partially successful. The CxQ models fitted 

well most vegetated surfaces, especially for cropland pixels. Median r2 in Roberts County 

were approximately 0.77 in 2006, and 0.90 in 2012 and 2014 (Figure S2.16). In contrast, 

non-vegetated pixels had low or sometimes negative EVI leading to very poor model fits 

or even model failure that generates gaps in the spatial coverage. The quality of the model 

fits was not consistent between land cover types: higher quality for crops, medium quality 

for non-crop vegetation including grassland, and lower quality for non-vegetated surfaces 

(Figure 2.3). The quality of model fits also varied within a class due to seasonal and 

interannual climatic variation as well as gaps resulting from the Scan Line Corrector failure 

on Landsat 7 ETM+. These inconsistencies in CxQ LSP model fitting reduces the strength 

of using just the LSP coefficients and phenometrics to map land cover and track changes. 

Another limitation of LSP-based approach was the gap creation during the fitting process 

arising from model failure due to low number of good Landsat observations in some years 

and over some areas (cf. section 2.3.2). Because the gaps were produced in different places 

across the years, a direct comparison between yearly RFC outputs was not appropriate in 

most cases, without spatio-temporal interpolation, something that we chose not to do. 

Lastly, except for croplands with very distinctive and consistent phenological shapes for 

the CxQ model to capture, much non-crop vegetation can exhibit similar phenological 

curves and phenometrics, making it difficult to map that those land cover types accurately. 

For example, CxQ curves fitted for grasslands can appear like ones fitted to wetlands 
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during drier weather. Many lawns or recreational fields in urban areas can be misclassified 

as grassland, which is not completely wrong, but requires contextual information to be 

classified more accurately as “developed”. 

Despite all limitations as discussed above, the future of LSP-based classification is 

promising for several reasons. First, although LSP-based classification may not work well 

for non-cropped surfaces, this method may still be useful for detailed crop mapping. Our 

sample analyses demonstrated that we could discriminate quite well between three major 

commodity crop types: corn, soybean, and wheat. Second, here we used only LSP-based 

variables as input to the RFC; however, our approach could be expanded to take advantage 

of additional time series from other spectral bands and specific indices tailored to reveal 

different aspects of the dynamic land surface. Third, although the LSP-fitting process 

generated gaps in the output, bringing together complementary sensor datastreams, such as 

from Sentinel 2A and 2B, could increase the temporal density of observations and thereby 

increase the quality of the time series to be modeled. In areas with persistent cloud cover, 

it may be possible to leverage “CubeSats” with datastreams at even higher spatial and 

temporal but lower spectral resolution to infill gaps intelligently using physical-based 

modeling (Houborg & McCabe, 2018). 

2.6  Conclusions 

We have introduced a new approach to characterize land cover/land use using 

Landsat image time series, first, by modeling the seasonality of the vegetated land surface 

at the pixel scale using Landsat and MODIS time series linked with a simple parametric 

model of land surface phenology and, second, by submitting the per-pixel fitted model 

coefficients and associated phenometrics to a random forest classifier (RFC). The LSP-
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based classification was demonstrated through a comparative analysis on four counties in 

South Dakota over three separate years. Our results showed that the classification based 

only on LSP could accurately differentiate major commodity crops, but it had limited 

accuracy for non-vegetated classes. To evaluate the differential performance of RFC 

models arising from the training sample dataset, we created several distinct training sample 

datasets from reference points and CDL layers using different sample sizes and designs. 

Among all sampling designs, the “Same Distribution” models tended to yield marginally 

better predictions of land cover. In addition, the RFC models used only the most eight 

important variables (i.e., the three fitted parameter coefficients (α, β, γ); the maximum 

model EVI; the AGDD at the maximum modeled EVI; the number of observations used to 

fit CxQ model; and the number of valid observations) had slightly higher accuracy 

compared to those using all variables. Although all the RFC models achieved quite good 

accuracy metrics, there were substantial differences in predicted land cover areas between 

alternative RFC models. As each sample dataset will yield different prediction, we suggest 

that future supervised classification studies should carefully examine output stability. 

Ideally, the final prediction should be an ensemble of all outputs retrieved by performing 

classification with multiple independent samples. However, even if only one sample 

dataset is available, the final output will still benefit from iterating training/validation and 

prediction multiple times. 

Although the current results show limitations of the LSP-based classification for 

non-vegetated surfaces, the prospect for using land surface phenology variables in land 

cover/land use classification is promising. First, the LSP-based classification offered an 

accurate, consistent way to identify cropland areas and changes between major crops (e.g., 
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corn-soybean rotation) across years. Second, it should be possible to combine LSP 

variables with other indices and spectral information to improve classification accuracy 

and consistency, and advance the monitoring of land change using Landsat and comparable 

sensor datastreams and archives.  
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2.9 Supplementary  

Table S1.1. Reclassification of CDL land use/land cover classes. 

CDL  

Code 

CDL  

Class 

New  

Code 

New  

Class 

CDL  

Code 

CDL  

Class 

New  

Code 

New  

Class 

0 Background NA NoData 81 Clouds/No Data 3 Others 

1 Corn 1 Cropland 82 Developed 3 Others 

2 Cotton 1 Cropland 83 Water 3 Others 

3 Rice 1 Cropland 87 Wetlands 3 Others 

4 Sorghum 1 Cropland 88 Nonag/Undefined 3 Others 

5 Soybeans 1 Cropland 92 Aquaculture 3 Others 

6 Sunflower 1 Cropland 111 Open Water 3 Others 

10 Peanuts 1 Cropland 112 Perennial Ice/Snow 3 Others 

11 Tobacco 1 Cropland 121 Developed/Open Space 3 Others 

12 Sweet Corn 1 Cropland 122 Developed/Low Intensity 3 Others 

13 Pop or Orn Corn 1 Cropland 123 Developed/Med Intensity 3 Others 

14 Mint 1 Cropland 124 Developed/High Intensity 3 Others 
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CDL  

Code 

CDL  

Class 

New  

Code 

New  

Class 

CDL  

Code 

CDL  

Class 

New  

Code 

New  

Class 

21 Barley 1 Cropland 131 Barren 3 Others 

22 Durum Wheat 1 Cropland 141 Deciduous Forest 3 Others 

23 Spring Wheat 1 Cropland 142 Evergreen Forest 3 Others 

24 Winter Wheat 1 Cropland 143 Mixed Forest 3 Others 

25 Other Small Grains 1 Cropland 152 Shrubland 3 Others 

26 Dbl Crop WinWht/Soybeans 1 Cropland 176 Grass/Pasture 2 Grassland 

27 Rye 1 Cropland 190 Woody Wetlands 3 Others 

28 Oats 1 Cropland 195 Herbaceous Wetlands 3 Others 

29 Millet 1 Cropland 204 Pistachios 1 Cropland 

30 Speltz 1 Cropland 205 Triticale 1 Cropland 

31 Canola 1 Cropland 206 Carrots 1 Cropland 

32 Flaxseed 1 Cropland 207 Asparagus 1 Cropland 

33 Safflower 1 Cropland 208 Garlic 1 Cropland 

34 Rape Seed 1 Cropland 209 Cantaloupes 1 Cropland 

35 Mustard 1 Cropland 210 Prunes 1 Cropland 
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CDL  

Code 

CDL  

Class 

New  

Code 

New  

Class 

CDL  

Code 

CDL  

Class 

New  

Code 

New  

Class 

36 Alfalfa 1 Cropland 211 Olives 1 Cropland 

37 Other Hay/Non Alfalfa 2 Grassland 212 Oranges 1 Cropland 

38 Camelina 1 Cropland 213 Honeydew Melons 1 Cropland 

39 Buckwheat 1 Cropland 214 Broccoli 1 Cropland 

41 Sugarbeets 1 Cropland 216 Peppers 1 Cropland 

42 Dry Beans 1 Cropland 217 Pomegranates 1 Cropland 

43 Potatoes 1 Cropland 218 Nectarines 1 Cropland 

44 Other Crops 1 Cropland 219 Greens 1 Cropland 

45 Sugarcane 1 Cropland 220 Plums 1 Cropland 

46 Sweet Potatoes 1 Cropland 221 Strawberries 1 Cropland 

47 Misc Vegs & Fruits 1 Cropland 222 Squash 1 Cropland 

48 Watermelons 1 Cropland 223 Apricots 1 Cropland 

49 Onions 1 Cropland 224 Vetch 1 Cropland 

50 Cucumbers 1 Cropland 225 Dbl Crop WinWht/Corn 1 Cropland 

51 Chick Peas 1 Cropland 226 Dbl Crop Oats/Corn 1 Cropland 
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CDL  

Code 

CDL Class 

New  

Code 

New  

Class 

CDL  

Code 

CDL Class 

New  

Code 

New  

Class 

52 Lentils 1 Cropland 227 Lettuce 1 Cropland 

53 Peas 1 Cropland 229 Pumpkins 1 Cropland 

54 Tomatoes 1 Cropland 230 Dbl Crop Lettuce/Durum Wht 1 Cropland 

55 Caneberries 1 Cropland 231 Dbl Crop Lettuce/Cantaloupe 1 Cropland 

56 Hops 1 Cropland 232 Dbl Crop Lettuce/Cotton 1 Cropland 

57 Herbs 1 Cropland 233 Dbl Crop Lettuce/Barley 1 Cropland 

58 Clover/Wildflowers 1 Cropland 234 Dbl Crop Durum Wht/Sorghum 1 Cropland 

59 Sod/Grass Seed 1 Cropland 235 Dbl Crop Barley/Sorghum 1 Cropland 

60 Switchgrass 1 Cropland 236 Dbl Crop WinWht/Sorghum 1 Cropland 

61 Fallow/Idle Cropland 3 Others 237 Dbl Crop Barley/Corn 1 Cropland 

63 Forest 3 Others 238 Dbl Crop WinWht/Cotton 1 Cropland 

64 Shrubland 2 Grassland 239 Dbl Crop Soybeans/Cotton 1 Cropland 

65 Barren 2 Grassland  240 Dbl Crop Soybeans/Oats 1 Cropland 

66 Cherries 1 Cropland 241 Dbl Crop Corn/Soybeans 1 Cropland 

67 Peaches 1 Cropland 242 Blueberries 1 Cropland 
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CDL  

Code 

CDL  

Class 

New  

Code 

New  

Class 

CDL  

Code 

CDL  

Class 

New  

Code 

New  

Class 

68 Apples 1 Cropland 243 Cabbage 1 Cropland 

69 Grapes 1 Cropland 244 Cauliflower 1 Cropland 

70 Christmas Trees 1 Cropland 245 Celery 1 Cropland 

71 Other Tree Crops 1 Cropland 246 Radishes 1 Cropland 

72 Citrus 1 Cropland 247 Turnips 1 Cropland 

74 Pecans 1 Cropland 248 Eggplants 1 Cropland 

75 Almonds 1 Cropland 249 Gourds 1 Cropland 

76 Walnuts 1 Cropland 250 Cranberries 1 Cropland 

77 Pears 1 Cropland 254 Dbl Crop Barley/Soybeans 1 Cropland 
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Table S2.2. Pairing day-of-year (DOY) of EVI and AGDD time series. EVI value is paired with 

AGDD value for the nearest composing period. For example, EVI of DOYs from 11 to 14 were 

coupled with AGDD composite 3 which is tied to DOY 17. If EVI was obtained right in the middle 

of the two MODIS compositing periods, paired AGDD is calculated as the average of the two 

AGDD compositing periods. For example, EVI of DOY 5 is paired with mean AGDD of composite 

1 and 2 (DOY 1 and DOY 9). 

AGDD 8-d 

Composite 

AGDD  

DOY 

EVI 

DOY 

start 

EVI 

DOY 

end 

AGDD 8-d 

Composite 

AGDD 

DOY 

EVI 

DOY 

start 

EVI 

DOY 

end 

1 1 1 4 24 185 182 188 

2 9 6 12 25 193 190 196 

3 17 14 20 26 201 198 204 

4 25 22 28 27 209 206 212 

5 33 30 36 28 217 214 220 

6 41 38 44 29 225 222 228 

7 49 46 52 30 233 230 236 

8 57 54 60 31 241 238 244 

9 65 62 68 32 249 246 252 

10 73 70 76 33 257 254 260 

11 81 78 84 34 265 262 268 

12 89 86 92 35 273 270 276 

13 97 94 100 36 281 278 284 

14 105 102 108 37 289 286 292 

15 113 110 116 38 297 294 300 

16 121 118 124 39 305 302 308 

17 129 126 132 40 313 310 316 

18 137 134 140 41 321 318 324 

19 145 142 148 42 329 326 332 

20 153 150 156 43 337 334 340 

21 161 158 164 44 345 342 348 

22 169 166 172 45 353 350 356 

23 177 174 180 46 361 358 364 
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Figure S2.1. Roberts County 2014 CDL and reference points (black circles). 
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Figure S2.2. Codington County 2014 CDL and reference points (black circles). 
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Figure S2.3. Walworth County 2014 CDL and reference points (black circles). 
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Figure S2.4. Bon Homme County 2014 CDL and reference points (black circles).  
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Figure S2.5. Area of each land cover type (mean ± 1σ) estimated by ‘Same Distribution’ (square) 

and ‘Same Size’ (circle) RFC models for Bon Homme County. Dashed lines present areas of 

corresponding land cover types estimated by re-classified CDL. 
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Figure S2.6. Area of each land cover type (mean ± 1σ) estimated by ‘Same Distribution’ (square) 

and ‘Same Size’ (circle) RFC models for Roberts County. Dashed lines present areas of 

corresponding land cover types estimated by re-classified CDL. 
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Figure S2.7. Area of each land cover type (mean ± 1σ) estimated by ‘Same Distribution’ (square) 

and ‘Same Size’ (circle) RFC models for Walworth County. Dashed lines present areas of 

corresponding land cover types estimated by re-classified CDL. 
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Figure S2.8. Histograms of fitted parameter coefficients (scaled by 10,000) in Roberts County. 
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Figure S2.9. Histograms of fitted parameter coefficients (scaled by 10,000) in Codington County. 



88 
 

 

 

Figure S2.10. Histograms of fitted parameter coefficients (scaled by 10,000) in Bon Homme 

County. 
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Figure S2.11. Histograms of fitted parameter coefficients (scaled by 10,000) in Walworth County.
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Figure S2.12. Sample output for Roberts. RFC Model: same distribution, reduced variable, sample dataset covers 0.25% of county area. 
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Figure S2.13. Sample output for Walworth. RFC Model: same distribution, reduced variable, sample dataset covers 0.25% of county area. 

 

Figure S2.14. Sample output for Codington. RFC Model: same distribution, reduced variable, sample dataset covers 0.25% of county area. 
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Figure S15. Sample output for Bon Homme. RFC Model: same distribution, reduced variable, sample dataset covers 0.25% of county area. 
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Figure S2.16. Cumulative proportion of r2 of fitted models for Roberts County. 
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CHAPTER 3 

 

IMPROVED CHANGE DETECTION WITH TRAJECTORY-BASED APPROACH: 

APPLICATION TO QUANTIFY CROPLAND EXPANSION IN SOUTH DAKOTA 

 

Paper #2: 

Nguyen, L. H., Joshi, D. R., & Henebry, G. M. (2019). Improved Change Detection with Trajectory-Based 

Approach: Application to Quantify Cropland Expansion in South Dakota. Land, 8(4), 57. 

 

3.0  Abstract 

The growing demand for biofuel production increased agricultural activities in 

South Dakota, leading to the conversion of grassland to cropland. Although a few land 

change studies have been conducted in this area, they lacked spatial details and were based 

on the traditional bi-temporal change detection that may return incorrect rates of 

conversion. This study aimed to provide a more complete view of land conversion in South 

Dakota using a trajectory-based analysis that considers the entire satellite-based land 

cover/land use time series to improve change detection. We estimated cropland expansion 

of 5,447 km2 (equivalent to 14% of the existing cropland area) between 2007 and 2015, 

which matches much more closely the reports from the National Agriculture Statistics 

Service—NASS (5,921 km2) and the National Resources Inventory—NRI (5,034 km2) 

than an estimation from the bi-temporal approach (8,018 km2). Cropland gains were mostly 

concentrated in 10 counties in northern and central South Dakota. Urbanizing Lincoln 

County, part of the Sioux Falls metropolitan area, is the only county with a net loss in 

cropland area over the study period. An evaluation of land suitability for crops using the 
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Soil Survey Geographic Database—SSURGO indicated a scarcity in high-quality arable 

land available for cropland expansion. 

3.1 Introduction 

Agriculture is the leading industry of South Dakota, contributing approximate $22 

billion to the state’s economy each year (Decision Innovation Solutions, 2014). Both crop 

production and livestock play important roles, sharing 60.7% and 39.3% of the total 

agricultural revenue. Over the past decade, the growing demand for biofuel production led 

to a considerable expansion of cropland area in South Dakota (increase of 1-5% annually; 

Wright & Wimberly, 2013), especially for corn/maize (for corn-based ethanol) and soybean 

(for biodiesel) (Wright & Wimberly, 2013; Reitsma et al., 2014). Corn/maize and soybean 

are South Dakota’s two largest crops by area, accounting for 68% of the harvested field 

crops in 2017 (43,370 km2) (USDA-NASS 2017). Conversion from grassland or wetland to 

cropland can alter the landscape (Wright & Wimberly, 2013; Reitsma et al., 2014) and hurt 

the ecosystem as well as the environment (Vaché et al., 2002; Montgomery, 2007; Stephens 

et al., 2008; Meehan et al., 2010; Mutter et al., 2015; Wimberly et al., 2018). 

Several efforts have been made to characterize land dynamics in the U.S Northern 

Great Plains (spans over multiple states, including the entire South Dakota). Most extant 

studies take a bi-temporal “snapshot” approach (Wright & Wimberly, 2013; Reitsma et al., 

2014; Faber et al., 2012; Decision Innovation Solutions, 2013) that only compares data 

between two points in time and disregards data from intermediate years. The bi-temporal 

approach does not capture the regular rotation of lands into and out of cultivation and, thus, 

may retrieve an incorrect rate of conversion (Lark et al., 2015). There are only two studies 

that provide more temporal context to land change analysis in South Dakota (Lark et al., 
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2015; Arora & Wolter, 2018). However, one examined land change only for a brief period 

(2008-2012) (Lark et al., 2015), while the other provided a long-term analysis (1984-2016) 

but covered only a portion of the state (Landsat path 30, rows 28-29) (Arora & Wolter, 

2018). Although the extant research has reported different amounts of land change, each 

study showed considerable losses of grassland with conversion to cropland (mostly 

corn/maize and soybean) in the Northern Great Plains, especially east of the Missouri river. 

Only one study has evaluated land change exclusively in South Dakota (Reitsma et 

al., 2014). However, that study did not provide adequate spatial details about the changes. 

Since accurate geospatial accounts of land use change are critical in assessing long-term 

risk of the conversions, this paper aims to provide a more complete view of land conversion 

in South Dakota by characterizing the dominant land cover transition from 2006 to 2016 

and its spatiotemporal patterns. To overcome the limitations of the bi-temporal change 

detection, we propose a trajectory-based approach that considers the entire land cover/land 

use time series to determine if there was actual land change at a particular location. First, 

land cover/land use (LCLU) maps were generated annually from 2006 to 2016 at 30-meter 

resolution (eleven maps in total) using the phenometric-based classification described in 

Nguyen et al. (2019). This LCLU dataset allows us to analyze land changes in the study 

area over the past decade. The results are then compared against various official data 

sources released by the United States Department of Agriculture (USDA). 

3.2 Methods  

3.2.1 Generation of land cover/land use dataset 

To characterize land changes in the study area, a fine spatiotemporal resolution land 

cover dataset with just three broad categories (“cropland”, “grassland”, and “others”) was 
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generated using the phenometric-based classification as described in Nguyen et al., 2019. 

First, at each pixel, the seasonal variation of EVI time series derived from Landsat 

Collection-1 Surface Reflectance product (courtesy of the U.S. Geological Survey) was 

modeled as a downward-arching convex quadratic function (de Beurs & Henebry, 2004; 

Henebry & de Beurs, 2013) of accumulated growing degree-days (AGDD) derived from 

MODIS level-3 V005 global Land Surface Temperature and Emissivity 8-day composite 

products (NASA LP DAAC, 2016; Wan, 2008). Then, from the fitted model parameter 

coefficients, a suite of 16 metrics (Table S3.1) was derived to serve as input for the land 

cover/land use classification task using a Random Forest Classifier (RFC).  

The USDA NASS Cropland Data Layer (CDL) (Boryan et al., 2011) was used to 

select training and testing pixels (the sample dataset) for the RFC models—despite known 

issues with the CDL (Reitsma et al., 2016; Lark et al., 2017)—due to a scarcity of ground 

observations. To increase the accuracy of sample dataset, only pixels that were surrounded 

by eight pixels of the same cover type and repeated cover type at least once in the study 

period were selected. Because the generated land cover maps contain just three broad 

categories, the CDL layers were regrouped into those classes to be used in the sample 

selection.  

LCLU classifications were performed annually on the county basis to improve 

accuracy (Zhang & Roy, 2017). From each county-year sample pool, multiple stratified 

random sample datasets were selected, each covering 0.25% of the county area (Nguyen et 

al., 2019). For each county-year, twenty RFC models were performed and ensembled to 

retrieve a final LCLU map. The accuracies of the generated land cover/ land use maps were 

examined using a rich reference dataset that contains 14,400 points in each of just three 
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years: 2006, 2012, 2014 (Reitsma et al., 2016). In addition, predicted land cover areas from 

this study were compared with those from existing studies and databases.  

Due to cloud/snow contamination or band gaps caused by failure of the Scan Line 

Corrector on Landsat 7 ETM+ (Loveland et al., 2008), there were not enough observations 

(EVI data points) over a year to fit the convex quadratic function at certain pixels at image 

edges. The phenometric-based classification was not able to assign cover types for those 

pixels, thereby generating gaps in the cover maps (Nguyen et al., 2019). In order to create 

seamless maps for change detection, the gaps of a current year were filled by land cover 

information from the two adjacent years, favoring the previous year’s information. For 

example, missing land cover information from 2008 was first filled using the 2007 data. If 

there was also a data gap in 2007, the 2009 land cover information was used to fill gaps in 

the 2008 cover map.  

3.2.2 Characterizing cropland expansion using the trajectory-based change detection 

Phenometric-based classification can generate very accurate cropland maps but 

may not work as well for other land covers (Nguyen et al., 2019). Therefore, this analysis 

focused only on changes in cropland. We developed the trajectory-based approach that 

considered land cover information from the entire time series to determine whether land 

cover at a pixel shifted cover types. Since the analysis focused on characterizing cropland 

expansion, all land cover maps were regrouped into “cropland” and “non-cropland” 

(“grassland” and “others”) for the change detection.  

The trajectory-based change analysis of each crop pixel is presented in Figure 3.1. 

First, land cover maps from 2006 to 2016 were stacked to create a time series. Then the 

map series was converted into a binary time series with “0” for “non-cropland” and “1” for 
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“cropland”. A binary array at each pixel indicates land cover and changes over time. To 

counter misclassifications in the land cover dataset, we assumed that a single year of 

different land cover in the entire 11-year time series was “noise”. 

 

Figure 3.1. The trajectory-based change detection for cropland. 

First, from the binary time series, locations were identified with very strong 

temporal signal of being “cropland” or “non-cropland”. Over eleven years, if a number of 

times (counts) that a pixel appeared as “cropland” is less than two, the pixel was assigned 

as “stable non-cropland”. Similarly, a pixel with counts of greater than nine was considered 

as a “stable cropland” pixel. 

After masking out pixels with less than two or more than nine appearances as 

“cropland”, all other possible “cropland” pixels (2 ≤ “counts” ≤ 9) were subjected to further 

change analysis. To incorporate land formation from all eleven years of data in change 

detection, the logistic regression was performed on each binary time series using calendar 

year as the only predictor variable: 

ln (
p

1−p
) = intercept + slope × year  (Equation 3.1) 

where p is the probability of the pixel appearing as “cropland” over time and (1-p) 

is the probability of the same pixel appearing as “non-cropland” over the same interval. 
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From the fitted parameters (intercept and slope), we computed the p values for all years 

and used those values to help detect changes. If p value of the first year (2006) was less 

than 0.2 and p values of the last two years (2015 and 2016) were greater than 0.8 and 0.9 

respectively, a pixel is subjected as “changed” from “non-cropland” to “cropland”. On the 

complementary side, if p values of 2006 and 2007 were greater than 0.8 and 0.9, 

respectively, and p value of 2016 was less than 0.2, a pixel was subjected as “changed” 

from “cropland” to “non-cropland”. All other pixels that did not meet these two conditions 

were further evaluated using the average probability of crop events over 11 years (pmean). 

If pmean was less than 0.2, a pixel was considered as a “stable non-cropland” pixel. Pixels 

with pmean of above 0.8 were assigned as “stable cropland”. Pixels with pmean ranging 

between 0.2 and 0.8 were tagged as “multiple changes”. The dominant land cover type and 

trend of “multiple changes” pixels are described by pmean (greater than 0.5: “cropland”, 

less than 0.5: “non-cropland”) and slope (greater than 0: toward “cropland”, less than “0”: 

toward “non-cropland”). Only changes detected from the analysis of probability were 

considered as “true” land cover changes. The 3x3 majority filter was applied to remove 

spatial noise—primarily singletons and doublets--in the land change layer. 

Recall that we assumed a single mismatch in the entire land cover time series 

(eleven years) as “noise” due to misclassification rather than an actual change. Therefore, 

the proposed approach did not detect changes just happened in either 2006 or 2016. Instead, 

these results account for changes only between 2007 and 2015. 

The suitability for crop production on stable and converted croplands was 

determined using SSURGO data (USDA-NRCS, 2018). Crop pixels were overlaid on the 

SSURGO Non-Irrigated Capability Class-Dominant Condition layer to extract land 
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capability classes (LCC), the broadest category, which are coded from 1 to 8 indicating 

progressively greater limitations and narrower choices for practical use. Classes 1 to 4 are 

considered as arable lands, and classes 5 to 8 are suitable mainly as pasture or rangeland. 

We regrouped and labeled LCC 1-2 as “prime” land for cultivation, LCC 3-4 as “fragile”, 

and LCC 5-8 as “unsuitable” (Lark et al., 2015). 

3.3 Results 

3.3.1 Accuracy assessment of cropland maps of South Dakota  

Phenometric-based classification using the sample dataset generated from the CDL 

performed very well: the RFC models consistently retrieved overall accuracies of greater 

than 90% across counties-years (Figure S3.1). Consequently, general patterns of land 

cover/land use from the RFC models and the reclassified CDL are similar, especially for 

“cropland” (Figure S3.2, Table S3.2). The similarity in cropland pattern between the CDL 

and RFC is also shown in Figure 3.2 as data points (county-year cropland areas) of the 

scatterplot are distributed closely around the 1:1 line. From 2006 to 2009, our dataset 

showed slightly larger cropland areas in South Dakota (Figure 3.2) compared to the CDL 

values. After 2009, estimated cropland areas from the two datasets showed difference of  

less than 1% (Figure 3.3). The predicted land cover maps from this study and the 

reclassified CDL both underestimated cropland areas reported by field-based statistics 

from the USDA. However, these satellite-based datasets (CDL and this study) and the field-

based NASS estimates showed similar temporal patterns and strong correlation to each 

other (Figure 3.3, Table S3.3). However, the area in “grassland” is overestimated by RFC, 

while the area in “others” is underestimated (Figure 3.2, 3.3). The differences in 

“grassland” and “others” between the CDL and this study seem to be systematic (Figure 
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3.3), possibly due to misclassification of grass-like covers in “others” (e.g., urban lawns, 

playing fields). While the CDL adopted the “developed” classes from the National Land 

Cover Database (NLCD), many “developed” pixels were classified as “grassland” or 

“cropland” pixels in RFC models. Those pixel classifications are not fundamentally 

incorrect from a land surface phenology perspective but require supplementary contextual 

information to shift the pixels from “grassland” (pasture/grazing use) to “others” 

(recreational use). 

 

Figure 3.2. County-level comparison between estimated land cover area from this study and the 

CDL. The total of 726 data points (66 counties x 11 years) were plotted. 
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Figure 3.3. State-level comparison between estimated land cover areas from this study (RFC) and 

other data sources. Both USDA NASS Planted/ Harvested and Census of Agriculture for South 

Dakota data were retrieved from the NASS website (USDA, 2017; USDA-NASS 2009,2014) with 

no accuracy information. The 95% confident interval (CI) for 2007, 2010, 2012, and 2015 NRI data 

are ± 2138 km2, ± 1823 km2, ± 1525 km2, and ± 1708 km2 respectively (USDA. 2009, 2013, 2015, 

2018). Cropland areas found in (Reitsma et al., 2014) also did not have accuracy information. 

To evaluate the newly generated LCLU dataset further, a state-level accuracy 

assessment of the predicted land cover maps (RFC) and the reclassified CDL was 

performed using the independent reference point dataset (Table 3.1). Although the RFC 

has lower overall accuracies and kappa statistics compared to the reclassified CDL (Table 

3.1), relative differences are minor: less than 5% and 2% for kappa and overall accuracy, 

respectively. The slightly lower accuracy metrics of the RFC are most likely due to 
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differences in “grassland” and “others” land covers (Figure 3.2). User and producer 

accuracies for cropland are also slightly better for the CDL for all three years. Considering 

the good accuracy of CDL crops and the use of CDL as the training dataset for our 

classification, these results are expected. The RFC tends to show lower user accuracy but 

higher producer accuracy for “grassland” compared to the reclassified CDL, indicating 

more “cropland” or “others” pixels were classified incorrectly as “grassland”, but fewer 

“grassland” pixels were classified incorrectly as “cropland” or “others” (Figure 3.2, 3.3). 

It is possibly due to pixels with failed crops (in “cropland”), urban vegetation, or dry 

wetlands (in “others”) having similar phenological patterns to those of the “grassland” 

class. On the other hand, the RFC shows higher user accuracy but lower producer accuracy 

in “others”, indicating fewer “cropland” or “grassland” pixels were classified incorrectly 

as “others”, but more “others” pixels were classified incorrectly as “cropland” or 

“grassland” (Figure 3.2). It is possibly due to misclassification of urban vegetation as 

“grassland” (mostly lawns, and playing fields) or, less common, as “cropland” (gardens, 

residential trees).  
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Table 3.1. Accuracy assessment of CDL and RFC (this study) using the reference point dataset 

(Reitsma et al., 2014). OA is overall accuracy; PA is producer’s accuracy; UA is user’s accuracy; 

kappa is Cohen’s kappa. 

Year Dataset 

Cropland 

(UA/PA) 

Grassland 

(UA/PA) 

Others 

(UA/PA) 

OA 95% CI of OA kappa 

2
0

0
6
 CDL 89% / 85% 91% / 83% 50% / 77% 83% 82.65% - 83.35% 0.71 

RFC 87% / 85% 87% / 87% 56% / 58% 83% 82.72% - 83.28% 0.70 

2
0

1
2
 CDL 89% / 92% 90% / 88% 66% / 67% 87% 86.72% - 87.28% 0.78 

RFC 85% / 89% 87% / 89% 70% / 52% 85% 84.77% - 85.23% 0.74 

2
0

1
4
 CDL 89% / 92% 90% / 88% 68% / 67% 87% 86.73% - 87.27% 0.78 

RFC 87% / 90% 86% / 90% 70% / 49% 85% 84.78% - 85.22% 0.74 

 

3.3.2 Cropland expansion in South Dakota 

Despite the similar temporal pattern in estimated cropland areas between this study, 

the reclassified CDL, and the USDA NASS statistics (Figure 3.4), the cropland changes 

reported by those three datasets can be significantly different. For example, the 2007-2015 

bi-temporal cropland expansion estimated using our land cover dataset and the CDL 

(cropland area increases of 8,018 km2 and 10,332 km2 for our dataset and the CDL, 

respectively) are much larger compared to value from the NASS statistics (5,921 km2). 

Using the trajectory-based change detection (cf. section 3.2.2), we estimated a net cropland 

expansion of 5,447 km2 between 2007 and 2015 for the entire state, which matches closely 

with estimations from the NASS planted cropland area (5,921 km2) and the NRI report 

(5,034 km2). This new cropland expansion is equivalent to 14% of the existing cropland 

area. 
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Figure 3.4. (a) County-level stable cropland coverage in %, and (b) cropland net expansion in km2. 

The maps were overlaid with NASS reporting districts. Numbers on (b) present net cropland gains 

summarized by NASS districts. 

Stable cropland areas were concentrated mostly in the eastern South Dakota where 

lands are more suitable for cultivation (Figure 3.4a), especially in the East-Central and 

Southeast NASS districts. Less than 10% of the western region was covered by stable 

croplands (Figure 3.4a). Between 2007 and 2015, cropland gains were mostly concentrated 

either in the northern or central South Dakota. Among the nine NASS reporting districts, 

North-Central, Central, and Northeast are the top three regions for cropland expansion with 

the net gains of 1,307 km2, 977 km2, and 926 km2, respectively (Figure 3.4b). There was 

less available cropland in the eastern South Dakota during the study period; thus, croplands 

expanded westward to neighboring counties, especially in the Northeast and South-Central 

districts (Figure 3.4b). Few gains in cropland were observed in the Southeast district, due 

to very limited land resources available for new cropland expansion (Figure 3.4a). There 

was also not much cropland expansion in Harding County (Figure 3.4b), located at the 

northwestern corner of the state, due to its dry and cold climate that does not support crop 

growth. The western side of the West Central and South West districts also showed little 
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cropland expansion. These areas are mostly covered by lands unsuitable for cultivation 

(e.g., Black Hills National Forest, Badlands National Park, Buffalo Gap National 

Grassland). Of South Dakota’s 66 counties, Lincoln County in eastern South Dakota was 

the only one with a net loss in cropland area due to urban and suburban expansion of the 

Sioux Falls metropolitan area in northern Lincoln County (Figure 3.4b). Total population 

of the Sioux Falls metropolitan area grew from 132,358 to 171,530 (29.6%) between 2005 

and 2015 (ACS, 2018). 

In South Dakota, previous croplands are mostly concentrated on “prime” farmland, 

accounting for 75% of the total stable cropland area (Figure 3.5a). For more than 44,000 

km2 of the stable cropland, only 3% cropland areas were in lands “unsuitable” for 

cultivation. However, between 2007 and 2015, farmers have been expanding croplands 

into more “fragile” and “unsuitable” lands to meet growing demand (48% of new 

expansion; Figure 3.5b). This trend indicates increasing scarcity of farm land: less area of 

prime cropland is available for cultivation.  

 

Figure 3.5. Areas (km2) in (a) stable cropland and (b) converted cropland by Land Capability Class 

from SSURGO. 
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3.4 Discussion 

3.4.1 Uncertainties in land cover/land use dataset 

A new land cover dataset for South Dakota was generated to characterize recent 

land cover/land use changes. In contrast to the CDL that went through several changes in 

methodology and input data, our product was generated more consistently to enable better 

change detection. One limitation of the new dataset is that the CDL was used as training 

dataset in a supervised classification process. Although the major commodity crops are 

mapped quite well in the CDL (generally, producer/use accuracies of above 95% for 

corn/soybean and approximate 90% for spring/winter wheat), accuracies of other classes 

can be low (Boryan et al., 2011). Thus, multiple steps were applied to reduce errors and 

uncertainties in the sample data. By using the CDL as the training dataset, we may magnify 

misclassifications found in CDL dataset. However, validation using the independent 

reference points showed comparable accuracy between LCLU maps from this study and 

the reclassified CDL (Table 3.1). Furthermore, our estimated cropland areas from our land 

cover maps are similar with those from the CDL and even closer to NASS statistics in the 

2006-2009 period (Figure 3.3). 

3.4.2 Characterizing land changes using the trajectory-based approach 

Field-based estimations from the USDA are the most reliable data sources to 

quantify changes, but they offer limited spatial and/or temporal details. Therefore, 

researchers often turn into satellite-derived land cover/land use products with much higher 

spatiotemporal detail that allow depiction of both timing and location of land change. 

However, all satellite-based products suffer from misclassification errors that can falsely 

accentuate or attenuate changes between classes. To overcome this limitation, we 
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developed a trajectory-based analysis that considers the entire land cover series to better 

determine land change at a particular location. The proposed approach stems from idea of 

examining a temporal array of “cropland” and “non-cropland” to determine land use status 

(Lark et al., 2015). However, instead of looking at all possible combinations (211 = 2048 

options) as demonstrated in Lark et al. (2015), we modeled “cropland” and “non-cropland” 

time series as a binary array and described land use trajectory using logistic regression. 

This approach not only allows us to examine long time series but also to describe temporal 

land dynamics as a sigmoidal curve for a simple and consistent determination of land 

change. The results showed that cropland expansion estimated by the trajectory-based 

approach is much closer to the field-based reports from the USDA compared to the 

traditional bi-temporal change detection. 

A key limitation of this study is low accuracy of the “non-cropland” classes (cf. 

section 3.1); therefore, the analysis was focused only on cropland expansion since 

“cropland” is the most reliable class in our dataset (Table 3.1). Although, transitions in 

“cropland” can translate into changes in other classes, especially “grassland”, as published 

studies have shown that most of grassland losses are due to cropland expansion (Wright & 

Wimberly, 2013; Reitsma et al., 2014), the lower accuracy of “grassland” and “others” 

prevents exact quantification of their losses due to cropland expansion. In addition, our 

new dataset does not offer crop-specific categories like the CDL, preventing identification 

of the crops were planted on the newly cultivated lands. 

3.5 Conclusions 

Crop production plays critical role in South Dakota’s economy, especially 

commodity crops like corn/maize and soybean. However, losses of grassland and wetland 
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area due to crop expansion may pose long-term risks to ecosystem services and 

biodiversity. Assessment of those risks requires accurate geospatial accounts of land 

change. This paper presented a comprehensive picture of LCLU transition in South Dakota 

between 2007 and 2015 using the fine spatiotemporal land cover dataset and the trajectory-

based change detection approach. We found a net increase in cropland area of approximate 

14% (5,447 km2) in South Dakota. This result confirms substantial cropland expansion into 

grassland reported by previous studies (Decision Innovation Solutions, 2013; Lark et al., 

2015; Arora & Wolter, 2018). Scarcity of land suitable for further cropland expansion was 

identified, pointing to the need for careful joint design and implementation of agriculture 

and energy policies to allow enable bioenergy demands to be met while protecting 

remaining wetlands and grasslands. 
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3.8 Supplementary 

 

Table S3.1. Fitted parameter coefficients, derived metrics from the Convex Quadratic (CxQ) model 

for land surface phenology. 

Parameters Meaning 

α, β, γ Fitted parameter coefficients of CxQ model (Equation 1) 

TTP Thermal time to peak (AGDD at the max fitted EVI) (TTP = -β/2×γ) 

PH Peak height EVI (max fitted EVI) (PH = α − β2/4×γ) 

HTV Value of EVI at half-TTP (HTV = α + β×TTP/2 + γ×TTP2/4) 

ymax Highest observed EVIs 

r2 Coefficient of determination of the fitted model 

lpos, rpos Observation index of start and end of the fitting window 

o_fit Number of observations used to fit the CxQ model 

o_per Ratio of "o_fit" to the total number of observations 

minx, maxx AGDD at left and right ends of the fitted curve in the first quadrant 

peaks Number of high EVI values (≥0.8*ymax) outside the fitting window 

jumps Number of times that ∆EVI ≥ 0.2 
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Table S3.2. Pixel-wise comparison between predicted land cover maps (RFC) and the reclassified 

CDL for (a) 2006 and (b) 2012. PA is producer’s accuracy; UA is user’s accuracy. Overall accuracy 

appears in bold. 

(a)   CDL (km2)     

 

2006 Cropland Grassland Others Total UA 

RFC 

(km2) 

Cropland 42,265 5,053 4,236 51,554 82.0% 

Grassland 7,388 103,232 13,775 124,395 83.0% 

Others 1,503 4,613 17,662 23,778 74.3% 

 

Total 51,156 112,898 35,673 199,727 

 
  PA 82.6% 91.4% 49.5%   81.7% 

       
(b)   CDL (km2)     

 

2012 Cropland Grassland Others Total UA 

RFC 

(km2) 

Cropland 52,258 5,018 2,940 60,216 86.8% 

Grassland 6,587 108,440 7,577 122,604 88.4% 

Others 906 3,066 12,935 16,907 76.5% 

 

Total 59,751 116,524 23,452 199,727 

 
  PA 87.5% 93.1% 55.2%   86.9% 
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Figure S3.1. Accuracy of county-level Random Forest models. Numbers are mean overall 

accuracies of 11 years, and color-coded background shows temporal coefficient of variation.  

 

Table S3.3. Correlation between estimated crop areas by this study (RFC), the reclassified CDL 

and the NASS statistics. Indication of significance: *, **, and *** for p-values less than 0.05, 0.01, 

and 0.001, respectively. 

 
Pearson’s r Spearman’s r 

CDL ~ NASS_Planted 0.74** 0.62* 

CDL ~ NASS_Harvested 0.73* 0.76** 

RFC ~ NASS_Planted 0.79** 0.65* 

RFC ~ NASS_Harvested 0.78** 0.76** 
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Figure S3.2. Comparison between our land cover maps and the reclassified CDL. 

References: Nguyen, L.H.; Joshi, D.R.; Clay, D.E; Henebry, G.M.  Characterizing land cover/land use from multiple years 

of Landsat and MODIS time series: a novel approach using land surface phenology modeling and random forest classifiers. 

Remote Sens. Environ. 2019. https://doi.org/10.1016/j.rse.2018.12.016
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CHAPTER 4 

 

CHARACTERIZING LAND COVER/LAND USE USING MULTI-SENSOR 

TIME SERIES FROM THE PERSPECTIVE OF LAND SURFACE 

PHENOLOGY 

 

Paper #3: submitted to a special issue on “Remote Sensing for Crop Mapping” at Remote 

Sensing (June 07th, 2019) 

 

4.0 Abstract  

Due to a rapid increase of accessible Earth Observation data coupled with high 

computing and storage capabilities, multiple efforts over the past few years have aimed to 

map land cover/land use using image time series with promising outcomes. Here we 

evaluate the comparative performance of alternative land cover classifications generated 

by using only (1) phenological metrics derived from either of two land surface phenology 

models, or (2) a suite of spectral variables, or (3) the combination of phenological metrics 

and spectral variables. First, several annual time series of remotely sensed data were 

assembled: accumulated growing degree-days (AGDD) from the MODIS 8-day land 

surface temperature products, 2-band Enhanced Vegetation Index (EVI2), and the spectral 

variables from the Harmonized Landsat Sentinel-2 as well as from the USGS Landsat 

Analysis Ready Data surface reflectance products. Then, at each pixel, EVI2 time series 

were fitted using two different land surface phenology models: the Convex Quadratic 

model (CxQ), in which EVI2=f(AGDD); and the Hybrid Piecewise Logistic Model 

(HPLM), in which EVI2=f(Day of Year). Phenometrics and spectral variables were 
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submitted separately and together to Random Forest Classifiers (RFC) to depict land 

cover/land use in Roberts County, South Dakota. HPLM RFC models showed slightly 

better accuracy than CxQ RFC models (about 1% relative higher in overall accuracy), 

mostly due to more accurate location of land cover. Compared to phenometrically-based 

RFC models, spectrally-based RFC models yielded more accurate land cover maps, 

especially for non-crop cover types. However, the RFC models built from spectral 

variables could not classify accurately the wheat class, which contained mostly spring 

wheat with some fields in durum or winter varieties. The most accurate RFC models were 

obtained when using both phenometrics and spectral variables as input. The combined-

variables RFC models overcame weaknesses of both phenometrically-based classification 

(low accuracy for non-vegetated covers) and spectrally-based classification (low accuracy 

for wheat). The analysis of important variables indicated that land cover classification for 

this study area was strongly driven by variables related to the initial green-up phase of 

seasonal growth and maximum fitted EVI2. For a deeper evaluation of RFC performance, 

RFC classifications were also executed with several alternative sampling scenarios, 

including different spatiotemporal filters to improve accuracy of sample pools and different 

sample sizes. Results indicated that a sample pool with less filtering yielded the most 

accurate predicted land cover map, and a stratified-random sample dataset covering 

approximately 0.25% or more of the study area was required to achieve an accurate land 

cover map. In case of data scarcity, a smaller dataset might be acceptable, but should not 

smaller than 0.05% of the study area. 

4.1 Introduction 
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Knowledge about land cover/land use (LCLU) is fundamental for natural resource 

management, agricultural policy making, as well as for regional and urban planning. Data 

sources for LCLU information include the periodic surveys from governmental agencies, 

e.g., the National Resource Inventory and the National Agricultural Statistics Service 

(NASS), both in the United State Department of Agriculture (USDA) (Goebel, 1998; 

Miller et al., 2009). However, those datasets often lack spatial and temporal details, which 

prevents comprehensive analysis of land change. Remote sensing technology can 

complement field observations and surveys. Conventional classification approaches, such 

as those applied in the National Land Cover Dataset (NLCD) (Homer et al., 2001; Xian et 

al, 2009; Homer et al., 2015) and Cropland Data Layer (CDL) (Boryan, 2018), were 

developed in an era of data scarcity and limited computational power and data storage. 

Thus, they have focused on mapping annual land cover from multispectral data from one 

or just a few image dates. However, in areas with frequent morning cloud cover, collecting 

even a few cloud-free scenes over a year can be challenging. The recent rapid increase of 

accessible Earth observation data coupled with improved computing and storage 

capabilities is leading to the emergence of methods for mapping land cover using multi-

date imagery and dense image time series (Gómez et al, 2016). Compared to the traditional 

approach, the use of image time series often improves classification accuracy by 

incorporating both spectral and temporal profiles (Key et al., 2001; Mitchell et al., 2013; 

Franklin et al., 2015).  

Land surface phenology (LSP) has been a useful approach to characterize seasonal 

vegetation dynamics on vegetation index time series (Henebry & de Beurs, 2013). Over 

the past few years, several efforts have been made to map LCLU using phenological 
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metrics derived from satellite image time series with promising outcomes (Zhong et al., 

2011; Jia et al., 2014; Xue et al., 2014; Yan et al., 2015; Kong et al., 2016; Qader et al., 

2016; Nguyen et al., 2019). Due to the relatively low return interval of orbital sensors with 

spatial resolutions finer than 50 m, many studies—with notable exceptions Jia et al., 2014, 

Kong et al., 2016, and Nguyen et al., 2019—have relied on MODIS time series to capture 

phenological characteristics of land surfaces, and thus, often produced cover maps at 

spatial resolutions (e.g., 250-1000 m) that is coarse relative to human land uses such as 

agriculture and settlements. To overcome limited temporal coverage of Landsat-like data 

and map land covers at finer spatial resolutions, Jia et al. (2014) and Kong et al. (2016) 

fused MODIS NDVI (Normalized Different Vegetation Index) (Tucker, 1979) with 

Landsat and GF-1 NDVI time series, respectively. Although each produced land cover 

maps at finer spatial resolution (at 30 m for Landsat and 16 m for GF-1), neither Jia et al. 

(2014) nor Kong et al. (2016) were able to map more than Level-1 NLCD Land Cover 

Classification System, except for coniferous and broadleaf forest in Kong et al., 2016 

(Level-2 NLCD).  

In 2016, the United States Geological Survey reorganized the Landsat archive into 

a tiered collection, namely the Landsat Collections, to facilitate time series analysis and 

data stacking (USGS, 2018a). Taking advantage of the Landsat Collections data, Nguyen 

et al. (2019) performed a phenometrically-based classification for sample areas in South 

Dakota using all available Tier-1 (highest quality) images from Landsat 5 Thematic 

Mapper (TM), Landsat 7 Enhanced Thematic Mapper Plus (ETM+), and Landsat 8 

Operational Land Imager (OLI). At each pixel, EVI time series calculated from Landsat 

Collections data was simulated as a convex quadratic function of accumulated growing 
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degree days (AGDD). Results showed that classification using only phenometrics 

generated from the fitted model could map accurately broad thematic land cover classes 

(water, developed, grassland) as well as commodity crops (corn/maize, soybean, wheat) in 

Codington and Roberts counties in South Dakota for two years (2012 and 2014). However, 

they also pointed out some challenges of phenometrically-based classification. First, the 

classification accuracy varied since the form of the chosen LSP model might be more 

suitable for some certain vegetation types than others. Second, the phenometrically-based 

classification performed well only for vegetated classes, particularly crops. Third, many 

cloud/snow/shadow-free observations were needed at each pixel over a year to fit the LSP 

model well and to avoid data gaps in the predicted land cover map. Regarding the last point, 

they also showed that an adequate number of observations could be gathered by combining 

data from comparable sensors, especially in sidelap zones of Landsat swaths. Finally, in 

addition to pointing out the challenges of classification based on phenometrics, Nguyen et 

al. (2019) also discussed the potential opportunity to improve classification accuracy by 

incorporating both phenological and spectral variables. 

Here we explore challenges of phenometrically-based classification and potential 

way to improve classification accuracy as demonstrated in Nguyen et al. (2019). This study 

focuses on evaluating the performance of alternative land cover classifications using either 

(1) only phenological metrics derived from either of different land surface phenology 

(LSP) models: the Convex Quadratic Model, in which EVI2=f(AGDD) (Henebry & de 

Beurs, 2013; de Beurs & Henebry, 2004) and the Hybrid Piecewise Logistic Model, in 

which EVI2=f(Day of Year) (Zhang, 2015), or (2) a suite of spectral variables, or (3) both 

phenological metrics and spectral variables. In our evaluation, we address three research 
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questions. The first question is whether the maps from the phenometrics are more accurate 

than maps from spectral variables alone. As land surface phenology have been a useful tool 

to characterize the dynamics of the vegetated land surface (Henebry & de Beurs, 2013), we 

hypothesized that land cover classifications using only phenometrics could be more 

accurate for vegetated land covers, especially for commodity crops, than those using only 

spectral variables. The second question asks which set of phenometrics—derived either 

from the Convex Quadratic Model (CxQ) or from the Hybrid Piecewise Logistic Model 

(HPLM)—performs better. In the temperate ecosystem, plant development is sensitive to 

variation in temperature. We hypothesized, therefore, that the Convex Quadratic model, 

which links vegetation growth with the progression of thermal time, would be better suited 

to land cover classification of our study area in northeastern South Dakota. The third 

question asks whether combining the phenometrics and spectral variables would result in 

superior performance. Studies have indicated that classification accuracies were improved 

by incorporating phenological features (Jia et al., 2014; Kong et al., 2016). Thus, we 

hypothesized that classification using the combination of spectral variables and 

phenometrics would be consistently more accurate than those using only phenometrics or 

spectral variables. To build a more complete picture of classification performance, we ran 

RFCs with different sampling scenarios and sets of input variables. 

First, three annual time series of remotely sensed data were constructed, including 

accumulated growing degree-days from the MODIS 8-day composites of land surface 

temperatures and 2-band Enhanced Vegetation Index (Jiang et al., 2008) and spectral 

variables from surface reflectance products from (1) Landsat Analysis Ready Data (ARD) 

and (2) Harmonized Landsat Sentinel-2 (HLS) data, separately. At each pixel, EVI2 time 
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series were then fitted to the LSP models: CxQ or HPLM. Phenometrics derived from the 

fitted LSP models as well as spectral variables were submitted individually and in 

combination to Random Forest Classifiers (RFC) to map land cover/ land use of the study 

area. Accuracy assessments for both RFC models and predicted land cover maps were 

reported using both conventional accuracy metrics (overall, producer’s, and user’s 

accuracies) (Congalton & Green, 2008) and alternatives for kappa (Pontius & Millones, 

2011). 

Our assessment of classification performance is twofold. First, RFC model 

performance was evaluated by submitting different input datasets randomly generated from 

the CDL. Accuracy comparisons between classification scenarios were tested by both 

Mann-Whitney U (Nachar, 2008) and equivalence tests (Foody, 2009; Lakens, 2017). 

These two tests are based on opposite but complementary evaluation perspectives. The 

nonparametric U test indicates whether the two sets of accuracy metrics are statistically 

different, regardless how difference magnitude. The equivalence test, on the other hand, 

examines whether differences fall within a certain user-defined threshold and, thus, deemed 

equivalent or are large enough to be deemed not equivalent. The second step was to 

compare the predicted land cover maps with the CDL. 

4.2  Data and Study Area  

4.2.1.  Study Area 

The proposed classification exercise was demonstrated for Roberts County, SD in 

two years,  2016 and 2017. Roberts County is at the northeastern corner of South Dakota 

with a total area of 2,940 km2 and a current population of approximately 10,000. According 

to 2016 Cropland Data Layer (Figure 1), cropland is a dominant land cover in Roberts 



127 
 

 

County, accounting for approximately 53.3% of the county area. Other cover types in the 

County include grassland (25.9%), wetland (8.9%), water (5.2%), barren/developed 

(4.4%), and forest (2.2%). The County falls within overlap zones of Landsat paths, which 

allows retrieval of more cloud-free observations. 

 

 

Figure 4.1. The 2016 reclassified Cropland Data Layer for Roberts County, South Dakota. 

4.2.2.  Input Data 

4.2.2.1. U.S. Landsat Analysis Ready Data 

The Landsat Analysis Ready Data products from the U.S. Geological Survey are 

designed to reduce the amount of data preparation for scientists and to facilitate time series 

analysis by generating data at the highest scientific standards required for direct use in 

applications (USGS, 2018b). Landsat Collection 1 Level-1 scenes serve as the input for 

generating all ARD products. The ARD dataset is defined in the Albers Equal Area (AEA) 
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projection and World Geodetic System 1984 datum (WGS84). The products are distributed 

in 150 × 150 km tiles instead of the traditional Landsat swaths in the WRS-2 path-row 

coordinate system. We used the ARD surface reflectance (SR) product. 

4.2.2.2. Harmonized Landsat Sentinel-2 

The Harmonized Landsat and Sentinel-2 product suite is a combined surface 

reflectance dataset consisting observations from both the Landsat 8 Operational Land 

Imager and Sentinel-2 Multi-Spectral Instrument (MSI) (Claverie et al., 2018). We used 

two products from HLS version 1.4: (1) S30 - SR derived from Sentinel-2 MSI L1C data 

and resampled to 30m; and (2) L30 - 30m SR derived from Landsat-8 OLI L1T data. Both 

S30 and L30 products provide nadir BRDF-adjusted reflectance (NBAR) data gridded with 

the Sentinel-2 tiling system in Universal Transverse Mercator (UTM) projection and World 

Geodetic System 1984 datum (WGS84). The Sentinel-2 MSI radiometry is adjusted to 

mimic the spectral bandpasses of Landsat 8 OLI for visible, near infrared, and shortwave 

infrared bands. 

4.2.2.3. MODIS Land Surface Temperate 

We used the Collection 6 MODIS level-3 land surface temperature (LST) 8-day 

composites at 1000 m spatial resolution from both Aqua (MYD11A2) and Terra 

(MOD11A2) satellites (Wan et al., 2015a&b). The MODIS LST data are provided in a 

sinusoidal grid format and display the mean clear-sky LST in Kelvin observed during the 

8-day compositing period. All MODIS data were reprojected and resampled to 30 m using 

bilinear interpolation into UTM zone 14N to work with the HLS data and into AEA 

projection to work with the ARD. The LST time series were converted from Kelvin to 

degrees Celsius for calculation of thermal time used in the LSP modeling. 
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4.2.2.4. Cropland Data Layer 

The USDA Cropland Data Layer (CDL) is a crop-specific land cover raster created 

annually for the continental United States by the NASS using moderate resolution satellite 

imagery and extensive agricultural ground observations (Boryan et al., 2011). It is 

distributed in AEA projection and North American 1983 datum (NAD83). The CDL was 

first produced in 1997 for North Dakota but has covered the contiguous US yearly only 

since 2008. The product has approximately 130 classes and a spatial resolution of 30 m at 

best. We regrouped the CDL layers into ten classes (Table S4.1), and then used this 

reclassified data to generate sample datasets for input to the RFCs. The reclassified CDL 

layer also provided a reference against which to evaluate the predicted land cover maps. 

To work with HLS data, the CDL data were reprojected into UTM zone 14N. Due to 

differences in the original projections and datums, the reclassified CDL, ARD, and HLS 

pixels are not perfectly co-aligned. While offsets between the CDL and ARD pixels are 

only about 3 meters in both latitude and longitude direction, offsets between the CDL and 

HLS pixels are 15 meters (half pixel) in each direction. We did not resample these data into 

a common grid, as this step would introduce another source of uncertainty into the analysis. 

4.3 Methodology 

4.3.1.  Land surface phenology modeling 

(a) EVI2 time series from ARD and HLS surface reflectance 

The two-band Enhanced Vegetation Index (EVI2) was calculated from ARD and 

HLS surface reflectance products using Equation 4.1 (Jiang et al., 2008). Poor-quality 

observations—snow, high confidence cloud, or cloud shadow pixels—were masked out 

using quality control layers delivered with the ARD and HLS products. EVI2 values 
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outside the valid range (from 0 to 1) were also excluded. The remaining “good” EVI2 

values at each pixel were then stacked in chronological order from the first day of the year 

(DOY=1) to the final day of the year (DOY=365 or 366 in leap years). 

EVI2 = 2.5 
(NIR−R)

(NIR+2.4R+1)
     (4.1) 

(b) AGDD time series from MODIS LST 

From MODIS LST, we calculated the accumulated growing degree-days (AGDD) 

as follow: 

GDDt = max {
Tmax,t+Tmin,t

2
, 0}   (4.2) 

AGDDt = AGDDt−1 + 8 × GDDt   (4.3) 

where GDDt are the growing degree-days for compositing period (t), Tmax,t and Tmin,t 

are the highest and lowest LST values from available MODIS observations from both Aqua 

and Terra during the compositing period. Since the compositing period is 8 days, we 

multiplied the GDD by 8 to achieve a proportional accumulation of GDD for each of 46 

composites per year. 

(c) Convex Quadratic Model 

We fitted the EVI2 time series as a quadratic function of AGDD (Equation 4) using 

the fitting process described in Nguyen et al., 2019: 

EVI2 =  α +  β × AGDD −  γ × AGDD2   (4.4) 

where α, β, γ (alpha, beta, and gamma, respectively) are the parameter coefficients to be 

fitted. Alpha—a constant component—regulate directly the peak EVI2 value over the 

growing season as changing value of alpha solely would move the fitted curve up or down 

along the EVI2-axis. Beta—a linear component—affects the position of the peak on the 

thermal time axis (timing of peak growth) as changing value of beta solely would move 
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the fitted curve in an upward quadratic pattern. Changing value of gamma—a quadratic 

component—would make the fitted quadratic curve become thinner or fatter (how fast 

values on the two sides depart from the peak). The negative sign on gamma in Equation 4 

indicates that we accepted only a fitted curve that is downward arching, since the EVI2 

values will rise, peak, and then decrease over the growing season. From each fitted model, 

we derived a suite of 17 variables to be used the LCLU classification, including fitted 

parameter coefficients, derived phenological metrics (phenometrics), and model fit 

statistics (Table 4.1). 

Table 4.1. Variables derived from the Convex Quadratic Model 

Parameters Meaning 

α, β, γ Fitted parameter coefficients of CxQ model (Equation 4.4) 

TTPCxQ Thermal time to peak (AGDD at the max fitted EVI2) (TTP = -β/2×γ) 

PHCxQ Peak height EVI2 (max fitted EVI2) (PH = α − β2/4×γ) 

HTV Value of EVI2 at half-TTP (HTV = α + β×TTP/2 + γ×TTP2/4) 

ymax Highest observed EVI2 

R2 Coefficient of determination of the fitted model 

lpos, rpos Observation index of start and end of the fitting window 

o_all The total number of “good” observations 

o_fit Number of observations used to fit the CxQ model 

o_per Ratio between “o_fit” and “o_all” 

minx, maxx AGDD at left and right ends of the fitted curve in the first quadrant 

peaks Number of high EVI2 values (≥0.8*ymax) outside the fitting window 

jumps Number of times that ∆EVI2 ≥ 0.2 

 

(d) Hybrid Piecewise Logistic Model 
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The Hybrid Piecewise Logistic Model (HPLM) (Zhang, 2015) is an improvement 

of the widely-used logistic model that formed the basis for the MODIS Land Cover 

Dynamics product (MCD12Q2) before Collection 6 (Zhang et al., 2003). During the 

growing season, plant can suffer from water stress or other impacts leading to a different 

greenness trajectory compared to one under favorable weather condition. A key advance 

in the HPLM was incorporation of alternative conditions for vegetation growth: favorable 

or stressed. To determine whether the plant is under favorable or stressed conditions, the 

two functions of Equation 4.5 were fitted to the EVI2 time series and the function with a 

higher agreement index was chosen. 

EVI2 =  {

c1

1+ ea1+b1t + EVI2b

c2+dt

1+ ea2+b2t + EVI2b

    (4.5) 

where t is time in the day of year (DOY), a is related to the vegetation growth time, b is 

associated with the rate of plant leaf development, c is the amplitude of EVI2 variation, d 

is a vegetation stress factor, EVI2b is the background EVI2 value, and the subscripts 1 and 

2 refer to parameters for favorable and stressed conditions, respectively. From each fitted 

model, we derived a suite of 14 variables to be used in LCLU classification, including 

timings of vegetation growth and corresponding EVI2 values (Table 4.2). We note that 

fitted parameter coefficients from the HPLM were not used directly in classification (as 

with the CxQ) because the EVI2 time series at each pixel were fitted with multiple logistic 

curves. 

  



133 
 

 

Table 4.2. Variable derived from the Hybrid Piecewise Logistic Model. 

Parameters Meaning 

gri, vi_gri DOY and EVI2 of green-up start 

gre, vi_gre DOY and EVI 2 of green-up end 

grMD, vi_grMD Middle of “gri” and “gre” and its corresponded EVI2 

sei, vi_sei DOY and EVI 2 of senescence start 

see, vi_see DOY and EVI 2 of senescence end 

se_MD, vi_seMD Middle of “sei” and “see” and its corresponded EVI2 

DPHPLM, PHHPLM DOY with the highest fitted EVI2 and its EVI2  

 

4.3.2.  Spectral variables 

From the ARD and HLS surface reflectance, we generated three sets of annual 

spectral variables, including the 20th, 50th and 80th percentiles of blue (B), green (G), red 

(R), NIR (band 8A in HLS), SWIR 1 (S1) and SWIR 2 (S2). For each set of percentiles, 

twelve normalized band ratios were computed, including: (G-R)/(G+R); (NIR–

R)/(NIR+R); (NIR–B)/(NIR+B); (NIR–G)/(NIR+G); (S1–R)/(S1+R); (S1–B)/(S1+B); 

(S1–G)/(S1+G); (S1–NIR)/(S1+NIR); (S2–R)/(S2+R); (S2–B)/(S2+B); (S2–G)/(S2+G); 

and (S2–NIR)/(S2+NIR). The 20th and 80th percentiles were used, to reduce sensitivity to 

shadows and residual cloud and atmospheric contamination effects. Similar variables were 

used previously to produce the NLCD-like land cover map for North America using WELD 

data (Zhang & Roy, 2017). In total, 42 spectral variables were generated for each 30 m 

pixel location. Those variables were named using the following convention: 

“percentile_band(normalized ratio)” (e.g., “P50_S2R” is a normalized ratio between the 

50th percentile of SWIR-2 and Red bands). 
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4.3.3.  Land cover/ land use classification using Random Forest Classifier 

The Random Forest Classifier (RFC) (Breiman, 2001) is an ensemble of decision 

trees—each created with a random subset of training samples and variables—and allows 

them to vote for the most popular class. By growing “random forest” of multiple trees N, 

RFC creates a set of classification rules with high variance but low bias. The size and 

design of sample data have been found to affect RFC models (Colditz, 2015; Millard & 

Richardson, 2015). To better understand those influences in our study, we performed land 

cover classifications using different scenarios: (1) sample pools—different ways to build 

sample pools from the CDL; and (2) sample sizes—different sizes of sample datasets 

selecting from the pool. In addition, we examined RFC models arising from various sets 

of input variables. We generated 12,800 RFC models in total—50 trials × 2 years × 2 input 

data source × 4 sample pools × 4 sample sizes × 4 sets of input variables— using the “scikit-

learn” library in Python (Pedregosa et al., 2011). For each trial, a new sample dataset was 

randomly selected from the CDL data pool. All sample datasets were class-balanced (same 

proportional distribution of cover types to the CDL) and divided half for training and half 

for testing. 

(a) Sample pool scenarios 

Although RFC is not very sensitive to mislabeled pixels in the sample dataset 

(Gislason et al., 2006; Rodriguez-Galiano et al., 2012), it is still critical to improve land 

cover accuracy in our sample data as they contain considerable error. First, the overall 

accuracy of the agriculture class for the 2016 and 2017 CDL are only 89.3% and 81.7%, 

respectively, and it is likely worse for non-agricultural classes. In addition, CDL pixels are 

not perfectly co-aligned with ARD and HLS pixels due to differences in their original 
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datums and projections and, thus, may lead to incorrect land cover information when 

selecting the sample dataset. To improve the accuracy of the land cover information, we 

used sample selection by selecting only core pixels from the CDL, i.e., pixels surrounded 

by pixels of the same type, to avoid misclassification that can occur more frequently at the 

edge and off-sets between CDL and ARD/ HLS pixels. Another way to increase accuracy 

of the sample data is to compare land cover types at a same pixel between different years 

(here 2016 and 2017): a pixel presenting the same cover type for two or more years is more 

likely to be classified correctly. Improvement in land cover accuracy of the sample dataset 

may reduce the predictive power of RFC models (despite their good accuracy metrics) 

since complex spatial characteristics of particular cover types may be excluded through 

this selection process. In addition, selecting only core pixels may lead to a higher degree 

of spatial autocorrelation in the sample dataset, thereby inflating accuracy metrics (Mannel 

et al., 2011). To find a good balance between accuracy and representativeness of the sample 

dataset, we examined land cover classifications arising from four sample pool scenarios as 

described in Table 4.3. 

Table 4.3. Sample pool scenarios. 

Name Practice 

C1S Only keep pixels surround by 8 same neighbors (C1: 1 pixel away from 

the focal pixel), S: land cover of a single year. 

C1M C1 and matched (M) land cover in 2016 and 2017  

C2S Only keep pixels surround by 24 same neighbors (C2: 2 pixels away 

from the focal pixel), S: land cover of a single year. 

C2M C2 and matched (M) land cover in 2016 and 2017  
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(b) Sample size scenarios 

Random Forest Classifier performs better with larger sample datasets (Deng & Wu, 

2013; Du et al., 2015). Tradeoffs for better performance include higher cost in data 

collection and longer computational time. Although, previous studies suggested that the 

sample dataset should represent about 0.25% of the total study area (Nguyen et al., 2019; 

Colditz, 2015), it remains unclear how smaller sample datasets might affect classifications. 

To explore this issue, we examined performance of RFC models using sample datasets at 

four different sizes of the total county area: 0.01% (P01), 0.05% (P05), 0.15% (P15), and 

0.25% (P25). 

(c) Input set scenarios: 

We examined performance of RFC model using four sets of input variables (Table 

4.4) to understand how well phenometrically-based and spectrally-based variables can be 

used in land cover classification individually and in combination. 

Table 4.4. Input variables for RFC modeling. 

Name Practice 

CxQ Use only the 17 variables from the Convex Quadratic Model 

HPLM Use only the 14 variables from the Hybrid Piecewise Logistic Model 

SPL Use only the 42 spectrally-based variables 

CMB Use the combination of 73 variables from CxQ, HPLM and SPL  

 

4.3.4.  Accuracy assessment and feature importance of Random Forest Classifier 

We evaluated RFC model accuracy assessment (model AA) using multiple metrics, 

including producer’s accuracy (PA), user’s accuracy (UA), overall accuracy (OA) (Zhang, 

2015), and two alternatives to Cohen’s kappa: kappa for location (k_L) and kappa for 
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quantity (k_Q) (Congalton & Green, 2008). Given fixed sizes for all cover classes (or fixed 

proportional distribution), higher k_L indicates larger areas of matched land covers (or 

larger overlap between the predicted map and the reference). Given a fixed matched land 

cover area, higher k_Q indicates smaller area of unmatched cover types between the 

predicted map and the reference. All accuracy metrics are reported for each tested scenario 

as average values of multiple RFC models. In addition to the mean accuracy metrics, 

nonparametric Mann–Whitney U test and equivalence test using two one-sided procedure 

(TOST) were performed to support cross-comparison of RFC performance under different 

scenarios. For the TOST test, we chose an indifference zone, measured by Cohen’s d, of 

(–0.35, 0.35). The chosen effect size lies between Cohen’s suggested values for a small 

effect size of 0.2 and a medium effect size of 0.5 (Fritz et al, 2012). To understand the 

contribution of each variable to the classification, the sum of Gini Importance (GI) was 

computed for each variable from 12,800 RFC models. A higher summation value of GI 

indicates a more important variable. 

4.3.5.  Ensemble land cover maps from multiple RFC models 

A total of 12,800 RFC predicted land cover maps were generated and divided into 

fourteen major groups for comparison, including four types of sample pools, four types 

sample sizes, and six types of input variable sets. Each major group was also separated by 

year (2016 or 2017) and source of input data (ARD or HLS), resulting in 56 smaller groups. 

In each smaller group, a number of times a particular cover type appeared at each pixel was 

counted (referred to as Count). Next, an ensemble land cover map was generated for each 

group by assigning land cover at a particular pixel with cover type that have the highest 

Count. We then compared those ensemble land cover maps with the CDL. 
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4.3.6.  Cross comparison between predicted maps and the CDL 

In addition to the accuracy assessment of the RFC output, we compared the 

predicted land cover maps with the reclassified CDL. The cross-comparison was reported 

as the map accuracy assessment (map AA). Although the CDL’s accuracy ranged from 

higher for commodity crops to lower for non-agricultural classes, the CDL remains one of 

the more reliable land cover datasets for the US. Thus, cross-comparison between our 

predicted maps and the reclassified CDL should provide a good indicator of the accuracy 

the ensemble land cover maps generated by the RFC. Note that ARD, HLS predicted land 

cover maps and the reclassified CDL are in different projections and/or datums. To allow 

cross-comparison, pixels from those datasets were co-registered to match perfectly to each 

other. Because off-sets between the CDL and ARD in latitude and longitude directions are 

small, co-registration between the two layers was just simple pixel snapping—moved ARD 

pixels to match the CDL pixels on the nearest direction. For cross-comparison between the 

CDL and HLS data, we examined four different adjustments to HLS pixels: moving the 

raster half pixel in up-right, down-right, up-left, down-left directions. The up-right 

adjustment, which yielded the highest number of matched pixels between the CDL and 

HLS, was reported here.   

4.4.  Results 

4.4.1.  Accuracy assessment of RFC models 

Overall accuracy, kappa indices for location and quantity of 2016 RFC models are 

summarized by sample pools and sizes in Table 4.5. The pairwise comparison of accuracy 

metrics using the Mann–Whitney U and the TOST equivalence tests appear in Table S4.3 

and S4.4, respectively. Generally, RFC models using C2 sample pools (2 pixels away from 
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the evaluated pixel: C2S, C2M) had significantly higher accuracy metrics than those using 

C1 sample pools (C1S, C1M) for all combinations of year and data source. Sample pools 

that matched 2016 and 2017 land covers (M) yielded more accurate RFC models than those 

based on land cover from only a single year (S). For all combinations of year and data 

source, RFC models using larger sample size had significant higher accuracy metrics. We 

observed largest improvements in accuracy metrics from P01 to P05 RFC models with 

relative increases of 4.1%, 1.7%, and 6.4% for OA, k_L and k_Q, respectively. Larger 

increases in k_Q compared to k_L indicated that improvement in model accuracy was 

mostly due to better quantity agreement of P05 compared to P01 RFC models. In other 

words, proportional distributions of land cover classes in P05 RFC models in are generally 

closer to the CDL than those of P01 RFC models. P05 samples are five times larger than 

P01 samples, which enabled better description for all classes, especially minor cover types. 

Accuracy improvement from P05 to P15 RFC models was moderate with relative increases 

of 1.7%, 1.1%, and 1.8% for OA, k_L and k_Q, respectively. Relative differences in 

accuracies of P15 and P25 RFC models were minor, less than 0.6% for all three metrics. 

Among RFC models using different input datasets, models using phenometrics (CxQ and 

HPLM) had the lowest accuracy metrics. There was no obvious choice between the 2016 

RFC models using CxQ versus HPLM: the HPLM RFC models performed better on ARD 

data and the CxQ RFC models are better on HLS data. For 2017 data, HPLM RFC models 

slightly edged CxQ RFC models with less than 1% higher OA (Table S4.2). Although 

differences in 2017 OA between CxQ and HPLM RFC models were statistically significant 

in the Mann-Whitney U tests, the TOST equivalence tests indicated that the differences are 

within a user-defined indifference zone (i.e., the two models are equivalent). Spectrally-
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based RFC models (SPL) were more accurate than the phenometrically-based RFC models, 

with approximately 3% higher OA relatively. Unlike the sample size scenarios, 

improvement in SPL RFC models mostly came from better location of pixels (small change 

in proportional distribution) shown by higher relative increase in k_L (approximately 5%) 

compared to k_Q (approximately 1.7% and -3.2% in 2016 and 2017, respectively), 

indicating that locations of land covers were described more accurately using spectral 

information. More importantly, RFC models with combined variables (CMB) consistently 

outperformed RFC models using solely spectral variables (SPL) or phenometrics (CxQ or 

HPLM). Similar results were found for the 2017 data (Table S4.2). 
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Table 4.5. Overall accuracy (in percent), kappa indices for location and quantity of 2016 RFC 

models summarized by sample pools, sample sizes, and input variables. A particular scenario 

(current row) was compared to a scenario right above it (above row) using the nonparametric 

Mann–Whitney U test and the TOST equivalence test. The null hypothesis of the U test is that a 

random accuracy metric of the first scenario (above row) will be less than a random accuracy metric 

of the second scenario (current row). Significance level of the U test are indicated by ***, ** and 

* for p-values of less than 0.001, 0.01, 0.05 and NS for “not significant”. Results of the TOST 

equivalence test are highlighted in light blue for “not equivalent” and light yellow for “equivalent”. 

Full pairwise comparisons are provided in Tables S4.3 and S4.4. 

  

ARD  HLS 

 

Scenario OA  k_L  k_Q   OA  k_L  k_Q  

S
a
m

p
le

 P
o
o
l 

C1S 88.8  0.904  0.917   86.8  0.884  0.906  

C1M 90.7 *** 0.923 *** 0.926 ***  88.7 *** 0.904 *** 0.914 *** 

C2S 90.4 NS 0.921 NS 0.924 NS  89.4 *** 0.909 ** 0.921 *** 

C2M 91.8 *** 0.935 *** 0.932 ***  90.7 *** 0.922 *** 0.927 *** 

S
a
m

p
le

 S
iz

e 

P01 87.1  0.906  0.877   84.8  0.883  0.862  

P05 90.5 *** 0.919 *** 0.929 ***  89.0 *** 0.903 *** 0.922 *** 

P15 91.8 *** 0.927 *** 0.944 ***  90.6 *** 0.914 *** 0.940 *** 

P25 92.3 *** 0.931 * 0.949 ***  91.2 *** 0.919 ** 0.945 *** 

In
p

u
t 

S
et

 

CxQ 86.8  0.879  0.914   86.0  0.871  0.911  

HPLM 88.6 *** 0.900 *** 0.919 NS  85.2 NS 0.867 NS 0.898 NS 

SPL 92.2 *** 0.943 *** 0.927 ***  91.0 *** 0.928 *** 0.925 *** 

CMB 94.1 *** 0.961 *** 0.938 ***  93.4 *** 0.953 *** 0.936 *** 

Tables 4.6 and S4.5 show producer’s and user’s accuracies for the RFC models 

using C1S and C2M sample pools (the worst and the best sample pool scenarios based on 
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results in Tables 4.5 and Table S4.2). Between C1S and C2M RFC models, relative 

differences in both producer’s and user’s accuracies were less than 2.5% for corn, soybean, 

and water classes. Those three classes were also higher accuracy classes. C2M RFC models 

had relatively higher producer’s and user’s accuracies than C1S RFC models in all other 

classes, including wheat (4.6%-12.5%), alfalfa (11.4%-16.3%), barren/developed (6.7%-

18.4%), wetland (16.6%-20.4%), and other crops (90% - 356%). Compared to corn, 

soybean, and water, the other cover types have more complicated aggregates of 

phenological and spectral characteristics that make it more difficult to map those classes. 

For example, barren/developed includes both vegetated (lawn, garden) and non-vegetated 

(barren, impervious surface) land covers. In addition, minor crops and non-agriculture 

classes are likely to have lower accuracy in the CDL compared to corn and soybean 

(commodity crops) or to open water (distinct spectral characteristics), resulting in lower 

accuracy in the training and validating data. Nevertheless, all improvements from C1S and 

C2M RFC models were statistically significant (Table S4.6). However, differences in 

PA/UA of corn, soybean, water and barren/developed were generally within the 

indifference zones (or no obvious improvements for those classes). 

Between the least accurate and the most accurate sample size scenarios (P01 versus 

P25 RFC models), relative differences in water was less than 2.3% (Tables 4.7, S4.7), 

likely due to very distinct spectral responses of water compared to other covers. Relative 

improvements in PA/UA of major classes (corn, soybean, and grassland) were also minor 

(less than 5%) as there were already many training pixels in each class even with the 

smallest sample size. However, increases in both PA and UA of those classes were 

statistically significant (Table S4.6). Both producer’s and user’s accuracies improved 
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significantly for minor crops and non-agricultural cover types (10%-70% relative higher 

PA/UA), including wheat, alfalfa, other crops, wetland, and barren/developed. Considering 

that minor cover types have mixed spectral and phenological characteristics, larger sample 

sizes would allow those classes to be described more thoroughly in the training, thereby 

improving accuracies. 

Table 4.6. Producer’s and user’s accuracies (in percent) of 2016 RFC models using C1S and C2M 

sample pools. Significance level of the U test (C1S < C2M) across rows are indicated by ***, ** 

and * for p-values of less than 0.001, 0.01, 0.05 and NS for “not significant”. Results of the TOST 

equivalence tests across rows are highlighted in light blue for “not equivalent” and light yellow for 

“equivalent”. 

 

Producer's Accuracy (%) 

  

User's Accuracy (%) 

 

 

ARD 

 

HLS 

  

ARD 

 

HLS 

 
Land Cover C1S C2M 

 

C1S C2M 

  

C1S C2M 

 

C1S C2M 

 
Corn 94.6 95.7 *** 91.2 92.6 *** 

 

94.8 95.9 *** 89.8 91.5 *** 

Wheat 75.4 78.6 *** 70.2 74.4 *** 

 

84.4 90.2 *** 82.0 89.1 *** 

Alfalfa 73.5 82.6 *** 69.3 79.9 *** 

 

83.7 91.2 *** 79.8 89.6 *** 

Soybean 95.4 96.6 *** 90.3 92.1 *** 

 

93.6 95.2 *** 90.4 92.2 *** 

Other Crops 11.2 50.9 *** 15.3 55.0 *** 

 

35.8 70.2 *** 46.6 71.0 *** 

Water 97.4 98.3 *** 96.2 98.2 *** 

 

97.5 97.6 *** 96.3 96.9 *** 

Barren/Dev. 55.1 60.9 *** 47.4 56.1 *** 

 

77.0 79.0 *** 72.4 75.9 *** 

Forest 87.7 94.0 *** 84.3 94.5 *** 

 

86.7 91.1 *** 84.8 92.4 *** 

Grassland 93.0 94.9 *** 93.6 96.1 *** 

 

84.9 88.6 *** 85.6 90.4 *** 

Wetland 66.8 79.2 *** 73.9 87.7 *** 

 

74.2 84.4 *** 76.3 87.5 *** 
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Table 4.7. Producer’s and user’s accuracies (in percent) of 2016 RFC models using P01 and P25 

sample sizes. Significance level of the U test (P01 < P25) across rows are indicated by ***, ** and 

* for p-values of less than 0.001, 0.01, 0.05 and NS for “not significant”. Results of the TOST 

equivalence tests across rows are highlighted in light blue for “not equivalent” and light yellow for 

“equivalent”. 

 

Producer's Accuracy (%) 

  

User's Accuracy (%) 

 

 

ARD 

 

HLS 

  

ARD 

 

HLS 

 
Land Cover P01 P25 

 

P01 P25 

  

P01 P25 

 

P01 P25 

 
Corn 94.1 96.2 *** 89.8 93.6 *** 

 

93.0 96.7 *** 87.4 92.6 *** 

Wheat 58.1 87.4 *** 49.6 85.0 *** 

 

84.5 90.2 NS 80.6 89.0 NS 

Alfalfa 61.9 87.9 *** 55.0 86.5 *** 

 

75.2 92.9 NS 69.9 92.0 NS 

Soybean 94.6 96.8 *** 88.5 92.8 *** 

 

92.2 96.1 *** 87.9 93.6 *** 

Other Crops 7.1 48.3 *** 9.1 55.9 *** 

 

7.0 84.7 *** 9.0 89.5 *** 

Water 97.5 98.5 NS 97.0 97.9 NS 

 

97.4 97.8 NS 96.1 96.8 NS 

Barren/Dev. 49.6 64.2 *** 38.8 58.9 *** 

 

72.5 81.7 ** 66.0 78.9 *** 

Forest 86.6 93.4 NS 84.5 92.8 NS 

 

85.3 91.6 NS 84.7 91.6 NS 

Grassland 92.6 94.7 *** 93.7 95.7 *** 

 

83.7 88.5 *** 84.8 90.1 *** 

Wetland 64.8 77.6 *** 74.5 84.5 *** 

 

72.8 83.5 *** 74.6 86.3 *** 
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Tables 4.8 and S4.8 show PA/UA of RFC models using different sets of input 

variables. SPL RFC models generally performed better than CxQ and HPLM RFC models 

in most classes, including the three dominant cover types: corn, soybean, and grassland. 

However, only increases in non-crop types were significant (Table S4.9). Compared to 

phenometrically-based models, SPL RFC models were much more accurate in 

barren/developed, forest and wetland. On the other hand, CxQ and HPLM RFC models 

yielded higher PA/UA values for wheat and other crops. Among all scenarios, RFC models 

using combined set of variables consistently had the highest accuracy metrics. The CMB 

RFC models overcame weaknesses of both SPL RFC models (wheat and other crops) and 

phenometrically-based RFC models (barren/developed) (Table 4.8, S4.8, S4.10, S4.11). 

Table 4.8. Producer’s and user’s accuracies in percent (%) of 2016 RFC models summarized by 

sets of input variables. A particular scenario (current column) was compared to a scenario on the 

left (left column) using nonparametric Mann–Whitney U and TOST equivalence tests. The null 

hypothesis of the U test is that a random accuracy metric of the first scenario (left column) will be 

less than a random accuracy metric of the second scenario (current column). Significance level of 

the U test are indicated by ***, ** and * for p-values of less than 0.001, 0.01, 0.05 and NS for “not 

significant”. Results of TOST equivalence tests are highlighted in light blue for “not equivalent” 

and light yellow for “equivalent”. 
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ARD  HLS 

Metrics CxQ HPLM 

 

SPL 

 

CMB 

 

 CxQ HPLM 

 

SPL 

 

CMB 

 
PA_Corn 93.0 93.8 *** 96.0 *** 98.0 ***  89.5 90.0 *** 93.2 *** 95.6 *** 

PA_Wheat 79.3 75.5 NS 66.1 NS 89.1 ***  75.6 71.8 NS 60.0 NS 83.2 *** 

PA_Alfalfa 63.6 87.0 *** 80.8 NS 84.0 ***  61.1 85.0 *** 77.6 NS 79.9 *** 

PA_Soybean 93.2 95.2 *** 97.3 *** 98.5 ***  87.0 88.4 *** 94.2 *** 95.7 *** 

PA_Other.Crops 36.2 34.2 NS 14.1 NS 32.6 ***  34.9 36.7 NS 31.3 NS 36.6 ** 

PA_Water 94.5 98.8 *** 99.6 *** 99.5 NS  93.7 97.3 *** 99.6 *** 99.5 NS 

PA_Barren/Dev. 40.2 48.3 *** 73.2 *** 72.6 NS  37.3 40.6 *** 64.6 *** 62.5 NS 

PA_Forest 82.8 89.2 *** 95.9 *** 96.4 *  80.3 88.7 *** 95.2 *** 95.5 NS 

PA_Grassland 91.1 92.5 *** 95.8 *** 96.3 ***  93.7 92.6 NS 96.1 *** 97.4 *** 

PA_Wetland 68.4 67.7 NS 77.5 *** 78.9 ***  84.0 64.6 NS 86.0 *** 89.4 *** 

                

UA_Corn 92.0 94.3 *** 97.1 *** 98.1 ***  86.0 87.2 *** 94.4 *** 95.6 *** 

UA_Wheat 88.4 88.5 * 82.1 NS 92.6 ***  88.5 84.7 NS 77.6 NS 92.3 *** 

UA_Alfalfa 79.5 88.8 NS 89.4 *** 93.7 ***  78.3 87.8 NS 87.5 *** 89.5 *** 

UA_Soybean 92.4 95.4 *** 93.1 NS 97.2 ***  89.3 91.4 *** 90.4 NS 94.8 *** 

UA_Other Crops 52.9 59.3 *** 42.4 NS 62.7 ***  56.2 58.4 NS 59.7 *** 64.3 * 

UA_Water 93.3 97.7 *** 99.8 *** 99.7 NS  92.3 94.3 *** 99.7 *** 99.4 NS 

UA_Barren/Dev. 61.1 67.1 *** 93.0 *** 92.1 NS  56.3 62.1 *** 89.9 *** 88.2 NS 

UA_Forest 83.6 85.1 *** 93.5 *** 94.5 **  83.0 85.2 *** 92.9 *** 94.2 *** 

UA_Grassland 83.6 84.4 *** 89.5 *** 89.5 NS  88.1 83.1 NS 90.2 *** 91.2 *** 

UA_Wetland 73.2 73.2 NS 84.4 *** 87.5 ***  79.6 72.6 NS 86.5 *** 90.1 *** 

 

4.4.2.  Variable Importance 

Table 4.9 presents the top ten important variables for the phenometrically-based 

RFC models. For CxQ RFC models, the three fitted parameter coefficients, HTV, and minx 
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were consistently in top six most important variables. All three CxQ parameter coefficients 

(α, β, γ) contributed significantly to the classification as the entire EVI2 pattern of the 

growing season can be described with those three values. The three fitted parameter 

coefficients of CxQ model followed the same rank order (decreasing importance: α → β 

→ γ) for all four combinations of year and data source, indicating that phenological 

characteristics did not contribute equally to the classification. Alpha (α) was consistently 

ranked as the most important variable among three parameter coefficients as well as all 

other CxQ variable indicating that peak fitted EVI2 is a main driver to the classification. 

Note that α, PHCxQ and ymax—constant component of the quadratic curve, max fitted 

EVI2, max observed EVI2—are correlated to each other as those variables all refer to the 

highest EVI2 value over the growing season. Thus, contribution of one variable to 

classification will lower contributions of other variables. Nevertheless, PHCxQ and ymax 

also consistently appeared in the sixth and seventh places. The second-ranked important 

phenological property was the rate of green-up controlled by beta (β) fitted parameter 

coefficient value. Both HTV and minx—EVI2 value at half TTP and AGDD value at the 

left end of the fitted curve in the first quadrant—were measurements on the first half of the 

growing season indicating strong influence of variables related to the initial green-up phase 

of seasonal growth.  

For HPLM RFC models, PHHPL, gri, vi_gri, giMD, gre—highest fitted EVI2, 

DOY of green-up start, EVI2 at gri, DOY in the middle of green-up start and end, DOY of 

green-up end—were consistently in top six important variables. Similar to the CxQ RFC 

models, the modeled peak EVI2 value is an important variable for HPLM RFC models. 

Moreover, gri, vi_gri, giMD and gre were also timings in the first half of the growing 
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season, confirming the strong influence of variables related to the initial green-up phase 

found with the CxQ RFC models. 

In the spectrally-based RFC models, contribution of SWIR-2 (S2) was striking: it 

appeared twelve times (out of 20) in top five important variables (Table 4.10). Despite that 

SPL RFC models tend to perform slightly better than CxQ and HPLM RFC models (Tables 

4.5, 4.8), more phenometrically-based variables were considered important for 

classification in the CMB RFC models (Table 4.10). The LSP related variables from CxQ 

(α, β, γ, HTV, minx) and HPLM (gri, giMD) consistently appeared in top ten for important 

variables in the CMB models. Together, phenometrics from CxQ and HPLM appeared 

thirty-one times (out of 40) in the top ten important variables. Consistent appearances of 

HTV, minx, gri, giMD as highly ranked important variables in the CxQ, HPLM as well as 

in the CMB RFC models indicated that the classification is driven by variables related to 

the initial green-up phase of seasonal growth. 
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Table 4.9. Top 10 important variables of CxQ and HPLM RFC models. Variables highlighted in 

light yellow are those consistently appeared in top 6 most important variables (at least three times 

out of four year-data combinations). Bolded items are variables related to the initial green-up phase 

of the seasonal growth. 

  CxQ RFC models   HPLM RFC models 

 

2016 

 

2017 

 

2016 

 

2017 

# ARD HLS   ARD HLS   ARD HLS   ARD HLS 

1 α α  α α  gri gri  giMD giMD 

2 β β  HTV HTV  giMD PHHPLM  gre gri 

3 HTV ymax  r2 minx  gre vi_sei  gri gre 

4 minx minx  minx β  PHHPLM giMD  PHHPLM see 

5 ymax HTV  β r2  vi_gre vi_gre  vi_gri PHHPLM 

6 γ PHCxQ  γ γ  vi_sei vi_gri  see vi_gri 

7 PHCxQ o_fit  ymax PHCxQ  see gre  DPHPLM vi_sei 

8 r2 γ  PHCxQ ymax  vi_gri see  vi_sei DPHPLM 

9 TTPCxQ r2  o_per TTPCxQ  seMD seMD  vi_see vi_gre 

10 o_fit o_all   TTPCxQ o_per   DPHPLM vi_seMD   vi_gre seMD 

 

Table 4.10. Top 10 important variables of SPL and CMB RFC models. In the SPL RFC models, 

spectral variables in top 5 that involved SWIR-2 band are highlighted in light yellow. In the CMB 

RFC models, spectral variables are highlighted in light blue, phenometrics from the CxQ and 

HPLM are highlighted in light orange and light green, respectively. Bolded items are variables 

related to the initial green-up phase of the seasonal growth. 
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  SPL RFC models   CMB RFC models 

 

2016 

 

2017 

 

2016 

 

2017 

# ARD HLS   ARD HLS   ARD HLS   ARD HLS 

1 P20_S1 P20_B  P20_S1 P20_B 

 

P20_S1 α  P20_S1 α 

2 P20_S2 P80_S2  P80_S2 P20_S2N 

 

giMD P20_B  α giMD 

3 P80_S2 P80_N  P20_S2 P80_S2 

 

α β  P20_S2 HTV 

4 P20_S2R P80_S2G  P80_S2G P20_R 

 

gri minx  HTV minx 

5 P80_S2G P20_G  P20_N P80_S2G 

 

P20_S2 γ  minx gre 

6 P80_N P20_R  P50_S2N P20_N 

 

β o_fit  giMD β 

7 P20_N P50_NR  P20_R P20_G 

 

minx HTV  gre P20_B 

8 P20_S2G P50_NB  P20_S2N P80_S2R 

 

HTV gri  β gri 

9 P80_S2R P80_S2R  P50_S2 P20_S2R 

 

γ ymax  γ P20_R 

10 P50_NB P20_S2R   P20_S2G P50_NR   P20_S2R P20_G   gri γ 

 

4.4.3.  Cross-comparison between predicted land cover maps and the CDL 

Table 4.11 and S4.12-S4.15 showed results of pixel-based comparison between 

predicted land cover maps and the CDL for different sample pools and sizes. Unlike model 

AA, pixel-based comparison between predicted land cover maps and the CDL (map AA) 

revealed that the C1S RFC map agreed more with the CDL than the C2M RFC map. RFC 

models trained with larger sample size did yield better land cover prediction. Although 

improvement of OA in the map AA (about 2% to 3% for ARD and HLS data, respectively) 

were not as large as those in the model AA (about 6%), this result was expected because 

many more predictions were made to create land cover map (the entire study area) than in 

model AA (up to 0.25% of study area). Even a small increase of the map OA (e.g., 0.1%) 

translates into a large area. Higher k_Q compared to k_L in all scenarios indicated that the 
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proportional distribution of predicted maps was quite close to the CDL and the majority of 

classification errors came from misallocation of pixels. 

Table 4.11. Pixel-based comparison between 2016 predicted land cover maps and CDL 

summarized by sample pools and sample sizes. 

  

ARD  HLS 

 

Scenario OA% k_L k_Q  OA% k_L k_Q 

S
a
m

p
le

 P
o

o
l 

C1S 80.8 0.820 0.878  77.9 0.782 0.875 

C1M 80.4 0.819 0.868  77.4 0.777 0.871 

C2S 80.4 0.819 0.867  77.4 0.779 0.866 

C2M 80.1 0.817 0.863  77.0 0.780 0.857 

S
a
m

p
le

 S
iz

e 

P01 78.9 0.808 0.853  75.5 0.776 0.828 

P05 80.1 0.817 0.866  77.2 0.776 0.868 

P15 80.7 0.821 0.872  78.0 0.783 0.874 

P25 81.0 0.823 0.876  78.3 0.786 0.876 

 

Generally, SPL land cover maps had higher agreement with the CDL than the 

phenometrically-based maps (Tables 4.12, S4.16). Similar to the model AA, the SPL RFC 

map clearly improved accuracy of barren/developed but was not as accurate in wheat as 

CxQ and HPLM RFC maps. Land cover map created from CMB RFC models had higher 

agreement to the CDL than those created with only spectrally-based or phenometrically-

based RFC models. Among all ensemble maps, CMB RFC maps were consistently the 

most accurate. Compared to phenometrically-based and SPL, CMB maps improved PA 

and UA for both wheat and barren/developed classes. It is also important to note that the 

barren/developed areas estimated from the phenometrically-based maps were closer to 



152 
 

 

CDL compared to values from the spectrally-based maps. However, both PA and UA of 

barren/developed from the phenometrically-based maps were lower, and thus, resulted in 

fewer correctly assigned pixels (Table 4.12, Figure 4.2).  

Overall accuracies of ARD maps were greater than those of HLS maps by 1% to 

3% (Tables 4.11, 4.12). A possible reason leaded to lower agreement between HLS and 

CDL is the difference in projection of the two datasets. While HLS data was produced 

using the UTM projection for zone 14N, both the CDL and ARD data were produced in 

the AEA projection. Although CDL and ARD pixels were not perfectly aligned, offsets 

were only about 3 meters in both latitude and longitude direction. On the other hand, offsets 

between HLS and CDL data were 15 meters in each direction. Re-projection and pixel co-

registration to allow pixel-based comparison would negatively affect cross-comparison 

between the CDL and HLS-based maps than cross-comparison between the CDL and 

ARD-based maps. The large offset between HLS and CDL pixels was also observed in 

kappa indices for location and quantity. Compared to ARD-based maps, HLS-based maps 

had similar k_Q but lower k_L values, especially in the more accurate maps: C1S, P25, 

and CMB (cf. Tables 4.11, 4.12), indicating that proportional distribution of the two maps 

are similar, but HLS-based maps have less accurate pixel allocation  
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Figure 4.2. 2016 ARD-based land cover maps of area around Sisseton, the county seat of Roberts 

County, South Dakota. Note the barren/developed class in phenometrics-based RFC maps (CxQ 

and HPLM) are not as accurate as in SPL and CMB RFC maps. 
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Table 4.12. Pixel-wise comparison between 2016 predicted land cover maps and CDL summarized 

by input variables. Land cover area is in km2. 

   ARD  HLS 

Land Cover Info. CDL CxQ HPLM CMP CMB  CxQ HPLM CMP CMB 

Corn Area 662 674 636 613 641   701 699 615 644 

 UA  83.8 89.0 93.3 93.0  76.9 78.6 88.3 88.2 

 PA  85.4 85.5 86.5 90.1  81.6 83.1 82.0 85.8 

Wheat Area 103 86 93 135 121   81 92 132 107 

 UA  81.9 80.0 48.9 69.1  79.6 75.0 45.4 71.9 

 PA  68.7 72.5 64.2 81.2  62.6 67.6 58.3 74.7 

Alfalfa Area 45 29 36 33 31   28 37 34 33 

 UA  73.5 67.2 66.8 74.3  67.2 61.4 59.2 65.9 

 PA  47.5 54.5 48.3 51.9  41.7 49.9 45.0 47.9 

Soybean Area 746 693 687 780 731   663 646 769 729 

 UA  87.2 91.1 85.0 90.7  83.3 87.0 81.2 86.2 

 PA  81.0 83.9 88.8 88.9  74.1 75.3 83.7 84.2 

Other Crops Area 13 1 1 0 0   0 1 0 0 

 UA  0.0 61.2 0.0 0.0  0.0 60.8 0.0 0.0 

 PA  0.0 4.3 0.0 0.0  0.0 6.9 0.0 0.0 

Water Area 154 122 120 126 121   124 125 131 126 

 UA  92.8 94.8 97.0 97.5  89.8 90.6 93.4 94.5 

 PA  73.2 74.1 79.5 76.9  72.5 73.6 79.6 77.4 

Barren/Dev. Area 131 69 66 59 60   81 56 53 56 

 UA  25.5 29.2 52.9 50.6  19.9 23.4 43.5 39.8 

 PA  13.5 14.6 23.9 23.1  12.4 10.0 17.5 17.1 

Forest Area 64 49 65 70 68   41 66 74 68 

 UA  57.2 56.4 64.8 65.6  58.7 54.3 56.4 60.2 

 PA  43.2 57.3 70.7 69.6  36.9 55.5 65.1 63.2 

Grassland Area 761 872 903 886 916   899 931 917 940 

 UA  74.5 73.8 75.7 74.5  72.3 70.5 72.0 72.0 

 PA  85.5 87.6 88.2 89.7  85.5 86.4 86.7 88.9 

Wetland Area 262 347 333 239 251   322 286 216 239 

 UA  35.9 35.3 56.1 53.1  40.9 36.9 58.1 54.5 

 PA  47.5 44.8 51.1 50.8  50.2 40.2 47.9 49.7 

OA     74.6 76.4 79.1 80.8   71.7 72.4 75.5 77.7 

k_loc     0.748 0.775 0.806 0.821   0.718 0.726 0.763 0.782 

k_quan     0.857 0.850 0.862 0.875   0.837 0.837 0.849 0.870 
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4.5.  Discussion 

Convex quadratic versus hybrid piecewise logistic modeling of LSP for land cover 

classification  

The hybrid piecewise logistic model (HPLM) was first designed to detect 

vegetation phenology from MODIS time series (Zhang et al., 2003 The HPLM has a well-

refined fitting algorithm, but strict requirements in a number and temporal distribution of 

observations (Zhang et al., 2003; Zhang, 2015). On the other hand, the convex quadratic 

model (CxQ) has been recently to characterize seasonal patterns of vegetated surfaces, by 

incorporating the use of MODIS LST 8-d composites at 1 km spatial resolution (Henebry 

& de Beurs, 2013; Krehbiel et al., 2016, 2017). The fitting algorithm and data requirements 

for the CxQ are more flexible than for the HPLM, due to fewer parameter coefficients to 

estimate (Nguyen et al., 2019). When data requirements were satisfied, the HPLM could 

fit the observed EVI2 pattern more precisely than the CxQ, leading to higher classification 

accuracy. However, when fewer observations were available, e.g., outside the Landsat 

sidelap zones, the CxQ model could serve as a back-up algorithm in this temperate climate 

where temperatures constrain the initiation and tempo of spring growth. The fundamental 

challenge for both CxQ and HPLM is dealing with gaps in observations during the growing 

season arising from few good observations available in some years and/or over some areas. 

Although many observations were available for the study area in both years (Figure S4), a 

lower minimum number of observations (at least ten) was required for the fitting the HPLM 

in this study (compared to the fitting for MODIS data in Zhang et al., 2003 and for AVHRR 

data in Zhang, 2015) to generate a map without gaps. Even within the Landsat sidelap 

zones, we were not always able to retrieve sufficient observations to fit the LSP model 
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(Nguyen et al., 2019). However, the temporal density of observations could be increased 

by bringing together complementary sensors. For example, our results show that Sentinel-

2 data can be used with Landsat ARD in phenometrically-based classification. An 

alternative feasible solution may be to leverage very high spatiotemporal but low spectral 

resolution data from a small satellite constellation to infill gaps (Houborg & McCabe, 

2018). 

Phenometrically-based versus spectrally-based classification 

Our hypothesis was that phenometrically-based RFC models would be more 

accurate than the spectrally-based RFC models in vegetated cover types, at least for crops. 

However, the results showed that the spectrally-based classification yielded slightly higher 

accuracy metrics (compared to the phenometrically-based classifications) for most classes, 

including corn and soybean (Table 4.8). One possible reason for this result is that both 

spectral and phenometric variables have their own strengths in classification. Compared to 

spectrally-based RFC models, phenometrically-based RFC models have an advantage of 

containing the seasonal information or timing of vegetation growth, thus mapping wheat 

more accurately. However, the phenometrically-based RFC relied on vegetation growth as 

represented by EVI2 time series calculated from the red and NIR bands. On the other hand, 

spectral variables in spectrally-based RFC models contain far more spectral information 

from multiple bands and normalized ratios that give the spectrally-based classification an 

edge in feature separation. The rich information from input variables could help spectrally-

based models to perform better for most classes, including some vegetated covers (e.g., 

corn, soybean, wetland, and grass) (Tables 4.8, S4.8). Analysis of important variables 

(Tables 4.9, 4.10) also helps to explain the better performances of spectrally-based models 
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compared to phenometrically-based models. Both CxQ and HPLM RFC classifications 

were strongly driven by the maximum fitted EVI2 as showed by consistent appearance of 

α as the most important variable in the CxQ RFC models (Table 4.9) and appearance of 

PHHPLM in the top five HPLM RFC models (Table 4.10). In the study area, all vegetated 

covers can be classified effectively without seasonal information, except for wheat. A 

comparison between phenometrically-based and spectrally-based classifications in an area 

with a more complicated cropping patterns (e.g., the wheat-fallow system used in the 

western Great Plains) might demonstrate better the relative strengths and weakness of these 

complementary approaches. Nevertheless, the combination of spectral and phenometric 

variables yielded the most accurate land cover/land use map. 

Impact of sample size on classification accuracy 

Our results confirmed previous findings that larger sample sizes would lead to 

better classification, and a sample size covering 0.25% of the study area would be adequate 

for classification study (Colditz, 2015; Nguyen et al., 2019). However, in case of data 

scarcity, smaller sample sizes, covering 0.15% and at least 0.05% of the study area, might 

provide acceptable results (cf. Tables 4.5, S4.7, S4.14, S4.15; Rodriguez-Galiano et al., 

2012). Note that RFC models’ accuracy metrics and predicted land cover maps in this study 

were an ensemble of multiple RFC models. In the case of having a single sample dataset 

for training and testing, classification may have quite higher or lower accuracy metrics than 

the expected value (Figures S4.1-S4.3). 

Trade-offs between randomness and accuracy in sample dataset 

Accuracies of sample pool scenarios in the model AA and the map AA are in 

opposite orders (Tables 4.5, 4.11). In the model AA, C1S and C2M RFC models performed 
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the worst and the best, respectively. On the other hand, C1S RFC models displayed higher 

accuracy metrics than C2M RFC models in the map AA. To some extent, this result is 

reasonable. C2M RFC models have higher accuracy metrics in the model AA due to more 

accurate land cover information as well as higher spatial autocorrelation, but they may have 

lower predictive power (lower OA in the map AA) as some actual characteristics were 

excluded at edges. Although it might be necessary to improve accuracy of the sample 

datasets to compensate for the low accuracy of some CDL classes and the spatial offsets 

between HLS, ARD, and CDL data, our results suggest that only minimum corrections–

C1S sample pool–are needed since there was no improvement in accuracy of the predicted 

land cover map using sample pools with higher level of correction. 

4.6 Conclusions 

The main focus of this study was to evaluate classification accuracy using different 

sets of input variables derived from either Landsat ARD or HLS time series, including 

phenometrics generated from two land surface phenology models (CxQ and HPLM), 

spectral variables, and the combined set of phenometrics and spectral variables. Between 

the two phenometrically-based classifications, HPLM RFC models exhibited slightly better 

accuracy but absolute differences in OA are minor (<1%), mostly due to more precise pixel 

allocation of land cover. Compared to the phenometrically-based RFC models, the 

spectrally-based RFC models yielded more accurate land cover maps, especially for non-

crop cover types. However, the spectrally-based RFC models could not classify wheat 

accurately. As hypothesized, the most accurate RFC models were retrieved when using 

both phenometrics and spectral variables as inputs. The combined-variables RFC models 

overcame weaknesses of both phenometrically-based classifications (low accuracies for 
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non-vegetated covers) and spectrally-based classifications (low accuracies for wheat). The 

analysis of important variables indicated that classifications of the study area were strongly 

driven by variables related to the initial green-up phase of seasonal growth and highest 

EVI2 over the growing season. 

We have explored land cover/ land use classification under different sample pool 

and sample size scenarios. First, to improve land cover accuracy of sample data, both 

spatial and temporal filters were applied to compensate classification errors of the CDL 

and offsets between input datasets. The results indicated that a sample pool with a 

minimum correction of land cover information yielded the most accurate predicted map. 

Next, land cover classification was also tested with different sample sizes. Although 

previous findings suggested that a sample size should cover at least 0.25% of the study area 

to achieve an accurate (OA≥0.90) land cover map, smaller datasets would be acceptable 

for classification, but should not smaller than 0.05% of the study area, since classification 

accuracy would decrease rapidly below that threshold.  

Land surface phenology modeling requires a substantial number of good quality 

observations over a year (Zhang et al., 2017); thus, it may be less suitable for areas with 

persistent cloud cover if only optical data are available to characterize the LSP. However, 

the prospect of using phenometrics to enhance land cover/land use classification is very 

promising. First, our results proved that the use of phenometrics and spectral variables 

together yielded the most accurate classification and overcame limitations of both 

phenometrically-based and spectrally-based classifications. Second, seasonality 

information from all spectral band and ratio time series could be extracted to enhance 

classification accuracy (e.g., Zhu & Woodcock, 2014). Finally, the temporal resolution of 
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satellite data can be improved by using comparable sensor datastreams, e.g., Landsat and 

Sentinel-2, but substantial pre-processing is required to achieve compatibility. 
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4.9 Supplementary 

Table S4.1. Reclassification of CDL land use/land cover classes for Robert County, SD. 

CDL Code CDL Cover New Cover CDL Code CDL Cover New Cover 

0 Background NoData 53 Peas Other Crops 

1 Corn Corn 59 Sod/Grass Seed Grassland 

4 Sorghum Other Crops 61 Fallow/Idle Cropland Grassland 

5 Soybeans Soybean 111 Open Water Water 

6 Sunflower Other Crops 121 Developed/Open Space Barren/Dev. 

21 Barley Other Crops 122 Developed/Low Intensity Barren/Dev. 

22 Durum Wheat Wheat 123 Developed/Med Intensity Barren/Dev. 

23 Spring Wheat Wheat 124 Developed/High Intensity Barren/Dev. 

24 Winter Wheat Wheat 131 Barren Barren/Dev. 

27 Rye Other Crops 141 Deciduous Forest Forest 

28 Oats Other Crops 142 Evergreen Forest Forest 

29 Millet Other Crops 143 Mixed Forest Forest 

36 Alfalfa Alfalfa 176 Grassland/Pasture Grassland 

37 Other Hay/Non Alfalfa Grassland 190 Woody Wetlands Wetland 

39 Buckwheat Other Crops 195 Herbaceous Wetlands Wetland 

41 Sugarbeets Other Crops 205 Triticale Wheat 

42 Dry Beans Other Crops 241 Dbl Crop Corn/Soybeans Other Crops 

44 Other Crops Other Crops    
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Table S4.2. Overall accuracy (in percent), kappa for location and quantity of 2017 RFC models 

summarized by sample pools, sample sizes, and input sets. A particular scenario (current row) was 

compared to a scenario right above it (row above) using the nonparametric Mann–Whitney U test 

and the TOST equivalence test. The null hypothesis of the U test is that a random accuracy metric 

of the first scenario (row above) will be less than a random accuracy metric of the second scenario 

(current row). Significance level of the U test are indicated by ***, ** and * for p-values of less 

than 0.001, 0.01, 0.05 and NS for “not significant”. Results of the TOST equivalence test are 

highlighted in light blue for “not equivalent” and light yellow for “equivalent. 

  ARD   HLS  

 Scenario OA  k_L  k_Q   OA  k_L  k_Q  

S
a
m

p
le

 P
o
o
l 

C1S 89.0  0.909  0.913   87.9  0.898  0.908  

C1M 90.2 *** 0.921 *** 0.920 ***  89.6 *** 0.915 *** 0.917 *** 

C2S 90.5 ** 0.923 NS 0.924 **  90.3 *** 0.922 *** 0.920 ** 

C2M 91.6 *** 0.933 *** 0.929 ***  91.3 *** 0.932 *** 0.927 *** 

S
a
m

p
le

 S
iz

e P01 87.1  0.907  0.871   86.3  0.899  0.866  

P05 90.2 *** 0.918 *** 0.926 ***  89.7 *** 0.914 *** 0.923 *** 

P15 91.7 *** 0.928 *** 0.942 ***  91.3 *** 0.924 *** 0.939 *** 

P25 92.2 *** 0.932 ** 0.947 ***  91.9 *** 0.929 *** 0.944 *** 

In
p

u
t 

S
et

 CxQ 88.2  0.892  0.923   87.9  0.887  0.924  

HPLM 89.1 *** 0.901 *** 0.926 NS  88.8 *** 0.901 *** 0.921 NS 

SPL 89.9 *** 0.931 *** 0.899 NS  88.6 NS 0.919 *** 0.890 NS 

CMB 94.1 *** 0.961 *** 0.938 ***  93.8 *** 0.958 *** 0.936 *** 
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Figure S4.1. Boxplots of overall accuracy (OA) metrics from different scenarios for each 

combination of year and data source.  
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Figure S4.2. Boxplots of kappa_Location (k_L) metrics from different scenarios for each 

combination of year and data source.  
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Figure S4.3. Boxplots of kappa_Quantity (k_Q) metrics from different scenarios for each 

combination of year and data source. 

  



172 
 

 
 

Table S4.3. Significance level of the nonparametric Mann–Whitney U test for pairwise OA, k_L 

and k_Q comparison. ***, ** and * indicate p-values of less than 0.001, 0.01, 0.05, respectively. 

NS means “not significant”. Area colored in light yellow (upper right) show results computed on 

ARD-RFC models, and light blue (lower left) show results from  HLS-RFC models. The null 

hypothesis is that a random accuracy metric of the first scenario will be less than a random accuracy 

metric of the second scenario (or the first population has smaller values than the second population). 

For the test on ARD-RFC models, the first scenario is selected from the table’s row, and second 

scenarios is selected from the column. Scenario selection for the test on HLS-RFC models is in the 

opposite direction (column → row). For example, the significance level for comparison of k_L 

between C1M and C2M are “NS” and “**” for ARD- and HLS-RFC models, respectively. 
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  Overall Accuracy Kappa for Location Kappa for Quantity 

  C1S C1M C2S C2M C1S C1M C2S C2M C1S C1M C2S C2M 
2

0
1

6
 

C1S - *** *** *** - *** *** *** - *** *** *** 

C1M *** - NS *** *** - NS *** *** - NS *** 

C2S *** *** - *** *** ** - *** *** *** - *** 

C2M *** *** *** - *** *** *** - *** *** *** - 

2
0

1
7
 

C1S - *** *** *** - *** *** *** - *** *** *** 

C1M *** - ** *** *** - NS *** *** - ** *** 

C2S *** *** - *** *** *** - *** *** ** - *** 

C2M *** *** *** - *** *** *** - *** *** *** - 

    P01 P05 P15 P25 P01 P05 P15 P25 P01 P05 P15 P25 

2
0

1
6
 

P01 - *** *** *** - *** *** *** - *** *** *** 

P05 *** - *** *** *** - *** *** *** - *** *** 

P15 *** *** - *** *** *** - * *** *** - *** 

P25 *** *** *** - *** *** ** - *** *** *** - 

2
0

1
7
 

P01 - *** *** *** - *** *** *** - *** *** *** 

P05 *** - *** *** *** - *** *** *** - *** *** 

P15 *** *** - *** *** *** - ** *** *** - *** 

P25 *** *** *** - *** *** *** - *** *** *** - 

    CxQ HPLM SPL CMB CxQ HPLM SPL CMB CxQ HPLM SPL CMB 

2
0

1
6
 

CxQ - *** *** *** - *** *** *** - NS *** *** 

HPLM NS - *** *** NS - *** *** NS - *** *** 

SPL *** *** - *** *** *** - *** *** *** - *** 

CMB *** *** *** - *** *** *** - *** *** *** - 

2
0

1
7
 

CxQ - *** *** *** - *** *** *** - NS NS *** 

HPLM *** - *** *** *** - *** *** NS - NS *** 

SPL *** NS - *** *** *** - *** NS NS - *** 

CMB *** *** *** - *** *** *** - *** *** *** - 
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Table S4. TOST equivalence tests. “E” indicates that the two sets of accuracy metrics are 

equivalent or differences between those are within a user-defined range of Cohen’s d. “×” that the 

two sets of accuracy metric are not equivalent. Area colored in light yellow (upper right) and light 

blue (lower left) show results computed on ARD- and HLS-RFC models, respectively. For the test 

on ARD-RFC models, the first scenario is selected from the table’s row, and second scenarios is 

selected from the column. Scenario selection for the test on HLS-RFC models is on the opposite 

direction (column → row). For example, the results of equivalence test between C1S and C2S are 

“×” and “E” for ARD- and HLS-RFC models, respectively. 

  Overall Accuracy Kappa for Allocation Kappa for Quantity 

  C1S C1M C2S C2M C1S C1M C2S C2M C1S C1M C2S C2M 

2
0

1
6
 

C1S - × × × - × × × - E E × 

C1M × - E E × - E E E - E E 

C2S × E - × × E - E × E - E 

C2M × × E - × × E - × E E - 

2
0

1
7
 

C1S - × × × - E × × - E E × 

C1M × - E × × - E × E - E E 

C2S × E - E × E - E E E - E 

C2M × × E - × × E - × E E - 

    P01 P05 P15 P25 P01 P05 P15 P25 P01 P05 P15 P25 

2
0

1
6
 

P01 - × × × - E × × - × × × 

P05 × - × × × - E E × - × × 

P15 × × - E × E - E × × - × 

P25 × × E - × × E - × × E - 

2
0

1
7
 

P01 - × × × - E × × - × × × 

P05 × - × × × - E × × - × × 

P15 × × - E × E - E × × - E 

P25 × × E - × × E - × × E - 

    CxQ HPLM SPL CMP CxQ HPLM SPL CMP CxQ HPLM SPL CMP 

2
0

1
6
 

CxQ - × × × - × × × - E E × 

HPLM E - × × E - × × E - E × 

SPL × × - × × × - × E × - E 

CMP × × × - × × × - × × E - 

2
0

1
7
 

CxQ - E × × - × × × - E × × 

HPLM E - E × × - × × E - × E 

SPL E E - × × × - × × × - × 

CMP × × × - × × × - E × × - 
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Table S4.5. Accuracy assessment of RFC models summarized by sample pool scenarios. 

 2016  2017 

 ARD HLS  ARD HLS 

Metrics C1S C1M C2S C2M C1S C1M C2S C2M  C1S C1M C2S C2M C1S C1M C2S C2M 

PA_Corn 94.6 95.3 95.3 95.7 91.2 92.1 92.3 92.6  93.9 94.5 94.7 95.4 91.8 93.2 93.4 94.0 

PA_Wheat 75.4 77.9 78.3 78.6 70.2 72.9 73.1 74.4  59.0 63.4 63.8 66.3 57.0 62.5 61.3 63.3 

PA_Alfalfa 73.5 80.3 79.1 82.6 69.3 77.1 77.2 79.9  74.2 80.2 78.2 82.7 71.2 80.1 76.4 82.8 

PA_Soybean 95.4 96.1 96.1 96.6 90.3 91.1 91.8 92.1  95.3 95.7 95.7 96.2 93.6 94.6 94.6 95.1 

PA_Other Crops 11.2 35.4 19.7 50.9 15.3 43.9 25.2 55.0  15.6 21.2 22.3 29.7 15.6 25.1 21.2 33.2 

PA_Water 97.4 98.4 98.2 98.3 96.2 97.9 97.8 98.2  96.4 97.1 97.6 97.5 95.4 96.8 97.3 97.3 

PA_Barren/Dev. 55.1 58.6 59.7 60.9 47.4 47.2 54.3 56.1  54.3 55.6 57.6 58.5 48.6 44.6 50.8 51.9 

PA_Forest 87.7 89.5 93.1 94.0 84.3 87.8 93.1 94.5  83.3 84.2 87.5 88.3 81.6 84.4 88.9 90.8 

PA_Grassland 93.0 94.1 93.8 94.9 93.6 95.0 95.1 96.1  93.4 94.2 94.2 94.9 94.0 94.7 95.2 95.8 

PA_Wetland 66.8 74.4 72.1 79.2 73.9 80.4 82.0 87.7  67.7 72.8 74.6 78.9 69.9 76.7 79.8 84.2 

                  

UA_Corn 94.8 95.5 95.4 95.9 89.8 90.6 91.3 91.5  94.7 95.3 95.3 95.9 91.8 93.0 93.1 93.4 

UA_Wheat 84.4 89.3 87.6 90.2 82.0 86.5 85.5 89.1  80.6 84.2 83.1 86.1 80.4 82.8 83.3 84.3 

UA_Alfalfa 83.7 88.8 87.7 91.2 79.8 87.2 86.6 89.6  87.9 91.0 90.9 92.9 85.0 91.5 90.0 93.6 

UA_Soybean 93.6 94.7 94.7 95.2 90.4 91.6 91.7 92.2  92.7 93.1 93.4 93.9 91.5 92.6 92.9 93.4 

UA_Other Crops 35.8 61.3 49.9 70.2 46.6 67.0 54.0 71.0  41.0 43.8 50.3 52.8 40.4 47.6 45.0 55.1 

UA_Water 97.5 97.6 97.7 97.6 96.3 96.2 96.4 96.9  96.4 96.0 96.2 96.5 95.9 96.0 95.8 96.3 

UA_Barren/Dev. 77.0 80.2 77.1 79.0 72.4 74.1 74.0 75.9  77.0 78.5 77.7 78.6 75.7 73.4 76.2 77.1 

UA_Forest 86.7 88.5 90.4 91.1 84.8 87.5 90.6 92.4  80.7 82.9 85.4 86.6 82.4 84.3 88.3 89.7 

UA_Grassland 84.9 87.2 86.4 88.6 85.6 87.6 88.9 90.4  85.5 87.4 88.0 89.3 85.3 87.5 88.6 90.0 

UA_Wetland 74.2 79.5 80.1 84.4 76.3 81.6 83.4 87.5  73.9 77.7 78.8 82.1 75.1 79.5 81.6 84.9 

OA 88.8 90.7 90.4 91.8 86.8 88.7 89.4 90.7  89.0 90.2 90.5 91.6 87.9 89.6 90.3 91.3 

k_L 0.904 0.923 0.921 0.935 0.884 0.904 0.909 0.922  0.909 0.921 0.923 0.933 0.898 0.915 0.922 0.932 

k_Q 0.917 0.926 0.924 0.932 0.906 0.914 0.921 0.927  0.913 0.920 0.924 0.929 0.908 0.917 0.920 0.927 

  



176 
 

 
 

Table S4.6.  The nonparametric Mann–Whitney U test and the TOST equivalence test for the (P01 

versus P25 RFC models) and (C1S versus C2M RFC models) comparison. The null hypothesis is 

that a random accuracy metric of the first scenario will be less than a random accuracy metric of 

the second scenario (or the first population has smaller values than the second population). 

Significance level of the U test are indicated by ***, ** and * for p-values of less than 0.001, 0.01, 

0.05 and NS for “not significant”. Results of the TOST equivalence test are highlighted in light 

blue for “not equivalent” and light yellow for “equivalent”. 

 P01 versus P25  C1S versus C2M 

 2016 2017  2016 2017 

Metrics ARD HLS ARD HLS  ARD HLS ARD HLS 

PA_Corn *** *** *** ***  *** *** *** *** 

PA_Wheat *** *** *** ***  *** *** *** *** 

PA_Alfalfa *** *** *** ***  *** *** *** *** 

PA_Soybean *** *** *** ***  *** *** *** *** 

PA_Other Crops *** *** *** ***  *** *** *** *** 

PA_Water NS NS NS NS  *** *** *** *** 

PA_Barren/Dev. *** *** *** ***  *** *** *** ** 

PA_Forest NS NS NS NS  *** *** *** *** 

PA_Grassland *** *** *** ***  *** *** *** *** 

PA_Wetland *** *** *** ***  *** *** *** *** 

          

UA_Corn *** *** *** ***  *** *** *** *** 

UA_Wheat NS NS NS NS  *** *** *** *** 

UA_Alfalfa NS NS NS NS  *** *** *** *** 

UA_Soybean *** *** *** ***  *** *** *** *** 

UA_Other Crops *** *** *** ***  *** *** *** *** 

UA_Water NS NS NS NS  *** *** * *** 

UA_Barren/Dev. ** *** * **  *** *** ** ** 

UA_Forest NS NS NS NS  *** *** *** *** 

UA_Grassland *** *** *** ***  *** *** *** *** 

UA_Wetland *** *** *** ***  *** *** *** *** 

          

OA *** *** *** ***  *** *** *** *** 

k_L *** *** *** ***  *** *** *** *** 

k_Q *** *** *** ***  *** *** *** *** 
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Table S4.7. Accuracy assessment of RFC models summarized by sample size scenarios. 

 2016  2017 

 ARD HLS  ARD HLS 

Metrics P01 P05 P15 P25 P01 P05 P15 P25  P01 P05 P15 P25 P01 P05 P15 P25 

PA_Corn 94.1 94.8 95.8 96.2 89.8 91.8 93.1 93.6  93.3 94.4 95.2 95.6 90.7 93.2 94.1 94.5 

PA_Wheat 58.1 79.2 85.3 87.4 49.6 73.7 82.4 85.0  45.8 64.0 70.3 72.5 44.4 62.4 67.4 69.9 

PA_Alfalfa 61.9 79.9 85.7 87.9 55.0 77.9 84.2 86.5  56.8 81.4 87.5 89.7 55.0 80.0 87.1 88.5 

PA_Soybean 94.6 96.2 96.6 96.8 88.5 91.6 92.5 92.8  93.3 95.8 96.7 97.1 92.1 94.4 95.5 96.0 

PA_Other Crops 7.1 21.8 40.0 48.3 9.1 27.2 47.3 55.9  0.0 16.6 31.6 40.6 0.0 18.8 33.2 43.0 

PA_Water 97.5 98.1 98.3 98.5 97.0 97.4 97.9 97.9  96.3 96.9 97.6 97.8 96.0 96.3 97.1 97.4 

PA_Barren/Dev. 49.6 58.2 62.4 64.2 38.8 50.7 56.5 58.9  47.0 55.8 60.8 62.5 36.1 48.0 54.8 57.0 

PA_Forest 86.6 91.4 92.8 93.4 84.5 90.3 92.0 92.8  77.9 86.7 89.0 89.7 79.1 87.0 89.4 90.3 

PA_Grassland 92.6 94.0 94.5 94.7 93.7 94.9 95.5 95.7  93.1 94.1 94.5 94.9 93.9 94.8 95.4 95.6 

PA_Wetland 64.8 73.7 76.4 77.6 74.5 81.3 83.6 84.5  64.4 73.8 77.3 78.6 69.2 78.3 81.0 82.2 

                  

UA_Corn 93.0 95.6 96.4 96.7 87.4 91.1 92.2 92.6  92.8 95.4 96.4 96.7 89.9 92.8 94.0 94.6 

UA_Wheat 84.5 87.5 89.4 90.2 80.6 85.6 88.0 89.0  70.5 84.9 88.7 89.8 67.6 82.0 89.9 91.3 

UA_Alfalfa 75.2 91.2 92.1 92.9 69.9 90.1 91.1 92.0  81.3 92.8 94.0 94.6 79.1 92.4 93.9 94.7 

UA_Soybean 92.2 94.3 95.6 96.1 87.9 91.3 93.0 93.6  91.0 93.0 94.3 94.8 89.8 92.6 93.8 94.3 

UA_Other.Crops 7.0 48.0 77.6 84.7 9.0 55.8 84.3 89.5  0.0 27.1 73.9 86.9 0.0 29.4 73.2 85.5 

UA_Water 97.4 97.6 97.7 97.8 96.1 96.2 96.6 96.8  94.9 96.2 96.9 97.1 95.0 96.0 96.4 96.5 

UA_Barren/Dev. 72.5 78.3 80.7 81.7 66.0 73.7 77.9 78.9  70.5 78.1 81.0 82.2 67.1 75.7 79.1 80.4 

UA_Forest 85.3 89.0 90.8 91.6 84.7 88.2 90.8 91.6  80.0 83.4 85.6 86.7 82.1 85.8 87.9 88.9 

UA_Grassland 83.7 86.9 87.9 88.5 84.8 88.1 89.5 90.1  84.5 87.6 88.8 89.3 84.8 87.8 89.2 89.7 

UA_Wetland 72.8 79.6 82.4 83.5 74.6 82.7 85.2 86.3  72.2 77.7 80.7 81.9 73.8 79.9 83.1 84.2 

OA 87.1 90.5 91.8 92.3 84.8 89.0 90.6 91.2  87.1 90.2 91.7 92.2 86.3 89.7 91.3 91.9 

k_L 0.906 0.919 0.927 0.931 0.883 0.903 0.914 0.919  0.907 0.918 0.928 0.932 0.899 0.914 0.924 0.929 

k_Q 0.877 0.929 0.944 0.949 0.862 0.922 0.940 0.945  0.871 0.926 0.942 0.947 0.866 0.923 0.939 0.944 
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Table S4.8. Producer’s and user’s accuracies in percent (%) of 2017 RFC models summarized by sets of 1 

input variables. A particular scenario (current column) was compared to a scenario on the left (left column) 2 

using the nonparametric Mann–Whitney U test and the TOST equivalence tests. The null hypothesis of the 3 

U test is that a random accuracy metric of the first scenario (left column) will be less than a random accuracy 4 

metric of the second scenario (current column). Significance level of the U test are indicated by ***, ** 5 

and * for p-values of less than 0.001, 0.01, 0.05 and NS for “not significant”. Results of the TOST 6 

equivalence test are highlighted in light blue for “not equivalent” and light yellow for “equivalent”. 7 

 ARD  HLS 

Metrics CxQ HPLM  SPL  CMB   CxQ HPLM  SPL  CMB  

PA_Corn 92.2 95.2 *** 94.0 NS 97.1 ***  91.5 94.2 *** 90.9 NS 95.9 *** 

PA_Wheat 81.2 77.7 NS 14.7 NS 79.0 ***  74.9 81.1 *** 8.1 NS 80.0 *** 

PA_Alfalfa 71.5 86.2 *** 75.9 NS 81.9 ***  70.4 88.8 *** 69.9 NS 81.4 *** 

PA_Soybean 94.5 92.7 NS 97.0 *** 98.8 ***  92.5 93.0 ** 94.6 *** 97.8 *** 

PA_Other Crops 34.6 25.4 NS 5.9 NS 22.9 ***  31.7 29.3 NS 4.6 NS 29.4 *** 

PA_Water 93.8 96.1 *** 99.4 *** 99.4 NS  93.1 94.7 *** 99.5 *** 99.3 NS 

PA_Barren/Dev. 43.4 43.5 NS 69.5 *** 69.7 NS  40.1 35.1 NS 59.3 *** 61.4 ** 

PA_Forest 73.7 78.7 *** 94.8 *** 96.1 ***  75.2 80.7 *** 94.4 *** 95.4 *** 

PA_Grassland 92.1 93.2 *** 95.0 *** 96.3 ***  93.0 93.2 * 96.2 *** 97.3 *** 

PA_Wetland 71.0 71.4 NS 72.7 *** 78.9 ***  77.7 72.2 NS 77.5 *** 83.2 *** 

                

UA_Corn 95.1 94.7 NS 93.3 NS 98.2 ***  92.8 94.4 *** 87.2 NS 97.0 *** 

UA_Wheat 89.8 90.7 NS 61.4 NS 92.1 ***  88.7 91.1 *** 57.5 NS 93.6 *** 

UA_Alfalfa 87.3 91.4 NS 89.7 * 94.4 ***  86.7 93.3 NS 86.0 NS 94.1 *** 

UA_Soybean 92.9 94.2 *** 89.4 NS 96.6 ***  92.2 93.7 *** 88.3 NS 96.1 *** 

UA_Other Crops 55.0 51.5 NS 28.4 NS 52.9 ***  52.8 53.7 NS 24.7 NS 56.9 *** 

UA_Water 92.3 93.2 *** 99.9 *** 99.8 NS  91.2 93.3 *** 99.8 *** 99.6 NS 

UA_Barren/Dev. 62.2 63.8 *** 93.3 *** 92.4 NS  59.2 63.0 *** 91.8 *** 88.3 NS 

UA_Forest 72.0 77.1 *** 93.1 *** 93.4 NS  76.7 82.8 *** 91.3 *** 94.0 *** 

UA_Grassland 86.2 86.4 NS 88.1 *** 89.6 ***  87.6 85.2 NS 88.8 *** 89.9 *** 

UA_Wetland 70.7 74.5 *** 81.0 *** 86.3 ***  73.0 74.5 *** 85.5 *** 87.9 *** 

  8 
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Table S4.9. The nonparametric Mann–Whitney U test and the TOST equivalence test for the comparison 9 

between phenometrically-based and combined RFC models. The null hypothesis of the U test is that a 10 

random accuracy metric of the first scenario (left column) will be less than a random accuracy metric of the 11 

second scenario (current column). Significance level of the U test are indicated by ***, ** and * for p-12 

values of less than 0.001, 0.01, 0.05 and NS for “not significant”. Results of the TOST equivalence test are 13 

highlighted in light blue for “not equivalent” and light yellow for “equivalent”. 14 

 CxQ versus SPL  HPLM versus SPL 

 2016 2017  2016 2017 

Metrics ARD HLS ARD HLS  ARD HLS ARD HLS 

PA_Corn *** *** *** NS  *** *** NS NS 

PA_Wheat NS NS NS NS  NS NS NS NS 

PA_Alfalfa *** *** NS NS  NS NS NS NS 

PA_Soybean *** *** *** ***  *** *** *** *** 

PA_Other Crops NS NS NS NS  NS NS NS NS 

PA_Water *** *** *** ***  *** *** *** *** 

PA_Barren/Dev. *** *** *** ***  *** *** *** *** 

PA_Forest *** *** *** ***  *** *** *** *** 

PA_Grassland *** *** *** ***  *** *** *** *** 

PA_Wetland *** *** *** NS  *** *** *** *** 

          

UA_Corn *** *** NS NS  *** *** NS NS 

UA_Wheat NS NS NS NS  NS NS NS NS 

UA_Alfalfa *** ** NS NS  *** *** * NS 

UA_Soybean *** *** NS NS  NS NS NS NS 

UA_Other Crops NS *** NS NS  NS *** NS NS 

UA_Water *** *** *** ***  *** *** *** *** 

UA_Barren/Dev. *** *** *** ***  *** *** *** *** 

UA_Forest *** *** *** ***  *** *** *** *** 

UA_Grassland *** *** *** ***  *** *** *** *** 

UA_Wetland *** *** *** ***  *** *** *** *** 

          

OA *** *** *** ***  *** *** *** NS 

k_L *** *** *** ***  *** *** *** *** 

k_Q *** *** NS NS  *** *** NS NS 

  15 
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Table S4.10. The nonparametric Mann–Whitney U test and the TOST equivalence test for the comparison 16 

between phenometrically-based and combined RFC models. The null hypothesis of the U test is that a 17 

random accuracy metric of the first scenario (left column) will be less than a random accuracy metric of the 18 

second scenario (current column). Significance level of the U test are indicated by ***, ** and * for p-19 

values of less than 0.001, 0.01, 0.05 and NS for “not significant”. Results of the TOST equivalence test are 20 

highlighted in light blue for “not equivalent” and light yellow for “equivalent”. 21 

 CxQ versus HPLM  SPL versus CMB 

 2016 2017  2016 2017 

Metrics ARD HLS ARD HLS  ARD HLS ARD HLS 

PA_Corn *** *** *** ***  *** *** *** *** 

PA_Wheat NS NS NS ***  *** *** *** *** 

PA_Alfalfa *** *** *** ***  *** *** *** *** 

PA_Soybean *** *** NS **  *** *** *** *** 

PA_Other Crops NS NS NS NS  *** ** *** *** 

PA_Water *** *** *** ***  NS NS NS NS 

PA_Barren/Dev. *** *** NS NS  NS NS NS ** 

PA_Forest *** *** *** ***  * NS *** *** 

PA_Grassland *** NS *** *  *** *** *** *** 

PA_Wetland NS NS NS NS  *** *** *** *** 

          

UA_Corn *** *** NS ***  *** *** *** *** 

UA_Wheat * NS NS ***  *** *** *** *** 

UA_Alfalfa NS NS NS NS  *** *** *** *** 

UA_Soybean *** *** *** ***  *** *** *** *** 

UA_Other Crops *** NS NS NS  *** * *** *** 

UA_Water *** *** *** ***  NS NS NS NS 

UA_Barren/Dev. *** *** *** ***  NS NS NS NS 

UA_Forest *** *** *** ***  ** *** NS *** 

UA_Grassland *** NS NS NS  NS *** *** *** 

UA_Wetland NS NS *** ***  *** *** *** *** 

          

OA *** NS *** ***  *** *** *** *** 

k_L *** NS *** ***  *** *** *** *** 

k_Q NS NS NS NS  *** *** *** *** 

  22 
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Table S4.11. The nonparametric Mann–Whitney U test and the TOST equivalence test for the comparison 23 

between phenometrically-based and combined RFC models. The null hypothesis of the U test is that a 24 

random accuracy metric of the first scenario (left column) will be less than a random accuracy metric of the 25 

second scenario (current column). Significance level of the U test are indicated by ***, ** and * for p-26 

values of less than 0.001, 0.01, 0.05 and NS for “not significant”. Results of the TOST equivalence test are 27 

highlighted in light blue for “not equivalent” and light yellow for “equivalent”. 28 

 CxQ versus CMB  HPLM versus CMB 

 2016 2017  2016 2017 

Metrics ARD HLS ARD HLS  ARD HLS ARD HLS 

PA_Corn *** *** *** ***  *** *** *** *** 

PA_Wheat *** *** ** ***  *** *** *** ** 

PA_Alfalfa *** *** *** ***  NS NS NS NS 

PA_Soybean *** *** *** ***  *** *** *** *** 

PA_Other Crops NS NS NS NS  NS NS NS NS 

PA_Water *** *** *** ***  *** *** *** *** 

PA_Barren/Dev. *** *** *** ***  *** *** *** *** 

PA_Forest *** *** *** ***  *** *** *** *** 

PA_Grassland *** *** *** ***  *** *** *** *** 

PA_Wetland *** *** *** ***  *** *** *** *** 

          

UA_Corn *** *** *** ***  *** *** *** *** 

UA_Wheat *** *** *** ***  *** *** *** *** 

UA_Alfalfa *** *** *** ***  *** *** *** *** 

UA_Soybean *** *** *** ***  *** *** *** *** 

UA_Other Crops *** *** NS ***  *** *** * *** 

UA_Water *** *** *** ***  *** *** *** *** 

UA_Barren/Dev. *** *** *** ***  *** *** *** *** 

UA_Forest *** *** *** ***  *** *** *** *** 

UA_Grassland *** *** *** ***  *** *** *** *** 

UA_Wetland *** *** *** ***  *** *** *** *** 

          

OA *** *** *** ***  *** *** *** *** 

k_L *** *** *** ***  *** *** *** *** 

k_Q *** *** *** ***  *** *** *** *** 

 29 
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Table S4.12. Pixel-based comparison between 2016 predicted land cover maps and the CDL 

summarized by sample pools. Areal units are km2. 

   ARD  HLS 

Land Cover Info. CDL C1S C1M C2S C2M  C1S C1M C2S C2M 

Corn Area 662 643 639 643 639   668 666 670 670 
 

UA 
 92.7 92.9 92.6 92.7  86.2 86.0 85.9 85.8 

 
PA 

 90.2 89.6 90.0 89.5  87.0 86.6 87.0 86.8 

Wheat Area 103 100 104 103 105   97 101 102 105 
 

UA 
 82.5 80.2 80.9 79.7  79.5 77.1 76.1 74.1 

 
PA 

 80.6 81.5 81.2 81.6  75.1 75.6 75.7 76.1 

Alfalfa Area 45 30 32 31 33   31 33 31 35 
 

UA 
 76.5 74.0 75.1 72.6  69.5 66.1 68.3 64.4 

 
PA 

 51.0 52.5 52.1 53.7  47.2 48.8 47.6 49.5 

Soybean Area 746 730 721 721 714   712 696 696 688 
 

UA 
 90.9 91.4 91.4 91.8  87.3 88.2 88.2 88.7 

 
PA 

 88.9 88.4 88.3 87.9  83.3 82.2 82.3 81.7 

Other Crops Area 13 0 0 0 0   0 1 1 1 
 

UA 
 0.0 0.0 0.0 0.0  0.0 0.0 89.1 0.0 

 
PA 

 0.0 0.0 0.0 0.0  0.0 0.0 4.0 0.0 

Water Area 154 127 123 121 119   131 126 125 125 
 

UA 
 96.7 97.2 97.4 97.5  93.0 94.1 94.4 94.5 

 
PA 

 79.7 77.7 76.3 75.6  79.2 77.1 76.6 76.5 

Barren/Dev. Area 131 51 50 47 51   47 53 48 58 
 

UA 
 51.0 48.6 49.5 46.6  41.6 36.3 38.7 33.1 

 
PA 

 20.1 18.6 17.8 18.4  15.0 14.8 14.2 14.7 

Forest Area 64 62 64 64 67   63 65 63 65 
 

UA 
 68.3 67.1 66.7 64.8  62.9 61.6 62.2 61.0 

 
PA 

 65.7 66.2 66.1 67.2  61.1 61.8 60.6 61.3 

Grassland Area 761 923 918 924 916   933 939 944 955 
 

UA 
 74.6 74.6 74.5 74.7  72.9 72.5 71.9 71.2 

 
PA 

 90.5 90.1 90.4 90.0  89.5 89.5 89.2 89.5 

Wetland Area 262 274 290 288 295   259 262 262 240 
 

UA 
 48.0 45.5 45.3 43.9  51.9 50.3 50.4 51.2 

 
PA 

 50.0 50.3 49.7 49.5  51.3 50.2 50.3 46.9 

OA 80.8 80.4 80.4 80.1   77.9 77.4 77.4 77.0 

k_loc 0.820 0.819 0.819 0.817   0.782 0.777 0.779 0.780 

k_quan 0.878 0.868 0.867 0.863   0.875 0.871 0.866 0.857 
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Table S4.13. Pixel-based comparison between 2017 predicted land cover maps and the CDL 

summarized by sample pools. Areal units are km2. 

   ARD  HLS 

Land Cover Info. CDL C1S C1M C2S C2M  C1S C1M C2S C2M 

Corn Area 685 607 597 601 595   616 602 606 602 

 UA  95.4 95.8 95.8 95.9  92.0 92.9 92.6 92.7 

 PA  84.6 83.6 84.1 83.3  82.8 81.6 81.9 81.5 

Wheat Area 87 63 65 65 65   63 63 63 63 

 UA  88.0 87.7 87.6 87.7  87.6 87.5 87.5 87.4 

 PA  64.3 65.6 65.4 65.8  63.8 63.9 63.9 63.8 

Alfalfa Area 50 37 36 39 38   36 36 38 38 

 UA  83.8 82.2 81.0 80.2  80.1 79.1 78.4 76.8 

 PA  61.4 60.1 64.0 61.1  57.9 56.6 59.6 57.8 

Soybean Area 803 817 806 811 803   820 811 812 808 

 UA  89.7 90.3 90.1 90.5  87.1 87.6 87.5 87.7 

 PA  91.3 90.7 90.9 90.4  89.0 88.5 88.5 88.2 

Other Crops Area 8 0 0 1 0   0 0 0 0 

 UA  0.0 0.0 99.0 0.0  0.0 0.0 0.0 0.0 

 PA  0.0 0.0 8.3 0.0  0.0 0.0 0.0 0.0 

Water Area 153 121 120 116 115   125 122 119 119 

 UA  97.0 97.2 97.8 97.8  93.7 94.2 95.1 95.1 

 PA  76.7 75.9 73.8 73.7  76.2 75.2 73.8 73.6 

Barren/Dev. Area 111 46 50 48 53   44 49 46 51 

 UA  52.4 50.0 51.3 48.7  46.2 43.4 43.3 40.7 

 PA  21.6 22.5 22.5 23.5  18.3 19.1 18.1 18.8 

Forest Area 63 66 69 72 73   60 63 62 61 

 UA  63.6 62.4 60.7 59.5  63.2 61.6 61.8 62.0 

 PA  67.0 68.2 69.2 69.4  60.3 61.6 60.6 60.0 

Grassland Area 744 920 914 911 905   938 937 946 949 

 UA  73.6 73.7 73.7 73.8  72.0 71.8 71.3 70.9 

 PA  91.1 90.6 90.3 89.8  90.7 90.4 90.6 90.5 

Wetland Area 237 263 283 277 293   239 258 248 250 

 UA  48.7 45.6 46.1 43.8  50.5 47.0 47.5 46.3 

 PA  54.0 54.5 54.0 54.3  50.9 51.3 49.9 48.9 

OA 81.2 80.8 80.8 80.4   79.5 79.0 78.9 78.6 

k_loc 0.841 0.838 0.838 0.833   0.814 0.811 0.810 0.806 

k_quan 0.852 0.846 0.848 0.843   0.858 0.851 0.851 0.851 
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Table S4.14. Pixel-based comparison between 2016 predicted land cover maps and the CDL 

summarized by sample sizes. Areal units are km2. 

   ARD  HLS 

Land Cover Info. CDL P01 P05 P15 P25  P01 P05 P15 P25 

Corn Area 662 651 638 640 642   690 661 661 662 
 UA  91.0 92.8 93.0 93.1  82.9 86.3 87.0 87.1 
 PA  89.5 89.5 90.0 90.3  86.5 86.3 86.9 87.2 

Wheat Area 103 75 103 111 112   66 100 111 113 
 UA  87.6 79.0 77.4 77.4  86.3 75.0 72.8 73.1 
 PA  64.4 79.6 83.7 84.6  55.7 73.0 79.1 80.6 

Alfalfa Area 45 24 31 34 34   23 32 35 35 
 UA  82.2 74.1 72.9 72.9  75.8 66.3 64.6 64.9 
 PA  43.3 51.9 54.4 55.8  39.5 47.8 50.0 50.9 

Soybean Area 746 724 722 721 722   683 702 704 706 
 UA  90.0 91.2 91.6 91.8  86.7 87.6 88.2 88.5 
 PA  87.3 88.2 88.6 88.8  79.4 82.4 83.3 83.7 

Other Crops Area 13 0 0 0 0   0 0 1 1 
 UA  0.0 0.0 0.0 0.0  0.0 0.0 87.9 83.4 
 PA  0.0 0.0 0.0 0.0  0.0 0.0 4.2 6.4 

Water Area 154 119 121 123 125   125 126 127 128 
 UA  97.3 97.4 97.3 97.1  93.9 94.3 94.2 94.1 
 PA  75.6 76.6 77.6 78.6  76.2 76.9 77.7 78.0 

Barren/Dev. Area 131 46 49 53 55   44 50 52 54 
 UA  44.8 49.8 50.7 51.1  32.8 37.2 40.2 40.7 
 PA  15.7 18.7 20.7 21.6  11.0 14.2 16.0 16.7 

Forest Area 64 64 65 64 64   62 65 64 64 
 UA  65.8 66.0 66.9 67.3  61.8 61.0 62.0 62.3 
 PA  65.1 66.6 66.8 66.8  59.0 61.8 61.9 61.9 

Grassland Area 761 966 917 903 897   988 949 930 925 
 UA  71.9 74.6 75.5 76.0  69.6 71.7 72.9 73.3 
 PA  91.3 90.0 89.7 89.7  90.4 89.5 89.2 89.2 

Wetland Area 262 272 294 291 289   260 256 255 253 

 UA  43.5 44.7 46.4 47.3  47.8 50.5 51.9 52.7 

 PA  45.0 50.0 51.5 52.1  47.4 49.2 50.4 50.8 

OA 78.9 80.1 80.7 81.0   75.5 77.2 78.0 78.3 

k_loc 0.808 0.817 0.821 0.823   0.776 0.776 0.783 0.786 

k_quan 0.853 0.866 0.872 0.876   0.828 0.868 0.874 0.876 
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Table S4.15. Pixel-based comparison between 2017 predicted land cover maps and the CDL 

summarized by sample sizes. Areal units are km2. 

   ARD  HLS 

Land Cover Info. CDL P01 P05 P15 P25  P01 P05 P15 P25 

Corn Area 685 598 596 604 608   603 604 609 612 
 UA  94.4 95.6 95.8 95.8  91.2 92.5 92.7 92.8 
 PA  82.4 83.3 84.5 85.0  80.3 81.5 82.5 82.9 

Wheat Area 87 41 62 69 70   44 62 67 69 
 UA  92.3 87.3 86.8 86.6  91.4 87.3 86.2 85.9 
 PA  43.6 62.7 68.7 70.4  46.0 62.2 66.9 68.3 

Alfalfa Area 50 24 37 41 41   25 37 39 40 
 UA  90.1 80.1 80.1 80.5  86.6 76.5 77.0 77.1 
 PA  42.6 59.7 65.3 66.6  43.4 56.8 59.8 61.3 

Soybean Area 803 825 810 806 806   823 810 812 813 
 UA  88.0 89.9 90.7 90.8  85.6 87.5 87.8 88.0 
 PA  90.4 90.6 90.9 91.1  87.7 88.2 88.8 89.0 

Other Crops Area 8 0 0 0 1   0 0 0 0 
 UA  0.0 0.0 0.0 99.4  0.0 0.0 0.0 0.0 
 PA  0.0 0.0 0.0 7.2  0.0 0.0 0.0 0.0 

Water Area 153 115 117 119 120   119 120 121 122 
 UA  97.7 97.6 97.4 97.2  94.8 94.7 94.5 94.3 
 PA  73.5 74.4 75.4 76.0  73.4 74.2 74.9 75.4 

Barren/Dev. Area 111 43 51 53 54   35 49 53 54 
 UA  49.4 49.9 51.5 51.7  44.0 42.6 43.6 44.2 
 PA  19.2 22.8 24.8 25.5  14.1 18.8 20.8 21.5 

Forest Area 63 67 72 71 71   58 64 63 62 
 UA  61.7 60.5 61.4 62.0  62.8 60.9 62.0 62.8 
 PA  65.6 69.0 69.6 69.7  58.1 61.5 61.7 61.4 

Grassland Area 744 964 909 896 894   989 937 928 923 
 UA  70.8 73.8 74.7 74.9  69.1 71.6 72.3 72.6 
 PA  91.7 90.1 89.9 90.0  91.9 90.2 90.1 90.1 

Wetland Area 237 264 287 282 276   245 259 249 247 
 UA  43.2 44.5 46.7 48.1  44.1 46.2 49.1 50.2 
 PA  48.3 54.0 55.7 56.0  45.6 50.5 51.6 52.2 

OA 79.0 80.4 81.3 81.6   77.3 78.7 79.4 79.7 

k_loc 0.830 0.834 0.838 0.839   0.805 0.806 0.810 0.812 

k_quan 0.821 0.842 0.857 0.863   0.823 0.851 0.862 0.866 

  



186 
 

 
 

Table S4.16. Pixel-based comparison between 2017 predicted land cover maps and the CDL 

summarized by sets of input variables. Areal units are km2. 

   ARD  HLS 

Land Cover Info. CDL CxQ HPLM SPL CMB  CxQ HPLM SPL CMB 

Corn Area 685 597 625 602 604   613 627 641 608 
 UA  91.6 90.7 90.9 95.1  88.3 88.4 82.7 92.1 
 PA  79.9 82.8 80.0 83.9  79.1 81.0 77.4 81.8 

Wheat Area 87 64 66 14 70   59 70 2 67 
 UA  81.7 84.5 55.2 83.4  80.9 81.6 76.7 84.7 
 PA  60.0 64.5 8.7 67.1  55.4 66.2 1.8 65.8 

Alfalfa Area 50 38 42 39 36   34 43 35 36 
 UA  81.2 73.6 69.0 82.1  80.2 70.6 67.9 78.8 
 PA  62.3 61.3 53.7 59.0  54.9 61.0 47.7 56.9 

Soybean Area 803 765 755 912 816   769 762 910 812 
 UA  88.2 89.5 80.2 89.6  85.7 87.1 77.7 87.4 
 PA  84.1 84.0 91.1 91.0  82.1 82.6 88.1 88.4 

Other Crops Area 8 0 0 0 0   0 0 0 0 
 UA  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 
 PA  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 

Water Area 153 118 121 119 116   119 115 124 120 
 UA  91.6 91.7 97.5 97.8  89.1 92.3 94.1 94.9 
 PA  70.5 72.1 75.5 74.2  69.5 69.0 76.3 74.5 

Barren/Dev. Area 111 71 64 53 57   65 46 46 61 
 UA  25.1 31.1 55.5 52.9  24.8 28.4 50.6 43.6 
 PA  16.1 17.9 26.6 27.1  14.7 11.9 21.1 24.1 

Forest Area 63 56 73 76 74   37 65 73 67 
 UA  46.2 48.1 60.5 61.0  55.7 49.7 55.0 60.1 
 PA  40.9 55.7 73.0 72.1  32.4 51.1 63.9 64.1 

Grassland Area 744 833 886 906 915   866 927 931 938 
 UA  76.1 73.8 72.5 73.3  73.9 70.4 70.4 71.5 
 PA  85.2 87.9 88.2 90.1  86.0 87.6 88.1 90.1 

Wetland Area 237 399 310 220 253   377 286 178 231 

 UA  33.7 38.5 51.0 49.9  35.4 38.8 56.1 49.8 

 PA  56.7 50.4 47.4 53.3  56.4 46.9 42.1 48.6 

OA 75.7 77.1 77.3 80.9   74.6 75.5 74.8 78.9 

k_loc 0.778 0.787 0.810 0.834   0.766 0.767 0.780 0.805 

k_quan 0.831 0.845 0.818 0.857   0.826 0.842 0.811 0.861 
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Figure S4.4. Number of valid observations (cloud/snow/shadow-free, EVI2>0) over the study area 

for each combination of year and data source. 
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CHAPTER 5 

 

RESEARCH SUMMARY AND RECOMMENDATIONS 
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5.1 Summary and Key Findings 

Understanding rapid land change in the U.S. Northern Great Plains region is not 

only critical for management and conservation of prairie habitats and ecosystem services, 

but also for projecting production of crops and biofuels and the impacts of land conversion 

on water quality and rural transportation infrastructure. Hence, it raises the need for an 

LCLU dataset with good spatiotemporal coverage as well as consistent accuracy through 

time to enable change analysis. This dissertation aimed (1) to develop a novel classification 

method from the perspective of land surface phenology, which utilizes time series images 

from comparable sensors, and (2) to apply the land cover/land use dataset generated from 

the phenometrically-based classification approach to quantify crop expansion in South 

Dakota. My dissertation research advances the researcher’s toolkit for land cover mapping 

and change analysis as well as shines fresh light on what has been a controversial issue 

since 2013: the conversion of mixed-grass prairie to commodity crops, particularly to corn 

and soybean, due to the increasing demand for biofuels and animal feed. The primary 

results of this research are summarized below  

Chapter 2: The main focus of Chapter 2 was to evaluate “how well does land cover 

mapping perform if phenological metrics alone are used as input to the classification 

algorithm” (research question #1). In addition, responses of RFC models to different 

sample sizes and sampling designs were also examined to identify which sampling scenario 

yielded the most accurate classification. 

The classification based only on phenometrics derived from the Convex Quadratic 

model could accurately differentiate major commodity crops with PA/UA of above 0.7 and 

0.9 for 2012 and 2014 RFC models, respectively. However, accuracy of non-vegetated 
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classes, especially for developed, are limited. Among sampling designs, the “same 

distribution” RFC models (proportional distribution of the sample is like proportional 

distribution of the population) tend to yield best land cover prediction. Without control on 

sample dataset, larger sample sizes did not necessary lead to better RFC models. The “same 

distribution” sample dataset covering 0.25% of the study area seems to be adequate to 

achieve accurate classification. 

Chapter 3: The objective of Chapter 3 was to quantity the rate of cropland 

expansion and its spatial pattern in South Dakota over the past decade (research question 

#2). I proposed a trajectory-based approach that considers the entire land cover/land use 

time series to determine if there was actual land change at a particular location, to overcome 

the limitations of the bi-temporal change detection. 

Between 2007 and 2015, the trajectory-based change detection approach estimated 

a cropland expansion of 5,447 km2 in South Dakota (equivalent to 14% of the existing 

cropland area), which matches much more closely the reports from the National 

Agriculture Statistics Service (5,921 km2) and the National Resources Inventory (5,034 

km2) than an estimation from the bi-temporal approach (8,018 km2). Cropland gains were 

mostly concentrated in 10 counties in northern and central South Dakota. Urbanizing 

Lincoln County, part of the Sioux Falls metropolitan area, is the only county in South 

Dakota with a net loss in cropland area over the study period. An evaluation of land 

suitability for crops using the Soil Survey Geographic Database indicated a scarcity in 

high-quality arable land available for cropland expansion in South Dakota. 

Chapter 4: The goal of Chapter 4 was further exploration of the phenometrically-

based classification approach presented in Chapter 2 by addressing two questions: (1) how 
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the selection of different LSP models used to fit annual time series impacts classification 

accuracy (research question #3) and (2) how LSP-based classification can be improved by 

incorporating information from spectral variables (research question #4). Similar to 

Chapter 2, land cover classifications in Chapter 4 were also evaluated with alternative 

sampling scenarios to examine which sampling scenario yielded the most accurate 

classification. The assessment was conducted for two years 2016 and 2017 using two 

different sources for the imagery: Landsat ARD and HLS data. 

There was no obvious choice between the 2016 RFC models using CxQ versus 

HPLM: the HPLM RFC models performed better with the ARD and the CxQ RFC models 

were better with the HLS data. For 2017 data, HPLM RFC models slightly edge CxQ with 

about 1% higher overall accuracy, mostly due to more precise allocation of land cover. 

Indeed, the TOST test of equivalence indicated that overall accuracies of the 2017 HPLM 

and CxQ RFC models exhibited equivalent performance. The spectrally-based RFC 

models were more accurate than the phenometrically-based RFC models, especially for 

non-crop cover types. However, the spectrally-based RFC models could not classify the 

wheat class accurately. The combined spectral-phenological variables RFC models 

consistently overcame weaknesses of both phenometrically-based classification (low 

accuracy for non-vegetated covers) and spectrally-based classification (low accuracy for 

wheat). 

A sample pool with a minimum correction of land cover information yielded the 

most accurate predicted map despite its lowest RFC models’ accuracy. A random stratified 

sample dataset should cover at least 0.25% of the study area to achieve accurate land cover 
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map. In case of data scarcity, smaller datasets would yield acceptable for classification but 

ought not be smaller than 0.05% of the study area. 

5.2 Multi-temporal land cover classification and change detection: a synthesis 

A rapid increase of available Earth observations and advances in computer science 

led to an emergence of land cover classification (see Gomez et al, 2016; Chapters 2 & 4) 

based on time series data, starting in 2010s. Compared to the conventional land cover 

classification approaches, the phenology-based method exploits the rich temporal 

information from time series to map land cover more accurately (Mitchell et al., 2013; 

Franklin et al., 2015). The phenology-based method is also fully compatible for an 

operational process, which is a critical advantage for generating land cover maps at very 

large scale. Beside those advantages, phenology-based classification (or classification 

using time series data, in general) are still facing several challenges that need to be 

addressed by future studies. 

A substantial number of good quality observations required for the fitting of land 

surface phenology model poses the greatest challenges in application of the 

phenometrically-based classification (Zhong et al., 2011; Jia et al., 2014; Kong et al., 

2016; Chapter 2). Thus, most extant studies focused on using MODIS NDVI or EVI time 

series, which are available with higher temporal coverage but at a coarser spatial resolution 

(Zhong et al., 2011; Xue et al., 2014; Yan et al., 2015; Qader et al., 2016). My research 

has shown that land cover can be mapped accurately at finer spatial resolution using data 

from Landsat and Sentinel satellites. However, data gaps might be created during the fitting 

process arising from model failure due to low number of good observations in some years 

and over some areas. Because the gaps were produced in different places across the years, 
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a direct comparison between yearly RFC outputs was not appropriate, in most cases, 

without spatiotemporal interpolation. Even within the Landsat sidelap zone, it was not 

always able to retrieve a sufficient number of good observations to fit the land surface 

phenology model.  

The temporal density of observations, however, could be increased by bringing 

together complementary sensors. For example, results from my research demonstrated that 

Sentinel-2 data can be used with Landsat ARD in the phenometrically-based classification. 

Another feasible solution is to leverage very high spatiotemporal but low spectral 

resolution data from a small satellite constellation to infill gaps (Houborg & McCabe, 

2018). The temporal resolution of Landsat-like data can also be improved for 

phenometrically-based classification by fusing with data that has lower spatial but 

substantial higher temporal resolution, such as MODIS (Jia et al., 2014; Kong et al., 2016). 

Nevertheless, it is important to note that the use of multi-sensor time series would require 

a huge preprocessing effort. In addition, in areas with persistent cloud cover, such as in the 

moist tropics, it may be impractical to collect a sufficient number of good observations 

spanning the growing season, regardless how many optical sensors are observing. In those 

areas, land cover classification would benefit from leveraging Synthetic Aperture Radar 

(SAR) data (Waske & Braun, 2009; Qi et al, 2012 ) 

Extant phenology-based land cover classification studies, including my dissertation 

research, only focus on the annual pattern of vegetation index time series. It is possibly due 

to the long use of NDVI (or other vegetation indices) in land cover classification study 

(Tucker et al., 1985; DeFries & Townshend, 1994) and availability of well-developed land 

surface phenology models (see Henebry & de Beurs, 2013). Phenometrics derived from 
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time series can complement the spectral information to improve classification accuracy 

(Chapter 4; Jia et al., 2014; Kong et al., 2016). However, the use of spectral data in my 

dissertation research,  Jia et al. (2014) and Kong et al. (2016) was limited to the generation 

of spectral variables, partly due to a lack of a well-studied tool to simulate annual pattern 

of spectral data (excepts for vegetation indices). Temporal trajectory of spectral bands and 

their related variables proved to be useful in land cover classification (Zhu & Woodcock 

2014) and should be utilized more in the future classification study. However, a robust land 

surface seasonality model is needed to simulate annual pattern of different spectral variable 

time series (bands and ratios) and to extract seasonality information from the fitted curves. 

Number of variables in phenometrically-based classification can increase 

significantly when combining features from different land surface phenology models or 

incorporating additional information from other spectral bands and ratios. Although RFC 

models are not sensitive to correlated or noise variables (Biau, 2012), a larger number of 

input variables would increase the computational complexity. In addition, some input 

variables may be linked to the same biogeophysical property of the land surface. Including 

all of those variables in land cover/land use classification may weaken a contribution of 

the underlying biogeophysical process to the classification. Thus, future land cover 

classification studies with high dimensional data, such as those using phenology-based 

approach, would consider applying dimension reduction techniques (Fodor, 2002) or 

variable selection methods (Degenhardt et al., 2013) to achieve efficient computation and 

clear understanding of variable importance. 

Land cover/land use classifications in my dissertation study were limited to a few 

simple cover classes. Cropland mapping in this study was constrained to a few commodity 
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crops (partly due to the homogeneous crop planting in the study area) with a single growing 

seasonal per year, including corn, soybean, wheat, sunflower, alfalfa. In addition, forest 

and grassland were not broken into smaller classes (partly due to the focus on cropland of 

the study). To demonstrate fully the capability and advantage of the phenology-based 

classification, future studies should be conducted in areas with more complex land 

cover/land use, e.g., multiple cropping in California’s Central Valley or different types of 

forest in the eastern US region. 

 Compared to the traditional bi-temporal approach, the land cover change detection 

exploring time series data with the trajectory-based approach (Chapter 3) yielded a closer 

estimation of cropland expansion in South Dakota to the USDA’s reports. However, my 

study only quantified changes in cropland area, partly due to limited accuracy of non-

cropland classes in the input land cover datasets. Thus, exact quantification of grassland or 

wetland losses due to cropland expansion, another information of interest for conservation 

purposes, was not available. In addition, the land cover dataset  for South Dakota generated 

from my study does not offer crop-specific categories like the CDL (only mapped three 

broad categories: cropland, grassland and others), preventing identification of the crops 

were planted on the newly cultivated lands. Applying the trajectory-based change detection 

approach on a land cover dataset with more detailed classes, such as CDL, could yield 

valuable information about changes in the study area. 

5.4  Future Research 

Examine capability of land cover/land use classification using time series 

My next research would further explore capability of LSP-based classification by 

performing classification in areas with complex land cover such as: multiple cropping in 
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California’s Central Valley or different types of forest in the eastern US region. I would 

use surface reflectance from Landsat 7, 8 and Sentinel-2 together to obtain more good 

quality observations. As comparable classification accuracies were achieved from ARD 

and HLS data, the combination of Landsat 7, 8 and Sentinel-2 for land cover/land use 

classification is feasible. Evaluating classification performance (based on similar sets of 

input variables) for those areas would further confirm robustness of the proposed approach. 

High spatiotemporal dataset from Planet for land cover classification 

In another future study, I would want to explore a private dataset from PlanetScope 

(Planet, 2018)—a constellation of approximate 130 small satellites—available at 3 meter 

spatial resolution and up to daily coverage since 2017. Although the PlanetScope dataset 

has several limitations, such as a maximum of 10,000 km2 of free data each month per user, 

only offers four spectral bands—RGB and NIR and observed at different times (some 

satellites have a sun-synchronous orbit and others have an international space station orbit), 

a very high spatiotemporal resolution of the archive make it a great data source for land 

cover/land use classification, especially when a high spatial resolution land cover map is 

needed at local scale. Using a very dense time series of PlanetScope could also allow to 

examine how well existing land surface phenology models work on other spectral bands 

and ratios. It would be a good start for developing a new generation of land surface 

seasonality models. 
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