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Abstract 
 

Rice is an important staple crop and significantly contributes to the dietary needs of the global 

population. From the African context, Nigeria and most sub-Saharan countries rely on rice 

importation to meet the rising consumption demands, mainly due to low yield returns. As 

such, monitoring rice yield and yield indicators (e.g. Leaf Area Index, biomass) in order to 

understand patterns and trends of rice growth is fundamental to improve yield outcomes. In 

this PhD rice yield and yield indicators were monitored using a combination of proximal, 

airborne and satellite sensors, across a range of spatial scales with the overall aim of furthering 

our understanding of the dynamics of irrigated rice yields. The first main objective of the 

thesis investigated the relative merits of structural and multispectral information for 

estimating centimetre scale rice above ground biomass from very high spatial resolution drone 

imagery. The focus was the reproductive and ripening stages of rice growth due to the strong 

relationship between biomass and yield at these stages. Results indicated that crop structural 

information, derived from a consumer-grade RGB camera, was of greater importance for rice 

biomass estimation than multispectral information. The second object of the thesis explored 

the potential of a hybrid gaussian process regression (GPR) - radiative transfer model (RTM) 

to estimate the phenological dynamics of rice Leaf Area Index (LAI). Sentinel-2 spectral 

bands were simulated from field spectroscopy data and combined with extensive in situ field 

measurement to develop and test   a hybrid LAI prediction model. Results were also compared 

with the satellite-derived Sentinel-2 LAI standard. The findings demonstrated the potential of 

the proposed hybrid model for predicting within-season dynamics of rice LAI. The third 

objective of the thesis determined the relative importance of the spatial and spectral resolution 

of Sentinel-2 for estimating rice yield across a range of spatial extents. This section 

investigated the suitability of Sentinel-2 for predicting within and between field yield 

variability across varying spatial extents. The results demonstrated that the spatial resolution 

of Sentinel-2 data was more important than the spectral resolution for predicting within field 

yields. Results also demonstrated the potential of Sentinel-2 data for estimating rice yields 

across smallholder rice farms.  
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GPR  -  Gaussian Process Regression 

Ha  -  Hectares 

HN  -  High Nitrogen 

KRR  -  Kernel Ridge Regression 

LAI  -  Leaf Area Index 

LN  -  Low Nitrogen 

LUT  -  Look-up Table 

MAE  -  Mean Absolute Error 

MLRA  -  Machine Learning Regression Algorithm 

MSI  -  Multispectral Imager 

NDRE  -  Normalised Difference Red Edge 

NDVI  -  Normalised Difference Vegetation Index 

NERICA -  New Rice for Africa 

NIR  -  Near Infrared 

NN  -  Normal Nitrogen 
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OSAVI -  Optimised Soil Vegetation Index 

P  -  Plot 

PH  -  Plant Height 

PROSAIL -  PROSPECT and SAIL 

PROSAIL-GPR-  PROSPECT and SAIL – Gaussian Process Regression 

RF  -  Random Forest 

RMSE  -  Root Mean Square Error 

RGB  -  Red Green Blue 

RS  -  Remote Sensing 

SLM  -  Simple Linear Model 

SE  -  Standard Error 

SNAP  -   Sentinel-2 Application Platform 

SP  -  Sub-Plot 

t/ha  -  Tonnes per Hectare 

TM  -  Texture Metrics 

TOC  -  Top Of Canopy 

VI  -  Vegetation Indices 

UAV  -  Unmanned Aerial Vehicle 
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Chapter 1 Introduction 
 

Summary 

This chapter outlines the overarching research context and rationale to the research. The 

chapter begins by discussing the global importance of rice as a global staple food source, 

before focusing on rice consumption and farming in sub-Saharan Africa, and specifically in a 

Nigerian context.  The chapter also identifies the limitations of current monitoring and 

management practices within Nigeria, which has led to low rice crop yields, despite Nigeria’s 

government decision to prioritise the rice and agricultural sector. The potential of remote 

sensing for improving the monitoring of irrigated dry season rice farming in this region of 

Africa is also discussed. Finally, the chapter presents the overarching aim and objectives of 

the PhD research, as well as the briefly explaining the methodological rationale and thesis 

structure. 

1.1 Research Context 

Rice is characterised as a semi-aquatic plant with two important species for human 

consumption: Asian rice (Oryza sativa), which was first cultivated in Southeast Asia 

(somewhere around India, Myanmar, Thailand, North Vietnam, or China) and African rice 

(Oryza glaberrima) found/first cultivated in west-Africa (somewhere around Nigeria and 

Ghana). With almost 500 million metric tons of rice produced at a global scale and cultivated 

on 167.13 million hectares of land (Statistica, 2020a), rice is considered a major staple food 

of more than half of the world’s population (Khir and Pan, 2019). Its growth and cultivation 

cuts across all continents except for Antarctica (Brady, 1981).  According to Global Rice 

Science Partnership (GRiSP,2013), rice contributes more than 20% of people’s global daily 

calories, 19% of global human per capita energy and 13% of per capita protein, thereby 

making rice significant towards attain the 2nd objective of the Sustainable Development goals 

(zero hunger). 

In the context of sub-Saharan Africa, rice consumption has increased by almost 300% between 

1961 and 2013 (11 kg and 28 kg, respectively; OECD-FAO, 2019). Increasing trends in rice 

consumption are primarily caused by high rates of population growth and consumer 

preferences. Such increase in rice demand have led to the need to import rice in large 

quantities (30million tonnes) at great economic cost to the sub-Saharan region. For example, 

over £3.5 billion was spent on importing rice in 2008 (GRiSP, 2013). The demand for rice is 

highest in west African countries where studies show an annual per capita rise in rice 
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consumption from 10kg in 1961 to 54kg in 2017 (Soullier et al., 2020), with rice consumption 

rates in Guinea, Guinea-Bissau, Liberia and Sierra Leone consuming more than 90 kg per 

capita per year. In particular, rice consumption has risen rapidly in both Nigeria and Ghana 

(by 2.3% and 1.8%  2017 respectively), considered two of the most populated countries in the 

sub-Saharan region (Soullier et al., 2020). Increases  in rice consumption across both countries 

is  primarily driven by population growth and increased levels of urbanisation (Mendez del 

Villar and Lançon, 2015).  

Consumption figures confirm the importance of rice as a panacea to tackling food insecurity 

globally and particularly in developing regions like sub-Saharan Africa(Ittersum et al., 2016). 

However, shortfalls exist between current levels of rice production and the amount needed to 

feed the population of sub-Saharan Africa and Nigeria in years to come. (OECD-FAO, 2019) 

projections state that sub-Saharan population is expected to double by 2050, with a growth 

rate of 2.3% per annum, while Nigeria population is expected to rise to 400 million people -– 

about 200 million more mouths to feed than in 2020. At the same time, urgency is needed to 

cut greenhouse gas emissions from rice production to optimize the production of rice without 

the conversion of forests to agriculture. Similarly, due to the water demands, rice is a major 

user of irrigation water, accounting for approximately 40 per cent of   irrigated water demand 

(Sustainable Rice Platform (SRP), 2019). The future challenge for the sub-Saharan  rice 

industry is to foster substantial growth, needed to satisfy the growing demand, in a way that 

aligns with the consumer-driven environmental constraints (Okpiaifo et al., 2020). For 

countries like Nigeria with vast arable land, the call for sustainable ways of growing rice and 

boosting production will foster the charge to combat hunger and poverty and to meet the 

objectives of the African Development Fund, whose 1st and 2nd Objectives are to end poverty 

in Africa. 

After years of neglect in the rice and agricultural sector as a result of the oil boom in the 

1970s, usually referred to as the dutch-disease (Okotie, 2018), within the last two decades, 

the Nigerian government has taken the initiative to improve the production and yield potential 

of rice grown within Nigeria. In the words of the former Nigerian Minister of Agriculture, 

Akinwumi Adesina (Forum, 2013), 

“Nigeria was largely self-sufficient in food in the 1960s. Then, we discovered oil 

and became too dependent on this resource as the economic driver of growth, 

export income and development. We abandoned our farmers. Yields stagnated. 

Investments in infrastructure were redirected. Rural communities slid into 
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poverty. We became a food-importing country, spending an average $11 billion a 

year on wheat, rice, sugar and fish imports alone. 

And yet we have an abundance of resources - 34 million hectares of arable land, 

two of Africa’s largest rivers, and a large and young workforce to support 

agricultural intensification. Plus, we have 167 million consumers to support 

increased food production and processing”. 

To this end, current approaches adopted by the Nigeria government to boost rice production 

have included encouraging the growth of genetically enhanced strains of rice (known as  New 

Rice for Africa (NERICA) varieties), which have been developed as part of the Asian and 

African rice initiative, to improve yield potential (Gridley et al., 2002; Jones et al., 1997). In 

addition,  the Agricultural Transformation Agenda (ATA) in 2011 was  initiated to help boost 

rice production through measures such as infrastructure development,  the training of farmers 

in modern sowing practice, the provision of fertiliser at subsidised rates and the provision of 

loans for farming (Ugalahi et al., 2016). With the increasing demand for rice farming all year 

round, there has also been emphasis on the production of irrigated rice during the dry season 

months. The potential for irrigation farming in Nigeria is fostered by the presence of two of 

the largest rivers in west Africa, which pass through the country, local groundwater in shallow 

alluvial (FADAMA) aquifers adjacent to major rivers (Ugalahi et al., 2016), extensive ground 

waters in eight hydrological areas, permeable (sedimentary aquifers) groundwater is 

distributed in about ten provinces in Nigeria and over 200 dams and 83 water projects 

(ongoing and proposed).   

Despite the strategies  and policies put in place by the government since early 2000s, to 

improve rice yield especially during the dry season months, poor farming practices persist in 

many farms (Ismaila et al., 2012). These farming practices often involve an unsuitable or sub-

optimal rice varieties based on the soil and water requirements, wrong timing of sowing and 

harvesting, leading to poor/inaccurate monitoring of yield indicators during the growing 

season and forecasting of yield amongst others have contributed to  the grossly low rice yield 

in Nigeria (Akintayo et al., 2011; Reuters, 2020; Ugalahi et al., 2016). In addition, the current 

approaches that have been adopted for monitoring and estimating yield are time-consuming 

and prone to significant discrepancies as a result of insufficient ground observations, leading 

to poor production assessment(Mosleh et al., 2015a). 

In a bid to find sustainable approaches to bridge the yield gaps, in 1999, Nigeria adopted 

similar strategies to USA, China and Europe on the importance to competitiveness, 

technological innovation and sustainable growth of rice and other crops (Njoku, 2018). One 
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such advancement is the adoption of remote sensing-based solutions to address agricultural 

challenges that face the country. This is demonstrated in the establishment of commissioned 

agencies charged with remote sensing research and development, including the National 

Space Research and Development Agency (NASRDA), National Centre for Remote Sensing 

(NCRS) and the African Regional Centre for Space Science and Technology Education in 

English (ARCSSTEE). Remote sensing techniques are well suited to monitoring rice yield 

and yield indicators in the sense that it is capable of providing repeated and complete coverage 

for different growing seasons and across multiple scales, spanning from small fields to 

landscapes and regions(Dong and Xiao, 2016; Alex Okiemute Onojeghuo et al., 2018a). 

Remotely sensed data can provide important information on the growth stage of rice and plant  

biophysical and biochemical properties as different phenological stages and play important 

roles in the growth and development rice.(Cheng et al., 2017; Jiang et al., 2019; Yu et al., 

2013). Over the last 40 years, there has been increasing capability of satellites and more 

recently drones to capture electromagnetic radiation at different parts of the spectrum, from 

optical, near-infrared and shortwave infrared which are essential for the estimation of yield 

indicators and forecasting yield. Sensors mounted on satellites are equipped with wide 

synoptic view and possess the capability of capturing extensive areas at a single pass, 

potentially saving human and financial cost associated with manual data collection 

techniques(Mosleh et al., 2015b). Satellite images from remote sensing platforms provide the 

opportunity to provide detailed and unbiased spatial information of an area, most of which 

human efforts cannot effectively offer or reconcile.  In addition, sensors mounted on drones 

provide fine spatial resolution and real-time monitoring ability of airborne remote sensing, 

suitable for monitoring yield and yield indicators for applications that characterize changes in 

crop attributes over time.(Chauhan et al., 2019). Satellite and drone remote sensing platforms 

offer repetitive and revisit capabilities; this can be daily, weekly, monthly or yearly, providing 

an avenue for studying phenological growth patterns of rice without the influence of cloud. 

With the recent advancement in satellite and drone sensors, emphasis on improving the 

monitoring of the accuracy of yield indicators during critical growing stages of rice as well as 

accurately estimating yield will not only be beneficial for researchers, but will provide 

important information for farmers, agronomist and agricultural institutions in Nigeria. 

Therefore, this thesis is focused on understanding the dynamics of irrigated dry season rice 

with a view to monitoring yield and yield indicators across spatial scales. In particular, the 

research focuses on the influence of satellites  spatial scales for monitoring yield from 
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smallholder farm scale, as they hold the key to rice self-sufficiency in Nigeria and sub-

Saharan Africa (Lowder et al., 2016) and further upscaling to landscape scales.  

  

1.2 Thesis Aims and Contributions 

The overarching aim of the study is to assess the potential of remote sensing technologies for 

monitoring rice yield and the phenological patterns of yield indicators of dry season irrigated 

rice. This was tackled through exploring the potential of drone and satellite remote sensing 

platforms and techniques for estimating rice biomass, LAI and yield across a range of spatial, 

spectral and temporal resolutions. To achieve this, the research adopted the alternative thesis 

format in answering the following research (Figure 1-1) objectives: 

Objective 1: To analyse the current state of remote sensing for monitoring irrigated rice yield 

and yield indicators (Above Ground Biomass and Leaf Area Index), and to determine the gaps 

in knowledge. The literature review focused on the monitoring Above Ground Biomass 

(AGB), the dynamics of monitoring Leaf Area Index and yield from remote sensing platforms 

and techniques, highlighting the strengths and weaknesses of each platform and 

methodologies. In terms of monitoring Above Ground Biomass at field scale, the literature 

suggests the use adoption of drone-based platforms for monitoring yield. However, with the 

recent availability of camera sensors on board drones, the significance of these cameras for 

estimating Above Ground Biomass have yet to be established. In terms of yield estimation 

across different spatial scales, remote sensing platforms were also investigated for estimation 

of high-resolution yield, with emphasis on the strengths and weakness of each platform. The 

review showed the potential of Sentinel-2 for high resolution yield estimation due to the high 

spatial, spectral and temporal resolution. However, the suitability of the full potential of 

Sentinel 2 varying spatial and spectral resolutions for estimating between and within field 

variability of yield have yet to be assessed. Finally, I explored the remote sensing platforms, 

particularly focusing on the retrieval methods currently being adopted for the retrieval of Leaf 

Area Index during different phenological phases of rice growth. Sentinel-2 was identified as 

an ideal platform for monitoring LAI across different scales. Furthermore, in terms of the 

methodological approach for the estimation of LAI, the hybrid method, which combined 

Radiative Transfer Models with machine learning algorithms (Gaussian Process Regression) 

was identified as a potentially suitable approach for the estimation of the seasonal dynamics 

of LAI. However, no study has established for a fact the suitability of the methodological 

approach for estimating the seasonal dynamics of irrigated rice in Sentinel-2. 
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These gaps in literature were used to define the research questions to determine the direction 

of the thesis. 

Objective 2: To determine the relative merits of structural and multispectral information from 

cameras for estimating mid-late season rice above ground biomass from very high spatial 

resolution drone imagery. 

The structural properties of RGB cameras to generate plant height from Crop Surface Models 

are exciting for the estimation of rice Above Ground Biomass (AGB). Studies have also 

identified the significant potential of more spectrally sophisticated drone sensors (multi-

spectral cameras) with the capacity of generating Vegetation Indices and Texture Metrics for 

the estimation of rice AGB. However, the comparative advantage of the structural properties 

of RGB-based sensors compared to the spectral properties of Multispectral based sensors are 

yet to be established. The research question was identified as “What are the relative merits of 

using data either from a drone-mounted consumer-grade RGB, a scientific grade multispectral 

camera, or their combined use, for estimating rice mid-late season above ground biomass?”. 

Objective 3:  To determine the potential of hybrid machine learning methods for estimating 

the seasonal dynamics of rice Leaf Area Index (LAI). To date, most hybrid machine learning 

models have adopted the inversion of Artificial Neural Network (ANN) models with physical 

based (Radiative Transfer Models) models. However, saturation of LAI estimates have been 

noted in several studies at high LAI, usually occurs during the reproductive and ripening 

stages of rice growth. Studies have opted to use other Machine Learning Regression 

Algorithms in combination with RTMs which have presented superior estimation when LAI 

values are high. Particularly, the GPR model has been identified in literature to outperform 

other Machine Learning Regression Algorithms for LAI estimation. However, the 

phenological dynamics of GPR hybrid model from the retrieval of LAI from Sentinel-2 is yet 

to be investigated. The research question was identified as “What is the potential of hybrid 

machine learning methods for estimating the seasonal dynamics of rice Leaf Area Index?”. 

Objective 4:  To determine the relative importance of the spatial and spectral resolution of 

Sentinel-2, for estimating rice yields across a range of spatial extents. 

The launch of Sentinel-2 offers the potential for the estimation of rice yield at high resolution. 

With the spatial resolution as high as 10m and the addition of spectral bands along the red-

edge for the 20m spatial bands, the potential exists to identify the suitability of high resolution 

to perform better for landscape yield estimation, the inclusion of extra spectral bands to 

Sentinel-2 20m have yet to be explored. Although a study identified the superiority of 

Sentinel-2 10m or 20m using identical spectral bands, the comparison based on the additional 
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spectral bands in Setinel-2 20m has not been investigated. This research provided insight into 

the potential of baseline Sentinel-2 10m and 20m for estimating rice yield at landscape and 

smaller holder farm scales. The research question was identified as “What is the influence of 

the spatio-spectral resolution of Sentinel-2 for estimating within field variability of yield at 

landscape scale and between field variability of smallholder farmer plots”? 

1.3 Field site  

The study was carried out on a commercial rice farm in Nasarawa state, Nigeria. The site is 

an ideal location for this work since the climatic and ecological conditions of the study are 

suited to dry season irrigation farming. In addition, the farm is one of the largest and most 

mechanised irrigated commercial rice farms in Africa, providing the ideal avenue to monitor 

yield and yield indicators at irrigated rice field. For more information on the field site see 

Chapter 3. 

1.4   Thesis Structure 

This thesis comprises of seven chapters. Chapters 1, 2 and 3 are the introduction, literature 

review and methodology, respectively. Chapters 4, 5 and 6 present the results of the data 

analysis are written as research manuscripts to be submitted to international journals. Chapter 

7 provides a summary discussion, conclusion, limitations and areas of possible further 

research. Figure 1-1 is a graphical illustration showing the various chapters of this thesis and 

the connection between them. 

Chapter 1 provides an overview of the research. It provides a general background on the 

spread and consumption of rice globally with particular focus on Nigeria and sub-Saharan 

Africa. It explains the shift from the oil sector-based economy to the potential for Nigeria to 

being self-sufficient in rice production due to government policy. Finally, it discusses the 

potential of remote sensing platforms and approaches for the monitoring of irrigated dry 

season rice farming. 

Chapter 2 presents a literature review on monitoring and predicting yield and yield indicators 

from proximal, airborne and satellite scales. It then narrows the findings when monitoring 

across platforms for biomass, leaf area index and yield estimation in rice. It also critically 

evaluates and assess the techniques adopted for yield and yield indicators estimation across 

different scales. Finally, the observed gaps in the literature, the rationale for the current 

research, the research questions, aims and objectives are highlighted. 
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Chapter 3 outlines the methodology used in the thesis. It provides an overview of the study 

area in Nasarawa state, with emphasis on the location, size, population, ecology, soil geology 

and climate of the study area. It details the overall experimental design, data collection 

techniques, field sampling techniques, pre-drone flight calibration and flight plan, remote 

sensing satellite data and yield data.  

Chapter 4 presents the result of the first research objective was “Exploiting the centimetre 

resolution of drone-mounted sensors for estimating mid-Late season above-ground biomass 

in rice”. Here, I assessed the performance of a consumer-grade RGB and a multispectral 

camera mounted on a drone for estimating biomass during the mid-late growing stages of rice. 

I also assessed the added value of plant height estimates obtained from the RGB camera 

compared with vegetation indices and texture metrics obtained from multi-spectral cameras 

using regression models. 

Chapter 5 presents the results of the second research question of “What is the performance of 

Gaussian Process Regression and PROSAIL for estimating the phenological dynamics of rice 

Leaf Area Index?” This chapter focused on a generic LAI model for estimating the LAI during 

the key phenology stages of rice from the combination of altered water and nitrogen 

applications on the designated experimental plots. Results of LAI estimations from GPR 

PROSAIL were compared with PROSAIL and Sentinel-2 Application Platform (SNAP) LAI 

during the different phenological stages. 

Chapter 6 presents the result of the third research question, which is “What is the influence of 

the spatio-spectral resolution of Sentinel-2 for estimating within field variability of yield at 

landscape scale and between field variability of smallholder farmer plots?” The emphasis is 

on the spatial and spectral resolution of Sentinel-2 satellite for predicting yield at smallholder 

farm plots and landscape scale from yield data collected with a high sophisticated combined 

harvester equipped to global position system. The utility and performance were assessed using 

the Random Forest model, as was adopted in the first research objective. We evaluated within 

and between field yield variability between Sentinel 2 10m and 20m bands from images from 

different phenological phases of rice growth. 

 

Chapter 7 provides a summary discussion of the results obtained from the three analysis 

chapters (Chapters 4, 5 & 6) with a view of harmonising all findings and evaluating how these 

compare with existing literature in addressing the research gaps observed. It also provides a 
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conclusion to the thesis, highlighting the wider implications of the findings and contributions 

to wider knowledge. Several limitations encountered in the course of the research are 

identified and areas of possible further investigation are proposed.  
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Chapter 2 Literature Review 
 

This chapter introduces the importance of rice as a staple food source in Nigeria and the 

potential of remotely sensed data to provide important information on rice yield indicators 

and yield estimations at different scales. Specifically, the chapter reviews key remote sensing 

platforms and methodologies that are currently used for estimating rice biomass, leaf area 

index (LAI) and yield from optical remote sensing data across a range of spatial scales. In 

doing so, the chapter will discuss several of the most frequently used approaches and their 

strengths and weaknesses, providing an insight into which approaches are likely to produce 

the most useful results for monitoring irrigated rice. The chapter ends by highlighting current 

research gaps in this field, which are drawn upon to formulate the key research questions for 

the thesis. 

2.1 The importance of rice globally and the potential of rice growth in Nigeria  

 

Rice is an important crop for large parts of the world, with some regions heavily dependent 

on it (Figure 2-1). For instance, rice is a staple crop in Asia, accounting for almost 90% of 

global rice consumption (Statistica, 2020b). In the Americas, there is also a high rate of 

consumption of rice, with Latin America and the Caribbean increasing the consumption of 

rice by 40% within the last two decades (Statistica, 2020b). Similarly, rice is one of the most 

popular grains in the United States, with Americans consuming around 4.22 million metric 

tons of rice in the 2019/2020 fiscal year, equating to 13.5 kg per capita (Statistica, 2020). Rice 

consumption is also popular in the Middle East and North African countries with Saudi 

Arabia, United Arab Emirates, Egypt and Iran accounting for the bulk of consumption 

(OECD, 2018). Though not consumed as a staple food, Europe per capita annual consumption 

is  3.5 – 5 kg in non-rice growing countries and 6 – 18 kg in Southern Europe as of 2019 

(OECD-FAO, 2019). In an African context, rice consumption increased by almost 300% 

between 1961 and 2013 and is steadily increasing (11 kg and 28 kg, respectively (OECD-

FAO, 2019), primarily caused by a combination of high rates of population growth and 

changing consumer preferences. 
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Figure 2-1: Consumption of rice by country, 2019. Source: Statistica, 2020) 

Land sizes also play and important role in the growth and distribution of rice (Apata, 2016; 

FAO, 2018a; Silva et al., 2018). Typically, rice farms are classed into smallholder, medium 

and larger scale farms (Lowder et al., 2016). Smallholder farming is the dominant form of 

agriculture in the world, supporting a majority of vulnerable population, within some of the 

most diverse and threatened landscapes. According to (FAO, 2018a), eight indicators define 

smallholder farms and farmers. They include the farm size, production, income, pluri-activity 

and poverty, labour, capital and inputs, innovation and technology, access to market, and 

demographics. Keeping in mind the aforementioned indicators of smallholder farms, any 

definition of the characteristics of smallholder farmers will be dependent on the definition that 

each region/country adopts for itself. However, many definitions of smallholder farms tend to 

be led by land holding area/size, as this is often regarded as the most significant indicator of 

smallholder farmers (FAO, 2014; Ricciardi et al., 2018; Wolfenson, 2013). Medium and large 

scale farms classed based on their size, nevertheless also  play a significant role in global rice 

security (Lowder et al., 2016). 

Lowder et al. (2016) investigated the number, size, and distribution globally of farms, 

smallholder farms, and family farms from agricultural censuses and showed that small farms 

(less than 2 ha) operate about 84% of the world’s agricultural land (Table 2-1). Similar results 

were identified by Samberg et al. (2016), whose assessment of rice farms globally indicated 

that smallholder units from 0-2 ha contribute more than 80% of global rice production, while 

smallholder rice farmers <1 ha, contribute 64% of global rice production. Samberg et al. 
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(2016) also identified that smallholder systems of less than 5 hectares per farming household 

are home to more than 380 million farming households, accounting for about 30% of 

agricultural land in Latin America, sub-Saharan Africa, and South and East Asia. In terms of 

large farms, Lowder et al. (2016) notes that the percentage of farmland available to farmers 

with farm sizes from 50ha+ contributes 60% of land for farming (Table 2-1). 

Table 2-1: Rice farm sizes for cereal crops ranging from large to small farms 

Farm size (ha) % farms 1 No. millions 2 Farm land(ha) 3 Cereals (%) Scale 

>200 2 11.4 50 17 Large 

50–200 
 

10 22 

20–50 10 7 Medium 

5–20 4 22.8 10 31 Small 

2–5 10 57 8 

1–2 12 68.4 12 21 

<1 72 410 
 

1. Of 570 million farms in 161 countries, this farm size classification is from a subset of 460 million farms 

(classified from international comparison tables of the 1990 & 2000 rounds of the WCA for farm sizes) by 

Lowder et al. (2016). 

2. Assuming farm size percentages represent farm sizes worldwide, Lowder et al. (2016) estimate these numbers 

by multiplying 570 million farms with the percentages. 

3. Author estimates from Lowder et al. (2016) – 106 country sample covering 450 million farms, representing 

80% of world farms. 

Although over 80% of farmers are considered smallholder farmers, Herrero et al. (2017) 

points to a more nuanced analysis that only 12% of land is available for cereal crops at 

smallholder scale. However, Samberg et al. (2016) however reports that the 12% of land held 

by smallholder farmers grow 64% of rice globally, which strengthens the case of smallholder 

rice farmers. Despite the contradicting reports on the importance of smallholder and larger 

rice farms for food security, Woodhill et al. (2020) argued that the fundamental dualism 

between smallholder farmers and much large holder farmers are important for food security 

because for small-scale farmers production is critical for their own income, food and nutrition 

security, and for localised markets, while larger scale farmers tend to meet the growing 
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demands of urban populations. Therefore, in order to improve yield, monitoring smallholder 

farms as well as much larger farms are fundamental for food security. 

In Nigeria, rice is an important staple crop for improving food security and reducing poverty 

(Ezedinma, 2008; Okpiaifo et al., 2020; Ugalahi et al., 2016). Rice consumption patterns, 

driven by changes in the dietary needs of the population over the last three decades, has led 

to increased demand.  In terms of land sizes, more than 90% of Nigeria’s rice is produced by 

resource-poor smallholder farmers, while the remaining 10% is produced by a handful of large 

companies, such as Coscharis Group, Dangote and Olam (Reuters, 2020).  

Rice is produced in all agroecological zones of Nigeria with the middle belt region enjoying 

a comparative advantage in terms of production over other parts of Nigeria due to its soil and 

environmental factors (Udemezue, 2018). In terms of environments, rice cultivation is 

categorised under four main groups: rainfed lowland (69.0%), irrigated lowland (2.7%), 

mangrove swamp (1%) and rainfed upland (28.3%). Rainfed farming is the most popular and 

accounts for 97% of rice farming in Nigeria. However, rainfed farming is heavily dependent 

on climate and is vulnerable to changes in temperature and rainfall (Singh, 2016), limiting 

yield to between 1.5 - 2 t/ha.  

Nigeria is well suited towards increasing its rice growing capacity to meet growing demands 

since rice cultivation can occur during both the rainy and dry seasons and the irrigation 

potential of the country is estimated at 3.14 million ha (Ugalahi et al., 2016). In terms of 

irrigation potential, Nigeria has two of the largest rivers in West Africa in River Niger and 

River Benue, local groundwater in shallow alluvial (FADAMA) aquifers adjacent to major 

rivers (Ugalahi et al., 2016) and extensive ground waters in eight hydrological areas. Also, 

permeable (sedimentary aquifers) groundwater is distributed in about ten provinces in Nigeria 

with over 200 dams and 83 water projects (ongoing and proposed). This signifies the irrigation 

potential for multiple cultivations of rice annually, especially during the dry season months 

(Ugalahi et al., 2016). Yet, irrigation farming represents less than 50,000 ha despite the rich 

potential for irrigation farming.  

In addition to the irrigation potential for growing rice, steps have been taken to improve the 

genotypic characteristics of rice best suited for the Nigerian climate. Measures by the then 

West Africa Rice Development Association (WARDA), now known as New Rice for Africa 

(NERICA), cross bred Asian rice (Oryza sativa), with African rice (Oryza glabberima). This 

was done because the African species yield was meagre (less than 2 t/ha) while the Asian rice, 
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which has a higher yield potential (typically 6-10 t/ha), is poorly adapted to many of the 

African environmental in which rice is grown (Grindley et al., 2002). NERICA varieties have 

the potential for yield above 6 tonnes per hectare in different rice-growing environments 

(Gridley et al., 2002; Jones et al., 1997), which is significantly higher than what Nigerian 

farmers currently harvest (Figure 2-2). In addition, the Agricultural Transformation Agenda 

(ATA) was an initiative set up to help boost rice through infrastructure development (Ugalahi 

et al., 2016), provision of extensive workers to train farmers on modern sowing practice, 

provision of fertiliser at subsidised rate and provision of loans. 

 

Figure 2-2:   Nigeria's annual rice yield in comparison to global average, China and Egypt. Source: FAO, 2018). 

Despite all the measures on the ground, with the rich potential to improve yield and be self-

sufficient in rice, poor yield returns are usually the case in Nigeria. These are primarily due 

to farming practices involving poor selection of appropriate varieties of rice to grow the proper 

identification of seeds based on the soil and water requirements, reluctance to adopt the 

improved yield varieties, timing of sowing and harvesting, monitoring of yield indicators 

during the growing season and forecasting of yield amongst others have led to grossly low 

rice yield in Nigeria (GRiSP, 2013).  

In order to bridge the yield shortfall (around 2.4 million metric tonnes of rice as at 2019), 

sustainable, replicable and attainable strategies must be adopted over time to improve rice 

yield in Nigeria. One of those steps involves understanding how yield indicators at different 

phenological stages can be used to predict/forecast yield (Moldenhauer et al., 2013). 
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2.2 The importance of phenological growth phases to rice yield 

The grain yield of a rice plant is a function of the number of panicles (or heads) per plant (or 

per unit area), the number of filled grains per panicle, and the mean weight of individual 

grains. Each of these yield components is determined during the phenological growth cycle 

of the rice.  

Rice has three main growth phases: vegetative, reproductive and ripening (Moldenhauer et 

al., 2013) (Figure 2-4). The vegetative phase (lasting ~55 – 75 days) is important in 

determining the number of panicles per plant. The vegetation phase covers the time from when 

the sown seeds begin to geminate until the point at which the panicle (or the head) begins to 

form in the base of the shoots or stems. The duration of the vegetative phase is  primarily 

dependent on the climatic conditions and the variety of rice sown  (Datta, 1981). The longer 

the vegetative phase the greater the number of panicles produced, with  temperate regions 

often experiencing longer vegetative phases compared to the tropics (Guedes et al., 2015; 

Vergara, 1991). Management practices, such as the management of nutrient availability, are 

also important during the vegetative phase as such activities influence panicle formation and 

growth (Fageria, 2007).  

The second developmental phase is the reproductive phase where the panicles continue to 

grow, leading to the bulging of the leaf stem that conceals the developing panicle, called the 

‘booting’ stage. Then the tip of the developing panicle emerges from the stem and continues 

to grow until flowering (the formation of spikelets) begins (Kamoshita et al., 2008). This 

phase is important for yield estimation as it determines the number of spikelets that are 

produced per panicle.  The number of spikelets produced depends on the level of 

photosynthetic activity and on there being a sufficient supply of nitrogen (Kamoshita et al., 

2008). The reproductive phase lasts between 30-35 days regardless of the variety of rice 

grown. However, short reproductive phases result in low leaf areas available for 

photosynthesis and thus reducing the number of spikelets produced per panicle (Fageria, 

2007).   

The final development phase is the ripening phase, which starts when the crop begins to flower 

and ends when they mature. This developmental phase controls the final weight of a single 

grain of rice and typically lasts up to 30 days in the tropics (Fageria, 2007). Solar radiation is 

critical during the ripening phase to achieve higher yields (Fageria, 2007). 
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Figure 2-3: The phenological growth  duration of direct seeded rice (Source: IRRI, 2013) 
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The development of rice is a sequence of different phenology phases. This implies that the 

condition of the plant during the vegetative phase determines relates directly to the potential 

number of panicles and the health of leaves functioning during the reproductive and ripening 

stages. Therefore, each phase is the result of the previous phase and the cause of the following 

phase (Dunand and Saichuk, 2014).  

 

2.3 Estimating rice yield indicators and yield  

 

Typically, yield is measured based on the tiller count, number of panicles, plant height, 

biomass, leaf area index (LAI) and yield. For instance, rice tillers are branches developed from 

the leaf of the main shoot or from other tillers during the vegetative phase (Figure 2-4). They 

determine the panicle number of rice plant which is a key component of grain yield (Krishnan 

et al., 2011). As such, rice grain yield is highly depended on the number tillers produced by 

each plant.  

 

Figure 2-4: Annotated diagram of rice plant 
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Similarly, biomass estimation is vital for improving the agronomic management efficiency 

and predicting crop yield. Biomass is also a diagnostic technique to assess the fertilization 

necessities of nitrogen deficiencies in crops (Lemaire et al., 2009) and is typically obtained 

from the shoot height of the rice plant (Hasegawa, 2003). Hasegawa (2003) reported that 

higher yields of rice cultivars were associated with higher dry matter production from dry 

shoot weight and both increased dry matter and grain harvest index equally contributed to yield 

increases. Dry matter production used for obtaining biomass measurements have been reported 

to have a higher correlation with grain yield during booting, flowering, and physiological 

maturity growth stages which occur in the reproductive and ripening stages than at vegetative  

growth stages (Fageria, 2007). 

In addition to biomass as an indicator of yield, plant height is an important phenotypic trait 

that can be used not only as an indicator of overall plant growth but also a parameter to 

calculate advanced yield indicators such as biomass and yield (Tilly et al., 2015; Yu et al., 

2002). Plant height increases exponentially up until the stem/culm elongation stage and then 

quadratically till the ripening stage, providing useful information for the estimation of biomass 

and yield throughout different phenological phases of rice (Fageria, 2007). 

LAI also plays an important role in vegetation processes such as photosynthesis and 

transpiration, and is connected to meteorological /climate ecological land processes. The LAI 

is an important parameter to estimate yields and is often utilised by many crop growth models 

that use net photosynthesis, assimilate partitioning, canopy mass, and energy exchange 

(Fageria et al., 2007). The LAI of rice increases as crop growth advances and reaches a 

maximum at about heading or flowering stage. The increase in LAI is caused by an increase 

in tiller number or leaves on each tiller and in size of successive leaves (see Figure 2-4). 

Finally, directly measuring rice yield is often the most effective way of obtaining accurate 

yield information on rice fields. Rice yields are determined by the number of panicles and 

spikelet per panicle. Therefore, it is very important to understand what influences yield 

components and consequently grain yield. For instance, the number of panicles are determined 

during vegetative growth phase, the spikelet per panicle during reproductive growth phase and 

weight and spikelet sterility during spikelet filling or reproductive growth phase.   

Rice yield can be expressed in the form of following equation by taking into account the yield 

components: 
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Grain yield (kg ha−1) = Number of panicles m−2 × Spikelet per panicle × %filled spikelet × 

1000 spikelet weight (g) × 10−5 

Several approaches have been adopted by farmers for monitoring and evaluating rice yields, 

of which, direct field observations are the most common approach for monitoring rice yield 

(Wopereis et al., 2009). Farmers generally visually evaluate growth performance of the crop 

during and after the growing season. Field measurement tools include tapes and rulers for 

monitoring plant height, manual harvesting for determining plant biomass and yield, and tiller 

counting for monitoring the quality of grain. Plant height and biomass measurements are 

usually conducted during the growing season, while yield harvesting occurs 30 days after the 

rice crop reaches the ripening stage. Whilst these monitoring approaches have been adopted 

by farmers in Nigeria and other rice-growing regions (Wopereis et al., 2009), they have several 

limitations. For example, differences in a farmers’ field experience may affect the quality of 

measurements and proper identification of contributing factors to yield. Additionally, the time 

required for the measurements of yield and yield indicators manually limit the replicability 

these techniques for use on large rice farms. Consequently, the need for timely, accurate, 

recurrent, and spatially monitoring are important towards effectively monitoring yield and 

yield indicators of rice (Bouvet and Le Toan, 2011; Dong et al., 2015; Kuenzer and Knauer, 

2013). 

2.4 Optical remote sensing of rice yields and yield indicators  

One approach adopted as a viable proxy for monitoring yield and yield indicators of rice is 

through the use of optical remote sensing (Kim et al., 2017; Kuenzer and Knauer, 2013; Niel 

et al., 2004; Siyal et al., 2015; Yang et al., 2017). The optical region of remote sensing spans 

from the visible to the Near Infrared (NIR) region of the electromagnetic spectrum 

(wavelength 400-2500nm). In the visible spectrum (400-700nm), electromagnetic radiation is 

absorbed by the rice plant pigments.  In the green band (500-600 nm), comparatively less 

absorption occurs, producing a reflectance peak region within the visible bands that reflects 

the green coloration of plants perceived by the human eye.   

 The spongy mesophyll cells are associated with pronounced scattering of Near Infrared (NIR) 

radiation, leading to a high spectral reflectance in the 700-1200nm region of the spectrum 

(Figure 2-5). The spectral reflectance in the red region for healthy, actively growing vegetation 

typically decreases with the growth of the rice plant, primarily as a result of the increasing 

photosynthetic activity, leading to greater absorption at wavelength between 600-700nm, 
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while the NIR reflectance increases with increase in the rice canopy. The increase in the leaf 

thickness may also lead to increases in the NIR region (Mosleh et al., 2015). In between the 

visible and NIR lies the red edge region (Figure 2-5). This narrow wavelength range is 

sensitive to vegetation conditions such as Normalised Difference Red Edge (NDRE) and has 

been be used to support different rice yield indicators (Huang et al. 2017; Zhang et al., 2019). 

 

 

Figure 2-5: Spectral profile of healthy rice plant 

Key advantages of remote sensing over more traditional in situ rice crop measurements include 

the provision of continuous spatial coverage over large geographic areas and the ability to 

acquire information during different phenology and seasons quickly often at low cost (Mosleh 

et al. 2015). 

 

2.5 Concept of scale for monitoring yield and yield indicators from satellite, airborne and 

drones. 

 

A number of optical remote sensing platforms have been employed to monitor irrigated rice 

growth and yields. These platforms and their associated imaging systems differ in terms of the 

spatial and spectral resolution of the imagery collected (i.e. pixel size and number of spectral 

bands), and their minimum return frequency (Figure 2-6). Remote sensing platforms include 

proximal sensing (Barmeier and Schmidhalter, 2016; Deery et al., 2014), airborne sensing (Du 

and Noguchi, 2017; Duan et al., 2019; Gabriel et al., 2017; W. Li et al., 2015) and satellite 
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sensors (Bai et al., 2019; Guan et al., 2018; Korhonen et al., 2017; Liu et al., 2020), all with 

varying spectral properties. 

 

Figure 2-6: Remote sensing technologies at different spatial scales. On the left-hand side are the different aerial 

and spaceborne systems: (a)satellite, (b), airplane and, (c), and Unmanned Aerial Vehicles (UAV) or drones 

capable of providing coarse to fine resolution data at global to regional scales, respectively. At the proximal 

scale (right-hand side), (d) fine resolution data can be obtained using tractors equipped GPS (e) handheld 

devices for monitoring yield indicators. 

Based on the concept of spatial scale in particular, Dungan et al. (2002) provided a balanced 

view of scale in spatial analysis. Spatial scale can be identified based on the extent and 

resolution when monitoring yield and yield indicators. The extent is the total length, area or 

volume that exists or is observed or analysed. On the other hand, the resolution of a data set is 

often taken to be the size of the smallest sampling unit or grain size of its sampling design. In 

the next section and throughout the thesis, when quantifying the spatial scale of satellite, 

airborne and drone scales, the extent and resolution are used in combination as the metrics for 

determining the suitability for monitoring yield and yield indicators across scales. 
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 Satellite Scale 

 

Remote sensing has evolved over time for monitoring yield and yield indicators since the early 

1970’s (Bauer & Cipra, 1973; Doraiswamy, Moulin, Cook, & Stern, 2003; Jewel, 1989) when 

Landsat 1 (originally known as Earth Resources Technology Satellite 1) was launched in 1972 

with a moderate spatial resolution. Multispectral Scanner System (MSS) sensors on Landsat 1 

collected imagery in the green, red and two infrared bands at a spatial resolution of 80 m and 

a return frequency of 18 days. Landsat 5 was launched in 1984 and collected Thematic Mapper 

(TM) imagery at a higher spatial resolution of 30 m and spectral resolution to Landsat 1 with 

spectral bands in the blue, green, red, near infrared, and infrared (including thermal) regions. 

Landsat has evolved over the years with the latest launch of Landsat 8 in 2013, providing 

archival data for monitoring rice yield (Ishiguro et al., 1993; Kontgis et al., 2015; McCLOY 

et al., 1987; Zhou et al., 2016).  Similarly, France launched a comparable satellite (Satellite 

pour l'Observation de la Terre (SPOT) 1) in 1986, which collected 20 m imagery with a return 

frequency of up to six days in the green, red and near infrared frequencies. The SPOT satellite 

series continued until SPOT 5 (which was eventually decommissioned in 2015), providing a 

high spatial resolution images for monitoring yield and yield indicators in rice (Navarro et al., 

2016, p. 5; Nguyen et al., 2012; Yang et al., 2009) 

In terms of global monitoring of rice yield and yield indicators, the launch of the Advanced 

Very-High-Resolution Radiometer (AVHRR) in 1978 kick-started the daily monitoring of 

agricultural landscapes (Cracknell, 2001), eventually leading the establishment of the 

AgRISTARS (Agriculture and Resource Inventory Surveys Through Aerospace Remote 

Sensing) program in the early 1980s saddled with the tasks of monitoring agricultural fields 

(Becker-Reshef et al., 2010). This was followed up with the launch of other global oriented 

satellites like Moderate Resolution Imaging Spectroradiometer (MODIS) in 2002 with a high 

temporal and spectral resolution compared to the previously mentioned satellites. MODIS has 

extensively been utilised for monitoring rice yield and yield indicators (Caccamo et al., 2011; 

Alex O. Onojeghuo et al., 2018; Peng et al., 2014; Shi et al., 2013; Son et al., 2014; Xiao et 

al., 2005). The acquisition of MODIS satellite images on a daily basis have made the satellite 

pivotal for Group on Earth Observations Global Agricultural Monitoring (GEOGLAM) 

Initiative, which is a mandated to coordinate satellite-based monitoring of global croplands 

(Whitcraft et al., 2015) 
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The turn of the century saw increased monitoring of rice from high resolution satellite remote 

sensing platforms. IKONOS was launched in 1999 which collected 4 m resolution imagery in 

the blue, green, red and near infrared bands at a return frequency of up to 5 days. Similarly, 

Worldview-2 and Rapideye satellites, equipped with bands in the red edge region of the 

electromagnetic region, has a revisit period of 1-4 days and a spatial resolution of 1.85m 

providing high spatial resolution for monitoring yield and yield indicators. Huang et al. (2017) 

compared Worldview and Rapideye high resolution satellite with FORMOSAT-2 (which has 

no bands at the red edge region) for monitoring yield indicators in a rice field. Results showed 

that the satellites with red-edge bands improved the estimation of rice nitrogen status which 

has a strong relationship with biomass.  

In terms of spectrally enhanced satellites, the turn of the century ushered in commercially 

designed satellite imaging systems with higher resolution and quicker revisits for the 

monitoring of rice yield and yield indicators. A notable example was the launch of a 

hyperspectral satellite, Hyperion, in 2002, has a high resolution hyperspectral imager capable 

of resolving 242 spectral bands (from 0.4 to 2.5 nm) with a 30-meter resolution and a temporal 

resolution of between 16-30 days. Rao et al. (2006) used Hyperion to accurately estimate 

vegetation LAI compared to traditional broadband multispectral data. The results from the 

study show a stronger relationship with LAI from Hyperion compared the Linear Imaging 

Self-Scanning Sensor 3- LISS III multispectral data in 4 bands. More recently, PRISMA 

(Hyperspectral Precursor and Application Mission) hyperspectral satellite was launched in 

2019 has been launched with the capability of monitoring yield and yield indicators in crops 

from a wide array of spectral information (~250 bands). 

The availability of optimal spatial, spectral and temporal resolution actively governs the 

accuracy of accessing yield and yield indicators in rice. While coarse resolution sensors (e.g. 

AVHRR or MODIS) provide global coverage at daily intervals, their coarse spatial resolution 

(> 250m) cannot capture the variabilities of smallholder and landscape scales. Satellites such 

as Landsat-7/8 with 30 m spatial resolution (and between 8/11 spectral bands depending on 

the sensor), on the other hand, have lower revisit times (∼16 days) that are impractical for 

monitoring yield indicators frequently during the growing season. The spatial resolutions have 

improved in some recent commercial satellite sensors such as Worldview-2, 3 and 4. However, 

free access to high-resolution temporal spaceborne images becomes crucial if operational 

satellite-based quantitative applications are to be developed.  



42 
 

The spatial resolution of freely available satellite has improved in some recent satellite sensors 

such as Sentinel-2 (10 or 20 m) and with a temporal resolution of five days it provides the 

opportunity to monitor yield and yield indicators at high resolutions.  Furthermore, the free 

availability of images at the global scale is potentially critical for monitoring rice farms in sub-

Saharan Africa, which may only be possible with high resolution commercial images which 

are costly to purchase. Moreso, the addition of bands along the red-edge, which have shown 

to improve the monitoring of yield and yield indicators in rice (Kanke et al., 2016), provides 

new opportunities for rice monitoring. This is reflected in the ESA-funded Sentinel-2 for 

Agriculture (Sen2-Agri) project, which provides an open-source system based on generic time 

series analysis methods for crop mapping and monitoring at the global scale (Defourny et al., 

2019). 

 Airborne Scale 

Airborne platforms for remote sensing usually involves the use of manned aircraft or remotely-

piloted aircraft systems (usually referred to as Unmanned Aerial Vehicles (UAVs) or drones) 

for monitoring yield and yield indicators in crops (Colomina and Molina, 2014; Zhang and 

Kovacs, 2012). The fine spatial resolution and real-time monitoring ability of airborne 

platforms suggest that it is well suited for applications that characterize changes in crop 

attributes over time at farm scale as oppose to regional scale. Manned airborne platforms 

present the earliest use of airborne estimation for monitoring yield indicators in crops (over 40 

years ago) and have been extensively applied in ecology(Anderson et al., 2016; Luscombe et 

al., 2015) and more recently, for monitoring rice (Tilly et al., 2014; 2015). However, the cost 

implication of manned aircraft remote sensing has seen the decline in the number of manned 

aircraft platforms for monitoring of rice yield indicators and yield (Sankaran et al., 2015).  

The recent development of miniature imaging instruments and an expansion of commercial 

drone companies facilitating data acquisition and analysis, has seen a shift from manned 

aircraft towards relatively low-cost systems such as drones. Compared to satellite platforms, 

airborne drone platforms are more flexible than satellite-based systems, in terms of flight 

planning, timely acquisition and flexibility (Colomina and Molina, 2014). Drones have been 

used for monitoring yield indicators and yield indicators from RGB cameras (Bendig et al., 

2014; Lu et al., 2019), multispectral cameras (Zheng et al., 2019), thermal (Maimaitijiang et 

al., 2017) and Light Detection and Ranging (LiDAR) sensors (ten Harkel et al., 

2020).Furthermore, the last decade has seen the increase in sensors on-board drones for 
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monitoring yield and yield indicators in crops (Table 2-2). These sophisticated sensors have 

the potential to influence improve the monitoring of yield monitoring, however, the 

significance of these consumer grade cameras is still to be fully understood as they are still in 

their infancy (Deng et al., 2018).  

Table 2-2: Common multispectral sensors on-board UAVs/drones  
 

Multispectral 

sensor 

Spectral range (nm) / Central wavelength (band width) (nm) Resolution 

(pixels) 

Weight 

(g) 

Sentera Quad RGB Red: 655 (40) Red edge: 725 (25) NIR: 800(25) 1248 × 950 170 

ADC Micro Green: 520–600 Red: 630–690 NIR: 760–900 2048 × 1536 200 

Buzzard Blue: 500 (50) Green: 550 (25) Red: 675 (25) NIR1: 700 (10) 

NIR2: 750 (10) NIR3: 780 (10) 

1280 × 1024 250 

MiniMCA6 Blue: 490 (10) Green: 550 (10) Red: 680 (10) Red edge: 720 

(10) NIR1: 800 (10) NIR2: 900(20) 

1280 × 1024 700 

XNite Canon 

SX230 NDVI 

(modified) 

Blue: 385–470 Green: 500–570 NIR: 670–770 4000 × 3000 223 

RedEdge Blue: 475 (20) Green: 560 (20) Red: 668 (10) Red edge: 717 

(10) NIR: 840 

(40) 

1280 × 960 231 

Altum Blue: 475 (20) Green: 560 (20) Red: 668 (10) Red edge: 717 

(10) NIR: 840 

(40), 8-14 

2064 x 1544 357 

Sequoia (MS) Green: 550 (40) Red: 660 (40) 

Red edge: 735 (10) NIR: 790 (40) 

1280 × 960 72 

P4 Multispectral Blue: 450 (16)  

Green: 560 (16) Red: 650 (16) 

Red edge: 730 (16) NIR: 840 (26) 

1600×1300 468 
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 Proximal Scale 

Ground-based or proximal sensing systems have a number of advantages over satellite and 

airborne platforms: (i) ground conditions can be tailored or conditioned to examine the effects 

of specific crop parameters; (ii) the effect of mixed pixels that usually affects satellite and 

airborne platforms can be reduced significantly; and (iii) the acquisition of high spatial 

resolution information is not constrained by platform revisit frequency, thus enabling timely 

implementation of required remedial action (Moran et al., 1997). Proximal systems fall into 

two main categories: fixed systems, involving the mounting of sensors on permanent platforms 

of towers, and mobile in-field systems, which involves the use of hand held devices, sensors 

on moving tractors or autonomous field robots (Deery et al., 2014). 

Proximal platforms have been adopted for monitoring yield (Li et al., 2015) and yield 

indicators (Gabriel et al., 2017; Gnyp et al., 2014) in crops and have often been adopted for 

validating satellite and airborne sensors (Deery et al., 2014).Proximal sensing is particularly 

suited to high-resolution temporal monitoring of yield and yield indicators. However, there are 

some limitations in its use for extensive assessment of yield and yield indicators in rice and 

other crops. For instance, the spatial coverage of proximal monitoring equipment is poor, even 

if mounted on fixed poles or moving vehicles (Chauhan et al., 2019). In such scenarios, 

multiple sensors are required to view entire fields, which can be prohibitively expensive. 

2.6 Estimating rice yield indicators from remote sensing platforms 

Two rice yield indicators usually applied for monitoring the growth dynamics of rice at various 

scales are aboveground biomass and Leaf Area Index. Here I focus on the two yield indicators 

across different scales, the methodological approaches adopted and their corresponding merits 

and limitations.  

 Estimating Aboveground biomass 

Aboveground biomass (AGB) is an important indicator in rice production as it provides useful 

information for grain yield predictions for growth status monitoring (Kanke et al., 2016), as 

well as gross primary production estimation (Peng and Gitelson, 2011). Furthermore, the 

relationship between AGB and nitrogen (N) concentration determines the N dilution curve, 

from which the critical N concentration can be derived to calculate N nutrition index (Yuan et 

al., 2016), which also has potential for in-season estimation of grain yield (Ben zhao 2018). 

Biomass can be estimated from remotely sensed data across multiple spatial scales, ranging 

from the use of low-resolution MODIS data (>250m) to point-based estimations (>1cm) using 
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field spectrometry developed based on certain methods. Methods generally applied for 

obtaining AGB from optical sensors include the simple statistical analysis with vegetation 

indices; the net primary productivity estimation method; the crop height -based estimation 

method; Texture metrics; and the crop growth model method. The following sections will 

explore the estimation of AGB in crops from various platforms. 

2.6.1.1. Satellite-based estimations of rice AGB 

Satellites monitoring at spatial scales have been adopted for the estimation of AGB in crops. 

In instance, high temporal resolution of coarse spatial resolution sensors (e.g. MODIS) have 

been fused with higher spatial resolution sensors for the estimation of crop AGB (Dong et al., 

2016; Liao et al., 2019; Marshall and Thenkabail, 2015; Meng et al., 2013). Meng et al. (2013) 

combined MODIS and the Chinese satellite, HJ-1 CCD (temporal resolution of 20 days) to 

generate NDVI indices using the adaptive Vegetation Fusion Model (STAVFM) for the 

estimation of wheat AGB. The estimation of wheat correlated well with observed AGB (R2 = 

0.87), suggesting similar applications over larger areas. 

Data assimilation approaches have also been adopted for the estimation of AGB from the 

fusion of MODIS and higher resolution images. Dong et al. (2016) applied similar fusion 

methods to the aforementioned study using the Simple Algorithm for Yield Estimation Model 

(SAFY). A good agreement was achieved between the estimated and field measured biomass 

by assimilated LAI derived from the fusion of both MODIS and Landsat 8 as opposed to 

Landsat 8 alone (R2 = 0.77; RMSE = 231g/m2). Liao et al. (2019) fused MODIS with Landsat 

8 and MODIS data to measure corn and soybean AGB using the SAFY model. Results showed 

good agreement for AGB estimation (corn, RMSE = 147.87 g/m2; wheat, RMSE = 120.25 

g/m2).  

Despite the fusing of MODIS with much higher spatial resolution sensor, mixed pixel 

representation which invariably leads to misclassification of fields make them unsuitable for 

high resolution yield mapping. Moreover, Liao et al. (2019) identified discrepancies at peak 

crop phenological phases in the peak phases when acquiring Landsat images (16-day interval), 

leading to uncertainties in the crop simulation model for estimating AGB. 

More recently, finer spatial and spectral resolution satellites have been adopted for the 

estimation of biomass in rice and other cereal crops. Notably, Han et al. (2017) used a 

combination of Pleiades-1A, Worldview-2, Worldview-3, and SPOT-6 high resolution 

satellite imagery (< 6m) for the estimation of oilseed biomass for the entire season using 
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multispectral VIs in China. Results showed that the normalized difference vegetation index 

(NDVI) in conjunction with a linear  regression model was able to predict field-scale oilseed 

rape biomass through the seasonal growth dynamics. Kross et al. (2015) also successfully used 

high resolution satellite imagery in the form of RapidEye (5m) to estimate maize and soybean 

biomass in Canada using vegetation indices. However, the main limitation of high-resolution 

satellite imagery for biomass monitoring is that they are usually commercial, which means 

that high costs associated with the purchasing of imagery often prevents the acquisition of 

multiple images over time (Alex Okiemute Onojeghuo et al., 2018b). 

2.6.1.2. Airborne-based (Manned Aircrafts) estimations of rice AGB 

Airborne platforms have increasingly been adopted for the estimation of biomass. Notably, 

remotely piloted airplanes equipped with LiDAR using plant height, hyperspectral and 

multispectral sensors and a combination of both have been successfully used for biomass 

estimation in crops (Li et al., 2015; Luo et al., 2019, 2016; Tilly et al., 2015, 2014; Wang et 

al., 2017).  Tilly et al. (2014) utilised terrestrial laser scanning (TLS) to monitor plant height 

on paddy rice fields in China. The high density of measurement points allows the establishment 

of crop surface models with a resolution of 1 cm, which can be used for deriving plant heights. 

For both sites, strong correlations (each R2 = 0.91) between TLS-derived and manually 

measured plant heights confirm the accuracy of the scan data. A biomass regression model 

was then established based on the correlation between plant height and biomass samples from 

the field experiment (R2 = 0.86). Similarly, Tilly et al. 2015 adopted the aforementioned 

approach in multiple growing seasons for the estimation of rice AGB. Biomass regression 

models were established based on strong coefficients of determination between plant height 

and dry biomass (R2 = 0.66 to 0.86 and 0.65 to 0.84 for linear and exponential models, 

respectively). 

Similar to AGB estimation from LIDAR, hyperspectral sensors have been combined with 

LiDAR data onboard remotely piloted aircrafts for the estimation of biomass in other cereal 

crops (e.g. maize) crops. Luo et al. (2019) utilised plant height and vegetation indices using 

LiDAR and hyperspectral respectively for the estimation of maize AGB. The results showed 

the strong relationships between LiDAR variables and maize biomass (R2 = 0.87. The study 

also found that combined LiDAR variables and vegetation indices derived from hyperspectral 

imagery produced a better prediction of biomass (R2 = 0.91) when compared to LiDAR data 

alone, and the prediction accuracies improved by 4.4%. The combined hyperspectral imagery 
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and LiDAR data provided complementary information and therefore improved prediction 

accuracies of these biomass in a cereal crop. 

Li et al. (2015) particularly noted the strong correlation between plant height from LiDAR 

data with maize AGB during the critical growing phases. While plant height was been 

identified with maize AGB during the critical growing phases, Wang et al. (2017) identified 

improved estimation of maize AGB from the combination of plant height obtain from LiDAR 

data and hyperspectral sensors (R2 = 0.88, RMSE = 321.09 g/m2, RMSECV = 337.653 g/m2) 

compared to plant height estimates (R2 = 0.83, RMSE = 374.655 g/m2, RMSECV = 393.573 

g/m2) and hyperspectral data alone 

However, challenges still remain with this method. Acquisition of airborne data is expensive 

(Gonzalez et al., 2010) making repeated acquisition of data for monitoring AGB a challenge 

for farm stakeholders.   

2.6.1.3. Proximal remote sensing- based estimations of AGB   

As an alternative to acquiring fine spatial resolution  imagery, a number of studies have used 

proximal near-surface sensors for estimating crop biomass at the field scale often through the 

use of handheld hyperspectral sensors (Fu et al., 2014; Gnyp et al., 2014; Thenkabail et al., 

2000) or multispectral radiometers (Casanova et al., 1998; Prabhakara et al., 2015). However, 

monitoring biomass across entire fields over the course of a growing season using handheld 

platforms is time-consuming and logistically challenging. An alternative to handheld monitors 

are the use of mobile and static sensors for estimating plant biomass that are mounted on 

tractors or mobile sensors (Bai et al., 2016; Watanabe et al., 2017). A typical example is the 

phenomobile powered by a hydraulic drive system, equipped with three LIDAR sensors, four 

RGB cameras, hyperspectral camera, an adjustable height boom and a real-time kinetic (RTK) 

GPS, with a 2 cm accuracy for position accuracy (Deery et al., 2014). This mobile platform 

has successfully been used in wheat in experimental trial plots for estimating canopy height, 

counting spikes in wheat, and monitoring plant stress (Deery et al., 2014).  Another mobile 

platform is the PhenoTrac4, which is equipped with three active sensors, a passive 

hyperspectral sensor and RTK GPS for positioning and has been used to evaluate plant 

nitrogen uptake, grain yield and plant dry weight (Barmeier and Schmidhalter, 2017, 2016). 

The advantage of a mobile platform over the handheld sensors is their ability to evaluate 

multiple traits and multiple rows in parallel, thus reducing the time and cost (Bai et al., 2016). 
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However, these motorised platforms are expensive to buy and require technical “know-how” 

to operate (Bai et al., 2016). 

2.6.1.4. Drone-based estimations of AGB   

 

When measuring AGB from drone mounted platforms, RGB and Multispectral/hyperspectral 

sensors have often  adopted for the estimation of AGB in crops (Table X (Bendig et al., 2014 

Cen et al., 2019; Lu et al., 2019).  Digital Surface Models (DSM), from which crop model 

surfaces can be developed, can be obtained from RGB sensors. The generation of Crop 

Simulation Models (CSMs) help determine plant height, which has been identified to have a 

strong relationship with crop AGB, especially during the mid-late growth stages of crop 

growth (Bendig et al., 2014; Lu et al., 2019). Bendig et al. (2014) reported strong correlations 

between plant height from CSMs and barley fresh biomass (R2 = 0.81) and dry biomass (R2 = 

0.82). Similarly, Jiang et al. (2019) reported strong relationship the estimation of rice AGB 

and plant height obtained from CSMs (R2 = 0.77; RMSE = 224.69g/m2). However, Lu et al. 

(2019) identified a lower coefficient of determination and higher RMSE when predicting 

wheat biomass (cereal crop) during the reproductive and ripening phases of winter wheat using 

RGB images, which is considered the critical phase for biomass monitoring in rice (refer to 

section 2.2 and 2.3). The reasons for the underestimation could be explained by recurring wind 

in the field that might blow the leaves leading to lodging (weakening of the stem to the point 

they can no longer support the weight of the grain), which could have affected the particular 

wheat variety used for the study leading to underestimation of plant height and thus, AGB (Du 

and Noguchi, 2017). Therefore, underestimating plant height and thus biomass necessitate 

further investigation to monitoring of rice AGB during the critical growing phases.  

More recently, drone-mounted multispectral sensors with spectral bands associated with the 

red-edge and near infrared (NIR) regions of the electromagnetic spectrum have been used for 

the estimation of biomass in rice and cereal crops.   These spectrally enhanced cameras have 

been used for the estimation of biomass via the calculation of vegetation indices (Han et al., 

2019; Maimaitijiang et al., 2017) and more recently, texture metrics. The texture metrics 

proposed by Haralick et al. (1973) is a grey level co-occurrence matrix texture algorithm and 

has commonly been adopted as the texture metrics for monitoring texture from crops from 

different spectral bands (Liu et al., 2019; Yue et al., 2019; Zheng et al., 2019). Zheng et al. 

(2019) showed the mean matrix in the NIR band to have the strongest correlation with rice 

biomass during the late growing phase compared to the red edge and visible texture bands. 
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Although Yue et al. (2019) did not consider the mean texture matrix for analysis, results 

showed texture matrix in the NIR band to have a strong correlation with yield.  

Vegetation indices (VIs) have commonly been adopted for the estimation of biomass in rice 

and other crops at centimetre scale using multispectral cameras.  Liu et al. (2019) applied four 

vegetation indices for the estimation of oilseed during the reproductive phase in China. The 

normalized difference vegetation index (NDVI) and red edge chlorophyll index (CI rededge) 

showed the strongest relationship with AGB at the mid growth phase. Zheng et al. (2019) 

assessed of eight vegetation indices with the exclusion of the CIred edge when monitoring rice 

AGB. Rice AGB from the optimized soil adjusted vegetation index (OSAVI), which is a ratio 

of bands in the NIR and visible, performed best in the estimation of rice AGB at the mid-late 

growing stages.  

Whilst vegetation indices have been  used to estimate of rice AGB (Duan et al., 2019; Huang 

et al., 2015; Jiang et al., 2019; Zheng et al., 2019), they often suffer from the saturation effects 

during the heading and ripening stages of rice growth as biomass is mixed with panicles and 

stems as opposed to panicles during the vegetative stage (Cheng et al., 2017; Zheng et al., 

2019). For instance, Normalized Difference Vegetation Index (NDVI) underestimates high 

biomass density due to this saturation effect  (Fu et al., 2014; Kumar and Mutanga, 2017). 

However other VIs generated from the near infrared and red edge bands have presented more 

accurate estimations of rice AGB during the late growth stages. Zheng et al. (2019) 

demonstrated that the optimised soil adjusted vegetation index (OSAVI) exhibited a 

significantly positive relation with rice AGB during the late growing stage (R2 = 0.65) 

compared to NDVI, green normalised vegetation index (GNDVI) and Modified triangular 

vegetation index 2 (MTVI 2). VIs generated from the red-edge and the near-infrared region 

have performed more favourably for the estimation of mid-late season AGB. For example, 

Maimaitijiang et al. (2017) examined the performance of VIs for estimating AGB 70 days after 

sowing and identified the Near Difference Red Edge Index (NDRE) to have the strongest 

relationship with AGB compared to NDVI and GNDVI.  Therefore, further investigation of 

VIs during the reproductive and ripening phases is critical for monitoring rice AGB. 

The combination of VIs and texture metrics have also shown to improve the estimation of rice 

AGB using the multispectral camera. For example, Zheng et al. (2019) demonstrated that the 

combination of texture metrics with bands in the NIR region and OSAVI vegetation indices 

produced the highest estimation accuracy for all phases of growth (R2 = 0.78 and RMSE = 



50 
 

1.84 t/ha) and different phases (R2 = 0.84 and RMSE = 1.06 t/ha for pre-heading stages and 

R2 = 0.65 and RMSE = 1.94 t/ha for post-heading stages) compared to VIs and texture metrics 

alone in rice. Liu et al. (2019) also showed the combination off VIs and texture metrics using 

multivariate regression models to improve the estimation of biomass in oilseed crops. 

However, the cost implication of acquiring  multispectral sensors to off the shelf RGB 

cameras, (though significantly cheaper than commercial images in the long-term) makes the 

practicability of farmers using them challenging (Jin et al., 2020b). 

Although several studies have shown the potential of spectrally enhanced sensors in estimating 

crop AGB during the entire season and during the reproductive and ripening stages (Zheng et 

al., 2019; Yue et al., 2019), to date there have yet to be any studies that have investigated rice 

AGB using multispectral and RGB cameras in the mid to late growing stages (which are 

closely related to eventual yield outcomes). As such, the potential and relative merits of using 

drone-mounted consumer-grade RGB imagery and/ or scientific grade multispectral imagery 

for estimating rice mid-late season aboveground biomass remains to be investigated. 

2.7 Estimating rice leaf-area index (LAI) from remote sensing platforms 

Monitoring yield indicators such as LAI are fundamental to assessing the crop response to 

management practices and yield patterns (section 2.3).  LAI can be retrieved from proximal, 

airborne and satellite sensors. When estimating high resolution LAI, proximal and airborne 

sensors are appropriate for mapping LAI over field and landscape areas, however the 

practicability of replicating this at region or global scales are impracticable because of issues 

relating to scale and frequency of acquisition. On the other hand, satellite platforms are better 

suited for global retrieval of LAI. For example, moderate spatial resolution satellites such as 

MODIS (see further discussion in section 2.5.1) have been used for global retrieval of LAI 

(Shi et al., 2013; Weiss et al., 2007). However, the spatial resolution of the sensors are such 

that they cannot be used for retrieval of LAI due to mixed pixels (Son et al., 2016). High spatial 

resolution satellites such as Landsat have a temporal resolution of 16 days, limiting the 

availability of images for monitoring LAI during different phenological phases. Very high 

resolution satellites on the hand, are impracticable due to the cost attached for regional and 

global monitoring of LAI.Sentinel-2 as highlighted in section 2.5.1 has a high temporal, 

spectral and temporal resolution and serves as platform for monitoring high resolution LAI 

from field scale to global scale (Pipia et al., 2019).  
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Irrespective of the scale, LAI retrieval is grouped into two broad categories: (i) statistical 

(variable-driven); (ii) physical (or radiometric data-driven) (Baret and Buis, 2008). However, 

since the turn of the 21st century, methodological approaches have expanded into a number of 

subcategories and combinations. Verrelst et al. (2015a) categorised LAI retrieval methods into 

four categories. They include parametric regression methods, non-parametric regression, 

physically based methods and hybrid models (Figure 2-7). The strengths and weaknesses of 

each method will be discussed in the following sub-sections. 

 

Figure 2-7: Schematic overview of the main retrieval methods (adopted from Verrelst et al. (2018)) 

 Parametric Regression Model 

The parametric regression model approach has been the most popular and widely adopted 

approach for estimating LAI from optical sensors. This approach involves the use of spectral 

features to reduce undesired effects, such as the variations of other leaf or canopy properties, 

soil reflectance, atmospheric composition, and sun and viewing geometry (Verrelst et al., 

2015c). Parametric regression model approaches are achieved through the mathematical 

combination of spectral bands regressed with a biophysical variable using a fitting function, 

usually referred to as vegetation indices (VIs). 

Most VIs used in generating LAI estimates combine reflectance in the visible and NIR 

wavelengths. This is because the reflectance in the visible portion of the electromagnetic 
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spectrum helps control the perturbation effect of background soil, whereas reflectance in the 

NIR domain allows for a large dynamic range of detection (Pinty et al., 2009). The normalized 

difference vegetation index (NDVI) is by far the most widely used index in the literature for 

estimating rice LAI from moderate (Xiao et al., 2005), high (Liu et al., 2012) and very high 

(Bsaibes et al., 2009) resolution images. However, NDVI approaches reach saturation 

asymptotically under conditions of moderate-to-high LAI (Gitelson, 2004).  

Alternative VIs have been developed to minimize soil effects, such as the development of the 

soil adjusted vegetation index (SAVI) (Huete, 1988), the optimized SAVI (Rondeaux et al., 

1996), and the modified SAVI (Qi et al., 1994). Additionally, other indices have been adopted 

to improving the sensitivity of VIs at high LAI and to reduce atmospheric perturbation such 

as Enhanced Vegetation Index (EVI) (Huete et al., 2002; Jiang et al., 2008). Wardlow et al. 

(2007) found that EVI exhibited greater sensitivity during the reproductive phases of crops, 

especially at the peak growing stage compared to NDVI values. The development of sensors 

with extra bands along the red-edge curve has led to the development of red-edge reflectance. 

They include Normalised Vegetation Red-edge (Gitelson and Merzlyak, 1994), chlorophyll 

index (Gitelson et al., 2003a) and Inverted red-edge chlorophyll index (Frampton et al., 2013). 

The significant advantage of the VIs based on the red-edge is that they are less influenced by 

canopy structures, hence making them suitable for building a single generic model (Adeluyi 

et al., 2019; Frampton et al., 2013; Xie et al., 2019a).  However, the relationships between LAI 

and VIs are not always consistent for crops with different canopy structures (Kross et al., 2015; 

Viña et al., 2011).  

Due to their empirical nature, these regression models are developed under various 

experimental setups, at different scales (leaf, plant, canopy), for different sensors (e.g. 

broadband vs. narrowband) and under different environmental conditions. Consequently, 

parametric models cannot be translated into other observation configurations without losing 

predictive power. Their performance can be hampered by disruptive disturbing factors, e.g., 

differences in surface properties and sun and viewing geometry. Hence, while being successful 

in the extraction of vegetation variables designed for local conditions, they are of limited 

applicability in a broader operational setting. 

The main advantage of VIs is their simplicity because they require only a small set of spectral 

bands, reducing the computation time required to generate results. However, since parametric 

approaches are based on relatively simple mathematical definitions – as opposed to more 
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advanced methods (Non-parametric models) – and uncertainty intervals for the retrieval on a 

per-pixel basis are not provided. With the absence of uncertainty estimates, the performance 

of parametric regression methods is difficult to ascertain in an operational environment. 

Therefore, parametric methods are inadequate to provide global LAI products. Table 2-4 

shows the strengths and weakness of the parametric method. 

 Non-parametric Regression Models 

Non-parametric regression models adopt the use of a learning phase acquired from training 

datasets. This method combines different data structures in a non-linear way  hence an explicit 

selection of spectral bands or transformations are not required (Verrelst et al., 2015a). 

However, in the case where models are too flexible, overfitting of the training model may 

occur. To tackle issues with overfitting, model weights are defined by jointly minimising the 

training set approximation error while limiting model complexity. The non-parametric 

regression models can be further categorised into linear and non-linear non-parametric models 

and will be discussed in the following sub-sections.  

2.7.2.1. Linear non-parametric models 

Linear non-parametric models (Figure 2-7) are multivariable linear models capable of 

handling multi-spectral datasets. However, when input data quantity is limited with regards to 

dimensionality of the dataset, linear nonparametric models become problematic. To cope with 

the collinearity, a dimensionality reduction approach is often adopted. In terms of their 

application, Darvishzadeh et al. (2008) used the stepwise multiple linear regression (SMLR) 

to estimate LAI. Results showed superiority in the estimation of LAI from the multivariable 

linear models compared to univariable models such as NDVI and SAVI. In addition to SMLR, 

Principal Component Analysis (PCA) has also been adopted for the estimation of LAI in crops 

(Chaurasia and author, 2004; Fei et al., 2012). Other linear non-parametric models perform 

better than SMLR for the estimation of LAI. For instance, partial least squares regression 

(PLSR), one of the most widely applied non-parametric approaches, has been shown to 

generate more accurate estimates compared to VIs (Cho et al., 2007; Darvishzadeh et al., 

2008b; X. Li et al., 2014; Li et al., 2016). Darvishzadeh et al. (2008) showed that PLSR 

outperformed SMLR and VIs for the estimation of LAI. Similar results were identified when 

PLSR were compared against other non-parametric regression for the estimation of LAI from 

Sentinel-2 simulated data (Verrelst et al., 2015c). Other linear non-parametric model like ridge 

regression (RR) and least absolute shrinkage and selection operator (LASSO) have not seen 
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as much uptake for the estimation of LAI compared to previously mentioned non-linear 

regression methods. Lazaridis et al. (2010) compared RR and LASSO methods to PLSR and 

showed that these non-parametric methods performed particularly well. Despite the results 

obtained from non-parametric linear models, these methods have not been incorporated into 

operational and global retrieval methods as compared to non-linear non-parametric models 

(Verrelst et al., 2015a). 

2.7.2.2. Non-linear non-parametric models 

Non-linear non-parametric methods, often referred to as Machine Learning Regression 

Algorithms (MLRA), are important methodologically because of their capability to capture 

non-linear relationships of image features without explicitly knowing the underlying data 

distribution (Verrelst et al., 2018, 2015a). Therefore, they are developed without assuming a 

particular probability density distribution, which is why they are suitable for different types of 

data and are structured in such a way that they can incorporate prior knowledge. Three families 

of machine learning models are usually applied for the estimation of LAI from earth 

observation satellites: Artificial Neural Network-based, decision tree-based, and kernel-based 

regression methods (Figure 2-7).  

The Artificial Neural Network-based regression models are a connection of layered structures 

of artificial neurons. These artificial neurons are pointwise non-linear function applied to the 

output of a linear regression. Since artificial neurons are interconnected with different links, 

an individual artificial neuron will exhibit similarities to those obtained in linear regression. 

Hence, the collective interconnection patterns between different artificial neuron layers, 

alongside the learning processes for updating the weights of the connection and the activation 

functions which convert the artificial neurons weighted inputs, is referred to as Artificial 

Neural Network (ANN) (Atkinson and Tatnall, 1997; Bacour et al., 2006).  Results from ANN 

for estimation of LAI have been identified to be superior to parametric models for the 

estimation of rice and other crops (Chen et al., 2015; Hongliang Fang and Shunlin Liang, 2003; 

F. Wang et al., 2019). However, ANNs are largely determined by their design in the sense that 

too few or too many layers of artificial neurons may significantly reduce the accuracy of 

estimation. 

Decision tree-based regression models are a class of very powerful MLRAs. Frequently 

applied in classification, decision tree-based models have just recently been applied in 

regression analysis.  Decision tree learning models are based on a set of hierarchical connected 
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nodes, with each node representing a linear decision on a specific input feature. Of the decision 

tree-based models, the Random Forest MLRA (Breiman, 2001) are considered the most 

powerful. Random forest models are an ensemble of trees, where each tree contributes with a 

single vote for the assignment of the most frequent class to data (Breiman, 2001). Random 

forest builds on multiple regression trees independently by using different bootstrapped 

sample subsets of training samples. Random forest models have been used for the estimation 

of LAI in sugarbeet and potato (Siegmann and Jarmer, 2015; Vuolo et al., 2013). Although 

random forest has some advantages compared to other machine learning regression algorithms, 

it is difficult to use in datasets with missing data (Pal, 2005).  

Another commonly adopted model class used for the estimation of LAI are the Kernel-based 

regression methods. Kernel-based methods provide a framework for developing non-linear 

techniques and possess useful properties in the case where a low number of training samples, 

outliers and noise are found in the dataset (Gómez-Chova et al., 2011; Tuia et al., 2018).  

Kernel-based methods are suitable for the extraction of non-linear information from spectral 

data. Three main regression models are commonly adopted for the estimation of LAI: Support 

Vector Regression (SVR) (Vapnik, 1998); the Kernel Ridge Regression (KRR) (Suykens and 

Vandewalle, 1999); and the Gaussian Process Regression (GPR) (Rasmussen and Williams, 

2006). SVR models are the earliest and most popular model which are normally adopted for 

classification purposes from the mid-1990s (Support Vector Machine (SVM)). They have been 

successfully adopted for the estimation of LAI  (Camps-Valls et al., 2009; Durbha et al., 2007). 

However, when compared with other machine learning methods, such as random forest, SVR 

estimation were less accurate (Siegmann and Jarmer, 2015). Similar to SVR, KRR models 

initially made waves in the classification field before its emergence in regression analysis. 

Studies have used the KRR approach for the estimation of LAI. (Verrelst et al., 2012b) 

investigated the performance of KRR against other MLRA models and were found to be robust 

for the estimation of LAI. This primarily due to their relatively simple design which requires 

only one hyperparameter to be tuned. Additionally, KRR models are capable of dealing with 

collinearity in the event where numerous bands are present. Likewise, GPR models have been 

successfully implemented for the estimation of LAI within the last decade. Notably, Verrelst 

et al. (2012a) compared GPR with parametric methods. Results here showed better 

performances from GPR, offering additional information on band relevancy for each variable, 

the weighted relevant spectra contained in the training dataset and the probabilistic outputs, 

i.e. a mean estimate and associated uncertainty interval. When compared against other MLRA, 
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GPR models slightly outperform other models but were computationally demanding compared 

to KRR (Verrelst et al., 2012b, 2015c).  

An overview of the strengths and weaknesses of non-parametric regression methods are listed 

in Table 2-4. 
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Table 2-3:  Strength and Weaknesses of non-parametric method for LAI estimation 

Retrieval Approach Strengths Weaknesses 

Parametric method - Simple and comprehensive regression 

models; limited knowledge of the user 

require 

- Boundary conditions are defined based on the level of selected bands, 

formulations and regression function 

 - Fast processing - Models tend to be specific to the dataset used for model characterization) 

 - Computationally inexpensive - Models are sensor-specific models (i.e., a direct transfer to other sensors is 

usually not possible) 

  - Only one variable can be accounted for at a time 

  - Uncertainty estimates are not provided. Hence the quality of the output 

maps remains unknown 

  - Need for collecting field data (i.e., Measurement campaigns are necessary) 
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Non-parametric method - Some MLRAs cope well with datasets 

showing redundancy and high noise 

levels 

- Once trained, imagery can be processed 

time efficiently 

- Training can be computationally very demanding 

- Some regression algorithms are difficult (or even impossible) to 

train with a high number of samples 
 

 - Some of the non-parametric methods 

(e.g. ANNs, decision trees) can be 

trained with a high number of samples 

(typically > 1,000,000) 

- Expert knowledge is required, e.g. for tuning. However, toolboxes 

exist automating some of the steps 

 - Some MLRAs provide insight in model 

development (e.g. GPR: relevant bands; 

decision trees: model structure) 

- Most of the methods are considered black boxes 

 - Some MLRAs provide multiple outputs 

(e.g. PLRS, ANN, SVR, GPR and KRR) 

- Some MLRAs provide uncertainty 

intervals (e.g. GPR) 

- Some regression algorithms elicit instability with datasets having statistics 

deviating from the datasets used for training 

- Need for collecting field data (i.e. measurement campaigns are necessary) 
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Physical based Models - Reputation of physically-based methods 

(however, note the impact of 

regularization factors) 

- Computationally demanding due to the per-pixel based approach (however, 

solutions based on a priori information have been developed) 

 - Generally, and globally applicable (e.g. 

MODIS products) 

- Retrieval quality depends on the quality of the RT models, prior knowledge 

and regularization 

 - Capability to provide multiple outputs - Quite complex approach: requires parameterization and optimization 

procedures 

 - Yields additional information about 

uncertainty of the retrievals (e.g. through 

spectral residuals) 

- The imposed upper/lower boundaries in the LUT have a logical 

consequence in that estimated variables cannot go beyond the boundaries 

imposed. This contradicts somewhat the physical approach as the prior 

information has an overwhelming influence (Baret and Buis, 2008) 

 
 

- LUT-based inversion methods are often strongly affected by noise and 

measurement uncertainty (Liang, 2007) 
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 Physically-based Models 

Physically-based models provide an explicit connection between biophysical variables and 

canopy reflectance, through the modelling of radiation transfer within the canopy or leaf, based 

on physical laws (Figure 2-7). These models are categorised based on their complexities and are 

grouped into four categories: kernel-based, turbid medium, geometrical, and computer simulation 

models. The kernel-based model are simple Radiative Transfer Models (RTM) that estimate the 

directional reflectance of the land surface based on the sun-surface-sensor geometry and 

forward/backward scattering shape of the anisotropic reflectance pattern (Rahman et al., 1993; 

Roujean et al., 1992). The turbid medium model simulates the canopy as turbid parallel layers 

above a ground surface (Kuusk, 2001). Turbid models are best suited for dense canopies with 

small vegetation elements such as crops, grasses and forest. An example of a model adopted in 

this category is the PROSAIL model (Figure 2-8) (Berger et al., 2018; Jacquemoud et al., 2009), 

which combines the PROSPECT leaf optical properties model (Jacquemoud and Baret, 1990) and 

the Scattering by Arbitrarily Inclined Leaves canopy bidirectional reflectance model (Verhoef, 

1984). For geometric optical models, the description of canopy architecture is based on different 

geometric objects based on a given distribution and optical properties (Chen and Leblanc, 1997). 

However, intrinsically, geometric models are only accurate in the visible part of the 

electromagnetic spectrum, where absorption by vegetation is high (Chen et al., 2000).  Computer 

simulation models are complex models that rely explicitly on the canopy architecture, trace photon 

interactions with the environment and are configured to simulate inhomogeneous and urban 

landscapes  (Disney et al., 2006; Roupsard et al., 2008). 
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Figure 2-8: Calculation of canopy reflectance using the coupled PROSPECT + SAIL models. Variables are further 

explained in Chapter 5       Source: Berger et al (2018). 

Irrespective of the complexity of the models, in principle, only a coupled leaf-canopy RTM and 

an inversion routine are required for the retrieval of RTM LAI, where the approach is generic and 

generally applicable. Nonetheless, these approaches are not straightforward for several reasons. 

Firstly, an RTM should be selected such that a trade-off between realism and inversion possibility 

of the RTM can be established. As discussed above, more complex models tend to be more 

realistic, but require more variables, thereby making them more challenging to invert, whereas 

simpler models are easy to invert but less realistic. Secondly, RTMs are invertible only when an 

inversion solution is unique and dependent—in a continuous mode—on the variables to be 

extracted. However, these boundaries are not met because the inversion of canopy RTMs are 

usually undermined and ill-posed because the number of unknowns can be much larger than the 

number of independent observations. Hence, physical based models for the retrieval of LAI 

properties are a challenging task. To cope with the underdetermined problem of optimizing the 

inversion process, several strategies were proposed. They include iterative numerical optimization 

methods, look-up table (LUT) and hybrid approaches. 

The iterative numerical optimization method represents a classical approach to invert RTMs in 

image processing (Jacquemoud et al., 1995; Zarco-Tejada et al., 2001). The optimization method 

consists in reducing a cost function, which estimates the difference between measured and 

estimated variables by successive input variable iteration. However, optimization algorithms are 
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computationally demanding and time consuming when working the inversion of large-scale 

remote sensing data. Furthermore, optimization techniques require regularization techniques are 

required to achieve accurate results (Zarco-Tejada et al., 2001). 

LUT on the other hand are engineered to speed up the inversion process. This is achieved by 

generating spectral reflectance from a large range of combinations of variable values ranges. As 

such, the inversion issues are reduced to the identification of the modelled reflectance set that 

most closely resembles the measured one. This is achieved by querying the LUT and subsequently 

applying a cost function. A cost function minimizes the summed differences between simulated 

and measured reflectance for all wavelengths.  The main advantage of LUT-based inversion over 

numerical optimization is their computational speed, since the computationally demanding part 

of the inversion process is completed before the inversion itself (Dorigo et al., 2007). For these 

reasons, LUT-based inversion models are typically used as a preferred solution in RTM inversion 

studies (Verrelst et al., 2015a). Other strategies have been adopted to further improve the LUT-

based inversion by mitigating the ill-posed problem. They include the use of prior knowledge, 

introduction of cost functions, and the use of artificial noise. Despite the comparative advantage 

of the LUT method over the iterative numerical optimization approach, its drawback lies in its 

computational burden resulting from too many per-pixel iterations. An overview of the strengths 

and weaknesses of physically-based methods are listed in Table 2-4. 

 Hybrid Regression Approach 

Hybrid models are based on the combination of physical based models and usually the MLRA 

approach. Hybrid models adopt the generic level associated with physical based approach and 

complements with the flexibility and computational approaches from machine learning regression 

models towards the estimation of LAI. One comparative advantage of the hybrid model is that it 

uses all available data to train (non-linear) non-parametric regression compared to the LUT, which 

attempts to simulate as close as possible to the measured LAI. 

Hybrid models have made it into the operational processing chains with the sole purpose of 

generating LAI and other biophysical parameters using ANN (Bacour et al., 2006). Bacour et al. 

(2006) pioneered this approach that was based the inversion of ANN into RTM and ever since has 

been the core routine in various processing chains. For example, the MERIS vegetation algorithm 

is based on the training of ANNs with a database containing simulations from canopy and 
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atmosphere RTMs (PROSAIL). Similarly, the CYCLOPES products are processed in a similar 

ways to the MERIS product using SPOT-VEGETATION sensor (Baret et al., 2007). More 

recently, the Sentinel-2 Application Platform (SNAP) has adopted the same mechanism for the 

retrieval of LAI on a global scale (Weiss and Baret, 2016). However, while the ANNs have been 

applied extensively for the operational estimation of LAI, limitations still exist with this approach. 

For instance, LAI estimates from CYCLOPES were seen to be less accurate when LAI values 

were greater than 4 due to the saturation effect in radiative transfer models simulation and the 

ANN algorithms (Bacour et al., 2006; Weiss et al., 2007). Secondly, ANN models are usually 

referred to as ‘black box’ models, implying that they behave relatively unpredictably when used 

with input spectra deviating from what has been input during the training stage (Rivera et al., 

2014). 

Based on the limitations associated with the ANN models, other studies have applied other 

MLRAs with RTM for the estimation of LAI. Notably, Campos-Taberner et al.( 2016) applied the 

inversion of the PROSAIL radiative transfer model through the GPR, ANN and KRR methods 

using multitemporal Landsat and SPOT5 data for the estimation of rice LAI. Results showed better 

results generated from GPR models compared to the KRR and ANN models. Furthermore, Upreti 

et al. (2019) in their estimation of wheat LAI showed superior estimates using a GPR model 

compared to ANN applied in the SNAP toolbox. That said, further validation is required to 

confirm the performance of GPR models to already existing operational processing LAI models. 

Additionally, it remains to be seen whether rice LAI can be reliably estimated from GPR and 

ANN using Sentinel-2.  

 Measuring the Phenological Dynamics of LAI 

Having reviewed the importance of the phenological stages of rice in section 2.1, this section 

reviews the ability of current techniques to contribute towards a better understanding of the 

seasonal dynamics of LAI.  

Previous studies have focused on understanding the phenological dynamics of LAI in rice and 

other crops over the entire growing season (Qiao et al., 2019; L. Wang et al., 2019) as they provide 

in-season information of yield limiting factors such as nitrogen and irrigation application. Wang 

et al. (2019) compared statistical based models (parametric and non-parametric models) for the 

understanding the seasonal dynamics of rice. They argued that these approaches were robust for 
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understanding the LAI changes that occur during different phenological phases. Likewise, Qiao 

et al. (2019) argued that vegetation indices could be adopted for understanding the phenological 

changes of LAI in cereal crops.  While these approaches may have yielded good results, the 

models adopted will require re-calibrations when conducted in other farm regions, therefore 

limiting the replicability of these approach. 

Campos-Taberner et al. (2016) on the other hand investigated the seasonal dynamics of rice LAI 

using GPR hybrid models from SPOT and Landsat satellites. However, no study has validated the 

GPR and ANN model from alternating management regimes, which are important towards 

understanding yield limiting factors using Sentinel-2 satellite.  The robustness of these retrieval 

methods under alternating farming treatments, over different phenological stages has yet to be 

established. Therefore, the thesis explores the phenological dynamics of estimating LAI in an 

irrigated rice farm using Sentinel-2 data. 

2.8 Estimation of rice yields 

This section will look at the estimation of yield at varying spatial extents from satellite platforms 

using two yield estimation approaches. The review excluded proximal and airborne platforms due 

to issues related to scale (Dungan et al., 2002). 

 Satellite Estimation of rice yield 

Low spatial resolution satellites (< 250m) have been used to predict yield in rice and other crops.  

The Advanced Very High-Resolution Radiometer (AVHRR), a low-resolution satellite (1.1 km 

spatial resolution) has been utilised to predict yield. For instance, Bastiaanssen and Ali (2003) 

utilised AVHRR data to predict regional rice yield in Pakistan.  Validation results at county data 

scale showed a RMSE of 551 kg/ha, although AVHRR is basically too coarse a resolution for 

field scale crop yield estimations. In addition to AVHRR, the Moderate Resolution Imaging 

Spectroradiometer (MODIS) (≤ 250m) has been utilized extensively for yield estimation because 

of the temporal and spectral resolution of the sensor. Ren et al. (2008) predicted crop production 

using a MODIS-NDVI based model at regional scale with a 250 m spatial resolution in China. 

Predicted yield using MODIS-NDVI results showed that the relative errors of the predicted yield 

were between 4.62% and 5.40% and that the RMSE  (214.16 kg ha/1) was lower than the RMSE 

(233.35 kg ha/1) of agro-climate models at country scale. Similarly, Sakamoto et al. (2013) 
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estimated rice yield using empirical time-series MODIS model, suggesting the suitability of 

MODIS for suggest MODIS is capable of predicting yield at the regional scale. However, the 

spatial resolution of low spatial resolution satellite sensors makes them unsuitable for field to 

landscape scale yield monitoring. 

In an attempt to overcome the spatial limitations of low resolution satellite sensors, medium to 

high spatial resolution satellites have been adopted extensively for the prediction and estimation 

of yield (Gilardelli et al., 2019; Guan et al., 2018; Siyal et al., 2015). Notably, Landsat has been 

the preferred option for many researchers due to the free availability of data spanning more than 

40 years. Jin et al. (2017) used Landsat imagery integrated into a scalable satellite-based crop 

yield mapper to predict maize yield at county level in Midwestern US states, with results capturing 

75% of the yield variation in 3 states in United States. 

Kang and Özdoğan (2019) also used Landsat to downscale county-level yield statistics to 30-

meter resolution yield maps, which can inform between and within field maize yield variability. 

Despite results showing the suitability for predicting yield at high spatial resolution, Landsat 

temporal resolution of 16 days, reduces the acquisition of images especially between 50 -90 Days 

After Sowing (DAS) for rice, which has been identified as a crucial for predicting yield (Fageria, 

2007). Although measures have been adopted to fuse the daily temporal resolution obtained from 

MODIS and 30m spatial resolution from Landsat (Feng Gao et al., 2006; Gevaert et al., 2015), 

the performance depends on the characteristic landscape patch size and degrades somewhat when 

used on extremely heterogeneous landscapes (Feng Gao et al., 2006). 

Other medium to high resolution satellites like SPOT (Satellite Pour l’Observation de la Terre) at 

10m have been used for predicting yield. Noureldin et al. (2013) created rice yield forecasting 

models using satellite imagery in Egypt. Here validation results indicated that using NDVI 

combined with leaf area index (LAI) produced the model with highest accuracy and stability 

during the two rice seasons. However, the discontinuation of the SPOT 4 satellite and 

commercialization of SPOT 5,6 and SPOT 7 (now Azersky) serves as a limitation to the satellites 

used for crop yield estimation. Similarly, the commercialization of other very high-resolution 

satellites such as KOMPSAT, GeoEye, Worldview series Pleiades-1, are ideal for high resolution 

yield prediction. However, very high spatial resolution images may not be suitable for predicting 

yield in regions such as developing countries due to the financial implications of acquiring images.  
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The launch of Sentinel-2 in 2015 by the European Space Agency (ESA), creates new opportunities 

for agricultural monitoring, by making it possible to view agricultural fields in 12 spectral bands 

at a 10 – 20 m spatial resolution, with global coverage and a 5-day revisit frequency, and is 

compatible with the current and historical Landsat and SPOT 4 missions (Serrano et al., 2000). 

The Sentinel-2 satellite has on board bands from the visible to the shortwave infrared: four bands 

at 10 m, the classical broadband visible blue (490 nm), green (560 nm), red (665 nm), and near 

infrared (842 nm); six bands at 20 m, three narrow bands in the vegetation red edge spectral 

domain (705, 740 and 775nm). 

The addition of spectral bands along the red-edge curve opens up opportunities for the estimation 

of yield, as well as yield indicator monitoring (Drusch et al., 2012). For instance, Sentinel-2 has 

been used to accurately estimate yield indicators like Leaf Area Index (Korhonen et al., 2017; 

Sinha et al., 2020; M. Zhang et al., 2019), chlorophyll content (Ansper and Alikas, 2019; Clevers 

et al., 2017; Delloye et al., 2018), fraction of vegetation cover (Djamai et al., 2019) and biomass 

(Darvishzadeh et al., 2019; Pahlevan et al., 2020; Punalekar et al., 2018). Similarly, Sentinel-2 is 

better suited for irrigated rice monitoring during the dry season as issues with cloud are less 

pronounced compared to the rainy season, which affect the transmission of radiation between 

satellite and sensor targets (Coluzzi et al., 2018). However, Kanke et al. (2016) assessment of 

Sentinel-2 20m using red-edge indices improved the estimation of yield prediction in rice 

compared to indices without red-edge bands. Evaluating this trade-off, and specifically its 

implications in the context of yield estimation at different spatial scales (e.g. plot-level yield 

versus yields averaged over a larger spatial area), is the main focus of this study. In doing so, I 

address a key gap in scientific knowledge about how to best leverage Sentinel-2 imagery for rice 

yield estimation at farm to landscape scales, considering in particular the relative of Sentinel-2 

spatial and spectral properties at different scales of estimation. 

 Methods for Predicting Yield from Satellite Platforms 

Yield estimation at the individual field and landscape level is an imperative task for agricultural 

research and application (Zaks and Kucharik, 2011). Primarily, yield estimation falls into two 

categories: data assimilation approaches (Jin et al., 2018; Kang and Özdoğan, 2019a; Thorp et al., 

2012a) and empirical (Ahmad et al., 2020; Bolton and Friedl, 2013; Hunt et al., 2019; van 

Klompenburg et al., 2020). 
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The data assimilation approach integrates, both in space and time, canopy state variables with 

various information using remote sensing methods for optimizing crop parameters in crop models 

(Jin et al., 2018).  The process involves integrating observed variables (from remote sensing data 

resources), state variables (from a complete crop model system), model parameters (described 

relationships between the observed variables and state variables) and output variables (yield in 

most of the data assimilation) (Delécolle et al., 1992). The integration approaches usually adopted 

include calibration method, forcing method, and updating methods (Dorigo et al., 2007; Jin et al., 

2018; Kang and Özdoğan, 2019a; Moulin et al., 1998). Pagani et al. (2019) used a rice crop model 

(WARM model) and remote sensing information was used for predicting rice yield in three 

European countries. Results explained between 21 - 89% of the inter-annual yield variability from 

eight rice cultivars. Similarly, Gilardelli et al. (2019) assimilated LAI data obtained from Sentinel-

2 and Landsat into the WARM model to forecast rice yield.  The assimilation of remotely sensed 

LAI into model parameters increased the accuracy of the system with MAE and RRMSE 0.66 t/ha 

and 13.8% respectively, whereas, without data assimilation, they were 0.82 t ha-and 15.7%. 

Although these studies showed promising results for the estimation and prediction of yield, data 

assimilation approaches of yield mostly rely on model specifications that relate to various 

environmental stresses, which can hardly be fully corrected by only assimilating LAI. Also, using 

sophisticated crop growth models, such as Decision Support System for Agrotechnology Transfer 

(DSSAT) (Jones et al., 2003) and World Food Studies (WOFOST) (de Wit et al., 2019), to perform 

data assimilation for yield estimation requires specific complicated interactions between 

environmental factors and management practices, explicit information on soil properties and 

weather variables, as well as cultivar-specific parameters that are not normally available to 

farmers, preventing their use in yield estimation applications (Jin et al., 2018; Kang and Özdoğan, 

2019a; Lambert et al., 2018) 

The empirical methods on the other hand rely on in situ or synthetic yield data to train parametric 

or non-parametric models, such as machine learning algorithms (Hunt et al., 2019; Lambert et al., 

2018; van Klompenburg et al., 2020), to evaluate actual yield and can be applied at large scales 

increasingly congruent with the reality of smallholder agricultural systems (Lambert et al., 2018). 

Hunt et al. (2019) used the Random Forest MLRA and Sentinel-2 to accurately predict wheat yield 

in the UK at landscape scale. Similarly, Kayad et al. (2019) applied similar methods for the 
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estimation of maize yield in Northern Italy. Consequently, achieving robust 

smallholder/landscape yield predictions is important in developing countries, notably where 

subsistence agriculture still determines food security, and for profitable farmer participation in 

more contract-oriented agricultural areas.  

The practicability of using empirical models are further enhanced with the availability of 

validation yield data innovations in farming technology, providing an opportunity for farmers to 

measure, observe and respond to the spatial and temporal variation in crops. These precise 

measurement approaches aim to ensure accurate targeting of agricultural interventions. A key 

component of precision monitoring has been the incorporation of high-accuracy GPS technology 

into farm machinery, such as the combine harvester. With the inclusion of sophisticated on-board 

yield monitors, there is now an opportunity to access fine-resolution mapping of within-field 

variation in crop yields.  

The availability of high-resolution satellites opens up the opportunity to access the potential of 

predicting within field variability at landscape scale, while also evaluating within field variability 

at smallholder farms. The thesis explored the possibility of predicting rice yield using empirical 

models. 

2.9 Summary and Gaps in Literature  

This literature review has provided insight on the importance of rice globally, with specific focus 

on Nigeria. It has highlighted the potential of growing rice in Nigeria based on the natural 

resources and initiative adopted by the Nigerian government. However, the review has highlighted 

the factors behind low yield outcomes of rice in Nigeria. The review further highlighted the 

importance of each phenological phase of rice growth in relation to actual yield productivity. 

Remote sensing approaches were identified as a suitable means of monitoring yield and yield 

indicators from different remote sensing platforms. The review focused on optical remote sensing 

for monitoring rice aboveground biomass, leaf area index and yield. 

When considering the estimation of rice above ground biomass at fine high resolution, the review 

highlighted the superiority airborne (drones) platform for the estimation of field scale AGB 

estimation as compared to satellite, airborne (remotely piloted aerial vehicles) and proximal 

sensors as a result of the acquisition cost and their high spatial and temporal resolutions. Further 
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investigation highlighted the characteristics of drone-mounted sensors for the estimation of rice 

AGB. Notably, the structural properties of RGB sensor to generate plant height from crop surface 

models are an exciting development for the estimation of rice AGB. Previous studies have also 

identified the significant potential of more spectrally sophisticated drone sensors (i.e. multi-

spectral cameras) that have the capacity of generating vegetation indices and texture metrics for 

the estimation of rice AGB. However, the comparative advantage of the structural properties of 

RGB-based sensors compared to the spectral properties of multispectral based sensors are yet to 

be established. This thesis serves to also provide a comprehensive comparison of both types of 

sensors for estimating AGB during the reproductive to ripening stages of rice, which are 

considered critical for biomass formation. From literature review, I identified they key research 

question as “What are the relative merits of using data either from a drone-mounted consumer-

grade RGB, a scientific grade multispectral camera, or their combined use, for estimating rice 

mid-late season above ground biomass?” 

Similarly, the literature review also reviewed leaf area index as a yield indicator of rice. The 

review focused on the estimation of LAI from field to global scale and identified the advantages 

of satellite platforms over airborne and proximal platforms. Of the satellite platforms, Sentinel-2 

satellite was identified as potentially the most suitable satellite for upscaling LAI monitoring at 

field to global scale. Subsequently, I reviewed various retrieval methods for estimating rice LAI. 

LAI retrieval methods were grouped into parametric, non-parametric, physical based and hybrid 

models. Parametric models were identified to be less computationally demanding compared to 

other retrieval methods, but are site specific and require re-calibration when executed in other rice 

farms. Non-parametric models present a more robust approach for LAI retrieval and results, in 

most cases, are superior to parametric models. However, non-parametric models require collection 

of field data for training the model. Physical based models on the other hand are more robust as 

these models generic and globally accepted, reducing the need for re-calibration based on location. 

On the other hand, these models are complex and require parameterization and optimization 

procedures. Although strategies to mitigate the ill-posed nature of physical models, the imposed 

upper and lower boundaries from the commonly adopted LUT affect the accuracy of LAI retrieval. 

To somewhat tackle this, the combination of physical based models (e.g., Radiative Transfer 

Models) and non-parametric models (e.g., MLRA) have been adopted for the global operational 

retrieval of LAI. To date, most hybrid models have adopted the inversion of ANN models with 
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physical based models. However, saturation of LAI estimates has been noted in several studies, 

especially at high LAI, which usually occurs during the reproductive and ripening stages of rice 

growth. The reason being that saturation affects the model at high LAI values. LAI also often 

difficult to train because of their multi-parameter complexity and are black box in nature. Studies 

have opted to use other MLRAs in combination with RTMs which have presented superior 

estimation when LAI values are high. Particularly, the GPR model has been identified in literature 

to outperform other MLRAs for LAI estimation. However, the phenological dynamics of GPR 

hybrid model for the retrieval of rice LAI phenology from Sentinel-2 is yet to be investigated.  

Finally, I reviewed yield estimation from satellite platforms for the estimation of yield from 

smallholder to landscape scales. As identified with the estimation of LAI across scales, Sentinel-

2 was identified as potentially suitable for monitoring high resolution yield based on the free 

availability of satellite images at high spatial, spectral and temporal resolution. However, based 

on varying spectral resolutions of Sentinel-2 10m and 20m spatial resolutions, a research gap was 

based on the spatio-spectral influence of baseline Sentinel-2 for estimating within field variability 

of yield at landscape scale and between field variability of smallholder farmer plots.  Furthermore, 

I identified the approaches used for estimating yield in rice using earth observation satellites, 

which include data assimilation of remote sensing data in crop simulation models and empirical 

models. Crop models have been identified to be more robust than empirical models for predicting 

yield at smallholder scale, however, they are difficult to implement in scales much larger than 

smallholder farm scales. On the other hand, the simplicity of empirical models in combination 

with machine learning models and availability of high-resolution images opens the opportunity to 

predict yield at smallholder and much larger scales. Therefore, the research question established 

for monitoring yield was “What is the influence of the spatio-spectral resolution of Sentinel-2 for 

estimating within field variability of yield at landscape scale and between field variability of 

smallholder farmer plots? 
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Chapter 3 Methodology 
 

The methodology chapter describes the characteristics of the study area and all datasets used in 

addressing the research objectives. It also explains the pre-processing operation and quality 

assurance checks performed on the data to assess their quality and suitability. It goes further to 

explain the experimental design of the 2.5 ha field experiment, as well as the conventional farming 

practice over 1150 hectares of irrigated rice farming at Olam farm. Research objectives 2 and 3 

(highlighted in section 1.2) are associated with the 2.5-hectare experimental campaign conducted 

in the 2017-18 dry season field campaign, addressing the relative merits of structural and 

multispectral information for estimating mid-late season above ground rice biomass from drone 

imagery and the phenology dynamics of LAI retrieval using Sentinel-2.  Research objective 4 was 

achieved using in the 2018-19 dry season field campaign, addressing the relative importance of 

the spatial and spectral resolution of Sentinel-2 for estimating rice yields across a range of spatial 

extents. Field sampling techniques to coincide with drone and satellite imagery overpass were 

explicitly highlighted with the rationale for each decision. This chapter also outlines the image 

processing methods and data pre-processing used during data analysis. 

3.1 Study Area 

The study was conducted in Nasarawa State, situated in the central part of Nigeria otherwise 

referred to as the middle belt region of Nigeria. The state lies between longitude 6°57’16” E to 

9°33’51” E and latitude 7°46’17” N to 9°18’47” N (Figure 3-1). The population of Nasarawa State 

according to the 2006 census report was 1,863,275, with a population density of 65 people/sq km. 

Nasarawa State is a cosmopolitan state, with diverse people from different backgrounds co-

habiting peacefully. The main indigenes are:  Koro (Migili), Eggon and Kambari, Gbagyi, Mada, 

Gwandarawa, Afo, Hausa and Nidre.  Agriculture is the main economic activity in Nasarawa State 

(Agidi, 2018). Farming is subsistence and generally rain-fed cultivation of annual crops.  

Although there are many rivers in the state, the population engaged in irrigation farming is 

low(Salau, 2012). 

Crops grown include grains such as rice, wheat, soybeans, beans, maize and millet, and tuber 

crops such as yam and cassava. Smallholder farmers undertake the bulk (80%) of crop production 

in Nasarawa State, most of whose labour force, management and capital originate from the 

households (Akwa et al., 2007). The average number of farm plots per household ranges between 
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3 -30 plots, which is  between 0.4 - 5.0 hectares (Salau, 2012) primarily due to land available and 

capacity for cultivation by each household. 

 

Figure 3-1:  (a) Nasarawa state highlighted within Nigeria, (b) the study area location highlighted in Doma local government 
area, (c) 1150ha Olam rice farm where the field campaigns were implemented. .    

 

In terms of soil and geology, Nasarawa state is richly endowed with fertile soils from soil materials 

of alluvial deposits in most of the southern part of the state, to a more structured and developed 

Oxisols and Ferrisols in the northern part of the state, with underdeveloped soils on hillslopes and 

entrenched river valleys (Agidi, 2018). The dominant parent materials for soils in the state are 

derived from Cretaceous sandstone, siltstone, shale, limestone and ironstone of the Precambrian 
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to Cambrian. The soil in Nasarawa is derived mainly from basement complex formation of 

sedimentary rocks.  Lateritic crust occurs in extensive areas on soils on the basement complex, 

while hydromorphic soils are common along the Benue trough and flood plains of major rivers. 

Many of the major soil orders have been identified across the state and include: Ultisols, Alfisols, 

Entisols, Inceptisols, Vertisols and Oxisols (Agidi, 2018). Studies have shown the soil in 

Nasarawa to be suitable for the cultivation of rice (Kyat and Idoga, 2018). 

The vegetation of Nasarawa State lies within the guinea savanna ecoregion of West Africa, which 

is a derivative of the tropical deciduous forest that existed centuries ago. Three distinct vegetation 

types can be seen in the state according to Tarfa et al. (2019) which are: Southern Guinea savannah 

and Northern Guinea Savanah. The region enjoys a rainy season that lasts for about 6 to 7 months 

(April-October) with peak rainfall in July. In the rainy season, the grasses and leaves are green 

and fresh, while in the dry season, they die through withering or bush fire (Agidi, 2018). 

The fieldwork campaign, which underpins the results presented throughout the thesis, was 

undertaken at Olam rice farm, in Nasawara State (https://www.olamgroup.com/products-

services/olam-global-agri/rice.html). Olam rice farm is located in Doma Local Government Area 

in Nasarawa state. Located in Rukubi village about 60 km from Doma, Olam farm sits on 10,000 

hectares of land, although less than 5,000 hectares are currently cultivated (refer to Figure 3-1). 

Olam rice farm is currently the largest and most mechanized rice farm in Nigeria and Africa. The 

farm which started operation in 2012 is mechanised with high powered farm machines, some fully 

automated. With an irrigation water channel that allows water flow from the River Benue where 

the farm draws its water, rice production at Olam is not defined by seasons, providing the 

opportunity to grow rice during the dry season months. 

 Rice varieties 

Development of the lowland NERICAs was initiated from cross-breeding specific African rice 

varieties, known for their resistance to rainfed lowland stresses, with popular – but susceptible – 

Asian rice varieties. The lowland NERICA development was facilitated through the cross-

breeding approach with national programs in West and Central Africa to accelerate the selection 

process and achieve wide adaptability of the rainfed lowland NERICA(Gridley et al., 2002). 
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Sixty lowland NERICA varieties (NERICA-L), with a yield potential of 6 to 7 t/ha and excellent 

resistance to significant lowland stresses are available. Two of the varieties were selected for this 

research the include NERICA L34 and NERICA 61. Table 3-1 elaborates on the merits of the 

genetically enhanced species and the reason for adopting them. 

Table 3-1: Characteristics of NERICA varieties. NERICA is the combination of Asian and African species of rice 

Source: (Gridley et al., 2002) 

Characteristics of NERICA varieties 

1 Wide and droopy leaves that help to smother leaves in early growth. 

2 Strong stems that can support heavy heads of grain. 

3 More tillers with longer grain-bearing panicles than either parent and non-shattering grains. 

4 Stems with secondary branches on their panicles that can carry up to 400 grains. 

5 Early maturity, 30-50 days earlier than currently grown cultivars. 

6 A good height that allows easy harvest of panicles. 

7 Good tolerance to drought. 

8 Resistance or tolerance to Africa’s most serious pests and diseases - African rice gall midge, 

rice yellow mottle virus and blast (Magnaporthe grisea). 

9 Tolerance to acidic soils but responsive to limited organic and inorganic fertilizers. 

 

3.2 Overview of field campaigns 

The fieldwork consisted of   two dry season field campaigns in 2017-2018 and again in 2018/2019.  

The objective of the first field campaign was to alter the application of nitrogen and water 

applications in order to obtain variations in LAI, above ground biomass and plant height between 

subplots. A factorial design experiment was used, in which treatments of nitrogen and water were 

varied and field measurements of LAI, biomass, plant height and canopy reflectance were made. 

The objectives of the second field campaign conducted in 2018/2019 were to obtain yield 

measurements using the combined harvesters. During this campaign, yield was collected on the 

following season from a 1150ha portion from Olam farm (refer to section 3.2.2). 
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Field campaign 2017/2018 

3X3 Experimental Design plots 

(2.5 ha) 

Data Collected 

Above ground Biomass 

estimation (Chapter 4) 

Phenological dynamics 

of LAI (Chapter 5) 

Plant 
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Drone 
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Dry Biomass 

Measurement 

LAI 

Measurement 

Chlorophyll 

Measurement 

Field spectra 

Measurement 

Field campaign 2018/19 

Land Preparation 

1150ha Rice Farm 

Fertilizer and irrigation 
management 

Yield (3 combine harvesters) 

Yield estimation (Chapter 6) 

Data Collected 

Fertilizer and irrigation 

management 
Land Preparation 

Figure 3-2: Methodological flowchart of field data collection for the thesis in 2017/18 and 2018/19 
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3.3 Field campaign 1 for 2017/18  

 

To explore the use of different remote sensing products and platforms for evaluating the relative 

merits of the structural and multispectral information from drone cameras for estimating mid-late 

season above ground rice biomass  and estimating the seasonal dynamics of rice Leaf Area Index, 

I developed and implemented rice production experiments on a portion of a commercial farm 

(Olam farm) in a single growing season (2017/18), which lasted for 117 days from 23/12/2017 to 

17/04/2018 – the dry season in this part of Nigeria. Data collected from these experiments was 

used as the basis for analyses presented in Chapters 4 (Biomass) and 5 (LAI) of the thesis.  

The field experiment composed of a randomized split-plot design where levels of irrigation and 

nitrogen fertilization were varied to generate spatial and temporal variability in crop chlorophyll 

content and leaf area index (LAI).   The fully factorial design consisted of three irrigation regimes 

and three nitrogen (N) application rates.  Treatments were arranged in three blocks (replications). 

Within each block there were three plots (77 m x 30 m), each containing three sub-plots (25 m x 

30 m). A 2 m and 1 m wide alley was used to separate the plots and sub-plots; respectively. 

Irrigation regimes were controlled at the plot scale, whereas fertilisation regimes were controlled 

at the sub-plot (Figure 3-3).  The study varied the application of nitrogen and water in order to 

obtain high variability between subplots. 

Soil water potential was monitored at the Alternate Wetting and Severe Drying (AWSD) and 

Alternate Wetting and Moderate Drying (AWMD) plots using a 30 cm tensiometer (Irrometer 

Tensiometer). Tensiometers act like a clone of the root, allowing the soil moisture to interact with 

the instrument through the ceramic tip. Soil water tension outside of the instrument tries to remove 

the water from it, which creates a measurable tension inside the column(Wang et al., 2016a). 

Readings at 15–20 cm soil depth were recorded at 1200 h each day. When soil water potential 

reached the threshold (-10 KPa and -15 for AMWD and AWSD regimes; respectively), a flood 

with 5–10 cm water depth was applied. The amount of irrigation water was monitored with a flow 

meter (LXSG-50 Flowmeter, Shanghai Water Meter Manufacturing Factory, Shanghai, China) 

installed in the irrigation pipelines located between each of the blocks. Each plot was irrigated/ 

drained independently. 
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Figure 3-3: Experimental set-up for data collection. The site was divided into 3 blocks. Each block was divided into 3 plots with each plot having 3 sub-plots. The treatment for each 
plot were divided into continuous flooding, alternative wetting and moderate drying, and alternative wetting and severe drying. The nitrogen applications were classed as high 
nitrogen, normal nitrogen and low nitrogen.   
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Nitrogen treatments consisted of three N application rates (55, 110, and 165 kg ha−1) (Figure 

3-4) and represented low (LN), normal (NN), and high (HN) levels of Nitrogen respectively. 

Nitrogen as urea was applied at seeding stage (25 Days After Sowing (DAS)), early tillering 

(40 DAS) and at panicle initiation (55 DAS) (Refer to section 5.2.4). The proportion of N split 

across these three growth stages was 30%, 40% and 30%, respectively. This was achieved 

using the broadcast method of application.  These application methods are in line with previous 

published literature on Nitrogen Applications in rice(Bijay-Singh and Singh, 2017; Liu et al., 

2016). 

 

Figure 3-4: The application of water and Nitrogen at the experimental plots during the 2017/18 season. 
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 In situ measurements of leaf area index (LAI)  

In situ LAI measurements were obtained for the validation of the LAI models generated for 

monitoring the phenological dynamics of irrigated rice in Chapter 6. Measurements were 

conducted from January 30th to March 26th 2018 (Table 3-2).   

Table 3-2: Field Measurements and data used for calibration and verification of the retrieval scheme. 

Phenology 

phase 

Date  Days After Sowing 

(DAS) 

Spectrometer 

data 

LAI Chl Biomass Plant 

height 

Vegetative  30-01-18 37 ✓ ✓ ✓   

 04-02-18 42 ✓ ✓ ✓   

 14-02-18 52 ✓ ✓ ✓   

 19-02-18 57 ✓ ✓ ✓   

Reproductive 24-02-18 62 ✓ ✓ ✓   

 06-03-18 72 ✓ ✓ ✓   

 16-03-18 82    ✓ ✓ 

Ripening 26-03-18 92 ✓ ✓ ✓ ✓ ✓ 

 

Leaf area index was measured indirectly using a LAI-2200 Canopy Analyzer (LI-COR, 

Lincoln, NE, USA). LAI-2200 Canopy Analyzer (LI-COR, Lincoln, NE, USA) consists of a 

fisheye lens (148° of field of view) divided into five concentric rings with zenith angles of θ: 

7°, 23°; 38°, 53° and 63°. For measuring rice LAI, a 45° view cap was used to block off the 

operator from the instrument's field of view as well as part of influence of the direct light on 

the sensor (Stroppiana et al., 2006).   

LAI 2200c consists of a console and provision for one of two optical sensors, with the wand 

serving as the data collection component of the LAI-2200C. The wand keypad includes two 

buttons that are used for logging data, switching between A and B readings, and power on/off 

the optical sensor. A sequence of readings was determined “on-the-fly” by using the A/B key 

on the wand keypad. LAI measurement was collected within each of the five 1 m2 quadrats 

which were established within each sub-plot (25 x 30 m; Figure 3-5) (Figure 3-5). On each 

sampling date, one above-canopy and four below canopy measurements radiation 

measurements were collected (Figure 3-5) along a transect. All measurements were collected 
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either in the early morning or late afternoon to ensure diffuse lighting conditions (Fang et al., 

2014).  

 

Figure 3-5: LAI measurements showing the Wand and console collecting above and below LAI readings 

 

Individual readings were subsequently imported into the instruments processing software (FV 

2200 version 2.1.1), to compute LAI measurements.  

The LAI-2200C relies upon four assumptions: all light is absorbed by the foliage, the foliage 

is randomly distributed, the foliage orientation is random, and the foliage elements are limited 

by the view ring.  Although no real canopy conforms exactly to these assumptions due to 

offsetting errors (Reichenau et al., 2016), such as illumination conditions (direct versus diffuse 

illumination), variations in the instrument footprint, saturation of the optical signal in dense 

canopies (gap fraction saturates as LAI approaches to 5–6, (Gower et al., 1999), simplification 

of leaf optical properties (Hyer and Goetz, 2004), poor performances of some instruments (e.g. 

AccuPAR, LAI-2000) for short canopies (although LAI-2200C is better suited for short 

canopies), and the ability of the sampling scheme to capture canopy spatial heterogeneity 

(Weiss et al., 2004). However, with optimum LAI instrumentation performance has led to 

obtaining accurate LAI measurements using LAI-2000/2200 in rice (Fang et al., 2014; 

Stroppiana et al., 2006), thus, we adopted the approaches by the two studies for measuring LAI. 

 In situ chlorophyll measurements  

Chlorophyll data were used to for parametrisation of the PROSAIL radiative transfer model 

used to   estimate LAI using a combined radiative transfer and machine learning model (see 

chapter 6 and Figure 3.2).  
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Five plants within each of the five 1 m2 quadrats per sub-plot (section 3.2.1) were selected for 

leaf chlorophyll content (Cab). (Figure 3-6). Chlorophyll was measured non-destructively 

using a chlorophyll content meter (atLEAF+, FT Green, Wilmington, DE), which measured 

relative leaf level chlorophyll content. Measurements were collected on the same days as LAI 

(section 3.2.2; Table 3-2).  

The atLEAF+ sensor is a handheld device, which uses a logarithmic ratio between red and NIR 

light transmission (650, 900 nm). The red and NIR regions take advantage of the relationship 

between high absorption by chlorophyll of red radiant energy and high reflectance of near-

infrared energy for healthy leaves and plant canopies.  Several studies have used the atLEAF+ 

to monitor leaf chlorophyll content in crops (Novichonok et al., 2016; Padilla et al., 2018). 

Strong correlations have previously been observed between the atLEAF+ instrument and the 

more expensive SPAD 502 meter (Zhu et al., 2012). The atLEAF+ meter readings were 

subsequently converted to leaf chlorophyll content (mg/cm2) using the manufacturers 

calibration equations. 

 Plant height 

Plant height measurements were measured to evaluate the performance of RGB sensor 

structural plant height estimation (see section 3.4.2).  

Manual measurements of plant height were undertaken using a 2 m rule (Table 3-2; Figure 3-

6).  Plant height was measured for five individuals plants within each of the  five 1m2 quadrats 

as previously used to estimate LAI and chlorophyll content (Figure 3-6);  (Watanabe et al., 

2017).The five plant heights were subsequently averaged to produce a single mean plant height 

per sub-plot (n=27). As with LAI and Chl measurements, plant height measurements were 

conducted during the reproductive and ripening stages of rice growth. (Table 3-2) 
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Figure 3-6: Chlorophyll and Plant height measurement on the experimental plot in 2017/18 season  

 

 Rice biomass measurements 

Biomass measurements were used to evaluate the estimation of the rice AGB from RGB and 

Multispectral cameras. Results from the estimation was used in chapter 4(Table 3-2; Figure 3-

7). 

Biomass measurements were obtained immediately after the collection of plant height on two 

collection dates in March (Table 3-2). On each sampling occasion, plants, within a 0.4 x 0.4 m 

area were destructively harvested from the sampling region of each sub-plot (Figure 3-7. The 

fresh biomass samples were cleaned, the roots clipped, and stem, leaves and ears were weighed 

prior to oven-drying at 80 °C for 72 hrs or more depending on the moisture content of the plant.  

The samples were then weighed to ascertain dry biomass (kg/m2). 

 

Figure 3-7: Destructive biomass collection and drying from the 27 experimental plots 
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 Canopy spectral measurements and processing 

The purpose for obtaining spectral measurements was for building the PROSAIL radiative 

transfer model for the estimation of LAI dynamics in chapter 6. 

Canopy reflectance was measured using an ASD Field spec Spectro-radiometer (400 to 2500 

nm wavelength range), on dates to coincide with LAI and chlorophyll measurements (section 

3.3.1, 3.3.2; Table 3-2) from the experimental plots in the 2017/18 dry season campaign. On 

each sampling occasion from the experimental plot, five spectral measurements were collected 

and averaged for each of the five 1 m2 quadrats per subplot (Figure 3-8). The five averaged 

spectral reflectance per quadrat were averaged to account for the spectral measurement for each 

subplot. Measurements of a white spectralon panel (FSF, Edinburgh, United Kingdom) were 

also conducted through optimization measures to convert spectral measures of radiance to 

reflectance prior to the collection of field spectra on each subplot. Optimisation measures were 

taken to adjust the sensitivity of the instrument’s detectors according to the specific 

illumination conditions at the time of measurement. For consistency, optimisation occurred at 

the start of measurement for each subplot. However, in some cases where sudden increase or 

decrease in sun illumination, optimisation occurred immediately. Additionally, when cloud 

passed over the experimental plots, we waited for a large enough clear spell before collecting 

measurements. A total of 69 soil spectral samples were obtained from the experimental plots. 

Log sheets were used to maintain accurate documentation of any changes in solar irradiance 

and to make notes of every filename and corresponding surfaces. 

All spectra were collected between 10:00 and 14:00, to ensure that the canopy was exposed to 

full sunlight (Figure 3-8), using an 18-degree field of view fore optic, held 1 m above the plant 

canopy. 

Reflectance values were calculated by post-processing using the FSF template ASD Raw 

Reflectance Data Template_Ver 03.XLT. The atmospheric water absorption bands (1350 – 

1460 nm and 1790 – 1960 nm) were subsequently removed, as reflectance data were noisy in 

these regions (Appendix 1). Distinct wet and dry soil spectral reflectance measurements from 

the experimental plots were also during the field campaign.  

To match the spectral bands of Sentinel-2, spectral data were resampled to match the Sentinel-

2 MSI bands using the sensors Spectral Response Function (SRF) as defined within the freely 

available ARTMO (Automated Radiative Transfer Models Operator)  software (Verrelst et al., 

2012c).  
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Figure 3-8: Collection of spectral data using the ASD spectrometer and a white reflectance panel through 

optimization measures to convert spectral measures of radiance to reflectance 

 

 Drone Imagery and processing 

A SenseFly eBee drone, equipped with the a SensFly RGB (S.O.D.A) camera and Multispectral 

Sequoia camera were utilised to capture images of the field experiment (apx 2.5ha (Figure 3-

9, section 3.2.1) for the estimation of rice AGB during the reproductive (16th March) and 

ripening (26th March) stages of rice growth (Table 3-2).  This was undertaken to in order to 

fulfil the research objective of determining the relative merits of the structural and multispectral 

information from cameras for estimating mid-late season above ground rice biomass from 

drone imagery. On each flight date the drone was flown twice using the same flight plan; first 

with the RGB camera mounted on board and then with the multispectral Sequoia camera. 125 

images were acquired with the SODA camera while 500 images were acquired from the 

sequoia camera. 

The commercially available fixed-wing eBee (SenseFly, Cheseaux-Losanne, Switzerland; 

Figure 3-12) is a hand-launched, autonomous flying drone with an electric motor-driven pusher 

propeller. It has a 110 cm (43.3 in) wingspan and a weight of about 1.1 kg (2.4lb), including 

RGB camera, inertial measuring unit, GPS and battery payloads. The maximum flight time 
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(with RGB camera) is approximately 59 min, which results in a coverage was of approximately 

40 km2 (15.4 mi2) per flight when weather conditions are not above 30°c.  

The eBee plus flight plan managed through SenseFly's eMotion software and the flight 

monitored using an autonomous flight plan mirroring a ‘lawnmower’ design.  The software 

requires initial parameterization to determine the flight plan, take-off and landing point and to 

monitor the environmental conditions and its effect on the UAV. The software then 

automatically calculates the number of flight lines needed to cover the area of interest based 

on the flight height, with flight height was set to 120m. Similar flight plans were used for both 

cameras to ensure consistency and repeatability. 

 

Figure 3-9: The ebee plus drone in preparation for take-off. The LED green solid green light indicates ready to take-

off'. B. The researcher monitoring of the flight plan with a laptop of the experimental field along with the field 

experiment team. 

Ground Control Points (GCPs, 10 in total), in the form of black and white checked 1m by 1m 

targets, were permanently installed and evenly distributed across the field site (Figure 3-10). 

The centre of GCP coordinates were recorded by a Trimble Geo 7X GPS (www.trimble.com). 

http://www.trimble.com/
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Figure 3-10:  Experimental plots showing the location of targets spread across the field. 

 

3.3.6.1. SODA Sensor Optimised for Drone Applications RGB Camera 

The Ebee plus drone is equipped with a senseFly SODA camera (senseFly SA, Cheseaux-sur-

Lausanne, Switzerland) which is designed specifically for visualisation (Table 3-3). The small, 

ultra-light, and fully configurable camera has built-in dust and shock protection features a 20-

megapixel RGB sensor with a 1-inch sensor. 

Table 3-3: Technical specifications of the senseFly’s S.O.D.A.  Digital Camera 

Parameter Value 

Optical sensor size 116.2 mm2 

Image size 5742*3648 pixel 

Focal length 10.6 mm 

Pixel size 3 cm 

 

Proprietary Pix4D software was used to generate 3D point clouds and orthomosaics using all 

125 images collected for a specific day for generating plant height and discrete spectral bands. 

A standard three-step semi-automated processing workflow was used (Figure 3-11). For correct 

scale, orientation and geographic location of generated products, GCPs were incorporated by 

identifying where they each occurred.  
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Figure 3-11: Pix4D processing workflow: 1 Initial processing of key point extraction, triangulation, bundle adjustment and 

sparse point cloud generation; 2. Point cloud densification; 3. Digital surface model (DSM) and orthomosaic generation. 

Source: Malambo et al., 2018 

Pix4d undistorts each of the original images, correcting the lens distortion of the camera based 

on the camera model (S.O.D.A camera).  After a first pass to search for automatic feature tie-

points through matching pairs of images using aerial grid, the manual ground control points 

(GCPs) were used to anchor the images against the ten ground references, which were 

measured by Trimble Geo 7XGPS. For the initial processing of the images, the standard 

calibration method from Pix4d was applied to the images (Table 3-4). The automatic tie points 

and GCPs are then used in the bundle block adjustment before the density point cloud is 

constructed. In Pix4D, the bundle block adjustment is calculated using the relationship between 

overlapping images, keypoints, GCPs, and the specific internal camera parameters and 

adjustments are applied to images within each specific block. The final processing steps were 

the generation of the 3D textured mesh, surface models including the digital surface model 

(DSM) and digital terrain model (DTM), and the orthomosaic. The orthomosaic is obtained 

from the DSM and corrected for perspective, with the value of each pixel calculated as an 

average of the pixels in the corresponding images (Appendix 2).  

Table 3-4: Three step work flow for processing the S.O.D.A camera images from Pix4d software 

1. Initial processing 2. Point cloud densification 3.DSM & orthomosaic generation 

Keypoint image scale: Full Point density: Optimal Ground resolution: Automatic 

Calibration method: Standard Image scale: ½ of original Use noise filtering: Yes 

  Surface smoothing: Sharp 
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3.3.6.2. Sequoia Multispectral Sensor 

Multispectral imagery was collected with a Parrot Sequoia camera, which captures four discrete 

spectral bands: green (wavelength = 550nm, bandwidth = 4 0nm), red (660 nm, 40 nm, red-

edge (735nm, 10nm) and near-infrared (790nm, 40nm) at a resolution of 11 cm.  The parrot 

sequoia multispectral sensor is a self-calibrating system that incorporates an integrated 

irradiance sensor using the sun angle correction radiometric calibration technique. The sun 

angle correction radiometric calibration technique was possible to apply to the eBee drone 

because the orientation between the camera and the sunshine sensor is fixed and known. A grey 

balance radiometric calibration target (also called calibrated reflectance panel) was used to 

calibrate the camera before each flight. The sunshine sensor allows sunlight information to be 

logged and captured throughout the flight. Utilizing these irradiance values, the system 

automatically calibrates all output images along with assigning geolocation information from 

the Parrot Sequoia’s onboard GPS, IMU, and Magnetometer. Because the sunshine sensor 

records information in real time during each flight, Sequoia-derived reflectance values vary 

relatively insignificantly with the weather conditions(Deng et al., 2018).  

During the initial processing stage, the calibrated images and the 500 images from the four 

spectral bands were imported in Pix4d for further processing. The sequoia camera is equipped 

with four multispectral sensors, and the aerial triangulation of each of the sensors are processed 

at the same time, accounting for each sensor’s lens distortion. Thereafter, a reconstruction of 

the surface was produced via a dense point cloud using multi-view stereo matching (Deng et 

al., 2018). Finally, individual orthorectified images were combined into a 4-band multispectral 

orthomosaic image to obtain the UAV orthophoto of the entire area. Due to the fact that each 

spectral band was processed considering its own characteristics, band-to-band alignment was 

achieved.  

3.4 Field campaign 2 2018/19: Yield monitoring 

 

Yield data collection were conducted across Olam farm in Nasarawa during the 2018/19 

irrigation dry season farming.  The objective of this second field campaign was to obtain yield 

data with spatial co-ordinates from a combined yield harvester. Data collected during this field 

campaign included were used to evaluate the yield models generated from Sentinel-2 data. 

Forty-eight plots were created across the entire farm (~ 1150 ha) which ranges in size from 

20ha to 35ha. The farm consists of NERICA Faro 61 and NERICA Faro 44 varieties of lowland 
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aerobic rice due to their resilience to drought and weed infestations. Both varieties have early 

maturing yield (<110 – 120 days) and are commonly used for irrigation rice production in 

Nigeria.  

Prior to sowing, land preparation was conducted. The first step for land preparation involved 

burn stubbing. Burn stubbing involves intentionally setting fire to the straw stubble that 

remains after grains have been harvested from prior season(Kumar et al., 2015). Burn stubbing 

provides rapid and complete residue removal, especially for those practicing multiple cropping 

(Bijay-Singh et al., 2008; Bijay-Singh and Singh, 2017). Although studies have argued that this 

approach is important for clearing residual rice straw due to simplicity and economic 

implication compared to other approaches (Chawala and Sandhu, 2020), open burn stubbing 

residues also contributes to global warming through emissions of greenhouse gases (GHGs) 

such as carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) (Gadde et al., 2009; 

Gupta et al., 2004). Notwithstanding this, strategic burning of stubbles, based on sound 

agronomic principles, may be a valid option(Kumar et al., 2015). Burn stubbing provides rapid 

and complete residue removal, especially for those practicing multiple cropping (Bijay-Singh 

et al., 2008; Bijay-Singh and Singh, 2017). Thereafter, tillage of the soil was prepared by 

mechanical agitation using ploughing, heavy disking and harrowing methods. The importance 

of the implementation of tillage for improving soils response to fertilizer and for improving 

yield has been shown in literature(Ahmed et al., 2020). Afterwards, last stage of land 

preparation was the development of cross bunds. For each of the 48 plots, 50cm by 30 cm 

bunds were constructed. These bunds were compacted and properly sealed to prevent water 

seepage through cracks and holes.  The final stage of land preparation before sowing was soil 

rolling. Soil rolling was conducted to smoothen the field to create better water reception from 

the surrounding soil layers and for faster germination. 

For irrigation during the dry season, dams were constructed at strategic locations on the farm 

to cater for the supply of water during the growing season. Water was drenched from River 

Benue (apx 5km from the farm) and stored in the dams. Border irrigation was selected as the 

irrigation method for three reasons. Border irrigation are suited to the larger mechanized farms, 

suitable slope (>2%) and  homogenous loam or clay soils with medium infiltration rates(Rai et 

al., 2017). The farm met the above criteria, hence the adoption of the border irrigation regime. 

Next stage involved the sowing of rice on the field. Two rice varieties were sown on the field. 

The NERICA Faro 61 and NERICA Faro 44 varieties were cultivated on the farm due to their 
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ability to grow in the event of drought and weed infestation. These varieties both have early 

maturing (<110-120 days) and have been successfully used for irrigation farming(Nguezet et 

al., 2013). Seed rate was set at 40kg per hectare and were applied using a polish m-18 dromader 

plane. 

After sowing, three applications of herbicides were administered during the vegetative stage to 

prevent competition of nutrients from weeds. Bispyribac sodium was applied 15 DAS, Weed 

infestation decreased the rice yield by 75.2% (Jabran et al., 2012). The application of cyhalofop 

butyl herbicide was done 30 DAS, while  (Antralina et al., 2015; Anwar et al., 2013). To 

manage best and diseases, pesticide was applied at the beginning of reproductive stage (60-65 

DAS) via the application of fungicide. 

 Yield measurements  

The purpose of obtaining yield data was for model development and testing evaluate baseline 

Sentinel-2 for estimating rice yield (Table 3-5; Figure 3-9). The results were to address the 

research objective of ascertaining the influence of Sentinel-2 baseline data for accurately 

predicting Irrigated dry season rice yield across scales 

High resolution point yield data were obtained from 3 combine harvesters equipped with 

differential GPS (DGPS) receivers. Data were obtained over a period of 10 days (18/03/19 – 

28/13/19) due to the size of harvesting area. Prior to collection of the yield data from the 

combine harvesters, each  combine harvester was calibrated based on recommendations from 

CASE IH 9230 manual guide(Case IH, 2018).  

Table 3-5: Sentinel-2 and yield harvesting dates for predicting yield during the 2018/19 rice irrigated dry season.  

Phenophase Date  Days After Sowing (DAS) Sentinel-2 

MSI imagery 

Harvest 

Vegetative 21/12/2018 35 ✓  

 26/12/2018 40 ✓  

 5/01/2019 50 ✓  

 20/01/2019 55 ✓  

Reproductive 14/02/2019 80 ✓  

 19/02/2019 85 ✓  

Ripening 11/03/2019 105 ✓  
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Harvest 18-28/03/2019 112- 122  ✓ 

 

Multiple calibration processing was deemed necessary prior to harvest for precise yield data 

collection. These steps are important to generate accurate yield data from the combine 

harvesters. Firstly, the mass-flow sensor vibration was calibrated. This was to ensure that the 

proper head was attached to each of the combined harvesters, that the combined harvester was 

empty of rice grain and that the combine harvester was running at full revolutions per minute 

(RPM). The temperature calibration was necessary to ensure accurate grain moisture estimates 

from the moisture sensor in the clean grain elevator. This was done when all the combine 

harvesters were sitting in the shaded garage for at least 3 – 5 hours. Thereafter, a thermometer 

was used to estimate the ambient air temperature. During harvest, calibration was equally 

conducted. Each combine harvester was regularly monitored to ensure the DGPS signals were 

not lost. Re-calibration was considered necessary if more than a 5 percent difference in weight 

calibrations errors or an increase in temperature greater than 10 degrees. In the event of broken 

paddles or loose tightening elevator chain, re-calibration was necessary. 

 

Figure 3-12: CASE IH 9230 combined harvester harvesting rice during the 2018/19 irrigated rice dry season 

farming 

 Sentinel-2 Multi-Spectral Imager 

Sentinel-2 data was used for the study because of the potential to acquire high spatial 

resolution images frequently over the phenological growing stage of rice. Sentinel -2 images 

were acquired for dates spanning both field campaigns. Sentinel-2 data was used for analysis 

in chapter 5 (LAI retrieval) and chapter 6 (yield estimation). 
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Sentinel-2 is a European Space Agency (ESA) and European Commission satellite launched 

under the Copernicus joint initiative programme.  The Sentinel-2 mission comprises of two 

satellites, launched into orbit in 2015 (Sentinel-2A) and 2017 (Sentinel-2B), respectively. The 

combination of both satellites provides images every five days. Each sensor carries a Multi-

Spectral Imager (MSI) which has a swath width of 290 km and provides data in 13 spectral 

bands spanning from the visible and near-infrared region to the shortwave infrared region, 

including four bands at 10 m, six bands at 20m and three bands at 60m spatial resolution 

(Drusch et al., 2012). Sentinel-2 also incorporates three bands in the red-edge region, centred 

at 705 nm, 740 nm and 783 n;m respectively. Sentinel-2 MSI images were obtained for free 

from the Copernicus Open Access Hub web portal (https://scihub.copernicus.eu/).  

For the 2017-2018 season, Sen2Cor Level-2A processor was used to correct single date 

Sentinel-2 Level-1C products (digital number image) for the atmospheric effects and 

generating Level-2A surface reflectance product using SNAP (Sentinel Application Platform) 

Toolbox environment. The SNAP toolbox processor is designed to estimate the biophysical 

and biochemical properties for retrieval of LAI, canopy water content, fraction of 

photosynthetically active radiation absorbed by the green elements of the canopy and fraction 

of vegetation cover (Weiss and Baret, 2016).  The principles governing the retrieval of the 

properties are also based on the PROSAIL radiative transfer model adopted for this study (see 

section 5.2.6.4). The Artificial Neural Network (ANN) is selected as the non-parametric model 

for model inversion. Based on the ANN model (Weiss and Baret, 2016), LAI values were 

retrieved from pure pixels (pixels found in each experimental subplot, 30 x 25 m) in each of 

the seven Sentinel-2 images used for the study (Table 3-2, Figure 3-3. At least one pure pixel 

was used in determining the spectral reflectance value from the experimental subplots (n=27).  

Sentinel-2 images obtained for monitoring the 2018-2019 1150ha rice farm were already 

atmospherically and radiometrically corrected, hence there was no need to replicate the steps 

adopted for the previous season. Eight Level-2A Sentinel-2 cloud free images were acquired 

during the vegetative, reproductive and ripening phases of irrigated rice growth (Table 3-3). 

Further details on the analysis of the Sentinel-2 images for the generation of yield models are 

found in section 6.2.4. 

 

 

  

https://scihub.copernicus.eu/
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Chapter 4 Exploiting the centimetre resolution of drone-mounted 

sensors for estimating mid-late season above ground biomass in 

rice 
 

Abstract 

Above-ground biomass (AGB) is an important indicator for improving agronomic management 

efficiency and yield monitoring in crops. In particular, rice AGB during the mid(reproductive) 

and late (ripening) phases are responsible for the panicles per given area; the number of 

spikelets or grains per panicle; the percentage of filled kernels and grains; and the weight of 

each grain. Consequently, proper monitoring of rice AGB, particularly during the mid to late 

growing phases are important for accurate estimation of rice yield. To this end, monitoring 

AGB at centimetre scale have become implementable by the use of sensors on-board 

Unmanned Aerial Vehicles (UAVs) or drones. RGB sensors with the capability of generating 

plant height estimations from digital surface models provide a viable option for monitoring rice 

AGB. The advancement in miniature Multi-Spectral Imager (MSI) sensors capable of 

generating vegetation indices (VIs) and texture metrics (TM) also provides the opportunity to 

ascertain the capability of the sensor to estimate rice AGB, particularly during the growth 

phases. The study compares the potential and relative merits of using drone-mounted 

consumer-grade RGB imagery and/ or scientific-grade multispectral imagery for estimating 

rice mid-late season above-ground biomass. Plant height estimates, generated from the RGB 

sensor were compared with in-situ measurements of biomass using a simple linear regression 

(SLM) model. On the other hand, VIs, TM and their combination were accessed using the 

Random Forest model for estimating rice AGB. We also accessed the combination of both 

sensors for estimating rice AGB. Results testing model quality statistically showed plant height 

(R2 = 0.72; RMSE = 1.07 t/ha; MAE = 0.93 t/ha) estimates from the RGB camera performed 

better than VIs (R2 = 0.59; RMSE = 1.31 t/ha; MAE = 1.06 t/ha), TM (R2 = 0.43; RMSE = 1.58 

t/ha; MAE = 1.22 t/ha) and the combination of VIs and TM when estimating rice AGB at the 

mid to late growing stages. When combining plant height and VIs from both cameras to 

estimate AGB, results suggest that the combination using random forest models improve the 

estimation of rice AGB. The combination of TM, VIs and PH estimates produced the most 

statistically accurate estimates (R2 = 0.74; RMSE = 1.02 t/ha; MAE = 0.82 t/ha). Our findings 

suggest that the Plant height estimates from the RGB sensor produce a more accurate 

estimation of AGB compared to the MSI camera. However, the most accurate estimations are 

seen when both sensors are combined for the estimation of rice AGB at the mid to late growth 

phase. 

Keywords: Drone, Above-ground biomass, sensors, plant height, texture metrics, vegetation 

indices, rice 

4.1 Introduction 

Rice (Oryza sativa, Asian rice; Oryza glaberrima, African rice) is one of the major staple crops 

of the world and is responsible for the dietary needs of over 700 million people in sub-Saharan 

Africa (Ndjiondjop et al., 2010). The ability to monitor yield and yield indicators of rice is 

imperative towards maximizing yield potential and catering to the growing population in sub-
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Saharan Africa(Senthilkumar et al., 2018).  Above-ground biomass (AGB), one of the 

indicators of yield, is closely related to crop nutrition status and yield (Fu et al., 2014). Four 

factors are responsible for understanding yield patterns in rice. They include the number of 

panicles per given area; the number of spikelets or grains per panicle; the percentage of filled 

kernels and grains; and the weight of each grain. These factors have a strong relationship with 

yield and are determined during the mid (reproductive stage) and late (ripening stage) growing 

stages (Fageria, 2007; Laza et al., 2004). The ability to accurately estimate AGB during the 

reproductive and ripening stages of rice growth is of particular importance for estimating rice 

yields (Chen et al., 2019; Jeng et al., 2006). Destructive sampling is commonly used approach 

to measure rice biomass (Mosleh et al., 2015a). However, destructive sampling is time-

consuming, often inaccurate, and requires labour-intensive ground-based visits and aren’t 

spatially explicit (Kuenzer and Knauer, 2013).  

As an alternative, remote sensing has shown huge potential to estimate AGB across extensive 

areas using a diversity of sensors, techniques and at a variety of spatial and temporal resolutions 

(Ali et al., 2015; Chao et al., 2019; Gitelson et al., 2003b; Kumar and Mutanga, 2017). A remote 

sensing approach for monitoring AGB in crops  are the use of proximal sensors for the 

estimation of crop AGB  at field scale using handheld hyperspectral sensors (Fu et al., 2014; 

Gnyp et al., 2014; Thenkabail et al., 2000) and multispectral radiometers (Casanova et al., 

1998; Prabhakara et al., 2015). However, the proximal sensor approach are limited in the sense 

that they cannot be applied efficiently over large areas. More recently, onboard Manned Aerial 

Vehicles using LiDAR (light detection and ranging) have been adopted for the estimation of 

biomass using plant height.(W. Li et al., 2015; Tilly et al., 2014). Though LiDAR can also 

obtain high estimation accuracy, those data sources are often expensive and need extensive 

experience in data processing (Mulla, 2013). Satellite imagery on the other hand have been 

utilised to estimate biomass over large areas(Dong et al., 2017; Han et al., 2017; Meng et al., 

2013), however, they are often constrained by insufficient temporal-spatial resolution. 

Over the last decade,  Unmanned Aerial Vehicles (UAVs), also referred to as  drones have 

increasingly become a tool for precision agriculture (Deng et al., 2018; Freeman and Freeland, 

2015; Jay et al., 2017). The flexibility of drone platforms is such that data can be collected 

frequently throughout the growing season, and when cloud cover in the upper atmosphere may 

hinder the collection of satellite data (Yue et al., 2019), making it particularly suitable for 

agricultural applications that require crop data to be captured at multiple points within the 

growing season. Drone imagery derived from a range of different sensors, has shown great 
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potential for rice biomass estimation (Cen et al., 2019; Jiang et al., 2019; Yang et al., 2019; 

Zheng et al., 2019). From a structural standpoint, plant height information can be used to 

estimate rice AGB  especially for high canopy densities ( Cen et al., 2019; Jiang et al., 2019), 

as plant height is closely associated with plant stability and yield potential (Herrero-Huerta et 

al., 2020). Similarly, the emergence of sophisticated software equipped with structure for 

motion approaches (i.e. Pix4D, Switzerland) has enabled efficient creation of 3D point clouds 

and super high detail orthophotos provides the opportunity to estimate accurately from the 

structural crop properties primarily derived from consumer-grade RGB sensors(Souza et al., 

2017). Although spectral information, which has shown to have a positive relationship for the 

estimation of AGB in crops(Liu et al., 2019; Marshall and Thenkabail, 2015), spectral data 

obtained from RGB sensors are often uncalibrated and require complex radiometric processes 

if the data are to be used to track changes in crop status over time. (Iqbal et al., 2018; O’Connor 

et al., 2017). 

Multispectral sensors have now become sufficiently miniaturised over the last decade, allowing 

the sensors to be mounted on board drones, which open up the possibility to make use of 

spectral information. The addition of spectral bands in the near-infrared region and red-edge 

can provide additional information on the growth and vigour of plants. There are two 

approaches commonly adopted for estimating AGB from drone-mounted multispectral sensors: 

(i) the calculation of vegetation indices (VIs) from two or more spectral bands provides 

partially analytical gauges on vegetation activity, capable of identifying the phenological 

variations of rice and other green plants across scales and (ii) texture analysis (TA), which 

measures of variability in pixel values among neighbouring pixels for a defined analysis 

window.  

Whilst vegetation indices have been  used to estimate rice AGB (Duan et al., 2019; Huang et 

al., 2015; Jiang et al., 2019; Zheng et al., 2019), they often suffer from the saturation effects 

during the heading and ripening stages of rice growth as biomass is mixed with panicles and 

stems as opposed to panicles during the vegetative stage (Cheng et al., 2017; Zheng et al., 

2019). For instance, Normalized Difference Vegetation Index (NDVI) underestimates high 

biomass density due to this saturation effect  (Fu et al., 2014; Kumar and Mutanga, 2017). 

However other VIs generated from the near infrared and red edge bands have presented more 

accurate estimations of rice AGB during the late growing stages. Zheng et al. (2019) 

demonstrated that the optimised soil adjusted vegetation index (OSAVI) exhibited a 

significantly positive relation with rice AGB during the late growing stage (R2 = 0.65) 
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compared to NDVI, green normalised vegetation index (GNDVI) and Modified triangular 

vegetation index 2 (MTVI 2). VIs generated from the red-edge and the near-infrared region 

have performed more favourably for the estimation of mid-late season AGB. For example, 

Maimaitijiang et al. (2017) examined the performance of VIs for estimating AGB 70 days after 

sowing and identified the Near Difference Red Edge Index (NDRE) to have the strongest 

relationship with AGB compared to NDVI and GNDVI.   

The calculation of textural metrics, which characterise the spatial variation of reflectance 

values as a function of scale (i.e. texture analysis), from spectral reflectance data, has recently 

emerged as an additional approach for the estimation of crop AGB from optical imagery (Liu 

et al., 2019).  Textural approaches potentially provide additional insights into the plant canopy 

(Lu and Batistella, 2005) as studies  have proved that texture to a better predictor of biomass 

than spectral variables (Lu and Batistella, 2005; Sarker and Nichol, 2011). Whilst textural 

metrics can also be calculated from consumer-grade RGB sensors, the uncalibrated nature of 

the spectral information mean that they are limited for monitoring change over time (Lu et al., 

2019).  

Several attempts have been made to improve the estimation of rice AGB from the structural 

and spectral characteristics from drone sensors (Bendig et al., 2015; Cen et al., 2019; Liu et al., 

2019; Lu et al., 2019; Zheng et al., 2019). Liu et al. (2019) combined texture metrics and 

vegetation indices for the estimation of oilseed AGB. Results demonstrated that the 

incorporation of texture metrics to VIs provided more accurate estimations of AGB in winter 

oilseed rape than the models based solely on VIs. However, the combination of structural 

properties from plant heigh estimates were not accounted for in the study. Furthermore, Cen et 

al. (2019)  combined plant height data from an RGB sensor and VIs from an MSI sensor to 

improve the estimation of rice. Despite Cen et al. (2019)  improvement in the estimation of rice 

AGB, emphasis on quantifying the significance of the combination of the sensors has not been 

explicitly identified during the reproductive and ripening growing stages of biomass, as these 

stages serve as critical yield indicators for the estimation of yield. Also, despite their potential 

and reduced cost of MSI sensors, they still remain relatively expensive for farmers and 

agronomist especially in developing countries. It’s important to know whether that additional 

cost brings with its greater predictive accuracy of AGB at the points in time when farmers need 

to know those measures most. Therefore, this study focuses on quantifying the relative merits 

of consumer-grade RGB sensor’s to more expensive multispectral sensors, for estimating rice 

mid-late season AGB.  
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The overall aim of this paper is to compare the potential and relative merits of using drone-

mounted consumer-grade RGB imagery and/ or scientific grade multispectral imagery for 

estimating rice mid-late season above ground biomass. Specifically, using data during the mid-

late growing seasons, we will (i) determine the extent to which estimates of plant height, 

derived from a RGB sensor can estimate rice AGB, (ii) determine the performance of spectral 

information derived from a multispectral sensor for estimating rice AGB; (iii) ascertain 

whether the predictive performance of plant height data is improved with the addition of 

spectral information obtained from a multi-spectral sensor.  

4.2 Materials and Methods 

 Study Area and Experimental Design 

To explore the use of different remote sensing sensors for monitoring rice AGB, biomass 

measurement from the field were obtained and implemented on a rice farm (Olam farm) in a 

single growing season (2017/18) (Figure 4-1). The experiment was conducted during the dry 

season from December 2017 to April 2018, during which time the temperature ranged from 

17°C in December to almost 40°C in late March. The experiment used a factorial design and 

consisted of three irrigation regimes; three nitrogen (N) application rates applied across three 

repeated blocks. Irrigation consisted of (i) alternate wetting and moderate soil drying, (ii) 

alternate wetting and severe soil drying and (iii) continuously flooded. Nitrogen application 

rates were 55 kg ha−1, 110 kg ha−1, and 165 kg ha−1, representing low, normal and high amounts 

of nitrogen respectively. Nitrogen, in the form of urea was applied at the seedling stage, early 

tillering (approx. 40 Days After Sowing (DAS) and at panicle initiation (i.e. on the first 

appearance of the differentiated apex) until maturity as per conventional farming practice. Each 

of the three replicated blocks contained three plots (77 m x 30 m). Each plot contained three 

subplots (30 x 25 m) giving a total of 27 sampled subplots covering a range of growth 

conditions (Figure 4-1c). The NERICA 61 (Faro 34) variety of rice, which is best suited for  
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lowland irrigation farming, was planted in each plot in December 2017 and harvested in April 

2018. 

 

Figure 4-1: A. Map of Nigeria highlighting Nasarawa state. B. Nasarawa stats with local government Areas. C. 

Experimental set-up for data collection. The site was divided into 3 blocks. Each block was divided into 3 plots 

with each plot having 3 subplots. The treatment for each plot were divided into continuous flooding, alternative 

wetting and moderate drying and alternative wetting and severe drying. The nitrogen applications were classed 

as high nitrogen, normal nitrogen and low nitrogen. 

 

 Field Measurements 

4.2.2.1.Plant height  

Plant height was measured in five 1 x 1 m quadrats located within each of the 27 subplots 

immediately prior to destructive biomass sampling (Table 4-1). Within each quadrat, manual 

measurements of plant height were undertaken using a 2 m rule.  Mean plant height per subplot 

was subsequently determined by averaging the height of the five individuals plants obtained 

from each of the 1 x 1m quadrants(Watanabe et al., 2017).The plant heights method were 

subsequently replicated on the other experimental subplots. (n=27). 
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4.2.2.2. Above ground biomass 

Biomass measurements were obtained immediately after collection of plant height on data 

collection days as shown in Table 1. On each sampling occasion, a destructive sample of 0.4 × 

0.4 m above-ground biomass was collected from each of the subplots.  Plants within the 0.4 x 

0.4m of rice plants were randomly harvested from the sampling region of each subplot (Figure 

4-1). The fresh biomass samples were cleaned, the roots clipped, and stem, leaves and ears 

were weighed prior to oven-drying at 80°C for around 72 hrs, depending on the moisture 

content in the plant. After the drying of the sampled mass was obtained, samples were weighed 

to ascertain dry biomass. 

Table 4-1: Acquisition dates of data collection for rice Above Biomass Estimation 

Date Plant Height 

Measurement 

Biomass 

Harvest 

UAV Flight 

Date 

Sowing Growing Stage 

23-12-2017    ✓  Vegetative 

Stage 

16-03-2018 ✓  ✓  ✓   Reproductive 

Stage 

26-03- 2018 ✓  ✓  ✓   Ripening Stage 

 

4.2.3. Acquisition and pre-processing of drone images 

Figure 4-2 presents a flow chart depicting the analytical approach taken in this study. An 

autonomous flight plan mirroring a ‘lawnmower’ design was constructed using the proprietary 

drone software, Emotion to determine the flight plan, take-off and landing point and to monitor 

the environmental conditions and their effect on the drone All images were obtained at a flight 

altitude of 120 m with afront overlap of 70% and side overlap of 60% to ensure image 

redundancy for post-processing. Ten Ground Control Points (GCPs), in the form of black and 

white checked 1 m by 1 m targets, were permanently installed and evenly distributed across 

the field site. The GCP coordinates were recorded by a Trimble Geo 7X GPS 

(www.trimble.com). On each flight date the drone was flown twice using the same flight plan; 

first with the RGB sensor mounted on board and then with the multispectral Sequoia sensor. A 

total of 125 images were acquired with the S.O.D.A sensor while 500 images were acquired 

from the sequoia sensor for flight. 

Proprietary Pix4D software was used to generate 3D point clouds and orthomosaics using all 

images from the RGB sensor. Pix4d undistorts each of the original images, correcting the lens 

distortion of the sensor based on the sensor model (SODA sensor).  After a first pass to search 

http://www.trimble.com/
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for automatic feature tie-points through matching pairs of images using aerial grid, the manual 

ground control points (GCPs) were identified in the imagery and used to anchor the images 

against the ten ground references.  

The automatic tie points and GCPs are then used in the bundle block adjustment before the 

density point cloud is constructed. In Pix4D, the bundle block adjustment is calculated using 

the relationship between overlapping images, keypoints, and GCPs, and the specific internal 

camera parameters and adjustments are applied to images within each specific block. The final 

processing steps were the generation of the 3D textured mesh, surface models including the 

digital surface model (DSM), digital terrain model (DTM), and the orthomosaic (Malambo et 

al., 2018). The orthomosaic is obtained from the DSM and corrected for perspective, with the 

value of each pixel calculated as an average of the pixels in the corresponding original images. 

 

Figure 4-2: Overview of the approach used to estimate rice Above ground biomass using the RGB and Multispectral 

sensors on-board the Ebee plus drone. 
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The sequoia sensor captures four discrete spectral bands: (wavelength = 550nm, bandwidth = 

4 0nm), red (660 nm, 40 nm, red-edge (735nm, 10nm) and near-infrared (790nm, 40nm). The 

sequoia multispectral sensor is a self-calibrating system that incorporates an integrated 

irradiance sensor using the sun angle correction radiometric calibration technique. The sun 

angle correction radiometric calibration technique was possible to apply to the eBee drone 

because the orientation between the camera and the sunshine sensor is fixed and known. A grey 

balance radiometric calibration target (also called calibrated reflectance panel) was used to 

calibrate the camera before each flight. The sunshine sensor allows sunlight information to be 

logged and captured throughout the flight. Utilizing these irradiance values, the system 

automatically calibrates all output images along with assigning geolocation information from 

the Parrot Sequoia’s onboard GPS, IMU, and Magnetometer. Because the sunshine sensor 

records information in real time during each flight, Sequoia-derived reflectance values vary 

relatively insignificantly with the weather conditions(Deng et al., 2018).  

During the initial processing stage, the calibrated images and the 500 images from the four 

spectral bands were imported in Pix4d for further processing. From the four multispectral 

sensors on the sequoia camera, the aerial triangulation of each of the sensors are processed at 

the same time, accounting for each sensor’s lens distortion. Thereafter, a reconstruction of the 

surface was produced via a dense point cloud using multi-view stereo matching (Deng et al., 

2018). Finally, individual orthorectified images were combined into a 4-band multispectral 

orthomosaic image to obtain the UAV orthophoto of the entire area. Due to the fact that each 

spectral band was processed considering its own characteristics, band-to-band alignment was 

achieved. The experimental plot acquired from the multispectral sensor and randomly selected 

spectral profiles from different experimental plots were generated to show the spectral 

reflectance curve for experimental subplots (n = 3). Although radiometric calibration issues 

have been associated with the sequoia sensor (Fawcett et al., 2020),  selected spectral profiles 

were unique as they represented the spectral properties from different applications of nitrogen 

and water (Figure 4-3). Therefore, the study was based on the assumption that the sequoia 

camera is suitable for estimating the spectral profiles of each subplot.  
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Figure 4-3: A. Sequoia sensor Near-Infrared, Red and Green bands layerstacked showing the spectral profiles of each of the 27 subplots on the 16 th of March. B.  Spectral 

reflectance (nm) profiles obtained from experimental plots (n = 3) related to high, medium and low treatments at each subplot
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4.2.4. Estimating plant height from RGB imagery 

Mean plant height per subplot was estimated using the 3 cm resolution DSM generated from 

the RGB imagery. A boundary shapefile containing each of the 27 subplots was used to 

identify the subplot locations. To determine average plant height within each subplot, each 

subplot was split into ten segments, leaving out the segments at the edges of the subplots, 

therefore, eight segments were used for further analysis. Segmenting the subplots was 

important because plant height measurements were collected at different parts of the subplot 

during the field campaign (example given in Figure 4-4) and due to the uneven heights 

observed within some subplots. The upper height boundaries (95th percentile) for each of the 

eight segments were averaged to produce a mean plant upper height per subplot. To determine 

the ground level, gaps within each subplot were identified were visible (minimum of 4), and 

used to determine the average ground level per subplot. Finally, subplot mean plant height 

from eight segments was calculated by the segment average upper boundary subtracted by the 

plot average ground level. 

 

Figure 4-4: Plant height (in meters) extracted from segmented plots with the exclusion of segments at the edges 

due to the edge effect from adjacent subplots with different treatments 

 

4.2.5. Vegetation indices and textural metrics 

Vegetation indices were obtained from the multispectral bands while textural metrics were 

obtained from each of the spectral bands on the sequoia sensor on each of the sampling dates.  

A set of five vegetation indices known to be sensitive to canopy structure and biomass were 

extracted from the multispectral orthorectified imagery (Table 4-2). We extracted the spectral 

values from each pixel in each of the subplots and then averaged them for each subplot. Pixel 
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values were not extracted from a 2 m buffer along the length and width of each subplot to 

reduce plot edge-effects.  

Eight grey level co-occurrence matrix (GLCM; Haralick et al., 1973) texture measurements 

(Table 4-2) were generated for each of the four spectral bands of the MSI imagery, resulting 

in 32 texture metrics. The selected GLCM texture metrics were chosen as previous studies 

have shown them to be useful for estimating biomass in crops (Yue et al., 2019; Zheng et al., 

2019). To calculate texture metrics, pixel pair sampling distances were chosen with respect to 

the expected spatial frequencies present in the image. Texture metrics are calculated using a 3 

x 3 pixel (9 x 9 cm) moving kernel across each band of the orthomosaic image. We extracted 

the texture metrics values from each of the eight grey level co-occurrence matrix in each of 

the subplots and then averaged them for each subplot. Similar to the selection of vegetation 

indices, pixel values were not extracted from a 2 m buffer along the length and width of each 

subplot to reduce plot edge-effects. 

Table 4-2: Vegetation indices and texture metrics derived from the multispectral camera. Texture metrics were 

obtained per spectral band for the green, red, red-edge and near infrared bands 

Index  Acronym Equation/Description Reference 

Green Normalized 

Difference Vegetation 

Index 

GNDVI (NIR − G)/ (NIR + G) (Gitelson et al., 1996) 

Normalized Difference 

Vegetation Index 

NDVI (NIR − R)/ (NIR + R) (Rouse, 1974) 

Red Edge Normalized 

Difference Vegetation 

Index 

NDRE (NIR – RED-EDGE)/ (NIR + RED-

EDGE) 

(Gitelson and Merzlyak, 

1994) 

Optimized Soil 

Adjusted Vegetation 

Index 

OSAVI (NIR - R) / (NIR + R + 0.16) (Rondeaux et al., 1996) 

Chlorophyll edge Index CLred-edge (NIR / RED-EDGE) - 1 (Gitelson et al., 2003a) 

Mean MEA The average of pixel values in an image (Haralick et al., 1973) 

Variance VAR The deviation of pixel values in an image 

Homogeneity HOM How close the distribution of elements in 

the GLCM is to the diagonal of GLCM. As 

homogeneity increases, the contrast, 

typically, decreases 

Contrast CON A measure of intensity or grey level 

variations between the reference pixel 



105 
 

and its neighbour. Large contrast reflects 

large intensity differences.  

Dissimilarity DIS A measure of how dissimilar pixels are 

computed using the absolute values of the 

greyscale differences. Higher values 

indicate a greater degree of dissimilarity 

amongst pixel brightness levels. 

Entropy ENT The randomness or the degree of disorder 

present in the image. The value of entropy 

is the largest when all elements of the co-

occurrence matrix are the same and small 

when elements are unequal 

Second Moment SEM The local uniformity of the grey levels. 

When pixels are very similar the second 

moment value will be large. 

Correlation COR A measure of the linear dependency of 

grey level values in the co-occurrence 

matrix. Values approach 1 or -1 indicate 

that pixels brightness values between 

pixels is strongly linearly correlated  

 

4.5.1. Statistical analyses 

Rice AGB was estimated from both data acquisition dates using two approaches: Random 

forest (RF) and Simple Linear Regression Model. The RF model was used to estimate AGB 

using spectral information derived from the multispectral sensor, and when combining data 

from both the multispectral and RGB sensors. 

RF is a non-linear parametric model that constructs and subsequently averages a large number 

of randomized, de-correlated decision trees for classification or regression purposes  (Breiman, 

2001). Each decision tree is trained using a subset of the various input variables with two thirds 

of these samples. RF has three unique qualities which make it ideal for this study. Firstly, RF 

builds on regression trees independently by using different boot strapped subsets of training 

samples. This reduces outliers in the data set as each tree relies on its own subset, reducing the 

sensitivity of the model. Secondly, a randomly chosen independent variable among the entire 

set of independent variables are split at each node of the tree (Liaw and Wiener, 2007) and the 

model selects a subset of trees with the least error as the final output. This ensures the Random 

Forest model is robust against overfitting (Rodriguez-Galiano et al., 2012). From the bagging 
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approach, the RF model chooses sample subsets from the training samples with replacement 

(i.e. bootstrap) which implies that the model can perform when sample dataset is small. 

Random Forest was selected for estimating biomass as studies have shown the suitability of 

the model for estimating biomass in rice, have been used to estimate rice AGB (Jiang et al., 

2019) and other crops (Liu et 2019; Lu et al., 2020).  

In this study, five RF models were developed as shown in Figure 2 from the MSI sensor and 

the combination of the MSI and RGB sensors.  A model selection approach was used to find 

the most parsimonious model that is not fitting noise (parsimony = 0.05). This allowed us to 

select the most important variables for the model. To quantitatively assess the performance of 

the RF models with in-situ field biomass measurements, the 10-k fold cross validation model 

was selected to determine model predictive performance. The aim of k-fold cross-validation 

is to employ unseen data to estimate the performance of an algorithm. Thus, the benefit of k-

fold cross-validation is that it can utilize all samples as training and testing samples, leading 

to lower biased or lower optimistic estimate for the performance of the machine learning 

algorithm (Kuhn and Johnson, 2013). To quantitatively assess the performance of the RF 

models with in-situ field biomass measurements, we calculated the coefficient of 

determination (R2) and root mean square error (RMSE) and mean absolute error (MAE). The 

P-values were calculated to show the standard errors and significance of each one of the 

parameters in the model These evaluation metrics have been widely used to estimate the 

predictive power of regression models (Elarab et al., 2015; Yi et al., 2014). 

In addition to the RF models, the Simple Linear Regression Model (SLM)(Montgomery et al., 

2012) was adopted to describe the relationship between the field biomass measurements and 

Plant height from the RGB sensor because it only had one input parameter.    

To test if model quality was statistically better for the SLM to the RF models, a bootstrap test 

was performed using the function “boot” available in the R package ‘boot’ (Canty & Ripley, 

2014).  Test variables  were calculated by comparing the R2, RMSE and MAE values of SLM 

model to the ones produced by each of the RF models (Lopatin et al., 2016). A one-sided test 

was performed between SLM and RF values based on 500 bootstrap samples to determine the 

which model was statistically better. The level for significance was set to α = 0.05. 
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4.3. Results 

4.3.1. Relationships between RGB derived plant height and above ground 

biomass  

 

Plant height estimated from the RGB digital surface model was significantly (p <0.0001) 

correlated with in situ measurements (R2 =0.7; RMSE = 6.09 cm, MAE =5.11 cm). The plant 

height derived from the RGB imagery tended to be slightly higher than measured height for 

some of the lower measured heights and vice versa for the plant with the highest measured 

heights (Figure 4-5). 

Biomass estimation, derived from RGB imagery, was significantly correlated with in situ 

measures of above ground biomass (Figure 4-5; Table 4-2; R2 = 0.72; p < 0.0001; RMSE = 

1.04 t/ha, MAE = 0.91 t/ha). 

 

Figure 4-5: A. Relationship between measured plant height and estimated plant height generated from RGB point 

cloud data (n = 54). B. Comparison between measured Biomass and the Predicted Biomass from DSMs generated 

with UAV images using the k=fold cross validation method (n=54). The diagonal represents the 1:1 line. metrics 

Solid red line are regressions, blue line is corresponding to 95% confidence intervals, and shaded areas the 

corresponding 95% prediction intervals).  
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Table 4-3: Evaluating mid-late rice AGB from Plant Height (PH), Texture Metrics (TM) and Vegetation Indices 

(VI) derived from RGB and MSI sensors.  

Sensor No of 

Variables 

Type of model R2 RMSE (t/ha) MAE (t/ha) 

Multispectral 5 VI 0.63 1.22 1.00 

 
32 TM 0.46 1.48 1.31 

 
37 VI +TM 0.60 1.26 0.91 

      

RGB 1 PH  0.72 1.04 0.97 

      

Multispectral + RGB  6 VI + PH 0.75 1.03 0.83 

 
40 VI+TM+PH 0.79 0.97 0.74 

 

4.3.2. Relationships between MSI derived vegetation indices and texture 

metrics with above ground biomass 

Three independent RF models were generated to determine the utility of (i) spectral indices, 

(ii) spectral texture metrics and (iii) a combination of vegetation indices and texture metrics; 

for estimating mid- to late season rice AGB. 

4.3.2.1. Vegetation Indices 

The RF model predicted 63% of the variance in measured biomass (p < 0.001; RMSE = 1.22 

t/ha; MAE = 1.00; Figure 4-6; Table 4-4).  The model shows a pattern of overestimation of 

rice AGB at low values of measured biomass (< 14 t/ha), while underestimating biomass and 

greater than 15 t/ha. From the five VIs tested (Table 4-3), the NDRE, OSAVI and GNDVI 

indices were identified as the most important for predicting rice ABG based on the parsimony 

applied to RF model, while the NDVI or the CIred-edge indices were omitted in building the RF 

model.   
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Figure 4-6: A. Measured versus Estimated Biomass from the most significant Vegetation Indices. Solid red line 

represents the 1 to 1-line, blue line is corresponding to the regression line and shaded areas the corresponding 

95% prediction intervals. B. Variable Importance plot ranking the most significant to the least significant 

vegetation index. 

4.3.2.1. Textural metrics   

The relationships between rice AGB and GLCM-based texture measurements associated with 

different spectral bands were found to be poor for the majority of texture measurements. Only 

10 of the 32 input variables used to generate the textural metrics model were selected by 

applying the parsimony to the model. It is important to note that some of the variables were 

potentially omitted because they were co-correlated with others (see Appendix 3). The RF 

model was able to predict 46% of the variance in measured biomass with an accuracy of RMSE 

of 1.46 t/ha and MAE of 1.13, indicating moderate (albeit statistically significant P <0.001) 

relation between texture metrics and mid-late rice AGB estimation. Textural metrics obtained 

from the NIR and Red spectral bands were the most important for estimating, accounting for 

70% of the metrics selected by the final RF model. Mean NIR reflectance was identified as 

the most significant metric whereas Dissimilarity green, Homgeneity red and Entropy NIR 

contributed the least to AGB estimations (Figure 4-7). 
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Figure 4-7: Measured versus Estimated Biomass from the most significant texture metric bands variables (n=54). 

Solid red line represents the 1 to 1-line, blue line is corresponding to the regression line and shaded areas the 

corresponding 95% prediction intervals. B. Variable Importance plot ranking the most significant to the least 

significant texture metric. 

4.3.2.2. Relationships between the combination of vegetation indices and 

texture metrics with above ground biomass  

 

The third model was developed using the combination of vegetation indices and texture 

metrics using the RF model. The parsimonious selection process removed 31 of the 32 texture 

variables and 2 of the 5 vegetation indices, leaving four selected variables from the 

combination of vegetation indices and textural metrics (Figure 4-8). The selection criteria for 

selection of vegetation index were consistent as the three vegetation indices utilised in Figure 

4-7 were the same vegetation indices selected when combining vegetation indices with texture 

metrics. Likewise, the most significant texture band (mean (NIR), from Figure 4-8 was the 

only texture metrics selected from combing vegetation indices and texture metrics. However, 

model performance was not improved compared to the combination of both spectral properties 

derived from Texture metrics and VIs for estimating mid-late AGB as compared to VIs alone 

with model less accurate with RSME (1.26 t/ha).  
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Figure 4-8: A. Measured versus Estimated Biomass from the most significant Vegetation Indices and texture 

metrics variables (n=54). Solid red line represents the 1 to 1-line, blue line is corresponding to the regression 

line and shaded areas the corresponding 95% prediction intervals. B. Variable Importance plot ranking the most 

significant to the least significant combination of vegetation indices and texture metrics.   

 

4.3.3. Relationships between the combination of vegetation indices, texture 

metrics and plant height with above ground biomass  

 

To determine the utility of estimating AGB by combining structural data from the RGB sensor 

with the multispectral sensor imagery, two models were investigated; (i) the combination of 

vegetation indices from the MSI sensor with plant height from RGB sensor and; (ii) the 

combination of Texture metrics and vegetation indices from the MSI sensor with plant height 

estimates from the RGB sensor for estimating rice AGB.  

The regression model built based on the combination of vegetation indices and plant height 

was able to predict 75% of the variance in measured biomass, with the model RMSE and MAE 

were 1.03t/ha and 0.83 t/ha respectively (Figure 4-9). In terms of the most important variables 

selected for the model, the NDRE, OSAVI and GNDVI vegetation indices were consistently 

chosen from the available vegetation indices. In addition to the selected vegetation indices, the 

plant height variable was selected for building the model, with results indicating plant height 

as the most significant variable for estimating rice AGB during the mid-late growing stage.  
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Figure 4-9: Measured versus Estimated Biomass from the most significant plant height and vegetation indices 

variables (n=54). Solid red line represents the 1 to 1-line, blue line is corresponding to the regression line and 

shaded areas the corresponding 95% prediction intervals. B. Variable Importance plot ranking the most 

significant to the least significant combination of vegetation indices and plant height.   

When texture metrics, vegetation indices and plant height were combined together, the model 

showed lower model error, with the RMSE and MAE errors reported as 0.94 t/ha and 0.74 t/ha 

respectively, while the model measured biomass variance was 79%. The automation 

parsimonious process applied to the RF model pruned the model variables from 40 to 12. Of 

the 12 variables included in the final model process, plant height, five vegetation indices and 

six texture metrics were selected. The texture metrics were dominated by metrics in the red 

and NIR bands with 5 out of the 6 bands within the spectral region (Figure 4-10).   
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Figure 4-10: Measured versus Estimated Biomass from the most significant plant height and vegetation indices 

and texture metrics variables (n=54). B. Variable Importance plot ranking the most significant to the least 

significant combination of plant height and vegetation indices and texture metrics variables.  Solid red line 

represents the 1 to 1-line, blue line is corresponding to the regression line and shaded areas the corresponding 

95% prediction intervals. 

 

4.3.4. Comparison between RGB and MSI sensors for estimating Above 

Ground Biomass 

We investigated the statistical differences in model quality between the plant height model 

developed using the SLM model with the five RF models developed from texture metrics, 

vegetation indices and plant height using the bootstrap approach (Table 4-4). 

When comparing the model quality measures between SLM plant height and RF vegetation 

indices using the bootstrap test, SLM was significantly better than RF for biomass estimation 

from the R2, RMSE and MAE (Table 4-4). Similar results were observed when comparing the 

model quality of plant height generated from the SLM compared with the texture metrics 

model and the combination of texture metrics and vegetation indices. We can infer from the 

results that the RGB sensor using plant heights estimates provide better model quality, with 

the SLM results indicating lower model error and a much higher model variance (Table 4-4). 
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Table 4-4: Results for bootstrap test to check for statistical differences in model quality measures R2, RMSE and MAE 
obtained by RF and linear model for biomass. Number of bootstrap samples= 500 

Model Variables R2 RMSE (t/ha) MAE (t/ha) 

Simple Linear 

Model 

PH 0.72 1.07 0.93 

     

Random Forest 

Models 

VI 0.59 1.31 1.06 

 TM 0.43 1.58 1.22 

 VI + TM 0.54 1.38 1.08 

 VI +PH 0.73 1.07 0.86 

     

 VI + TM +PH 0.74 1.02 0.82 

     

 

The combination of the RGB and MSI sensors using plant height and vegetation indices 

presented similar model accuracy albeit a lower mean absolute error. On the contrary, the 

inclusion of texture metrics variables improved the quality of the model, with lower RMSE 

and MAE errors (Figure 4-10). The results show that the combination of plant heigh estimates 

from the RGB sensor with texture metrics and vegetation indices from the MSI sensor provide 

the most accurate estimation of rice AGB during the mid-late growing stages of rice 

development. However, the improvement was not identified to be significantly different from 

estimated obtained from plant height estimates using SLM. 

4.4. Discussion 

This study evaluated the relative importance of using data from drone-mounted consumer 

grade RGB sensor, a scientific grade multispectral sensor and the added value of their 

combined use for estimating rice AGB during the mid (reproductive) to late (ripening) stages. 

The findings of this study are discussed in three different categories. First, we discuss RGB 

sensor for estimating rice AGB using plant height estimates. Second, we debate the 

comparative differences of using the MSI sensors on-board the drone for estimating rice AGB. 

Third, we evaluated the added value of the MSI sensor to the RGB sensor compared to using 

the RGB sensor in isolation for estimating rice AGB statistically. 

When comparing the accuracy of the RGB sensor for estimating plant height from DSM with 

actual field measurements, results from Figure 4-3 showed high variability with measured 

plant height and a low RMSE. These results are particularly significant when rice plant height 
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grow above 1m meter during the reproductive and ripening stages, making it difficult to obtain 

manual plant height measurements. Likewise, the significance of the result is amplified 

considering the fact that manual assessment of crop height is time consuming; thus, only a 

small portion of the rice field can be measured consistently over time, leading to inaccuracies. 

Although limited studies have shown the relationship between plant height estimates obtained 

from drones with actual field measurements in rice fields, Cen et al. (2019) and Jiang et al. 

(2019) presented similar results for the estimation of plant height estimates of rice using 

drones. Our results suggest that plant height estimates, derived from consumer-grade three 

band RGB sensors can be used to estimate rice AGB during the mid-late growing stages.  Plant 

height estimates were able to capture the variability within each plot (appendix 3) even though 

the AGB in cereal crops encompasses with leaves, stems and panicles, which play a significant 

factor in AGB during the mid-late growing season (Lu et al., 2019). For the estimation of rice 

AGB, results from Figure 4-5b show a strong relationship between plant height and rice AGB, 

indicating the suitability of the RGB camera alone for the estimation of rice AGB during the 

reproductive and ripening phases. Contrary to the results of plant height for estimating rice 

AGB, Cen et al. (2019) results suggest that plant height may not to ideal for estimating rice 

AGB during the late growing stages as results show low correlation between plant height and 

biomass. On the other hand, Tilly et al. (2015) results tally with ours as plant height was 

successfully utilised for estimating rice AGB over multiple growing seasons. 

In a bid to identify the relative importance of the MSI sensor for estimating rice AGB, the 

merits of vegetation indices and texture metrics approaches were investigated. During the 

selection process based on the parsimony of the RF models for the vegetation indices, the 

NDRE, OSAVI and GNDVI vegetation indices were consistently selected as the most 

significant indices.  The GNDVI also performed significantly better than NDVI which was 

omitted in the selection process of the first three RF models. The GNDVI results were similar 

to the NDRE models which confirms the findings that green and red edge reflectance’s are 

sensitive to a wide range of chlorophyll levels than the red reflectance (Carter and Knapp, 

2001; F. Li et al., 2014)..  Additionally, the red edge band could be influenced by stress induced 

increase in fluorescence, and thus the sensitive is higher to stress induced chlorophyll changes 

than the green band (F. Li et al., 2014). However, the CIred-edge
 results were in variance to 

NDRE estimates of rice AGB during the late growing stages. The reason may be that rice 

biomass growth in the reproductive and ripening stages causes a decrease in the plant green 

intensity, leading to a decline in the chlorophyll content of rice AGB (Jia et al., 2004; 
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Saberioon et al., 2014) which affects the CIred-edge index . When considering the significance 

of OSAVI, our results confirm the significance of OSAVI index for estimating mid-late AGB 

in rice. This may have been as a result of the alteration of nitrogen application and water 

applied to different subplots which provided varying soil reflectance especially in plots where 

crop canopy was not dense. The OSAVI index suitability for estimating rice at the mid-late 

growing stages were in agreement with Zheng et al. (2019) estimation of rice AGB during the 

same stages.  

Texture metrics, which are related to the spatial spread of dark and bright pixels in an image 

(Haralick et al., 1973), have recently been introduced as a technique for estimating biomass 

for field-scale rice farms because of the ultra-high-resolution possessed by sensors on drones 

(Liu et al., 2019; Yue et al., 2019; Zheng et al., 2019). However, our results suggest limited 

potential for textural metrics as a predictor of rice AGB. The modelled derived solely from 

texture metrics showed the highest error in rice AGB estimation (RMSE = 1.48 t/ha). Similar 

results were observed in Zheng et al. (2019) estimation of rice during the mid-late growing 

stage using texture metrics. Despite the results obtained using the texture metrics, the Mean 

NIR band was identified to be the most significant variable and showed a positive correlation 

with biomass (Appendix 3), corresponding to results obtained by Zheng et al., (2019) and Lu 

and Batistella (2005). Alternative testing of the model using the combination of texture metrics 

and vegetation index did not improve the estimation of rice AGB during the mid-late growing 

stages, although the selection of the most important variables were consistent for vegetation 

indices (Figure 4-6) and texture metrics (Figure 4-7). Contrary to the results reported in Liu et 

al., (2019), combining texture metrics and vegetation indices reduced the predictive accuracy 

of our model (Fig 4-9). One reason for the poor performance of this combined model may be 

attributed to, the textural metrics are very scale and scene dependent, because information on 

the canopy structure carried in single pixels vary for images with different ground resolution, 

thereby leading to a huge alteration in the distribution of dark and bright areas on the images 

(Yue et al., 2019). 

The added significance of the combination of the MSI sensor to the RGB sensor for estimating 

rice AGB was identified. When combining plant height estimates with vegetation indices, 

Figure 4-9 shows stronger relationship with rice AGB compared to other RF models. Although 

the combination of the spectral and structural properties provides more details for 

understanding the rice AGB canopy  (Han et al., 2019), the saturation effect experienced 

suggest that at the latter growing stages from VIs may have affected the estimation significance 
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of the combination of both techniques for estimating rice AGB. These results agree with 

Bendig et al. (2015) who showed lower estimation of AGB in a cereal crop (barley) from the 

combination of plant height and vegetation indices from the vegetative stage to the ripening 

phase. Similarly, Lu et al., (2019) identified a decline in the RF model performance at the late 

growing stage of a cereal crop (wheat), although a combination of vegetation indices and plant 

height improved the estimation accuracy. The combination of texture metrics, vegetation 

indices and plant height explained the highest model variability and least RMSE and MAE 

errors. The results suggest that the addition of some texture metrics bands to vegetation and 

plant height slightly improve the estimation of rice AGB although when texture metrics are 

combined with vegetation indices, the model was not improved compared to vegetation indices 

alone. This may be as a result of the addition of the structural property obtained from plant 

height to the spectral properties of vegetation indices and texture metrics which provides 

additional information about rice AGB characteristics.  

When comparing the statistical differences in model performance, plant height estimates 

obtained from SLM models performed better than vegetation indices, texture metrics and their 

combination using RF model. The results suggest that the RGB sensor are more suitable for 

estimating rice AGB during the mid-late growing stages compared to the more sophisticated 

MSI sensors. However, the combination of both the RGB and MSI sensors using the RF model 

were statistically better, albeit the results being statistically significant. Rice AGB estimation 

during the mid-late growing stage has a strong relationship with yield outcomes(Jin et al., 

2020a; Li et al., 2020; Serrano et al., 2000), therefore, accurate estimation prior to harvest can 

help farmers and agronomist project yield more accurately. Nevertheless, the cost implication 

of purchasing a multispectral sensor may change the narrative of the significance of 

improvement. To a well-established farmer or agronomist looking to make marginal 

improvements which could result in significant economic results at the end of the growing 

season, the purchase of a multispectral sensor may be the right step to take. However, a farmer 

venturing into rice farming may prefer to stick with the RGB sensor since rice AGB estimation 

are still significant. Therefore, we can infer from the results that multispectral sensors improve 

the estimation of rice ABG, though the significance may be relative to the finance and yield 

expectation of the farmer or agronomist. 

4.5. Conclusion  

This study evaluated the relative importance of using data from drone-mounted consumer 

grade RGB sensor, a scientific grade multispectral sensor and their combined use for 
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estimating rice AGB during the reproductive and ripening stages. We initially accessed the 

performance of plant height generating from DSM using the RGB sensor for the estimation of 

rice AGB. Accuracy of biomass estimation obtained from the RGB sensor using SLM were 

statistically compared with vegetation indices, texture metrics and the combination of 

vegetation indices and texture metrics obtained from the RF model. Results showed plant 

height as a more significant estimation parameter to vegetation indices and texture metrics for 

the estimation of rice AGB. Thereafter, the added advantage significance of texture metrics 

and vegetation to plant height for estimating rice biomass during the reproductive and ripening 

stages of rice was evaluated. The addition of vegetation indices improves the model and was 

statistically more accurate than plant height estimates from the SLM. Furthermore, the addition 

of the texture metrics to the vegetation and plant height using the RF model further improved 

the model and was statistically better than SLM plant height estimates. That said, we can infer 

from the study that the full potential of a multispectral sensor can further improve the 

estimation of rice AGB at the critical growing stages on a drone platform. Conversely, the 

improvement in relation to the economic implication of purchasing a multispectral sensor is 

relative based on income of farmers and agronomists to yield improvement. A cheaper 

alternative may be the adoption of a consumer grade sensor over a multispectral sensor for the 

estimation of biomass at the critical growing stages as opposed to both sensors.  

The limitation of this study is the small sample size (54 samples). Although random forest is 

capable dealing with small sample sizes, a higher number of sampling points would improve 

the accuracy of the prediction. Additionally, assessing the performance of different rice 

cultivars across multiple growing seasons would further assess the performance of the model 

for estimating yield during the reproductive and ripening stages of rice. 
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Chapter 5 Estimating the phenological dynamics of irrigated rice leaf 

area index using the combination of PROSAIL and Gaussian Process 

Regression 

 
Abstract 

The development of rice is a sequence of different phenology phases. This implies that the 

condition of the plant during the vegetative phase relates directly to the health of leaves 

functioning during the reproductive and ripening phases which are important for monitoring 

yield. Leaf Area Index (LAI) is an important indicator of rice yields and the availability of this 

information during key phenological phases can support more informed farming decisions. 

The primary objective of the study was to demonstrate the advantage of a hybrid model which 

combines the PROSAIL model and Gaussian Process Regression (GPR) machine learning 

algorithm for estimating the phenological dynamics of irrigated rice developed from field 

spectral data used for simulating Sentinel-2 MSI spectral bands and later compared with 

Sentinel-2 LAI imagery during the vegetative, reproductive and ripening phases. To achieve 

this, the PROSAIL radiative transfer model was adopted to simulate a look-up table (LUT) 

and associated variables acquired from an experimental field in Nasarawa state, Nigeria. The 

LUT was then used to train the GPR model and was compared with LAI generated from the 

SNAP toolbox, which is based on the PROSAIL model and Artificial Neural Network (ANN) 

machine learning algorithm. Data was collected during the dry season from a rice farm in 

Nigeria where nitrogen and water application were altered, which was used as validation for 

the LAI models. Our resulted demonstrated that when estimating LAI during the entire 

growing season, the hybrid GPR model outperformed the hybrid ANN model (R2 = 0.82, 

RMSE = 1.65; and R2 = 0.66, RMSE = 3.89 respectively). During the phenological phases, the 

hybrid GPR model predicted more accurate with less model errors in the vegetative (R2 = 

0.67), reproductive (R2 = 0.7) and ripening (R2 = 0.59) phases compared to the hybrid ANN 

model in the vegetative, reproductive and ripening phases. When monitoring LAI phenological 

profiles of both hybrid models, the hybrid-GPR and ANN models underestimated LAI during 

the reproductive and ripening phases although the ANN model underestimations were 

significantly greater than those for the hybrid GPR model. Our results highlight the potential 

of hybrid GPR models for estimating the phenological dynamics of irrigated rice from 

Sentinel-2 data as they provide more accurate estimation of LAI patterns from varying nitrogen 

and water applications compared to hybrid ANN models  

Keywords: Leaf Area Index, Sentinel-2, Gaussian Process Regression, Rice, Phenology, 

Radiative transfer model 

5.1 Introduction 

 

Grain crops are the main source of nutrition and food for populations around the world, with 

rice accounting for over 40% of consumption globally (Muthayya et al., 2014). Sub-Saharan 

Africa has one of the fastest rates of increase in rice consumption, with Nigeria accounting for 

23% of the total consumption in the region (O’Donoghue and Hansen, 2017). However, sub-
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Saharan countries are reliant on expensive rice imports due to chronically low national yields 

(FAO, 2018b; von Grebme et al., 2013) leading to huge financial burden on these countries.  

A wide range of factors have been proposed as causes of large rice yield gaps observed in 

Nigeria and the wider sub-Saharan Africa region, including inadequate use of and access to 

inputs (e.g. water, nutrients, pest and diseases) (Fahad et al., 2017; Wahid and Close, 2007), 

limited farm mechanization and a lack of expertise amongst smallholder farmers about best 

agronomic management practices (Hengsdijk and Langeveld, 2009). Limited access to water 

for irrigation and fertilizers (including nitrogen), in particular, are key factors limiting 

productivity and resilience of rice production in sub-Saharan Africa and other smallholder 

farming regions globally (Ju et al., 2009; Wang et al., 2016b). Consequently, there is a growing 

need to monitor rice yields to address productivity gaps, including those caused by water stress 

and fertility limitations. Crop phenological phases inform how farm managers make decisions 

about application schedules (Sakamoto et al., 2005), . Effective monitoring of the growth  

dynamics of rice crops at different phenological phases is required to  help yield prediction by 

informing farmers as to when management interventions are necessary (Fageria, 2007). 

Consequently,  regular monitoring of crop phenology is an important step towards improving 

crop productivity (Mercier et al., 2020). 

Satellite remote sensing has been proposed as a potential low-cost and scalable tool for 

monitoring and mapping of crop yields (Gilardelli et al., 2019; Kang and Özdoğan, 2019b), 

growth status (Pipia et al., 2019; Thorp et al., 2012b; Xie et al., 2019b, 2018) and stress 

(Bandaru et al., 2016; Banerjee et al., 2018) in agricultural environments. Key to satellite-

based yield estimation approaches is the ability to accurately recover estimates of crop leaf 

area index (LAI) throughout the growing season. LAI is defined as half of the all-sided green 

leaf area per unit ground area (Chen and Black, 1991; Zheng and Moskal, 2009) and is a key 

biophysical parameter that reflects the physiological processes of plants, and thus is an 

important proxy for crop development. LAI is commonly measured directly, with destructive 

sampling, or indirectly, for example with digital hemispherical photography or the LAI-

2000/2200 Plant Canopy Analyzer (Fang et al., 2014; Lena et al., 2016). Yet, these approaches 

have shortcomings for measuring LAI across large spatial extents and at frequent points in 

time in terms of time, labour input and cost. Satellite remote sensing represents a reliable and 

faster alternative to detect spatiotemporally-explicit trends in LAI. For example, the moderate 

resolution imaging spectroradiometer (MODIS) LAI products are suited for monitoring at 

regional to global scales and have been applied in various studies (Fensholt et al., 2004; Gao 
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et al., 2008; Jiang et al., 2010). However, the spatial resolution of MODIS (250m) hampers its 

adoption when monitoring LAI at much finer resolutions, e.g. at field scale. More recently, the 

launch of the European Space Agency’s Sentinel-2 satellites provide a suitable platform for 

timely monitoring of LAI during different phenological phases due to the high spatial, spectral 

and temporal resolution (Drusch et al., 2012).  

A broad range of methods have been developed for the retrieval of LAI from satellite imagery, 

which can be broadly categorized into statistical, physically-based and hybrid methods 

(Verrelst et al., 2015a). Statistical methods are divided into parametric methods, such as 

vegetation index (VI) approaches, and non-parametric methods such as machine learning 

regression algorithms. VI-based models assume an explicit relationship between spectral 

observations in two or more bands and measured LAI (Clevers and Gitelson, 2012; Gitelson, 

2004; Verrelst et al., 2008). The successful application of this approach has been demonstrated 

to a range of vegetation canopies (Darvishzadeh et al., 2008a; Nguy-Robertson et al., 2012; 

Xie et al., 2014). Notably, VIs developed using reflectance in the red-edge region of the 

spectrum (RE-based VIs), such as the red-edge based NDVI and Inverted Red-Edge 

Chlorophyll Index (Frampton et al., 2013), have shown to estimate LAI effectively. Yet, VI-

based developed models are often location, sensor and time-specific, making their application 

over large spatial extents challenging (Baret and Buis, 2008; Verrelst et al., 2015a).  

Statistical non-parametric methods, on the other hand, assume a non-explicit relationship 

between spectral bands and LAI, commonly derived using non-parametric regression 

approaches such as machine learning regression algorithms (MLRA). MLRAs have the 

potential to generate adaptive, robust relationships and, once trained, in theory do not need 

additional information to be applied in other locations. Typically, machine learning algorithms 

can cope with the strong nonlinearity of the functional dependence between the LAI and 

reflected radiance (Verrelst et al., 2018). However, they can behave unpredictably when used 

with spectral data exhibiting characteristics not observed during the model training phase and 

may tend towards over-fitting of the training dataset (Baret and Buis, 2008; Darvishzadeh et 

al., 2008a; Rivera et al., 2014; Weiss et al., 2000).  

Physically-based LAI retrieval methods use Radiative Transfer Models (RTM) and offer an 

explicit connection between canopy reflectance and plant biochemical and biophysical 

characteristics (Jacquemoud et al., 2009). The physical modelling approach takes into account 

the canopy architecture, illumination, soil background and viewing geometries. RTMs have 
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frequently been applied to retrieve crop biophysical parameters from a range of different 

sensors (Berger et al., 2020; Darvishzadeh et al., 2008a; Dorigo et al., 2007; Estévez et al., 

2020). Nevertheless, the physically-based approach is not straightforward due to the trade-off 

between the reality and inversion possibility of the RTM made, hence, a common approach to 

simplify the inversion problem is by creating a Look Up Table (LUT) (Darvishzadeh et al., 

2008a; Weiss et al., 2000). The LUT approach simulates multiple model realizations and stores 

both inputs and output spectra as a LUT. Yet, the imposed upper/lower boundaries in the LUT 

is such that estimated variables cannot go beyond the boundaries imposed, therefore, 

undermining the physical approach (Baret and Buis, 2008). Additionally, the potential 

irregularity of green tissues in the canopy, referred to as clumping (Chen and Black, 1992), 

which assumes that the canopy is spatially homogeneous, leading to underestimation in high 

LAI values (Duveiller et al., 2011). 

More recently, hybrid methods have emerged to circumvent some of the limitations of 

empirical and radiative transfer approaches. Hybrid methods combine the generalization level 

of the physically-based radiative transfer approach with the flexibility and computational 

efficiency of machine learning algorithms (Verrelst et al., 2018). The Artificial Neural 

Network (ANN) represents the most frequently adopted MLRA used in hybrid models due to 

their efficient interpolation capacity. They have received much attention in biophysical 

variable retrieval and are currently operational as the LAI retrieval method for Sentinel-2 

imagery (e.g. available within the Sentinel Application Platform (SNAP) biophysical 

processor toolbox). However, hybrid ANN models are often difficult to train because of their 

multi-parameter complexity and are black box in nature (Lunagaria and Patel, 2019). 

Alternative approaches such as the use of hybrid Gaussian processes regression (GPR) 

(Rasmussen and Williams, 2006) have provided encouraging results in the framework of 

biophysical parameter estimation  (Campos-Taberner et al., 2016; Lázaro-Gredilla et al., 2014; 

Verrelst et al., 2015b). For instance, Campos-Taberner et al. (2016) used hybrid GPR from 

simulated Sentinel-2 bands from SPOT 5 for monitoring rice crop growth patterns. 

Nevertheless, SPOT 5 is spectrally inferior to Sentinel-2, with no provision of the spectral 

band in the red-edge region, which is important for LAI estimation (Xie et al., 2019b).  

It is therefore important to validated the hybrid GPR and ANN models from alternating 

management regimes, which are important towards understanding yield limiting factors using 

Sentinel-2 satellite.  The robustness of these retrieval methods under alternating farming 

treatments, over different phenological stages has yet to be established.  
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This study aims to determine the potential a hybrid PROSAIL - GPR model for estimating the 

phenological dynamics of irrigated rice LAI from Sentinel-2. We compare the performance of 

GPR from simulated Sentinel-2 data with Sentinel-2 LAI generated using an ANN, 

considering performance across a range of different phenological phases of rice growth to 

understand the intra-seasonal differences in LAI retrieval accuracy from the respective 

approaches. To achieve this, we address the following research objectives: (i) Evaluate the 

performance of hybrid GPR for estimating rice LAI across the entire vegetation active period 

and at key phenology phases of rice growth; and (ii) compare the relative performance of the 

hybrid GPR and hybrid ANN for estimating LAI during the different phenology phases of rice. 

5.2 Data and Methods 

 Study Area 

This study uses data from experimental plots located within a large rice farm (Olam farm) in 

the village of Rubuki about 60 kilometres from Doma in Nasarawa State, in the North-central 

region of Nigeria (Figure 5-1). Lowland rice is the major agricultural crop in the region, which 

is one of the main grains producing regions in Nigeria. The study area has a tropical humid 

climate with two distinct seasons: the wet (rainy) season lasts from the end of March to 

October, while the dry season is experienced between November and February. Maximum 

temperatures can reach 39 °C (March), while minimum temperatures can drop to as low as 17 

°C (December/January). 
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Figure 5-1: Study Area A: Nigeria. B. Specifically highlighting Doma. C. Farm showing experimental Area. The 

green rectangle represents the location of the 9 experimental plots 

 

 Experimental Design 

Rice was cultivated within 27 experimental plots from December 2017 to April 2018, 

following a randomized split-plot design where levels of irrigation and nitrogen fertilization 

were varied to generate spatial and temporal variability in crop chlorophyll content and leaf 

area index (LAI), which is a key requirement for comparing alternative LAI retrieval 

approaches. The fully factorial design consisted of three irrigation regimes and three nitrogen 

(N) application rates. Treatments were arranged in three blocks (replications), with three plots 

each with three sub-plots situated within each block (3 plots x 3 sub-plots x 3 blocks = 27 

sampling plots) (Figure 5-2). Each plot was 77 m long and 30m wide separated by a 2 m wide 

alley. Each subplot was 30 m long and 25 m wide separated by a 1 m alley (Figure 5-2).  
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Figure 5-2: Experimental set-up for field data collection. The site was divided into 3 blocks. Each block was 

divided into 3 plots with each plot having 3 sub-plots. The treatments for each plot were divided into continuous 

flooding, alternative wetting and moderate drying and alternative wetting and severe drying. The nitrogen 

applications were classed as high nitrogen, normal nitrogen and low nitrogen. 

 Irrigation and Nitrogen Regimes Application across the Phenological phases on 

experimental Plots 

 

Irrigation treatments consisted of three irrigation regimes, which were: (1) alternate wetting 

and moderate soil drying (AWMD); (2) alternate wetting and severe soil drying (AWSD); and 

(3) continuously flooded (CF). Except for drainage mid-season, the CF regime maintained a 

continuous flood with 5–10 cm water depth until one week before the final harvest as per 

recommended farming practices. Soil water potential was monitored at 15–20 cm soil depth 

with a tensiometer consisting of a sensor of 5 cm length. One tensiometer was installed in each 

plot of AWMD and AWSD regimes, and readings were recorded at 1200 h each day. When 

soil water potential reached the threshold of -10 and -15 kilopascals for AWMD and AWSD 

regimes respectively, a flood with 5–10 cm water depth was applied to the plots. The amount 

of irrigation water was monitored with a flow meter (LXSG-50 Flow meter, Shanghai Water 

Meter Manufacturing Factory, Shanghai, China) installed in the irrigation pipelines. Both 

irrigation and drainage systems were built between blocks. Each plot was irrigated or drained 

independently.  

Nitrogen application treatments consisted of three N rates including 55, 110, and 165 kg ha− 1, 

and representing low amount (LN), normal amount (NN), and high amount (HN) of N, 
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respectively. Nitrogen as urea was applied at seeding phase, early tillering and at panicle 

initiation (the first appearance of differentiated apex). The proportion of nitrogen application 

was split into 30%, 40% and 40% respectively, for each of the three phenological phases 

(vegetative, reproductive and ripening). 

 Field Measurements 

 

Within each sub-plot, five 1 m2 quadrats were established for LAI measurements and the 

collection of field reflectance spectra. On each of the seven sampling dates (Table 1) LAI was 

measured within each quadrat using an LAI-2200 Plant Canopy Analyzer (LI-COR, Lincoln, 

NE, USA). A 45° view gap was used to avoid direct sunlight within the sensor and minimize 

the effects of the illumination and background conditions (Stroppiana et al., 2006). On each 

occasion, one above-canopy and four below-canopy radiation measurements were collected. 

All measurements were collected either in the early morning or late afternoon to ensure diffuse 

lighting conditions.  

A chlorophyll content meter (atLEAF+, FT Green, Wilmington, DE) was used to non-

destructively measure relative leaf level chlorophyll content. Measurements were collected on 

the same days as LAI. The atLEAF+ sensor is a handheld device which uses a logarithmic 

ratio between red and NIR light transmission (650, 900 nm; respectively). The red and NIR 

regions take advantage of the relationship between high absorption by chlorophyll of red 

radiant energy and high reflectance of near-infrared energy for healthy leaves and plant 

canopies. Several previous studies have used the atLEAF+ to monitor leaf chlorophyll content 

in crops (Novichonok et al., 2016; Padilla et al., 2018) and have compared it to the more widely 

used SPAD-502 meter (Konica Minolta, Inc., Tokyo, Japan) for estimating chlorophyll content 

(Zhu et al., 2012). Although studies have shown more accurate estimations of chlorophyll from 

SPAD (Novichonok et al., 2016; Padilla et al., 2018), results from Zhu et al. (2012) indicated 

strong correlations among laboratory leaf chlorophyll (Chl) content, SPAD values, and 

atLEAF values. The chlorophyll data generated were solely used to help parametrize 

PROSAIL (Section 2.6.1).  

Canopy spectral measurements were collected using an ASD Field Spec spectroradiometer 

(Analytical Spectral Devices, Inc., Boulder, CO, USA). A fibre optic cable connected to the 

ASD with an 18° FOV was used to measure spectra from 1 m above the plant canopy at nadir. 

Measurements of a white spectralon panel (FSF, Edinburgh, United Kingdom) were used to 
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convert spectral measures of radiance to reflectance. Five spectral measurements were 

collected and averaged for each 1 m2 quadrat. All measurements were made on clear, sunny 

days between 10:00 and 14:00. The spectral data were resampled to ten Sentinel-2 bands using 

the band spectral response functions available within the ARTMO software (Verrelst et al., 

2012c).  

LAI, Chl and spectral measurements from each of the five quadrats per sub-plot were 

subsequently averaged to provide one set of LAI, Chl and spectral values for each sub-plot (n 

= 27) per sampling date (n = 7) (Table 5-1). 

Table 5-1: Field measurements and data used for calibration and verification of the retrieval scheme. The 

Sentinel-2 data were acquired on the same day field measurements were conducted. Spec data – Spectral data; 

LAI – Leaf Area Index; Chl - Chlorophyll 

Phenology Growth phase Date  Days After 

Sowing (DAS) 

ASD 

data 

LAI Chl Sentinel-

2 

Vegetative Early Tillering  30-01-18 37 ✓ ✓ ✓ ✓ 

 Tillering 04-02-18 42 ✓ ✓ ✓ ✓ 

 Stem 

Elongation 

14-02-18 52 ✓ ✓ ✓ ✓ 

 Stem 

Elongation 

19-02-18 57 ✓ ✓ ✓ ✓ 

Reproductive Panicle 

Initiation 

24-02-18 62 ✓ ✓ ✓ ✓ 

 Heading 06-03-18 72 ✓ ✓ ✓ ✓ 

Ripening Milk 16-03-18 92 ✓ ✓ ✓ ✓ 

 

 Sentinel-2 data acquisition and processing 

 

The Sentinel-2 mission comprises of two satellites launched into orbit in 2015 (Sentinel-2A) 

and 2017 (Sentinel-2B), respectively. The combination of both satellites provides images 

every five days. Each satellite carries a Multispectral Imager (MSI) with a swath width of 290 

km, and provides data in 13 spectral bands spanning from the visible and near infrared region 

to the shortwave infrared region, including four bands at 10 m, six bands at 20m and three 

bands at 60m spatial resolution (Richter et al., 2012). Sentinel-2 incorporates three bands in 

the red-edge region, centred at 705, 740 nm and 783 nm, respectively. Sentinel-2 MSI images 

were obtained from the Copernicus Open Access Hub (https://scihub.copernicus.eu/) with 

https://scihub.copernicus.eu/
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dates corresponding with the dates of field measurements. The Sen2Cor Level-2A processor 

was used to correct Sentinel-2 Level-1C products (digital number image) for atmospheric 

effects to generate Level-2A surface reflectance products using the SNAP Toolbox. To retain 

the red-edge region in the atmospherically corrected images, we chose 20 m as the spatial 

resolution to resample the data to during the atmospheric correction. Details of the spectral 

bands retained after pre-processing can be found in Table 2. 

Table 5-2: Sentinel-2 MSI band settings. 

Sentinel-2 

Bands 

B2 – 

Blue 

B3 – 

Green 

 B4 – 

Red 

B5 –

Vegetation 

Red Edge 

B6 – 

Vegetation 

Red Edge 

B7 – 

Vegetation 

Red Edge 

B8 – 

NIR 

B8A – 

Narrow 

NIR 

B11 – 

SWIR 

B12 – 

SWIR 

Central 

Wavelength 

(µm) 

0.49 0.56 0.66

5 

0.705 0.74 0.783 0.84

2 

0.865 1.61 2.19 

Resolution 

(m) 

10 10 10 20 20 20 10 20 20 20 

Bandwidth 

(nm) 

65 35 30 15 15 20 115 20 90 180 

 

 LAI Retrieval 

Two different approaches were used to calculate LAI from Sentinel-2 imagery, (i) using a 

hybrid retrieval strategy from the combination of the physical based model (PROSAIL) and 

the GPR and (ii) using the hybrid ANN model deployable with the SNAP toolbox.  

5.2.6.1.  Physical based modelling 

 

The PROSAIL model was used to build the database for training the LAI retrieval model. 

PROSAIL assumes the canopy as a turbid medium for which leaves are randomly distributed. 

The model (Jacquemoud et al., 2009) refers to the coupling of the PROSPECT leaf optical 

properties model (Feret et al., 2008) with the SAIL canopy reflectance model (Verhoef, 1984) 

and has been widely validated and used for LAI estimation (Darvishzadeh et al., 2008a; Sehgal 

et al., 2016; Zhang et al., 2016). PROSPECT-4 simulates leaf reflectance and transmittance 

for the optical spectrum (400 to 2500 nm), as a function of biochemistry and anatomical 

structure of the canopy and its leaves. It consists of four-leaf parameters: leaf structure, leaf 

chlorophyll content, equivalent water thickness and dry matter content (Feret et al., 2008). 
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4SAIL calculates top-of-canopy reflectance. The 4SAIL input variables are: LAI, leaf angle 

distribution, the diffuse/direct irradiation ratio, a hotspot parameter and the sun-target-sensor 

geometry.  

A LUT was generated using the PROSAIL model to retrieve LAI. The LUT was generated for 

six fixed parameters (Table 5-3): LAI, Cab, Cm, Cw, ALA and Sun-sensor azimuth angle. 

Two thousand random combinations of these parameters were generated within pre-defined 

parameter ranges based on the collected field data. LAI, Cab, Cm and Cw were sampled using 

a distribution function suggested by Weiss et al. (2000). Cm, Ca, ALA and Sun-sensor azimuth 

angle were sampled assuming uniform distributions (Verrelst et al., 2015c) 

A dataset of 69 distinct wet and dry soil samples, collected using the ASD spectrometer during 

the field campaign were also included in the PROSAIL simulations (Verrelst et al., 2019). 

Table 5-3: Range and distribution of input parameters used to establish the synthetic canopy reflectance database 

for use in the LUT 

Model parameters Range Mean/standard deviation 

Leaf parameters:      PROSPECT-4 
 

N Leaf structure index 1.2-2.5  

LCC Leaf Chlorophyll Content 10.0 - 55 35/20 

Cm Leaf dry matter content 0-0.03  

Cw Leaf water content 0-0.05  

Canopy variables:      4SAIL 
 

 

LAI Leaf area index 0.2 -9 5.5/4 

soil Soil scaling factor 0-1  

ALA Average leaf Angle 40-80  

HotS Hot spot parameter nil  

 

The PROSAIL model top of the canopy1 1 full spectra (at 1 nm resolution) were 

subsequently resampled using Sentinel-2 MSI spectral response functions, to the ten bands as 

used in the Sentinel-2 level 2 products (Table 2). 

Retrieval methods based on simulated data are not affected by noise and measurement 

uncertainty (Liang, 2007), which can introduce additive and multiplicative band dependent 

(i.e. applied to individual bands) and independent (i.e. applied to all bands) errors (Verger et 

al., 2011). Consequently, artificial noise was introduced into the PROSAL model LUT to 
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account for some of the band independent uncertainties. Specifically, white Gaussian noise 

was added to the output spectra, based on the noise model provided in equation (1): 

 

ℛ∗(𝜆) = ℛ(𝜆). (1 +
𝑀𝐷((𝜆)+𝑀𝐼

100
) + 𝐴𝐷(𝜆) + 𝐴𝐼     (1) 

 

where R(𝜆) and R*(𝜆) are the raw simulated reflectance for band 𝜆 and the reflectance with 

uncertainties for band 𝜆, respectively. MD and MI are the multiplicative wavelength dependent 

noise and the multiplicative wavelength independent noise, respectively. AD and AI are the 

additive wavelength dependent noise and the additive wavelength independent noise, 

respectively. After some testing of additive and multiplicative noise, a value of 0.01 for AD 

and AI, and a value of 2% for MD and MI were used for all simulated wavelength ranges. 

Similar noise levels were successfully used in a recent study to reduce the over-fitting on the 

MLRA training database (Upreti et al., 2019). 

 

5.2.6.2.  PROSAIL model inversion using Gaussian Processes 

Regression  

 

The simulated canopy reflectance data from PROSAIL was subsequently used to train a GPR 

model by linking the spectral information to canopy LAI. 

Gaussian processes regression (Rasmussen and Williams, 2006) is a nonparametric, Bayesian 

regression approach, and has been successfully used for the retrieval of LAI in rice(Campos-

Taberner et al., 2016). GPR is a probabilistic approximation to non-parametric kernel-based 

regression, where both a predictive mean (point-wise estimates of LAI) and predictive 

variance (error bars for the LAI predictions) can be derived. GPR offers a relation between the 

input (e.g., spectral data) x = [x1, . . . , xB] ∈ RB and the output variable (i.e., LAI) y ∈ R of 

the form: 

 

�̂� = 𝑓(𝑥) =  ∑ 𝑎𝑖
𝑛
𝑖=1 𝐾𝜃(𝑥𝑖𝑥) + 𝛼˳       (2)  

 

where �̂� is LAI, ∑ 𝑎𝑖
𝑛
𝑖=1  are the spectra used in the training phase, 𝑎𝑖 ∈  R is the weight 

assigned to each one of them, 𝛼˳ is the bias in the regression function, and 𝐾𝜃 is a kernel or 
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covariance function (parametrized by a set of hyperparameters θ) that evaluates the similarity 

between the test spectrum and all N training spectra.  

 

To generate kernel regression models, a kernel function 𝐾𝜃 to infer the hyperparameters h and 

model weight a is required. Hence, we used the so-called automatic relevance determination 

(ARD) kernel, as an alternative generalization of the isotropic SE prior: 

 

𝐾(𝑥𝑖𝑥𝑗) =  𝜐𝑒𝑥𝑝 {− ∑
𝑋𝑖

(𝑏)
−𝑋𝑗

(𝑏)

2𝜎𝑏
2

𝐵
𝑏=1 } +  𝜎𝑏

2𝛿𝑖𝑗     (3) 

 

where 𝜐 is a scaling factor, B is the number of bands, and sb is a dedicated parameter 

controlling the spread of the relations for each particular spectral band b. Model 

hyperparameters are collectively grouped in h = [m, sn, s1, . . . ,sB], and model weights 𝑎𝑖can 

be automatically optimized by maximizing the marginal likelihood in the training set 

(Rasmussen and Williams, 2006; Verrelst et al., 2012b). GPR also provides information about 

relevance of bands (a ranking of relevant bands), which can be used for identifying the 

sensitive spectral regions (Campos-Taberner et al., 2016; Jochem Verrelst et al., 2016). 

 

5.2.6.3. Sentinel-2 Application Platform for leaf area index 

Among other modules, the SNAP toolbox contains a vegetation processor module that is 

designed for the retrieval of LAI, canopy chlorophyll content (CCC), canopy water content, 

fraction of photosynthetically active radiation absorbed by the green elements of the canopy, 

and fraction of vegetation cover (Weiss and Baret, 2016). The principles governing the 

retrieval of LAI are based on the hybrid model of PROSAIL adopted for this study and the 

ANN models adopted as the non-parametric model for model inversion (Weiss and Baret, 

2016). Based on a pre-trained neural net, at least one pure LAI pixel was retrieved in each of 

the experimental subplots from each of the seven Sentinel-2 images (table 1), accounting for 

the different phenological phases of rice growth. 

 Model Accuracy 

The LUT simulated with model PROSAIL was used to train GPR into LAI retrieval models 

applicable to Sentinel-2. In order to assess the GPR inversion process, the model was assessed 

using k-fold cross-validation (k = 10). For each model, the dataset was randomly divided into 

10 equal-sized sub-datasets. From these sub-datasets, 10-1 sub-datasets are selected as a 
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training dataset and a single sub-dataset is used as a validation dataset for model testing. The 

cross-validation process is then repeated 10 times, with each of the 10 sub-datasets used as a 

validation dataset. This way, all data are used for both training and validation, and each single 

observation was used for validation exactly once (Verrelst et al., 2015c). The coefficient of 

determination (R2), the root mean squared error (RMSE) and the normalized RMSE (NRMSE 

in %) were used to evaluate model fit. and predictive performance against the LAI field data.  

The validation of the LAI predictions against the actual measured LAI in the field (section 2.2) 

i.e., how well do the predicted LAI values based on field spectral reflectance match the actual 

LAI measured in the field was evaluated. To evaluate the performance of both the GPR and 

ANN (the SNAP Sentinel-2 MSI model) models (will be referred to as GPR and ANN 

henceforth) with in-situ data. The coefficient of determination (R2), the root mean squared 

error (RMSE) were used in assessing the accuracy of the models. 

To account for the accuracy in monitoring the phenological dynamics of both the GPR and 

ANN models based on different crop management scenarios, both the GPR and ANN LAI 

models were compared with corresponding field observation plots of LAI phenology patterns 

over the growing phases of rice. 

5.3 Results 

 Temporal patterns of field measured LAI in response to Nitrogen and Irrigation 

Treatments 

 

LAI values varied with nitrogen and water application rates with the highest LAI values (8.67) 

observed in plots with HN and CF treatment and lowest values occurring in plots with LN and 

AWSD treatment (1.17). Within field variability was generally low, with the exception of one 

subplot (B1P3SP3; see Figure 5-2) which showed high variability at the stem elongation and 

panicle initiation phase (Figure 5-3).  

Plots that were continuously flooded (CF) showed increasing LAI values across the different 

phenological phases despite the variation in nitrogen application within the subplots. However, 

LAI values within AWMD and AWSD plots declined when soil water levels were low (Figure 

5-3), likely due to the effects of water stress on plant development. These reductions in LAI 

were observed particularly during the stem elongation phase (see Table 5-1). In 11 out of the 

18 subplots where irrigation applications were altered declines in LAI values occurred during 

the vegetative phase. For example, at 57 Days after Sowing (DAS) showed a decline in LAI 
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values for plots with alternating water applications as irrigated water was allowed to drop to -

10 and -15 kilopascals for the AWMD and AWSD plots respectively.  

 

Figure 5-3:LAI phenology profile for each experimental subplot with errors bars. B represents the block in which 

each plot is represented. P represents the Plot in which all the sub-plots are represented. SP represents the 

individual subplots found in each plot. In total, there are 27 subplots. 
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When considering the nitrogen application to each subplot (Figure 5-3), it was observed that 

nitrogen application was an important determinant of LAI dynamics over space and time 

(Table 5-1). For instance, B2P1SP2 is characterised by low nitrogen application and AWSD 

irrigation regime while B2P1SP3 is characterised by high nitrogen application and AWSD 

irrigation regime. The LAI dynamics show higher LAI during the reproductive and ripening 

phases with high nitrogen application as compared to low nitrogen application. Similar results 

were observed when looking at B2P3SP2, which is characterised by low nitrogen application 

and AWMD irrigation treatment to B2P3SP3 subplot, characterised by normal nitrogen 

application and AWMD irrigation treatment. Nitrogen played a significant effect in the LAI 

profiles on both plots with significantly high LAI during the reproductive phase in the normal 

nitrogen subplots compared to low nitrogen subplot. However, each plot irrespective of 

nitrogen and irrigation treatment peaked during the reproductive or ripening phenological 

phase of irrigated rice growth. 

 PROSAIL-GPR LAI Retrieval Models Validation 

The GPR model performance was evaluated against the simulated data. The hybrid GPR model 

explained 65% of variance in LAI estimation ( RMSE 1.21)  

The red-edge bands, near-infrared and short-wave infrared bands were most significant in 

model development, whilst the Blue and Green bands in the visible portion of the 

electromagnetic spectrum  contributed least to the model (Figure 5-4) . 

 

Figure 5-4: Relevance band histograms for Sentinel-2 simulated bands using GPR model. The lower the sigma 

the more important the band.  
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 Validation of PROSAIL-GPR and Sentinel-2 LAI vs Measured LAI  

When considering the performance of the hybrid models for predicting LAI phenology against 

in situ data, the GPR model explained 82% of LAI variation in the model with an RMSE of 

1.65 for the entire season. The regression line deviated from the 1:1 line as LAI values 

increased, leading to underestimation at high LAI values (Figure 5-5). When validating LAI 

at the vegetative and reproductive phases, similar trends were identified, with regression lines 

deviating from the 1:1 line with increasing LAI (Figure 5-5). For the ripening phase, model 

results showed a relationship between measured and estimated LAI (R2 = 0.57) however, 

predicted LAI values were underestimated compared to actual field observation (Figure 5).  

 

Figure 5-5:Measured versus predicted LAI from GPR PROSAIL for the entire season (n=189), the vegetative 

phase (n=108), the reproductive phase (n=54) and ripening phase (n=27). 

When evaluating the ANN model with in-situ LAI measurements, the ANN model explained 

66% of model variation, albeit under-estimating LAI during of entire phenological phases, 

leading to an RMSE value of 3.89. Similar under-estimation trends were found during the 

reproductive and ripening phases explaining 58% and 33% respectively (Figure 6). 
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Figure 5-6 Measured versus predicted LAI from ANN model for the entire season (n=189), the vegetative phase 

(n=108), the reproductive phase (n=54) and ripening phase (n=27). 

 Temporal Profile of LAI across altered irrigated and nitrogen regimes 

 

From the analysis of Low Nitrogen (LN) and Alternative Wetting and Severe Drying (AWSD) 

subplots, GPR and ANN showed similar profiles during the vegetative phase, however, a 

general under estimation was identified in both models. The transition from the vegetative to 

the reproductive phase showed a rapid increase of in-situ LAI. The GPR model showed much 

higher LAI profile transition, with a decline in LAI values observed in some plots due to the 

alternative wetting and drying approach adopted. However, there was still underestimation of 

LAI compared to in-situ measurements. On the other hand, LAI values were consistently low, 

with peak LAI below 2.4 with the ANN model. These peak values are usually attributed to the 

reproductive phase, showing a high discrepancy between actual ANN LAI phenological with 

in situ LAI in Figure 5-7.  
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Figure 5-7: Experimental subplots characterised by Low Nitrogen and Alternative Wetting and Severe Drying 

(AWSD) regimes 

The subplots with High Nitrogen (HN) and Continuous Flooding (CF) showed similar results 

for the GPR model compared to in-situ measurements (Figure 5-8). From the tillering phase, 

underestimation of LAI values were more evident from the ANN model compared to the 

measured LAI and GPR estimates. Transitioning to the reproductive phase showed a sharp rise 

in the LAI profile of subplots with the same nitrogen and water treatments. The GPR results 

exceeded LAI values of 6, although a general underestimation was the general pattern from 

the predictive model. In terms of the ANN model, the underestimation was more obvious from 

the ANN model for the three subplots during the reproductive phase. For the ripening phase, 

a general decline in LAI was identified compared to in situ measurements for the two hybrid 

models, however, the pattern of underestimation was more evident with the ANN model 

(Figure 5-8). 
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Figure 5-8: Experimental subplots characterised by High Nitrogen and Continuous Flooding (CF) regimes 

We assessed plots with normal nitrogen (NN) distribution and Alternate Wetting and Moderate 

Drying (AWMD) plots. These plots were chosen because there may be a tendency for plots to 

have reduced water supply due to inadequate irrigation systems or drop in water levels at 

storage point when growing rice. The same patterns identified in Figure 5-7 and 5-8 were 

reflected in this category, except for the GPR model in the vegetative phase. For subplots 

B2P23SP3 and B3P1SP3, the GPR model showed overestimation in one of the plots and 

underestimation of LAI in the other two plots early in the vegetative phases (Figure 9). 

Nevertheless, underestimation was also identified in Figure 5-9 during the reproductive and 

ripening phases. The ANN model estimation of LAI was consistently low as identified in the 

other phases (Figure 5-9).  
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Figure 5-9: Experimental subplots characterised by Normal Nitrogen and Alternative Wetting and Moderate 

Drying (AWMD) regimes 

In summary, ANN and GPR models generally show the same phenological profiles compared 

to in-situ data, however, the underestimation in ANN models was more significant when 

estimating the phenology patterns for different nitrogen and irrigation regimes. The same 

limitations were identified with the GPR model, although the GPR model estimations of rice 

LAI phenology showed higher variations in LAI results similar to in-situ measurements.  

5.4 Discussion 

LAI has been identified to have a strong relationship with yield, leading studies to investigate 

and estimate LAI in order to understand yield trends and patterns(Fang et al., 2014; Gilardelli 

et al., 2019). With the launch of Sentinel-2, acquiring high spatial, spectral and temporal 

resolution images as key growth phases of rice has become possible. This study focused on a 
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hybrid retrieval approach by combining the machine learning regression model GPR with 

PROSAIL simulations for estimating the phenology dynamics of rice LAI over altered 

irrigation and nitrogen regimes. Furthermore, we assessed the retrieval performance generated 

by SNAP, which consists of Artificial Neutral Network (ANN) trained by PROSAIL 

simulations, to understand the seasonal dynamics of rice LAI. 

The GPR model showed a positive relationship (R2 = 0.65) between the model built from 

Sentinel-2 data based on the spectral bands and angular configuration in terms of coefficient 

of determination and RMSE. The relationship of the GPR model at high LAI may have taken 

into account the addition of soil spectra and noise for optimization of model performance. 

Similar strategies have been adopted to improve the retrieval estimates of LAI (Campos-

Taberner et al., 2016). However, limited variation in soil spectral led to overestimation of LAI 

when LAI values are low, which aligns with results suggested by Verrelst et al. (2015) as 

obtaining limited soil spectra variation from the experimental area would be limiting. One 

approach to be considered in future should capturing a larger variation in soil type, moisture 

content, the geometric configuration, as well as the roughness of the soil (Jacquemoud et al., 

1992). From the trained GPR model, it was possible to identify the most significant spectral 

bands for LAI retrieval. The bands along the red edge, near-infrared and short-wave infrared, 

were more importance compared to the blue and green bands along the visible part of the 

electromagnetic spectrum as shown in Figure 5-4. The results observed were in agreement 

with earlier observations (Darvishzadeh et al., 2008a; Delegido et al., 2011; Verrelst et al., 

2015b).  

When validating the GPR and ANN models against in-situ LAI measurements, the GPR 

PROSAIL model exhibited a better agreement with in-situ measurements compared to ANN 

across the entire growing season (Figure 5-6 and 5-7). The improvement may be greater 

because of the transparent nature of the GPR model, which allows the use of simple to complex 

kernel functions for parameterisation of the model, while also providing uncertainty estimates 

of the mean value of prediction (Upreti et al., 2019). Further investigation into the phenology 

phases of growth saw improved estimation accuracy from the GPR model as compared to 

ANN PROSAIL during the vegetative, reproductive and ripening phases. In terms of the ANN 

model accuracy, the RMSE may present a bias due to trends in time series data. The ANN 

model displayed consistently low LAI estimates through all growing phases, leading to high 

model bias between estimated and predicted values of the entire season and particularly during 
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the reproductive and ripening phases (Figure 5-8 and 5-9), with underestimation of LAI 

apparent at each phenology phase. 

Operational LAI products (Sentinel-2 and MODIS) have been identified to provide 

underestimated LAI in different seasons (Xie et al., 2019b). This was evident when assessing 

the phenological patterns of rice LAI in this study. LAI values remained below 4 in plots with 

increase irrigation and nitrogen supplies. PROSAIL models have shown to underestimate LAI 

in dense vegetation (Verrelst et al., 2015b), even though they have shown to be compensated 

when inverted with machine learning algorithms (Campos-Taberner et al., 2016). Although 

GPR and ANN models underestimated LAI, especially during the reproductive and ripening 

phases as shown in Figure 5-7, 5-8 and 5-9, the GPR phenology patterns were closely related 

to in-situ measurements, with some plots showing overestimation during the vegetative phase 

(Figure 9).  

At the vegetative phase, LAI of rice subplots with adequate water supply at elevated carbon 

dioxide concentration increases as a result of rapid leaf production in the vegetative growth 

phase (Grashoff et al., 1995). This was identified in CF plots with high and normal nitrogen 

applications in Figure 3. This applies particularly for indeterminate growing species and under 

nonlimiting supply of nutrients. This was also evident in plots where water supplies were 

withheld for a couple of days during the vegetative phase despite a dip in LAI values. Although 

the GPR and ANN models identified similar field observation LAI patterns, underestimation 

was evident during the vegetative phase. During the reproductive phase, LAI at full heading 

increased with increasing nitrogen rate, which also ushers the climax of LAI values (Sharma 

and Yadav, 1999). Figure 5-3 shows similar results with rice LAI reaching peak in most of the 

subplots and the rise of LAI curve as a result of the nitrogen application. The GPR model 

accounted for an increase in LAI values up to 6. On the other hand, the ANN model did not 

exceed LAI values of 4 during the heading phases. Previous studies that have assessed the 

performance of the ANN model have compared model performance against LAI values less 

than 4 (Pasqualotto et al., 2019; Xie et al., 2019b), although LAI results have also been seen 

in other studies to exceed 4 with the exception for (Vanino et al., 2018; Xie et al., 2019b). 

Therefore, further validation of the models is imperative in other locations. The ripening phase 

ushered in a sharp decline of LAI due to translocation of accumulated plant reserves to the 

panicle (Sharma and Yadav, 1999). This was evident in the in-situ LAI measurements and the 

GPR and ANN models. However, underestimation was observed in the GPR model with 

higher underestimation in ANN LAI. The underestimation results obtained from both models 
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may have been as a result of changes in spectral reflectance over a relatively small portion of 

the experimental subplots (experimental sub-plot > 0.5ha) leading to anisotropy effects of 

reflectance based on the spatial resolution of Sentinel-2. Furthermore, ANNs are black box in 

nature, and can be unpredictable if training and validation data deviate from each other even 

slightly (Verrelst et al., 2015c). Whereas, GPR provides insights in bands carrying relevant 

information and also in theoretical uncertainty estimates, thus partially overcoming the black 

box problem. 

Despite the superior performance of GPR for estimating LAI, GPR is computationally 

expensive if trained on large sets of simulations (Upreti et al., 2019; J. Verrelst et al., 2016) 

and will not necessarily alleviate the limitations of RTMs, such as the ill-posed inverse 

problem or the constrained model’s capability of reproducing the measured (canopy 

bidirectional) spectral signals (Berger et al., 2018). Yet, GPR major benefit entails providing 

a comprehensive training data base for the machine learning regression model without the 

necessity of in-situ data collection (although this is still required for validation). Furthermore, 

the LUT can be modified based on the specific application by implementing existing 

knowledge and concepts of experienced users  

Finally, to combat spectral reflectance issues due to experimental plot sizes, future studies 

should investigate the retrieval of GPR and ANN models over different phenology phases to 

understand LAI dynamics in a bid to improve global LAI estimation. Furthermore, developing 

models for specific regions should be investigated in future studies. 

5.5 Conclusion 

This study focused on determining the potential of PROSAIL and Gaussian Processes 

Regression (GPR) for estimating the phenological dynamics of irrigated rice LAI from 

Sentinel-2. We also identified the most significant bands for estimating LAI from Sentinel-2 

and mapped LAI. In terms of the most significant bands, the red edge, near-infrared and short-

wave infrared bands were identified as the most significant for estimating LAI from Sentinel-

2. Subsequently, we compared the performance of hybrid GPR and hybrid ANN model 

generated from Sentinel-2 Application Platform (SNAP) for estimating the seasonal LAI 

dynamics of rice fields with altered nitrogen and water applications at different phases of crop 

growth. 

The GPR model outperformed the ANN model in LAI estimation while at the same time 

offering uncertainty estimates. Similar results were obtained during the vegetative, 
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reproductive and ripening phases. Further, in the analysis of both models, ANN LAI showed 

gross underestimation of LAI, particularly in the reproductive and ripening phases of LAI 

development. On the other hand, GPR showed some overestimation during the vegetative 

phases. However, LAI growth curve was much closer to in-situ measurements when using 

GPR compared to ANN during the reproductive and ripening phases, with less 

underestimation. Results suggest that the GPR model can successfully estimate the 

phenological dynamics of rice in altered management practices. The study opens opportunities 

for further studies in other crop types, regions and growing seasons in other to validate and 

improve global LAI estimation.  
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Chapter 6 The influence of baseline Sentinel-2 data for predicting 

high resolution Irrigated dry season rice yield   
 

Abstract 

Accurate estimation of yield is essential towards attaining proper crop management, food 

security evaluation and policy implementation. With varying land sizes available for rice 

cultivation, appropriate yield estimation approaches from smallholder to landscape scales is 

imperative towards comprehensive yield assessment. This paper provides a novel 

demonstration of monitoring the spatio-spectral influence of baseline Sentinel-2 10m and 20m 

Multispectral Imager (MSI) for monitoring within and between field variability at smallholder 

and landscape scales using Random Forest (RF) models. To monitor yield, 48 management 

fields (combined total at 1150ha) were selected to monitor yield at landscape scale. Simulated 

smallholder farm plots were generated across the 48 management fields based on the following 

smallholder farm categories: 0 – 1 ha, 1 - 2 ha, 2 – 5 ha and 5 - 10 ha. The RF models were 

trained and validated using yield dataset containing over 51,000 points for 10m resolution data 

and over 13,000 points for 20m collected by combine yield harvester monitors. Results show 

that the RF model trained with the inclusion of Sentinel-2 red edge bands and Normalised 

Difference Red Edge (NDRE) performed better than the RF model without the red edge bands 

and index at 20m resolution. However, with validation data at 10m, the RF model trained with 

Sentinel-2 10m bands and Normalised Difference Vegetation Index (NDVI) produced the 

most accurate estimation of irrigated rice yield at landscape scale. Sentinel-2 MSI was able to 

predict between field variability of farm plots from 0 – 10 ha with model errors ranging from 

0-26 – 0.41 t/ha. The results highlight the promising potential of baseline Sentinel-2 MSI for 

predicting within and between field variability in dry season irrigated rice farms across farm 

scales. 

Keywords: Yield, Sentinel-2, Rice, smallholder farms, Landscape scale, Random Forest 

6.1 Introduction 
 

Rice is an important staple crop, contributing significantly to the dietary needs of households 

globally(OECD-FAO, 2019). Over the past three decades, sub-Saharan countries have seen 

consistent increase in rice demand and increased emphasis on expanding rice production in 

strategic food security planning policies (O’Donoghue and Hansen, 2017). With the increasing 

demand and expanding production of rice, it has become imperative to adopt sustainable 

measures of rice growth while also increasing yields. One of such measure is increasing the 

amount of rice grown during the dry season months to supplement rice production during the 

rainy season (Kurukulasuriya et al., 2006). The increasing possibility of growing rice multiple 

times yearly, accurately monitoring the variability of within and between field yield is not only 

important towards understanding yield patterns but also towards improving rice production 

(Kuenzer and Knauer, 2013). 



145 
 

The size of available farm land also plays a major role in controlling where rice is grown, both 

in sub-Saharan Africa and globally (GRiSP, 2013). As such, Lowder at al. (2016) classified 

farms sizes in hectares(ha) as small (<20ha), medium (20 – 50ha) and larger (>50ha) farms. 

In terms of small farms (usually referred to as smallholder), the definition of smallholder 

agricultural land differs amongst countries, primarily due to the socioeconomic and 

agroecological setting (Giordano et al., 2019). For instance, a smallholder rice farm in sub-

Saharan Africa may differ from a smallholder rice farms in Asia. Farm sizes are often larger 

in high income countries such as Australia and United States than in those with medium to 

low income countries, including Ghana and Nigeria (FAO, 2014; Giordano et al., 2019). 

Nevertheless, over 80% of farmlands are less than 2ha in size with 72%, below 1 ha globally 

(Lowder et al., 2016). Although these farms are small, their number across the global is such 

that smallholder farms (< 2 ha) contribute more than 64% of global rice production (Samberg 

et al., 2016). Large farms (>50ha) also play a significant role in global rice security (Lowder 

et al., 2016) as the hold majority of available farms for farming with strong potential to boost 

rice production. Therefore, there is a need for yield monitoring techniques that work across 

scales, and in particular for small-scale plots that represent the main component of rice 

production in Nigeria and wider W Africa/SSA. 

Hence, effective monitoring and timely prediction of yield across farms scales is thus needed 

to provide detailed information on the success of current farming practices and to identify 

areas that may benefit from management interventions (Samberg et al., 2016). Still, monitoring 

of rice yields across farms scales are often challenging as yield estimates are largely reliant 

upon the results of intensive field surveys that are both constrained regarding 

representativeness and reliability of yield estimation often leading to misrepresentation of 

actual yield outcomes (Lambert et al., 2018). 

One alternative for monitoring rice yield is through Earth Observation (EO) satellites. Earth 

Observation data has been extensively used for predicting crop yields across vary scales 

(Azzari et al., 2017; Jin et al., 2017b; Lobell, 2013). Low spatial resolution satellites (< 250m) 

have been used to predict yield in rice. One such satellite is the Advanced Very High-

Resolution Radiometer (AVHRR; 1.1 km spatial resolution), which has been utilised to predict 

rice yield. For instance, Bastiaanssen and Ali (2003) utilised AVHRR data to predict regional 

rice yield in Pakistan, which were validated with county data. In addition to AVHRR, the 

Moderate Resolution Imaging Spectroradiometer (MODIS; ≤ 250m) has been utilized for yield 

estimation partly due to the temporal and spectral resolution of the sensor. Ren et al. (2008) 
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predicted crop yield using a MODIS-NDVI based model at regional scale with a 250 m spatial 

resolution in China. Predicted yield using MODIS-NDVI results showed that the relative 

errors of the predicted yield were between 4.62% and 5.40% and that RMSE (214.16 kg ha/1) 

was lower than the RMSE (233.35 kg ha/1) of an agro-climate models at country scale. 

However, the spatial resolution of low spatial resolution satellite sensors makes them 

unsuitable for field to landscape scale yield monitoring.  

In an attempt to overcome the spatial limitations of low-resolution satellite sensors, medium 

to high spatial resolution satellites have been adopted extensively for the prediction and 

estimation of yield (Gilardelli et al., 2019; Guan et al., 2018; Siyal et al., 2015). Notably, 

Landsat satellite has been the preferred option for many researchers and field observation 

experts due to the free availability of data, spanning over more than 40 years. While Landsat’s 

spatial resolution makes it well suited for yield estimation in smallholder environments, 

accuracy of yield estimates is constrained by the long return period (16 days) between 

overpasses. Combined with cloud cover effects, Landsat’s limited temporal resolution can lead 

to gaps in image acquisition during critical periods of crop growth (e.g. mid to late season for 

rice) reducing accuracy of resulting yield estimates (Fageria, 2007). Although measures have 

been adopted to fuse the daily temporal resolution obtained from MODIS and 30m spatial 

resolution from Landsat (Feng Gao et al., 2006; Gevaert and García-Haro, 2015; Moreno-

Martínez et al., 2020), the performance depends on the characteristic size of the landscape and 

degrades to some extent when used on extremely heterogeneous fine-grained landscapes (Feng 

Gao et al., 2006). Alternatively, studies have shown the potential benefits of leveraging very-

high temporal and spatial resolution from commercial satellites such as Worldview, Geoeye 

and IKONOS for yield estimation (Burke and Lobell, 2017). However, applicability of these 

approaches is constrained by both high image acquisition costs – further exacerbated by the 

swath width of most of the high-spatial resolution sensors (Spatial resolution 1-4m) that 

requires many images to be purchased for a specific production area (Joseph, 2015).  

The launch of Sentinel 2A in 2015 and 2B satellites in 2017, serves to breach the gap between 

the provision of low and very high-resolution satellite imagery. The Multispectral Instrument 

(MSI) onboard the Sentinel-2 platforms, measures the Earth’s reflected radiance in 13 spectral 

bands ranging from the visible to the infrared at spatial resolutions up to 10m. The inclusion 

of spectral bands located within the red edge region of the spectrum is of particular relevance 

given that reflectance in the red edge region is known to be closely related to vegetation 

chlorophyll content (Delloye et al., 2018; M. Zhang et al., 2019) and thus this region has great 
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potential for monitoring crop condition and yields (Drusch et al., 2012). For instance, Sentinel-

2 has been used to estimate yield indicators like Leaf Area Index (Korhonen et al., 2017; M. 

Zhang et al., 2019), Chlorophyll Content (Ansper and Alikas, 2019; Clevers et al., 2017; 

Delloye et al., 2018), fraction of vegetation cover (Djamai et al., 2019) and biomass 

(Darvishzadeh et al., 2019; Pahlevan et al., 2020; Punalekar et al., 2018). Compared to freely 

available satellites like Landsat and SPOT and commercial satellites like Worldview and 

IKONOS with no spectral bands along the red-edge, Sentinel-2 is spectrally superior to these 

satellites. Sentinel-2 also has a higher temporal resolution compared to Landsat (5days 

compared to 16 days), which enables imagery to be acquired at multiple points in time 

throughout the crop growing season (cloud cover permitting). Although some commercial and 

freely available satellites have a higher temporal resolution (e.g. WorldView-2, 1-4 days; 

MODIS, 1 day), the trade-off between the spatial resolution and temporal resolution of 

Sentinel-2 makes them better suited for seasonal phenological yield estimation across varying 

scales (Segarra et al., 2020). When using Sentinel-2 for agricultural applications, a user must 

make a choice about whether to utilise 10m or 20m resolution imagery provided by the 

satellite. 10m imagery provides more spatial granularity, but comes at the cost of a reduced 

range of spectral bands. Evaluating this trade-off, and specifically its implications in the 

context of yield estimation at different spatial scales (e.g. plot-level yield versus yields 

averaged over a larger spatial area), is the main focus of this study. In doing so, I address a 

key gap in scientific knowledge about how to best leverage Sentinel-2 imagery for rice yield 

estimation at farm to landscape scales, considering in particular the relative spatial and spectral 

properties of Sentinel-2 at different scales of estimation. 

Crop yield monitoring from satellite imagery is often undertaking using either crop growth 

models, which often combine detailed ancillary data regarding local weather, soil, plant and 

management practices with derived from satellite imagery or empirical models, and a spectral 

Vegetation Index (VI) derived from the reflectance characteristics of the crop surface (Bai et 

al., 2019; Feng et al., 2016; Johnson et al., 2016). Whilst yield estimations from detailed crop 

models often provide yield estimations with high accuracy (Ines et al., 2013; Jin et al., 2018), 

the practicality of this approach is often limited to smallholder farmers due to difficulties faced 

in obtaining the data required to run such models effectively (Burke and Lobell, 2017; Lambert 

et al., 2018; Lobell, 2013; Morel et al., 2014). In contrast local calibrated empirical models, 

based on spectral bands and vegetation indices are simple and comprehensive regression 

models which require baseline satellite data (i.e. spatial and spectral resolution of MSI) for 



148 
 

predicting yield (Lambert et al., 2018) are more suitable for monitoring at much across various 

scales. For instance, Jin et al. (2017b) compared a crop model calibrated with empirical data 

with a crop model based on data generated from the crop model. At the local scale, results of 

the empirically calibrated model were similar to those generated with the crop model (Jin et 

al., 2017b). Consequently, achieving robust smallholder landscape yield predictions is 

important in developing countries, notably where subsistence agriculture still determines food 

security, and for profitable farmer participation in more largescale rice farming. 

Therefore, it remains to be seen the significance of baseline Sentinel-2 spatial and spectral 

properties for accurately predicting yield at landscape and based on smallholder farm scale. 

The aim of the study to understand the potential of Sentinel-2 MSI imagery for estimating 

within field variability at landscape scale and between field variability at smallholder farm dry 

season rice yields using the Random Forest model. 

6.2 Materials and Methods 

 Study Area 

The study was conducted on a homogeneous rice farm in Nasarawa state, Nigeria (for full 

description of the farm see Section 3.1 in Methods chapter). The predominant soil parent 

materials in the area are derived from the cretaceous sandstone, siltstone, shale and ironstone 

of the Precambrian to Cambrian (Samaila and Binbol, 2007). The study area has a tropical 

climate, with two distinct seasons: the wet (rainy) season lasts from the end of April to 

October, while the dry season is experienced between November and March.  Maximum 

temperatures can reach 39 °C (March), while minimum temperatures in the study area can 

drop as low as 17 °C (December, January). 

The size of the farm is 1150 ha, split into 48 fields with sizes ranging from 20 ha to 35 ha. 

Lowland Aerobic rice from the NERICA (NEw RICe for Africa) rice program (a combination 

of Oryza sativa + Oryza glaberrima) were cultivated. The NERICA Faro 61 and NERICA 

Faro 44 varieties were cultivated on the farm due to their ability to grow in the event of drought 

and weed infestation. Both varieties have early maturing harvest (< 110 – 120 days) and have 

been successfully used for irrigation farming (Nguezet et al., 2013). To cater for the water 

demands during the dry season, water was obtained from River Benue (approximately 5 km 

from the study site) and used to support irrigation during the growing season. Despite the 

commercial size of the farm, working practices are representative of smallholder farmers in 

the region and equally representative of regional soil and crop management practices.  For 
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instance, the timing of application of Urea, Fertilizer and pesticides are similar to practices 

conducted by smallholder farmers. 

 

 

Figure 6-1:A. Map of Nigeria highlighting Nasarawa state. B. Doma local government area highlighted (purple) 

within Nasarawa state. C. 1150ha rice farm in true colour composite used as the study site for the research. 

 Rice Yield Data 

Rice yield data was collected as validation for the Sentinel-2 yield estimation models from 

Sentinel-2 10m and 20m. Figure 6-2 represents the methodological approach adopted for the 

study. 

High resolution point yield data were obtained from three combine harvesters equipped with 

Differential GPS (DGPS) receivers from the 48 fields during the period 18th to 28th of March 

2019, the extended period of yield collection was due to the size of harvesting area (1150ha) 

and farming logistics. Prior to data collection, each of the combine harvesters was calibrated 

based on recommendations from CASE IH 9230 combined harvester manual(Case IH, 2018). 
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Figure 6-2: Methodological flowchart used in predicting yield at landscape and smallholder scale using Sentinel-2 
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The yield data were subsequently cleaned to remove values recorded when the combine 

harvesters speed fell outside the optimum limits to accurately measure the yield (ground speed 

<2 km h−1 or >8 km h−1) which may lead to inaccurate yield values (Hunt et al., 2019). The 

cleaned yield data were resampled to grid resolutions of 10 m and 20 m to match the spatial 

resolution of the Sentinel-2 MSI imagery, using an Inverse Distance Weighting function (Hunt 

et al., 2019). The appropriateness of mapping yields at these resolutions was supported by the 

relative uniformity of points and the short distances between individual yield measurements 

(mean nearest neighbour of 11 m). In addition, a major factor limiting the spatial resolution of 

yield estimations, is the width of the combine harvester’s cutting head, which determines the 

minimum acceptable resolution for subsequent yield data aggregation. The cutting widths for 

the combine harvesters used in this study ranged from 9.1 m to 12.27 m, indicating that data 

is of sufficient resolution to be used as observational data in comparison with satellite-derived 

yield maps at both 10 m and 20 m spatial resolution.   

The resultant 10 and 20 m spatial resolution yield maps were sub-sampled (using alternate 

yield pixels to reduce the impact of correlation between pixels) to generate two yield datasets 

(52,520 and 13,135 pixels; respectively), which were used for subsequent analyses (Figure 6-

3).   

 

Figure 6-3: Frequency distributions for observed yields aggregated into 10m and 20m to represent the spatial 

resolutions of Sentinel-2  
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 Simulated smallholder farm fields 

The Olam farm was divided into smaller plots to represent a range of field sizes, which are 

representative of smallholder farms across Nigeria and sub-Saharan Africa more generally 

These simulated “smallholder farm fields” were subsequently used to explore the effect of 

farm size (spatial extent) on yield prediction accuracy from Sentienl-2 MSI data and to explore 

the extent to which image spatial resolution (pixel size) influenced prediction accuracies. Four 

categories of farm field sizes were simulated < 1 ha, 1 – 2 ha, 2 – 5 ha and 5 – 10 ha. These 

size categories were  based on smallholder farm sizes typically found in sub-Saharan(FAO, 

2014). 

6.2.3.1. Plot generation 

(i) 0.1 ha was set as the low threshold for farm size as representation of the lower limit 

of farm size.  

(ii) The upper limit was set as 0.99 ha to represent the upper threshold for farm sizes 

ranging from 0 – 1 ha 

(iii) The model was queried to generate 100 plots at an increasing order taking into 

consideration the distribution and orientation of the actual 48 field plots   

(iv) The mean pixel values of each plot and standard deviation. Standard deviation was 

calculated to characterise the heterogeneity in each of the plots.  

(v) Plots generated lots with an overlap of more than 20% were removed. In total, 100 

small holder plots ranging from 0 – 0.99 ha were generated. Figure 6-4 gives a 

visual description of the plots for 0 – 0.99 ha 

The sample approaches were adopted when generating plots from 1 – 2ha, 2 – 5ha and 5 – 

10ha. However, due to plot overlap of more than 20% 1 – 2ha, 2 – 5ha and 5 – 10ha plots were 

reduced to 85, 70 and 43 respectively (Figure 6-4). For plots 5 – 10ha, plot sizes did not exceed 

7.5 ha due to the farm orientation 
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Figure 6-4: Plots Simulated small holder fields generated for 0-1ha, 1-2ha, 2-5ha and 2 -10ha size classes (n= 100, 85, 70 and 43; respectively) for yield prediction from the 

study area. These size classes reflect typical smallholder plots in Nigeria and sub-Saharan Africa
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 Sentinel-2 MSI Data and Vegetation Indices for building Yield Prediction 

Models 

In order to evaluate trade-offs between Sentinel-2 10m and 20m resolution imagery, Sentinel-

2 images were acquired at different phenological phases (vegetative, reproductive and ripening 

phases) or rice growth (Table 6-1). Of the eight images acquired for the study, four images 

were acquired during the vegetative stage, three during the ripening stage and one during the 

reproductive stage. 

Table 6-1: Acquisition dates of Sentinel-2 used for the study. 8 satellite images were obtained in total, covering 

the different phenological phases of irrigated rice during the 2018/19 sowing season.  

Phenological phase Sampling date/period Sowing Sentinel-2 

Acquisition  

Yield 

Sowing 18/11/2018 ✓    

Vegetative 21/12/2018  ✓   

 26/12/2018  ✓   

 5/01/2019  ✓   

 10/01/2019  ✓   

Reproductive 20/01/2019  ✓   

 14/02/2019  ✓   

 19/02/2019  ✓   

Ripening 11/03/2019  ✓   

Harvest 18-28/03/2019   ✓  

 

The Multispectral Instrument (MSI) on board Sentinel-2 provides data in 13 spectral bands 

spanning from the visible (VIS) to the shortwave (SWIR) infrared region. They include four 

spectral bands in the VIS and near infrared (NIR) regions at 10 m spatial resolution, six spectral 

bands which span the red edge, NIR and SWIR regions at 20m spatial resolution and three 

60m spatial resolution spectral bands located in the VIS, NIR and SWIR, primarily used for 

atmospheric correction and cloud detection (table 6-2).  Cloud-free Sentinel-2 images (Level 

2A Bottom-of-Atmosphere reflectance products) were acquired during the different 

phenological phases of rice growth to account for the different phases of rice growth. All data 

were obtained from the Copernicus Open Access Hub (https://scihub.copernicus.eu/). 

 

 

 

https://scihub.copernicus.eu/
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Table 6-2: Sentinel-2 Multispectral Instrument (MSI) bands used in this study 

Sentinel-2 

Bands 

Band 

2 – 

Blue 

Band 

3 – 

Green 

Band 

4 – 

Red 

Band 5 –

Vegetation 

Red Edge 

Band 6 – 

Vegetation 

Red Edge 

Band 7 – 

Vegetation 

Red Edge 

Band 

8 – 

NIR 

Band 

8A – 

Narrow 

NIR 

Band 

11 – 

SWIR 

Band 

12 – 

SWIR 

Central 

Wavelength 

(µm) 

0.49 0.56 0.665 0.705 0.74 0.783 0.842 0.865 1.61 2.19 

Resolution 

(m) 

10 10 10 20 20 20 10 20 20 20 

Bandwidth 

(nm) 

65 35 30 15 15 20 115 20 90 180 

 

Three different dataset using Sentinel-2 data were used in generating the dataset for each of 

the models in this study. The models were built based on the spectral bands from Sentinel-2 

10m and 20m and selected vegetation indices used in previous studies to estimate yield in rice.  

First, the four spectral bands at 10 m spatial resolution along with the Normalized Difference 

Vegetation Index (NDVI) model (Rouse, 1974) from each of the data acquisition dates were 

used as the dataset for generating the first model called “Sen-2 10m”. The addition of the 

spectral bands in the model was to ascertain the influence of the bands for predicting yield in 

rice. We selected the NDVI vegetation index as a result of the estimated accuracy reported in 

previous yield estimation studies (Bai et al., 2019; Balaghi et al., 2008; Guan et al., 2018; 

Mkhabela et al., 2011). In total, 32 spectral bands and eight NDVI variables were combined 

when building the Sen-2 10m model, accounting for 40 variables in the model. In order to 

directly compare Sentinel-2 10m to Sentinel-2 20m, the four spectral bands of Sentinel-2 were 

resampled to 20m. Furthermore, the NDVI vegetation indices along with the spectral bands 

generated from each of the acquisition dates were used in generating the dataset for the model 

called “Sen-2 20m”.  In total,  40 variables were combined in generating the dataset for the 

Sen-2 20m model .Third, the four resampled Sentinel-2 10m spectral bands, the six 20m 

resolution spectral bands on Sentinel-2  20m and the Normalised Difference Red-Edge 

(NDRE) (Fitzgerald et al., 2006) were used  in generating the dataset for the third model called 

“Sen-2max 20m”as shown in Figure 6-3.  NDRE model was selected because it has been 

successfully been adopted for estimating yield in rice (Kanke et al., 2016;  Zhang et al., 2019). 

Ten spectral bands and the NDRE indices were generated for each of the acquisition dates and 

used as the dataset for the third model. In total, 80 spectral bands and eight NDRE variables 

were combined when building the Sen-2max 20m model, accounting for 88 variables in the 
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model. Spectral and vegetation index information values from each pixel from both 10m and 

20m Sentinel-2 spatial resolutions were used in generating each of the models. 

 Prediction of rice yields 

The Random Forest (RF) (Breiman, 2001) model adopted for estimating yield at both 

landscape (>1150ha) and simulated smallholder plots to understand within and between field 

variability using the three distinct datasets. RF is characterized by a bagging (i.e., bootstrap 

aggregating) approach, and has been successfully used for regression analysis in many 

disciplines (da Silva Júnior et al., 2019; Hunt et al., 2019; Lopatin et al., 2016). The RF 

algorithm first creates a pre-defined number of new training sets with random sampling and 

then builds a different tree for each of these bootstrapped datasets. Each decision tree is trained 

using a subset of the various input variables with two thirds of these samples. The remaining 

one third is used to generate the out-of-bag error, which is an internal validation of the final 

model.  

We assess the performance of our three random forest models by comparing their ability to 

predict yields aggregated at both their nascent resolution (either 10m or 20m) and at a range 

of synthetically generated plot sizes (as outlined in Section 6.2.3). Model performance was 

assessed by comparing both the coefficient of determination and root mean squared error, 

calculated using a ten-fold cross-validation where the data were divided into 10 comparably 

sized subset (Refaeilzadeh et al., 2009). 
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6.3 Results 

 Variation of measured rice yields across the landscape and simulated smallholder 

farm fields  

The summary statistics of irrigated rice yield provides a background to the number of plots 

generated and the ranges of yield within each of the field size categories used in the study as 

summarised in Table 6-3. The largest variability was seen in 1150 ha(10m),  with lowest yield 

at 1.12 t/ha and highest yield at 6.01 t/ha. On the contrary, the lowest variability was seen in 

2-5ha(10m) plots with minimum yield at 1.88 and maximum, at 3.88. 

Table 6-3:  Summary statistics of the measured rice yield from landscape scale and at small holder plot scale. 

Results generated were for both Sentinel-2 10m and 20m during the 2018-19 dry season rice farming 

  Yield (tonnes/ha) 

Plot size class (Sentinel-2 

10 or 20 m) 

Sample size 

(n) 

Min Max Mean Standard 

Deviation 

1150 ha (10m) 52520 1.12 6.01 3.02 0.7 

1150 ha (20m) 13135 1.12 5.75 3.02 0.69 

1 – 2 ha (10m) 100 1.58 4.36 3.09 0.57 

1 - 2ha(20m) 100 1.56 4.3 3.11 0.58 

2 - 5ha(10m) 85 1.66 4.55 3.03 0.56 

2 - 5ha(20m) 85 1.64 4.51 3.04 0.56 

2 - 5ha(10m) 70 1.88 3.83 3.03 0.45 

2 - 5ha(20m) 70 1.88 3.86 3.03 0.56 

5 - 10ha(10m) 43 1.71 3.76 2.94 0.47 

5 - 10ha(20m) 43 1.71 3.74 2.94 0.47 

 

 Influence of image spatial resolution on the prediction of yield at landscape scale  

 

The Sen-2 RF (10m), Sen-2 RF (20m) and Sen-2 RF max (20m) were validated against yield 

data to determine within-field variability at landscape scale. Results show that the addition of 

the spectral bands and the NDRE index used in Sen-2 RF max (20m) were more accurate with 

an R2 = 0.64 and RMSE = 0.41 tonnes/ha compared to R2 = 0.60 and RMSE = 0.43 tonnes/ha 

from Sen-RF (20m) when predicting within field variability. When predicting within field 

variation in yield at 10m resolution, the Sen-2 RF (10m) results indicated the significance of 

the spatial resolution, as the model explained 72% of model variability with lower model errors 

compared to the 20m Sentinel-2 RF models (R2 = 0.72 and RMSE = 0.38 tonnes/ha). 
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When mapping the spatial variability of yield from Sen-2 RF (10m) and Sen-2 max RF (20m) 

against rice yield at 10 and 20m respectively, Figure 5-5 presents similar prediction patterns 

between observed and estimated yield in majority of the rice farm at landscape scale, 

particularly at the northern part of the farm were yield was between 3-4 t/ha. However, the 

annotated figures highlight areas with notable overestimation and underestimation of rice 

yield. The south-eastern part of the farm presented the highest yield, with yield exceeding 

5t/ha. Although the Sen-2 max RF (20m) and Sen-2 RF (10m) models predicted high yield, 

spatially yield mapping from Sen-2max RF (20m) show spatially greater underestimation of 

yield above 5t/ha compared to Sen-2 RF (10m) when comparing with 10m observed yield. A 

similar trend can be seen at the central part of the farm with the lowest irrigated rice yield. 

Despite the higher yield variability of the 10m observed yield, Sen-2 RF (10m) yield estimates 

below 2t/ha were more closely related to observed yield compared to Sen-2 max RF (20m) 

estimates. Although, both models overestimated yield at the central part of the farm albeit the 

Sen-2 max RF (20m) model prediction significantly higher.  
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Figure 6-5: A. Spatial patterns in yield between Observed yield and Sen-2 RF (20m) of within field variability 

estimation with annotations highlighting high and low yield B. Spatial patterns in yield between Observed yield 

and Sen-2 RF (20m) of within field variability estimation with annotations highlighting high and low yield. Black 

annotations representing observed yield while blue annotations represent predicted yield. 

Figure 6-6 and 6-7 elucidates some of the uncertainty in model accuracy with underestimation 

and overestimates of the yield estimation below 2t/ha and above 5t/ha. From Figure 6-6, areas 

with high standard error (SE) are areas categorised as high yield errors and these results are in 

agreement with underestimation and over estimation of yield in Figure 6-6. Despite the normal 

distribution identified between estimated and observed yield at 10m in Figure 6-5, observed 

yield values are more evenly spread between yield from 2-4 t/ha while Sen-2 RF 10m yield 
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values are more concentrated between 2.5 to 3.5 t/ha, increasing significantly the number of 

pixels with yield estimation in this region.  

 

Figure 6-6: Associated uncertainties expressed as standard error (SE) for Sen-2 RF (10m) and Sen-2max RF 

(20m) 

 

Figure 6-7: Frequency distribution of yield obtained from Sen-2 RF 10m and Sen-2max RF 20m in comparison 

to aggregated yield at 10m and 20m from the combined harvesters. 
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6.3.3. The influence of image spatial and spectral resolution on smallholder rice yield 

estimation from Sentinel-2 

Sen-2 RF (10m), Sen-2 RF (20m) and Sen-2max RF (20m) rice yield estimation were further 

investigated for specific smallholder plots against plot-level yield data. Across the four 

simulated farm plot categories, variation yield estimation between the coefficient of 

determination and model error was identified (R2 = 0.52 - 0.7 and RMSE 0.41 t/ha - 0.26 t/ha). 

For the 0-1ha plots, Sen-2 RF (10m) displayed the best agreement metrics with estimated yield 

(R2 = 0.55; RMSE = 0.39t/ha, p < 0.05) compared to Sen-2max RF (20m) (R2 = 0.54, RMSE 

= 0.39, p < 0.05) with Sen-2 RF(20m) exhibiting the lowest predictive accuracy as compared 

to the other models (R2 = 0.52, RMSE = 0.41, p < 0.05). However, similar yield estimations 

patterns were identified when yield values were below 2t/ha, resulting in reducing the 

estimation accuracy of the models. On the other hand, plots with yield values above 4t/ha were 

not accurately represented in all the models (Figure 6-8). In general, baseline Sentinel-2 data 

using RF models showed great potential of predicting yield at 0-1ha plots. 

 

Figure 6-8: Scatter plot of estimated and measured crop yield from Sen-2RF 10m, 20m and Sen-2max RF 20m 

yield for small holder plots at 0-1ha (n=100) and 1-2ha (n=85) 

Model performance of plots sizes at 1-2 ha presented more accurate yield estimates compared 

0-1 ha plots with errors in Sen-2 RF (10m) and Sen-2 RF (20m) reducing by 0.03 t/ha and 0.04 
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t/ha respectively (Figure 6-9). RF models for both spatial resolutions generally underestimated 

irrigated rice yields of more than 4 t/ha. Compared to 0-1ha plots, 1-2ha plots only 

overestimated 3 plots at 2 t/ha. Sen-2 RF (10m), Sen-2 RF (20m) and Sen-2 max-RF (20m) 

presented very similar results for prediction of smallholder plots at 1-2ha.  

Model performance for 2-5ha improved slightly for all three models (Figure 6-9, RMSE 

values). However, estimated yield values were concentrated between 2.5 – 3.5 t/ha, with 

underestimation and overestimation identified at 2.5 t/ha and 3.5 t/ha respectively. 

 

Figure 6-9: Scatter plot of estimated and measured crop yield from Sen-2RF 10m, 20m and Sen-2max RF 20m 

yield for small holder plots at 2-5ha (n=70) and 5-10ha (n=43) 

The results from 5-10ha smallholder plots outperformed the three other plots categories with 

R2 of 0.69 and 70 and a reduction in yield estimation of 0.05 t/ha for Sen-2 RF (10m) and Sen-

2 RF (20m) respectively (Figure 6-11). A strong positive agreement of yield can be identified 

for plots between 2.5-3.5 t/ha, with an underestimation at 2t/ha and over prediction above 

3.5t/ha of yield.  

In terms of mapping smallholder plots, Sentinel 2 yield maps generated from the RFmodels 

provides the opportunity to identify between field yield difference in plot sizes typical of 

smallholder farming. Figure 10 demonstrates the ability of Sentinel-2 10m and Sentinel-2 20m 

to estimate yield at 0 – 1 ha and 5 – 10 ha respectively.



163 
 

 

Figure 6-10: (A) Between field variability estimation of rice at smallholder plots at 0-1ha generated from Sen-2 RF 10m and aggregated yield at 10m. (B) Between field 

variability estimation of rice at smallholder plots at 5-10ha generated from Sen-2max RF 20m and aggregated yield at 20m

A 

B 
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The yield estimates in each plot fell within the range of estimated yield with little discrepancies 

in high and low yielding plots. Figure 10-10b further demonstrates the ability of Sentinel-2max 

(20m) to predict yield of plots ranging between 5 – 10 ha with some understimation of yield 

at higher yielding plots. Both maps were able to show clusters of different yield at smallholder 

plots which opens oppurtunities for investigation into the factors responsible for yield variation 

such as environmental and crop management practices. Moreover, information on yield-

limiting factors based on different management zones are important in order to improve 

farming pratices (Diker et al., 2004). 

6.4 Discussion 

This study focused on the ability of Sentinel-2 data to predict within field and between field 

irrigated rice yield at landscape and smallholder scale. Yield estimation was assessed based 

on smallholder farm plots from 0 – 1 ha, 1 – 2 ha, 2 – 5 ha and 5 – 10 ha, while landscape scale 

was assessed based on the >1150ha rice farm. 

 Landscape Scale 

 In terms of the comparison between Sen-2 RF (10m) and Sen-2 RF (20m) against 

corresponding high resolution yield data, the validation data played a significant role in the 

higher yield variability and lower RMSE and MAE errors between both models. The reason 

for the superior estimation results obtained from Sentinel-2 10m may be as a result of 

advancements in the satellite design and data processing techniques, alongside the improved 

combine harvester processing methods, proving better image data and reference data that 

enable accurate estimation of high at high resolution (Hunt et al., 2019). Our results are in line 

with Hunt et al. (2019) who identified the of optimum processing spatial resolution (10m) for 

yield prediction from Sentinel-2 data. On the contrary, in their assessment of SPOT-5 satellite 

data, Yang et al. (2009) showed that the 10-m, four-band imagery and the aggregated 20-m 

and 30m images explained 68% and 76% and 83%, respectively variability in yield. The reason 

for the discrepancy of results between our study and Yang et al. (2009) may be as a result of 

the locational accuracy of both sensors. For instance, Sentinel-2 is reported to have a locational 

accuracy of 20m (Drusch et al., 2012) compared to SPOT-5, which has an accuracy of 30m 

(Yang et al., 2009). This may partly account for the discrepancy in the image resolution versus 

yield accuracy in both studies. Although Durgun et al. (2020) confirmed the importance of 

spatial resolution of sensors compared to the temporal resolution using other sensors, this study 

presents the first assessment of the superiority of Sentinel-2 spatial resolution over spectral 

resolution for mapping high yield within field variability.  
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At landscape scale, direct comparison between yield performance of Sen-2 RF max (20m) and 

Sen-2 RF (20m) at 20m was investigated. The introduction of the full spectral resolution of 

Sentinel-2 20m bands with a red-edge index were assessed for predicting rice yield, with the 

Sen-2 RF max (20m) explained higher variability of yield with lower model error compared 

to Sen-2 RF (20m) (section 6.3.2). The red-edge based vegetation indices have shown to have 

stronger relationships with measured agronomic parameters as compared with red-based 

indices, which are in line with our study when using the same spatial resolution. Similar results 

were observed by (Kanke et al., 2016) between vegetation indices from red-based bands and 

red-edge bands within and grain yield. Red-based bands explaining lower variability in grain 

yield while the range improved using red-edge bands.  

In terms of yield mapping, from Figure 6-5, field observation shows that Sentinel-2 10m more 

accurately identified yield gaps and the location of such gaps when validated with 10m yield 

data compared to Sentinel-2 20m with 20m yield data. As identified at the central portion of 

the farm at landscape scale, yield at the central part of the farm was between 1.8 – 2.5ha 

compared to the southern part of the farm where yield exceeded 4t/ha in many areas. Sen-2 

RF (10m) was able to replicate more accurately the yield at both areas of the farm compared 

to Sen-2max RF (20m). The spatial resolution had greater influence on the RF model as the 

model produced more accurate yield prediction and were able to identify within field 

variability more accurately from 10m compared to the 20m spatial resolution of Sentinel-2. 

Furthermore, the reduction in standard error from Sen-2 RF (10m) to Sen-2max RF (20m) at 

the central and southern portions of the farm confirms the suitability of the higher resolution 

imagery and RF model for predicting within field variability of rice from Sentinel-2 (Figure 

6-6). This provides an approach for further investigation on strategies and farming practices 

to be adopted by farmers and agronomist in yield limiting areas to improving rice yield. 

 Smallholder plot yield estimation 

Four smallholder farm plots categories were investigated based on their size and orientation. 

For plot sizes ranging from 0 - 1ha, Sen-2 RF (10m) provided slight improvement in model 

accuracy albeit it being significant for the estimation of yield (Figure 6-8). The reason for the 

slight improvement may be because of the addition pixel properties, providing in-depth 

information on the spectral response characteristics of the plots compared to Sen -2 20m 

models. For instance, a 0.2ha plot contains ~18 pixels as compared to ~6 pixels from Sentinel 

- 2 20m which may led to a more enhanced smoothing effect of yield(Yang et al., 2009) which 

may reduce the variability within each plot. Results demonstrate the importance attached to 
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spatial resolution as against the spectral resolution for predicting yield at 0-1ha. However, 

when accessing smallholder plots above 5ha, the increase of smallholder plots presented 

similar estimation errors between Sentinel-2 10m and Sentinel-2 20m. This is because the 

accuracy of these models improved due to the reduced variability within each plot. Also, the 

added advantage of spatial and spectral resolutions of Sentinel-2 10m and 20m respectively 

were neutralized at the smallholder plot scale due to the smoothing effect of pixel, implying 

that at 5-10ha farm plots, Sentinel-2 10m and 20m bands can both be adopted for estimating 

the most accurate yield variability.  

In terms of mapping between field variability of small holder plots (Figure 10-10), Sen-2 RF 

(10m) yield estimation results were similar to observed yield outcomes from the combine 

harvester further emphasising the added value of Sentinel-2 10m MSI for accurately 

identifying between field variability. Similar results were achieved when using Sen-2max RF 

(20m) for estimating smallholder plots at 5-10ha albeit underestimation and overestimation of 

some plots.   

Smallholder farms play a significant role in rice production in sun-Saharan Africa.  The ability 

to monitor rice yields at smallholder farm scales are important towards addressing the growing 

demand and increasing availability of rice. Also, the possibility of monitoring at smallholder 

scales will be strategic especially in remote areas, where repeated farm monitoring may be 

challenging. The results shown in this study further emphasis the increasing importance of the 

free availability of Sentinel-2 for estimating dry season irrigated smallholder rice yield as 

results show indicate the possibility of mapping rice yield at smallholder plots using the 

satellite. 

 Baseline Sentinel-2 data for predicting dry season rice yield 

Dry season rice farming is an increasingly important technique currently being adopted to curb 

the spread of poverty and hunger in many developing countries. However, a major limitation 

to its uptake is adequate water availability, which is a crucial input for the majority of rice 

varieties (Belder et al., 2004; Wang et al., 2016a).  With the introduction of drought resistant 

varieties like the NERICA 61 (Faro 34), which have been cross-bred to cope with limited 

amount of water, the possibility of growing rice during the dry season months has now become 

possible, and indeed common practice, for many farmers (Sekiya et al., 2013).  

Many studies have combined information on climate and environmental factors with Earth 

Observation data to improve the prediction of crop variability as this provides for a more robust 



167 
 

identification of factors responsible for yield gaps (Jin et al., 2018; Kang and Özdoğan, 2019b; 

Vazifedoust et al., 2009). Though results were improved in some studies, the practicability of 

acquiring such robust information from the field is still challenging in many developing 

regions of the world. However, baseline Sentinel-2 data accounting for only satellite spectral, 

spatial and temporal resolution alongside vegetation indices, provided positive relationship 

with actual rice yield. Results show that Sentinel-2 data provides a base for the identification 

of dry season rice yields at landscape and smallholder freely. Although empirical approaches 

are site specific, requiring recalibration for different sites (Noureldin et al., 2013), and not 

accounting for factors that affect yield such as seed variety, weather conditions, and soil 

properties, Sentinel- 2 data can serve as a base for yield estimation and prediction of dry season 

rice. Also, the practicability of reproducing yield estimates at locations without the 

aforementioned yield affecting factors are more feasible from baseline Sentinel-2 data than the 

use of crop simulation models in regions were data availability is not available. Therefore, the 

spatial, spectral and temporal properties of Sentinel-2 data provide an important opportunity 

to identify within field variability as well as estimation of yield at of smallholder plots. This is 

particularly important in data deficient regions where accurate availability of environmental 

and climatic data may not be available. Future studies should focus on monitoring multiple 

dry seasons yield data for rice and other crops to the test the performance of the Sentinel-2 RF 

models for predicting within and between field yield in other. 

6.5 Conclusion 

This study demonstrates the influence of baseline Sentinel-2 data (spatial, temporal and 

spectral composition) for predicting high resolution yield at smallholder and landscape scales. 

When identifying the optimum processing spatial resolution for predicting within field 

variability, Sen-2 RF (10m) presented superior results in terms of a higher variability and low 

model error compared to Sen-2 RF (20m) when yield data at 10m is available. The introduction 

of additional spectral bands and red-edge based vegetation index presented more accurate 

results for Sen-2 Max RF (20m) compared to Sen-2 RF (20m) results, suggesting that the 

addition of spectral indices, especially in the red-edge region, with identical spatial resolutions 

will lead to improved yield estimation. However, spatial resolution remained more important 

factor compared to spectral resolution for estimating high resolution yield variability from 

Sentinel-2. In addition, Sentinel-2 shows the possibility of predicting within field variability 

of smallholder as low as 0-1ha, implying that the satellite can identify the variability of most 

of the smallholder rice fields globally. Inferring from the results, Sentinel-2 is equipped to 
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predict yield of farm plots <1 ha with improved results identified when smallholder plots 

exceed 5ha. This resolves the issues of pixel contamination often attributed to coarse resolution 

satellites when monitoring smallholder fields especially in developing countries. However, 

further validation is required in other crops and different climates. 

 

 

 

 

 

 

 

 

 

  



169 
 

Chapter 7 Conclusion 

7.1 Introduction 

This chapter discusses and summarizes the results obtained in the analysis chapters (i.e. 

Chapters 4, 5 and 6), which focused on monitoring yield and yield indicators (LAI, biomass) 

from different remote sensing platforms. The chapter highlights the important findings that 

emerged during this research, stressing the contribution to the existing body of knowledge 

within the specific focus on rice monitoring using remote sensing. The chapter also highlights 

the limitations encountered in the course of this research and finally areas of possible future 

work. 

7.2 Summary of research findings 

The thesis has three main aims, each related to understanding the potential of remote sensing 

technologies for monitoring the productivity of dry season irrigated rice in Nigeria. The 

research aims were as follows: 

- To determine the relative merits of drone mounted sensors for estimating mid-late 

season rice above ground biomass from very high spatial resolution drone imagery. 

- To determine the potential of hybrid machine learning methods for estimating the 

seasonal dynamics of rice Leaf Area Index (LAI). 

- To determine the relative importance of the spatial and spectral resolution of Sentinel-

2, for estimating rice yields across a range of spatial extents 

 

 Relative merits of drone mounted RGB and MSI sensors for estimating rice 

AGB during mid-late season 

When monitoring rice AGB, the timing of biomass monitoring is critical for monitoring yield. 

From the literature, we identified the mid (reproductive) and late (ripening) growing phases of 

rice to play a significant role in estimating yield in rice (Fageria, 2007),therefore, influencing 

the phases at which we monitored rice AGB. Furthermore, emphasis was placed on very high-

resolution images capable of estimating AGB at centimetre scale, leading to the adoption of 

drone images from airborne platforms. In addition to the scale functionality of drones, various 

sensors have been utilised for the estimation of AGB in rice and other crops. The consumer 

grade RGB, using plant height estimates and the sophisticated Multispectral cameras using 

vegetation indices and texture metrics, were adopted for the estimation of rice AGB. 



170 
 

When assessing the suitability of the RGB sensor for estimating rice AGB during the mid to 

late growing phases (Chapter 4), we initially investigated plant height estimates against in-situ 

measurements of plant heights on each of the experimental subplots. The results obtained for 

the estimation of plant height from the RGB camera shows a strong relationship between insitu 

plant height which was an important step towards identifying the suitability of plant height 

estimates for predicting rice ABG in the first place. Our results are in line with previous studies 

who estimated rice plant height from RGB sensors (Cen et al., 2019; Jiang et al. 2019). Plant 

height estimates generated from the RGB sensor were compared with in-situ measurements of 

biomass using a simple linear regression (SLM) model (R2 = 0.72; RMSE = 1.04 t/ha; MAE = 

0.97 t/ha). The results suggest the potential of plant height estimates obtained from the RGB 

camera as a suitable proxy for estimating rice AGB during the mid to late growing phases. 

Although Cen et al. (2019) results suggest the unsuitability of plant height for estimating rice 

AGB during the mid to late growing phases, Tilly et al (2015) results tally with this study as 

plant height estimates over multiple growing season results showed the suitability for 

estimating rice AGB. 

The MSI sensor on the other hand was estimated rice AGB from vegetation indices and texture 

metrics like vegetation indices and texture metrics for estimating biomass from centimetre 

resolution platforms it at infancy. Aside from Zheng et al. (2019), this study represents one of 

the only studies to estimate rice AGB in rice using MSI sensors. However, the results from 

that texture metrics are not suitable for the estimation of rice AGB which agrees with Zheng 

et al. (2019) for rice and Yue et al. (2019) for wheat. The combination of both models using 

the random forest model didn’t improve the estimation of rice AGB compared to using 

vegetation models. This may be attributed to the fact that textural metrics are very scale and 

scene dependent, therefore information on the canopy structure carried in single pixels vary 

for images with different ground resolution, thereby leading to a huge alteration in the 

distribution of dark and bright areas on the images (Yue et al., 2019). 

When comparing the statistical performance of plant height using the simple linear model to 

texture metrics and vegetation indices using random forest models, plant height estimates 

performed best for rice AGB estimation indicating the suitability of the RGB to the MSI for 

estimating rice AGB during the key growing phases. However, the combination of both RGB 

and MSI sensors produced the most accurate estimation as the combination of plant height and 

vegetation indices improved AGB estimations (Cen et al., 2019; Bendig et al., 2015). Also, 

the combination of plant height, vegetation indices and texture metrics further improved the 
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estimation of rice AGB. This study represents the first study to investigate the combination of 

texture metrics, vegetation indices and plant height for the estimation of AGB in crops. On the 

other hand, VIs, TM and their combination were accessed using the Random Forest model for 

estimating rice AGB. I also assessed the combination of both sensors for estimating rice AGB.  

 Hybrid machine learning methods for estimating the phenolgical dynamics of 

rice Leaf Area Index 

 

For LAI, the phenological dynamics of LAI from field scale with the potential to upscale to 

global scale was investigated using satellite images (Chapter 5). From satellite images, the 

recently launched Sentinal-2A and B satellite provides high spatial, temporal and spectral 

resolution, suitable for the estimation of LAI from field to global scale. We focused on the 

methodological approaches for estimating LAI, which include parametric, non-parametric, 

physical-based and hybrid approaches. The hybrid approach, which combines machine 

learning regression algorithms with physical based models using radiative transfer models, 

was identified as suitable for LAI retrieval as they are currently being adopted by Sentinel-2 

Application Platform (SNAP) processor using a combination of Artificial Neutral Network 

and Radiative Transfer Models. Although the SNAP processor adopts the Artificial Neural 

Network approach, Verrelst et al. (2015) assessment of LAI retrieval methods suggests that 

the Gaussian Process Regression approach were more accurate to the Artificial Neural 

Network using simulated Sentinel-2 data. Furthermore, Campos-Taberner et al. (2016) results 

showed hybrid GPR model outperformed ANN and RTM for the retrieval of LAI from SPOT 

5 and Landsat. The improved spectral, spatial and temporal resolution of Sentinel-2 compared 

to Landsat and the free availability of images to SPOT 5 necessitated the investigation of the 

hybrid GPR model and Sentinel-2 data for monitoring the phenological dynamics of LAI in 

irrigated rice fields. Also, validating LAI obtained from the established European Space 

Agency SNAP processor toolbox was deemed necessary. 

Our findings show that the combination of GPR and RTM more accurately predicted LAI for 

the entire season and particularly at the reproductive and ripening phases compared to the 

combination of ANN and RTM. However, overestimation of LAI was observed during the 

vegetative phase while underestimation of LAI was identified in both models during the 

reproductive and ripening phases of rice LAI. LAI estimations from the ANN models were 

particularly low, with LAI values not exceeding 4 for the entire growing season, leading to 

inaccurate interpretations of LAI values during various phenological phases. Previous studies 

who assessed the performance of the ANN model  compared model performance against LAI 
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values less than 4 (Pasqualotto et al., 2019; Sinha et al., 2020; Xie et al., 2019b), although LAI 

results have also been seen in other studies to exceed 4 with the exception for (Vanino et al., 

2018; Xie et al., 2019b) indicating the need for model validation in other regions where rice is 

cultivated. Our findings show the possibility for the adoption of GPR models for the 

phenological dynamics of LAI at regional to global scales. 

 

 Relative importance of the spatial and spectral resolution of Sentinel-2, for 

estimating rice yields across a range of spatial extents 

In addition to monitoring yield indicators of rice using remote sensing, the monitoring of yield 

itself from remote sensing is vital to farmers, agronomist and researchers. From the literature, 

we identified smallholder farms less than 2ha represents over 80% of rice farms globally 

(FAO, 2014; Lowder et al., 2016). We also identified that farms 50ha and above have access 

to over 85% of land for farming.  Therefore, methods of monitoring rice yield across varying 

spatial extends are important toward bridging yield gaps. Satellite platforms were identified as 

the most appropriate for monitoring from smallholder to landscape scale, with Sentinel-2 

serving as a potential satellite for estimating yield due to the free availability of Satellite 

images, as well as the high spatial, spectral and temporal resolution.   

Since Sentinel-2 data has varying spatial resolutions (10m and 20m), with varying spectral 

properties, the study (Chapter 6) investigated the spatio-spectral resolution of Sentinel-2 10m 

and 20m for estimating within field variability at landscape scale and between field variability 

at smallholder scale (0-1, 1-2ha, 2-5, 5-10ha) using vegetation indices and spectral bands using 

the Random Forest model. Our findings show that Sentinel-2 10m provided the least error and 

highest variability of rice yield with validation data at 10m compared to Sentinel-2 20m with 

validation data at 20m. Similar results were achieved by hunt et al. (2019) when comparing 

the spatial resolutions of Sentinel-2 bands for predicting yield in wheat. Accessing the 

accuracy of mapping yield, Sentinel-2 10m using the Random Forest model explained more 

accurately, the variability in yield especially at high and low yield values compared to 

Sentinel-2 20m and a lower Standard Error in model performance.   

When accounting for within field yield variability at smallholder plots from 0 – 10 ha, results 

showed the suitability of Sentinel-2 data for predicting yield. Although studies have accessed 

Sentinel-2 data for predicting yield (Hunt et al., 2016; Kanke et al., 2016), this study represents 

the pioneer study which investigated the use of Sentinel-2 data for predicting within field yield 

variability according to FAO (2014) classification of smallholder farms. 
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7.3 Significance and implications of the key findings 

 High resolution monitoring of rice AGB during the reproductive and ripening 

phases 

The advancement in drone and sensor technologies have provided the opportunity to monitor 

to monitor rice AGB at very high resolution. Till now, emphasis on the estimation of the mid 

to late growing season have been relegated to the background although phases have been 

identified as critical to predicting eventual yield outcomes. As such, the emphasis of the study 

was on ascertaining the relative merits of RGB and MSI sensors for estimating rice AGB 

during the critical growing phases. The first major implication of from the study at farm scale 

is the importance of plant height estimates from the RGB sensor for the estimation of rice 

AGB during the key phenology phases compared to the MSI sensor. The significance of these 

findings are amplified as a result of the cost implications of acquiring the cheaper RGB sensor 

as opposed to more expensive and sophisticated multispectral sensor, which, during the mid-

late growing phase, did not estimated rice AGB as accurately as the RGB cameras. Farmers, 

agronomist and researchers can opt for just the RGB camera when monitoring on their rice 

farms without having to incur additional cost on sensors for accurate rice AGB estimation. 

Particularly, the monitoring of rice AGB focused on the lowland irrigated NERICA rice 

variety where awareness by African governments and in particular, the Nigerian government 

through initiatives and schemes are being promoted to encourage rice farmers to adopt the 

varieties during the dry season because of their high yield potential.   

 

In terms of the combination of both RGB and MSI sensors for monitoring rice and other crops 

AGB, this study and others (Cen et al., 2019; Han et al., 2019; Li et al., 2020) have shown 

vegetation indices and plant height to improve the estimation of rice AGB. However, this study 

(Chapter 4) presents the first research to show that the combination of texture metrics, 

vegetation indices and plant height can improve the estimation of rice AGB during the 

reproductive and ripening phases.  These findings indicate that commercial farms with the 

financial capacity to monitor their farms may wish to purchase both cameras alongside a drone 

to improve the estimation of rice AGB. However, if the cost implication of purchasing both 

cameras is too much, then opting for the RGB camera should be the priority. 
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 GPR (GPR hybrid) Model for monitoring the phenological dynamics of rice 

LAI 

Accurate monitoring of yield indicators is very important for farmers, researchers and 

agronomist seeking to make either marginal or significant gains in yield output. Different 

retrieval LAI algorithms have been identified in the literature, however, the most globally 

implemented LAI retrieval method is the combination of the PROSAIL and ANN (ANN 

hybrid) using Sentinel-2 data. Previous studies have shown the GPR model as an alternative 

approach for the retrieval of LAI which necessitated the investigation of both monitoring the 

phenological dynamics of rice from both models. A key contribution identified as a result of 

this study is the identification of the GPR hybrid model as an alternative retrieval approach to 

the ANN model for estimating LAI phenological dynamics of rice using Sentinel-2 data. 

Evidence from the results obtained through statistical test show that more accurate estimation 

of LAI values can be achieved with the GPR models especially when LAI values exceed 4 

mainly in the reproductive and ripening phases. GPR models have been used to accurately 

predict LAI using various Satellite platforms (Campos-Taberner et al., 2016), however, this 

research represents the first study that evaluates the model using Sentinel-2 data for monitoring 

rice LAI phenology.  These findings stand on existing bodies of literature that have identified 

the suitability of Sentinel-2 data for estimating LAI (Sinha et al., 2020; Verrelst et al., 2015c; 

Xie et al., 2019b)  

 

Another significant contribution to knowledge is the call for further validation of the SNAP 

LAI processor tool for the estimation of LAI as this processor is currently being adopted by a 

number of researchers, farmers and agronomist for the retrieval of LAI. With accurate LAI 

estimations, especially in plots with limited irrigation, nitrogen or other management 

applications, remote sensing technologies using the GPR retrieval estimation from Sentinel-2 

can serve as a decision support tool for further diagnoses to the factors limiting LAI in farms. 

These results present the first comparison of the SNAP model for understanding the 

phenological dynamics of irrigated rice using Sentinel-2 data. 

 

 Estimating yield variability from Sentinel-2 data at landscape and smallholder 

scale 

As identified with the retrieval of LAI, the availability of Sentinel-2 data not only provides the 

opportunity to monitor yield indicators but yield directly. To this end, this research represents 

the first study to access the spatio-spectral suitability of Sentinel-2 10m and 20m for predicting 

within field variability at landscape scale and also the possibility of Sentinel-2 for predicting 
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yield at smallholder rice farms (Chapter 6). The first significant contribution to knowledge is 

the superiority of Sentinel-2 10m for predicting within field variability at landscape scale using 

the spectral bands and NDVI using the random forest model compared to Sentinel-2 20m. 

Although Sentinel-2 20m bands contain additional spectral bands along the red-edge which 

have shown in other studies to improve the accuracy of predicting yield (Kanke et al., 2016), 

the findings from the study suggests the suitability of Sentinel-2 10m for accurately predicting 

yield variability in rice fields obtained through statistical test. Another significant contribution 

to knowledge is the suitability of Sentinel-2 (10m and 20m) data for estimating and forecasting 

smallholder rice farm yields based on FAO (2014) categorization of farm sizes. This study is 

the first to quantify the suitability of Sentinel-2 data for predicting yield based on FAO (2014) 

definition of smallholder farmers. Provided these farms are homogenous over a minimum area 

(at least 0.5ha), Sentinel-2 data is able to predict rice yield. These findings are particularly 

important in the context of smallholder rice farms who dominate rice cultivation sphere, with 

farms usually located in remote areas with limited road network. The limited availability of 

road network to these farms make the possibility of frequent visit to obtain yield reports a 

challenge to agricultural institutions saddled with the responsibility of accounting for the 

annual dry season yield. With the increase in government initiatives for rice farmers, the ability 

to track their yield over various irrigated dry seasons will provide the government with a 

holistic report of the estimated yield being generated by rice farmers at landscape, regional 

and country scale. This information will be useful towards understanding the rice produced by 

rice farms with a view to bridging the rice consumption deficiency in sub-Saharan countries.  

 

Another significant contribution of the study is identifying the suitability of baseline Sentinel-

2 data using random forest models for estimating rice yield when environmental and climatic 

data are not available. Furthermore, the results also show models using machine learning (e.g. 

Random Forest) to be suitable for predicting yield with baseline Sentinel-2 data only. This is 

significant because of the difficulty of obtaining detailed environmental and climate data of 

farms especially in remote villages. Without the availability of the climatic and environmental 

data, it becomes difficult adopting crop simulation models to predict yield. As such, the 

importance of this study is amplified by the possibility to acquire yield at local and regional 

scale without the complexities attached to crop models.  
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 Significance of the results to the attainment of the objectives of the Sustainable 

Development Goals, the African Development Fund and the Nigerian 

Government 

 

This thesis has highlighted the rich potential of remote sensing technologies for improving 

the productivity of rice especially for smallholder farmers. With the potential of monitoring 

yield indicators at remote areas, there are boundless opportunities in remote sensing for 

boosting rice yields. 

The objectives of this thesis are directly relevant and applicable for the realisation of two 

targets under the 2nd objective of the SDGs (“Zero hunger – Achieve food security and 

improved nutrition and promote sustainable agriculture”). These are even more significant 

when seeking to attain zero hunger in sub-Saharan Africa and Nigeria, where poverty and 

hunger are prevalent. Further to the 2nd objective of the SDGs, the findings of these study have 

implicit links to the 9th (Industry, Innovation and Infrastructure), 12th (Responsible 

Consumption and Production), 13th (Climate Action) and 17th (Partnerships to achieve the 

Goal).  

In addition to meeting the objectives some of the SDG objectives, the African Development 

Fund (ADF) are providing start – up grants to African youths to the tune of $120, 000 for 

agricultural purposes. From the findings of this thesis, the possibility of accurately monitoring 

yield and yield indicators provide comparative yield and profit advantage to farmers, thereby 

achieving the 1st, (End poverty in all its forms), 2nd (End hunger, achieve food security and 

improved nutrition and promote sustainable agriculture) and 6th (Ensure availability and 

sustainable management of water and sanitation for all) objectives of ADF. 

 

Furthermore, with various agricultural interventions, grants and loans provided by the 

Nigerian government for rice cultivation, the findings of this thesis can foster the accurate 

monitoring of yield indicators which can have instant impact on management practices. By 

providing precise management practices, yield will increase, thereby directly increasing the 

available rice produced at a national scale and improving the financial status of smallholder 

farmers and large-scale farm institutions. 

 

Therefore, through proper estimation of yield and yield indicators in rice and other crops, the 

possibility of attaining the respective SDG, ADF and Nigeria’s goals related to food security 

can be achieved. 
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 Collaboration with Agricultural Agencies and Organisations for improving rice 

productivity 

 

From the findings of this research, there is strong potential to collaborate with agricultural 

agencies saddled with the task of working closely with smallholder farmers to boost their yield. 

By early monitoring, the possibilities of providing timely information which could be 

beneficial to improving the rice yield can be actualised. For instance, accurately monitoring 

the dynamics of LAI and providing the information to farm extension workers will provide 

rapid remedies/interventions towards optimizing yield for the particular rice cultivars. In the 

case of biomass monitoring, the information can be critical in assessing the yield potential of 

farmers prior to yield. This information will be important in forecasting the economic potential 

of rice farming for different rice seasons.  

With increased interest in international organisations such as United Nations, World bank and 

Bill and Melinda gate foundation to improve the productivity of rice in Nigeria and Africa at 

large, the potential of remote sensing technologies will attract more funding bodies passionate 

about ending hunger and poverty in Nigeria and Africa. By providing accurate information to 

these bodies, it makes the deployment of finances target oriented especially to the most 

vulnerable farmers in urgent need of training on management practices to improve their yield. 

Furthermore, this will increase the interest and passion of Nigerians to go into farming 

knowing for a fact that the industry is lucrative and can help alleviate poverty in the worst hit 

areas, therefore increasing the interest in the use of technologies such as remote sensing which 

is not the case at the moment. 

On that note, we can infer from the findings of this research that remote sensing technologies 

are indispensable towards synergising and complimenting the efforts of multiple rice 

stakeholders towards achieving a common goal rice production for the ever-increasing 

population in Nigeria and Africa    
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7.4 Limitations 

Inevitably, the research has some limitations as a result of the timing of data collection, 

availability of equipment for monitoring and some methodologies adopted. A general 

limitation of the study was the inability to monitor multiple farms within the north central 

Nigeria due to funding, logistics and security. Below, I discuss the specific limitations based 

on the yield and yield indicators monitored. 

 Biomass Estimation 

In terms of monitoring rice AGB, the study only monitored one season, which may present 

some bias in the results. Although monitoring rice in one season provided insight on 

application of RGB and MSI cameras for the estimation of rice AGB, inclusion of multiple 

growing seasons may provide additional information which may not have been observed when 

monitoring a single season. Also, we obtained only a single biomass collection during the 

reproductive and ripening phases due to sensor functionality issues during the course of the 

field work, limiting the study to only 54 samples for the study. For this reason, we adopted the 

random forest model because of the ability to deal with small sample sizes. 

When estimating plant height using the RGB camera, the study did not acquire ground height 

measurements prior to the planting of rice. This invariably led to estimation of ground height 

in plots with plants at the reproductive and ripening phases, thus leading to more uncertainty 

in plant height measurement accuracy. 

In terms of MSI sensor, standard radiometric calibration methods were applied although 

studies have shown that spectral reflectance from standard calibration methods may exhibit 

bias compared to other calibration approaches. 

 LAI Estimation 

 

Radiative transfer models are very complex and require expertise to retrieve LAI from Satellite 

images. These poses are real issue in terms of transferability and readily adoption by farmers 

across scale because they require in-depth knowledge on spectroscopy and the underlining 

core principles of remote sensing. It therefore serves as a limitation in its implementation with 

farmers and farming stakeholders at this point. 

Although this may serve as a limitation for the retrieval of LAI, the creation of a user-friendly 

interphase similarly to the SNAP tool box may be the most suitable approach for the estimation 
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of LAI. Until that is implemented, it remains challenging to adopt radiative transfer models by 

farmers for retrieving LAI estimating during the phenological phases.  

 Yield Estimation 

In terms of yield data, the study only acquired one season of yield data due to time constraint 

attached to the fieldwork. Obtaining multiple yield data will be important for calibrating the 

model, which will present a more robust assessment of yield patterns and trends on the farm. 

Also, information on the climatic and environmental variables were not included in the study, 

which will have provided additional information to the yield models developed for the study. 

The use of multiple rice cultivars is another interesting area which the study did not monitor 

in the first fieldwork campaign. Varying rice cultivars with different height potentials will 

provide further information on the suitability of plant height estimates for monitoring rice 

AGB at the late growing phases. 

Finally, due to data commercial confidentiality, the study did not explicitly reveal the yield 

data. This was because of the memorandum of understanding between the farm and myself.  

7.5 Possible future work 

 Inclusion of Synthetic Aperture Radar sensors for monitoring rice phenology 

during dry and rainy season 

Optical remote sensing presents a replicable and effective way of monitoring irrigated rice 

yield, particularly during the dry season months. During the rainy season, cloud formation 

plays a significant role in the availability of Sentinel-2 images for monitoring yield and yield 

indicators in rice. As a result of cloud cover, there is limited availability of optical satellite 

images during the rainy season, owning to the fact that most rice farmers in sub-Saharan Africa 

depend on the rainy season rains to grow. As such, complementary images are important for 

rice phenology monitoring. 

An alternative solution is represented by synthetic aperture radar (SAR) imagery.  SAR images 

possess the ability to acquire images when there is cloud cover, making then very important 

for monitoring rice during the rainy season months (Clauss et al. 2018). Furthermore, SAR 

backscatter is related to the geometry and physical properties of the surface such as soil 

roughness, soil moisture are useful for monitoring vegetation cover (Chen et al., 2007; Guan 

et al., 2018; Pipia et al., 2019). For instance, Clauss et al. (2018) used Sentinel-1 data for 

predicting rice yield using field surveying data with statistical results showing strong 
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agreement with Sentinel-1 data and yield using machine learning models.  In addition, the 

launch of Sentinel-1 data provides the opportunity to complement Sentinel-2 data for 

monitoring yield and yield indicators in rice. With the possibility of acquiring high resolution 

referenced yield data, the possibility exists to monitor rice during the dry and rainy season 

using the combination of Sentinel 1 and 2 data.  

 Adoption of data assimilation of remote sensing and crop models for predicting 

yield 

This study has shown the suitability of baseline Sentinel-2 data for predicting rice yield. 

However, it will be interesting to see the outcome of yield estimation from fusion of satellite 

data and crops simulation models which account for the spatial distribution of soil properties 

(e.g. soil moisture), canopy state variables (e.g. LAI, biomass, nitrogen content, etc.), and 

meteorological data (Hansen and Jones, 2000). 

Furthermore, advancements in data assimilation modelling techniques provides more efficient 

ways of combining crop simulation models with remote sensing data. Jin et al. (2018) review 

of data assimilation modelling with remote sensing spotlights updating methods such as 

Ensemble Kalman Filter as an assimilating technique for update LAI values retrieved from 

remote sensing techniques for predicting yield. Therefore, the availability of environmental 

and climatic data, an alternative approach to estimating yield from Sentinel 1 and 2 data and 

drone images.  

 Phenotyping strategies for monitoring multiple factors affecting rice yield from 

airborne platforms 

Crop phenotyping are tailored towards accurately and precisely obtain traits linked to crop 

growth status, yield, and resilience to environmental stress. Jin et al. (2020) review of high 

throughput phenotyping shows the possibility of monitoring multiple yield, yield indicators 

and stress factors affecting crops simultaneously from drone in particular. With the 

advancement in cameras on-board drones, future studies will focus on monitoring crop 

lodging, nitrogen intake, plant height, LAI, biomass and yield during the same phenology 

window. 

 Collaboration with rice farming stakeholders in Nigeria and Africa 

 

With the possibility of remote sensing technologies for monitoring rice productivity, further 

studies will collaborate with smallholder farmers and government/private stakeholders in 

order to established a phenological monitoring scheme for rice. In doing so, accurate and 
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timely data of the farms will be provided to smallholder farmers in order to help improve 

their yield. 

Partnership with established government and Non-government Organisations saddled with 

the task of improving the production of rice in Nigeria using remote sensing technologies 

will also be an important area to further the research. By identifying the level of participation 

of these agencies with farmers using remote sensing technologies, they are in a better 

position to provide accurate intervention schemes to improve the yield performance of 

farmers across scales. 

Finally, this approached is transferable across regions and crops as further studies should 

venture into monitoring other staple crops in Nigeria. From the African perspective, 

partnership with the African Development Bank will provide the avenue to implement the 

monitoring approach in Africa. In doing so, Nigeria and Africa have a much better chance 

towards achieving the SDG goals related to food, hunger and poverty by 2030.  
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Appendix 
 

Appendix 1: Spectral reflectance curve of B1P1SP1 (High Nitrogen, Continuous Flooding) on the 

30th of January and the 26th of March 2018 
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Appendix 2: Orthomosaic and the corresponding Digital Surface Model (DSM) before 

densification 
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Appendix 3: Pearson correlation matrix between independent (biomass) and dependent 

(Plant height, vegetation indices and texture metrics) for rice aboveground biomass. 
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Appendix 4: Evidence of the flooding regimes adopted for the field experiment with the 

irrometer tensiometer install in the ground 
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Appendix 5: Collection of field spectra using the Field spectrometer. 
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Appendix 6: Researcher and field assistances preparing for drone flight after calibrating the 

sequoia camera with the calibration target by AIRNOV. 
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Appendix 7: Researcher monitoring the yield harvesting protocol during the 2018/2019 

season harvest. 
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