3,586 research outputs found

    GeoSay: A Geometric Saliency for Extracting Buildings in Remote Sensing Images

    Full text link
    Automatic extraction of buildings in remote sensing images is an important but challenging task and finds many applications in different fields such as urban planning, navigation and so on. This paper addresses the problem of buildings extraction in very high-spatial-resolution (VHSR) remote sensing (RS) images, whose spatial resolution is often up to half meters and provides rich information about buildings. Based on the observation that buildings in VHSR-RS images are always more distinguishable in geometry than in texture or spectral domain, this paper proposes a geometric building index (GBI) for accurate building extraction, by computing the geometric saliency from VHSR-RS images. More precisely, given an image, the geometric saliency is derived from a mid-level geometric representations based on meaningful junctions that can locally describe geometrical structures of images. The resulting GBI is finally measured by integrating the derived geometric saliency of buildings. Experiments on three public and commonly used datasets demonstrate that the proposed GBI achieves the state-of-the-art performance and shows impressive generalization capability. Additionally, GBI preserves both the exact position and accurate shape of single buildings compared to existing methods

    Interferometric Synthetic Aperture RADAR and Radargrammetry towards the Categorization of Building Changes

    Get PDF
    The purpose of this work is the investigation of SAR techniques relying on multi image acquisition for fully automatic and rapid change detection analysis at building level. In particular, the benefits and limitations of a complementary use of two specific SAR techniques, InSAR and radargrammetry, in an emergency context are examined in term of quickness, globality and accuracy. The analysis is performed using spaceborne SAR data

    An Analytical Framework for Assessing the Efficacy of Small Satellites in Performing Novel Imaging Missions

    Get PDF
    In the last two decades, small satellites have opened up the use of space to groups other than governments and large corporations, allowing for increased participation and experimentation. This democratization of space was primarily enabled by two factors: improved technology and reduced launch costs. Improved technology allowed the miniaturization of components and reduced overall cost meaning many of the capabilities of larger satellites could be replicated at a fraction of the cost. In addition, new launcher systems that could host many small satellites as ride-shares on manifested vehicles lowered launch costs and simplified the process of getting a satellite into orbit. The potential of these smaller satellites to replace or augment existing systems has led to a flood of potential satellite and mission concepts, often with little rigorous study of whether the proposed satellite or mission is achievable or necessary. This work proposes an analytical framework to aid system designers in evaluating the ability of an existing concept or small satellite to perform a particular imaging mission, either replacing or augmenting existing capabilities. This framework was developed and then refined by application to the problem of using small satellites to perform a wide area search mission – a mission not possible with existing imaging satellites, but one that would add to current capabilities. Requirements for a wide area search mission were developed, along with a list of factors that would affect image quality and system performance. Two existing small satellite concepts were evaluated for use by examining image quality from the systems, selecting an algorithm to perform the search function automatically, and then assessing mission feasibility by applying the algorithm to simulated imagery. Finally, a notional constellation design was developed to assess the number of satellites required to perform the mission. It was found that a constellation of 480 CubeSats producing 4 m spatial resolution panchromatic imagery and employing an on-board processing algorithm would be sufficient to perform a wide area search mission

    Automatic Alignment of 3D Multi-Sensor Point Clouds

    Get PDF
    Automatic 3D point cloud alignment is a major research topic in photogrammetry, computer vision and computer graphics. In this research, two keypoint feature matching approaches have been developed and proposed for the automatic alignment of 3D point clouds, which have been acquired from different sensor platforms and are in different 3D conformal coordinate systems. The first proposed approach is based on 3D keypoint feature matching. First, surface curvature information is utilized for scale-invariant 3D keypoint extraction. Adaptive non-maxima suppression (ANMS) is then applied to retain the most distinct and well-distributed set of keypoints. Afterwards, every keypoint is characterized by a scale, rotation and translation invariant 3D surface descriptor, called the radial geodesic distance-slope histogram. Similar keypoints descriptors on the source and target datasets are then matched using bipartite graph matching, followed by a modified-RANSAC for outlier removal. The second proposed method is based on 2D keypoint matching performed on height map images of the 3D point clouds. Height map images are generated by projecting the 3D point clouds onto a planimetric plane. Afterwards, a multi-scale wavelet 2D keypoint detector with ANMS is proposed to extract keypoints on the height maps. Then, a scale, rotation and translation-invariant 2D descriptor referred to as the Gabor, Log-Polar-Rapid Transform descriptor is computed for all keypoints. Finally, source and target height map keypoint correspondences are determined using a bi-directional nearest neighbour matching, together with the modified-RANSAC for outlier removal. Each method is assessed on multi-sensor, urban and non-urban 3D point cloud datasets. Results show that unlike the 3D-based method, the height map-based approach is able to align source and target datasets with differences in point density, point distribution and missing point data. Findings also show that the 3D-based method obtained lower transformation errors and a greater number of correspondences when the source and target have similar point characteristics. The 3D-based approach attained absolute mean alignment differences in the range of 0.23m to 2.81m, whereas the height map approach had a range from 0.17m to 1.21m. These differences meet the proximity requirements of the data characteristics and the further application of fine co-registration approaches

    Gaussian mixture model classifiers for detection and tracking in UAV video streams.

    Get PDF
    Masters Degree. University of KwaZulu-Natal, Durban.Manual visual surveillance systems are subject to a high degree of human-error and operator fatigue. The automation of such systems often employs detectors, trackers and classifiers as fundamental building blocks. Detection, tracking and classification are especially useful and challenging in Unmanned Aerial Vehicle (UAV) based surveillance systems. Previous solutions have addressed challenges via complex classification methods. This dissertation proposes less complex Gaussian Mixture Model (GMM) based classifiers that can simplify the process; where data is represented as a reduced set of model parameters, and classification is performed in the low dimensionality parameter-space. The specification and adoption of GMM based classifiers on the UAV visual tracking feature space formed the principal contribution of the work. This methodology can be generalised to other feature spaces. This dissertation presents two main contributions in the form of submissions to ISI accredited journals. In the first paper, objectives are demonstrated with a vehicle detector incorporating a two stage GMM classifier, applied to a single feature space, namely Histogram of Oriented Gradients (HoG). While the second paper demonstrates objectives with a vehicle tracker using colour histograms (in RGB and HSV), with Gaussian Mixture Model (GMM) classifiers and a Kalman filter. The proposed works are comparable to related works with testing performed on benchmark datasets. In the tracking domain for such platforms, tracking alone is insufficient. Adaptive detection and classification can assist in search space reduction, building of knowledge priors and improved target representations. Results show that the proposed approach improves performance and robustness. Findings also indicate potential further enhancements such as a multi-mode tracker with global and local tracking based on a combination of both papers

    Robuste und genaue Erkennung von Mid-Level-Primitiven fĂĽr die 3D-Rekonstruktion in von Menschen geschaffenen Umgebungen

    Get PDF
    The detection of geometric primitives such as points, lines and arcs is a fundamental step in computer vision techniques like image analysis, pattern recognition and 3D scene reconstruction. In this thesis, we present a framework that enables a reliable detection of geometric primitives in images. The focus is on application in man-made environments, although the process is not limited to this. The method provides robust and subpixel accurate detection of points, lines and arcs, and builds up a graph describing the topological relationships between the detected features. The detection method works directly on distorted perspective and fisheye images. The additional recognition of repetitive structures in images ensures the unambiguity of the features in their local environment. We can show that our approach achieves a high localization accuracy comparable to the state-of-the-art methods and at the same time is more robust against disturbances caused by noise. In addition, our approach allows extracting more fine details in the images. The detection accuracy achieved on the real-world scenes is constantly above that achieved by the other methods. Furthermore, our process can reliably distinguish between line and arc segments. The additional topological information extracted by our method is largely consistent over several images of a scene and can therefore be a support for subsequent processing steps, such as matching and correspondence search. We show how the detection method can be integrated into a complete feature-based 3D reconstruction pipeline and present a novel reconstruction method that uses the topological relationships of the features to create a highly abstract but semantically rich 3D model of the reconstructed scenes, in which certain geometric structures can easily be detected.Die Detektion von geometrischen Primitiven wie Punkten, Linien und Bögen ist ein elementarer Verarbeitungsschritt für viele Techniken des maschinellen Sehens wie Bildanalyse, Mustererkennung und 3D-Szenenrekonstruktion. In dieser Arbeit wird eine Methode vorgestellt, die eine zuverlässige Detektion von geometrischen Primitiven in Bildern ermöglicht. Der Fokus liegt auf der Anwendung in urbanen Umgebungen, wobei der Prozess nicht darauf beschränkt ist. Die Methode ermöglicht eine robuste und subpixelgenaue Detektion von Punkten, Linien und Bögen und erstellt einen Graphen, der die topologischen Beziehungen zwischen den detektierten Merkmalen beschreibt. Die Detektionsmethode kann direkt auf verzeichnete perspektivische Bilder und Fischaugenbilder angewendet werden. Die zusätzliche Erkennung sich wiederholender Strukturen in Bildern gewährleistet die Eindeutigkeit der Merkmale in ihrer lokalen Umgebung. Das neu entwickelte Verfahren erreicht eine hohe Lokalisierungsgenauigkeit, die dem Stand der Technik entspricht und gleichzeitig robuster gegenüber Störungen durch Rauschen ist. Darüber hinaus ermöglicht das Verfahren, mehr Details in den Bildern zu extrahieren. Die Detektionsrate ist bei dem neuen Verfahren auf den realen Datensätzen stets höher als bei dem aktuellen Stand der Technik. Darüber hinaus kann das neue Verfahren zuverlässig zwischen Linien- und Bogensegmenten unterscheiden. Die durch das neue Verfahren gewonnenen zusätzlichen topologischen Informationen sind weitgehend konsistent über mehrere Bilder einer Szene und können somit eine Unterstützung für nachfolgende Verarbeitungsschritte wie Matching und Korrespondenzsuche sein. Die Detektionsmethode wird in eine vollständige merkmalsbasierte 3D-Rekonstruktionspipeline integriert und es wird eine neuartige Rekonstruktionsmethode vorgestellt, die die topologischen Beziehungen der Merkmale nutzt, um ein abstraktes, aber zugleich semantisch reichhaltiges 3D-Modell der rekonstruierten Szenen zu erstellen, in dem komplexere geometrische Strukturen leicht detektiert werden können

    Continuous Modeling of 3D Building Rooftops From Airborne LIDAR and Imagery

    Get PDF
    In recent years, a number of mega-cities have provided 3D photorealistic virtual models to support the decisions making process for maintaining the cities' infrastructure and environment more effectively. 3D virtual city models are static snap-shots of the environment and represent the status quo at the time of their data acquisition. However, cities are dynamic system that continuously change over time. Accordingly, their virtual representation need to be regularly updated in a timely manner to allow for accurate analysis and simulated results that decisions are based upon. The concept of "continuous city modeling" is to progressively reconstruct city models by accommodating their changes recognized in spatio-temporal domain, while preserving unchanged structures. However, developing a universal intelligent machine enabling continuous modeling still remains a challenging task. Therefore, this thesis proposes a novel research framework for continuously reconstructing 3D building rooftops using multi-sensor data. For achieving this goal, we first proposes a 3D building rooftop modeling method using airborne LiDAR data. The main focus is on the implementation of an implicit regularization method which impose a data-driven building regularity to noisy boundaries of roof planes for reconstructing 3D building rooftop models. The implicit regularization process is implemented in the framework of Minimum Description Length (MDL) combined with Hypothesize and Test (HAT). Secondly, we propose a context-based geometric hashing method to align newly acquired image data with existing building models. The novelty is the use of context features to achieve robust and accurate matching results. Thirdly, the existing building models are refined by newly proposed sequential fusion method. The main advantage of the proposed method is its ability to progressively refine modeling errors frequently observed in LiDAR-driven building models. The refinement process is conducted in the framework of MDL combined with HAT. Markov Chain Monte Carlo (MDMC) coupled with Simulated Annealing (SA) is employed to perform a global optimization. The results demonstrates that the proposed continuous rooftop modeling methods show a promising aspects to support various critical decisions by not only reconstructing 3D rooftop models accurately, but also by updating the models using multi-sensor data

    Mine-suspected Area Reduction Using Aerial and Satellite Images

    Get PDF

    Automatic vehicle detection and tracking in aerial video

    Get PDF
    This thesis is concerned with the challenging tasks of automatic and real-time vehicle detection and tracking from aerial video. The aim of this thesis is to build an automatic system that can accurately localise any vehicles that appear in aerial video frames and track the target vehicles with trackers. Vehicle detection and tracking have many applications and this has been an active area of research during recent years; however, it is still a challenge to deal with certain realistic environments. This thesis develops vehicle detection and tracking algorithms which enhance the robustness of detection and tracking beyond the existing approaches. The basis of the vehicle detection system proposed in this thesis has different object categorisation approaches, with colour and texture features in both point and area template forms. The thesis also proposes a novel Self-Learning Tracking and Detection approach, which is an extension to the existing Tracking Learning Detection (TLD) algorithm. There are a number of challenges in vehicle detection and tracking. The most difficult challenge of detection is distinguishing and clustering the target vehicle from the background objects and noises. Under certain conditions, the images captured from Unmanned Aerial Vehicles (UAVs) are also blurred; for example, turbulence may make the vehicle shake during flight. This thesis tackles these challenges by applying integrated multiple feature descriptors for real-time processing. In this thesis, three vehicle detection approaches are proposed: the HSV-GLCM feature approach, the ISM-SIFT feature approach and the FAST-HoG approach. The general vehicle detection approaches used have highly flexible implicit shape representations. They are based on training samples in both positive and negative sets and use updated classifiers to distinguish the targets. It has been found that the detection results attained by using HSV-GLCM texture features can be affected by blurring problems; the proposed detection algorithms can further segment the edges of the vehicles from the background. Using the point descriptor feature can solve the blurring problem, however, the large amount of information contained in point descriptors can lead to processing times that are too long for real-time applications. So the FAST-HoG approach combining the point feature and the shape feature is proposed. This new approach is able to speed up the process that attains the real-time performance. Finally, a detection approach using HoG with the FAST feature is also proposed. The HoG approach is widely used in object recognition, as it has a strong ability to represent the shape vector of the object. However, the original HoG feature is sensitive to the orientation of the target; this method improves the algorithm by inserting the direction vectors of the targets. For the tracking process, a novel tracking approach was proposed, an extension of the TLD algorithm, in order to track multiple targets. The extended approach upgrades the original system, which can only track a single target, which must be selected before the detection and tracking process. The greatest challenge to vehicle tracking is long-term tracking. The target object can change its appearance during the process and illumination and scale changes can also occur. The original TLD feature assumed that tracking can make errors during the tracking process, and the accumulation of these errors could cause tracking failure, so the original TLD proposed using a learning approach in between the tracking and the detection by adding a pair of inspectors (positive and negative) to constantly estimate errors. This thesis extends the TLD approach with a new detection method in order to achieve multiple-target tracking. A Forward and Backward Tracking approach has been proposed to eliminate tracking errors and other problems such as occlusion. The main purpose of the proposed tracking system is to learn the features of the targets during tracking and re-train the detection classifier for further processes. This thesis puts particular emphasis on vehicle detection and tracking in different extreme scenarios such as crowed highway vehicle detection, blurred images and changes in the appearance of the targets. Compared with currently existing detection and tracking approaches, the proposed approaches demonstrate a robust increase in accuracy in each scenario
    • …
    corecore