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Abstract 

Manual visual surveillance systems are subject to a high degree of human-error and operator fatigue. 

The automation of such systems often employs detectors, trackers and classifiers as fundamental 

building blocks. Detection, tracking and classification are especially useful and challenging in 

Unmanned Aerial Vehicle (UAV) based surveillance systems. Previous solutions have addressed 

challenges via complex classification methods. This dissertation proposes less complex Gaussian 

Mixture Model (GMM) based classifiers that can simplify the process; where data is represented as a 

reduced set of model parameters, and classification is performed in the low dimensionality parameter-

space. The specification and adoption of GMM based classifiers on the UAV visual tracking feature 

space formed the principal contribution of the work. This methodology can be generalised to other 

feature spaces.  

This dissertation presents two main contributions in the form of submissions to ISI accredited journals. 

In the first paper, objectives are demonstrated with a vehicle detector incorporating a two stage GMM 

classifier, applied to a single feature space, namely Histogram of Oriented Gradients (HoG). While the 

second paper demonstrates objectives with a vehicle tracker using colour histograms (in RGB and 

HSV), with Gaussian Mixture Model (GMM) classifiers and a Kalman filter. 

The proposed works are comparable to related works with testing performed on benchmark datasets. 

In the tracking domain for such platforms, tracking alone is insufficient. Adaptive detection and 

classification can assist in search space reduction, building of knowledge priors and improved target 

representations. Results show that the proposed approach improves performance and robustness. 

Findings also indicate potential further enhancements such as a multi-mode tracker with global and 

local tracking based on a combination of both papers. 
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1 Introduction 

Aerial visual surveillance studies commonly apply, and continue to develop, the fundamental 

processing steps of detection, classification and tracking.  Previous works have shown that detection, 

classification and tracking of objects are necessary steps in numerous applications [1-5]. These steps 

have been applied to fixed [6-9] and mobile [1, 10-12] camera platforms for both image and video 

analysis. More specifically, unmanned aerial camera platforms have the advantage of broader 

surveillance scope and higher mobility. However, studies have identified various disruptive factors 

emanating from such data streams, for example; moving background [13], unrestricted pose variation 

[2], illumination [4], and low contrast between objects and background [12]. Despite these challenges, 

the growing volumes of data creates a need for automated interpretation tools that reduce human-

operator workload and human error. Visual surveillance assists in military and civil applications such 

as; law enforcement, situational awareness, search and rescue, traffic monitoring and crowd 

surveillance [2, 4, 12, 13]. Several publications identify and address challenges in the use of 

unmanned aerial vehicle (UAV) surveillance [14-17], and this work aims to contribute new ideas in 

addressing those challenges. 

The topics of detection and tracking of objects were researched and two journal papers submitted. The 

principal contribution in both works is the specification and adoption of Gaussian Mixture Model 

(GMM) based classifiers on commonly used feature spaces. The first paper focuses on detection of 

ground based objects from UAV video streams using GMM supervised classifiers. While the second 

paper focuses on the tracking of detected ground based objects from UAV video streams using GMM 

online classifiers. The GMM has gained recognition due to its ability to represent some classes of real-

world data in an efficient and accurate manner [18]. They are capable of representing arbitrary 

univariate and multivariate distributions in a closed-form representation as a convex combination of 

Gaussian distributions. Furthermore, they may be applied to any probability distribution over any 

feature space. The submitted papers employ dimensionality reduction and classification of object 

probability distributions over various feature spaces, and shows how this forms a sound basis for 

detection and tracking in UAV video streams. 
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1.1 Object Detection 

An efficient object detector has to accurately determine the location, extent and shape of the objects of 

interest, despite the challenges faced by aerial platforms [19]. In the past, numerous published works 

addressed the challenges associated with detection and classification [20-23]. There are various 

approaches to the problem. However, each approach only addresses a part of the entire problem, 

therefore a common trend with later works is to combine different approaches. Some of these 

techniques are discussed next. 

In video sequences, information associated with consecutive images can be extracted with motion-

based techniques, namely; frame differencing, background subtraction and optical flow. Frame 

differencing is a simple, fast calculation used to obtain an outline of the moving object by calculating 

the pixel-wise difference between two consecutive images [8, 24]. However these methods cannot 

extract all the relevant motion pixels during periodic movements in background, rapid motion, and 

prompt illumination variations [25]. Therefore it is generally used as a pre-processing step as in [21]. 

Background subtraction accumulates information about the background scene to produce a 

background model [26]. The models are compared with the frames to identify moving regions. The 

methods are categorized as; parametric (frame averaging, single and multiple Gaussian, median filter), 

non-parametric (kernel density estimation, codebook model) and predictive techniques (Kalman filter 

background modelling, Eigenbackground) [8, 27]. These are applied to sequences from fixed 

platforms and require additional advanced methods for moving platforms. 

Optical flow methods are better suited for aerial platforms, and they are less susceptible to occlusion, 

illumination variation and complex or noisy backgrounds [8]. In optical flow, objects are characterised 

with flow vectors to segment and detect the moving regions overtime. The flow vectors represent the 

velocity and direction of each pixel or sub-pixel [28]. Mobile platforms have the additional problem of 

two types of motion in the video, namely, camera motion and object motion. Several works have 

overcome the problem by estimating the camera’s motion. Most commonly used methods are 

homography and the Lucas–Kanade method [8]. In [1, 16, 21, 22] various features are extracted and 

homography is applied to track the features between frames, thus a motion estimate is formed. The 

Lucas–Kanade method is similar in methodology and is part of the proposed solutions described in [1 

21 29]. Rodríguez-Canosa [1] further developed these methods to detect and track dynamic moving 

objects by filtering the difference between artificial and real optical flow using homography and 

Lucas–Kanade methods respectively. Other works utilise geometric features with optical flow, 

namely; Hasan [30] uses geometric constraints of the ground plane, Maier [29] uses epipolar geometry 
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and Cheraghi [11] uses projective geometry. While some geometric methods require metadata such as, 

the position, altitude and origination of the camera as in [1, 30], which is not always readily available. 

Motion-based techniques are well suited in segmenting moving objects and eliminating background 

elements, resulting in fewer false detections. However, most techniques require iterative calculations 

which increases computational complexity. Furthermore these techniques cannot detect objects if they 

are stationary [31]. 

Appearance-based and knowledge-based methods are able to detect moving and stationary objects, 

and in most cases have less computational complexity than motion-based techniques. The challenge 

with these detectors is to obtain sufficient information pertaining to the objects of interest whilst 

minimising the number of false positives detected. To overcome this problem several works employ 

motion methods as an initial step to exclude background elements. In [30] homography is used to 

detect moving regions and then identify objects of interest using appearance based pre-trained 

classifiers. While in [21] the Lucas–Kanade method is used with image registration for background 

subtraction. Thereafter, binary image classification with blobs is applied for foreground detection. 

However both works are able to detect only moving objects.  

Knowledge based methods are rule-based approaches that encode prior information that describes the 

object of interest, and can detect non-moving objects. These methods employ a verification step that 

sufficiently reduces the number of false positive detections by rejecting them. [32] developed a 

solution for detecting people that builds prior knowledge from the person’s motion and appearance. 

The knowledge is used to automatically select feature sets, training data scales and scales used for 

detection. These elements are used to construct a classifier with AdaBoost classification [22]. [33] 

uses knowledge-based priors to describe specific constraints for vehicle detection. Their proposed 

solution has two main steps, the first step labels the contents of each frame as vehicle, road and 

background, while the last step filters false positives with knowledge-based spatial reasoning. 

Knowledge based methods are beneficial for detection applications, however, they require extensive 

training of classifiers and complex classification leads to higher computational cost. 

Appearance based methods use visual information like colour, texture and shape which are obtained 

through feature extraction. The features are used to acquire models (or templates) from a set of 

training images. For detection, the models are used by classifiers with statistical analysis and/or 

machine learning to find the relevant features that belong to the object of interest. Generally the 

learned features are in the form of distribution models or discriminant functions. Nizar [34] uses 

appearance based methods to detect vehicles, motorcycles and people. This study utilises Histogram of 
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Gradients (HoG) features with a State Vector Machine (SVM) classifier. However, the study is applied 

to fixed camera imagery and is not sufficient for aerial platforms. A similar method was proposed by 

[15] to detect vehicles for aerial imagery by using additional features with a SVM classifier. The 

features extracted consisted of; Shape: FAST (Features from Accelerated Segment Test) with corner 

detectors, HoG, and Colour: HSV colour feature with the Grey Level Co-occurrence Matrix (GLCM) 

feature. Instead of using both the shape and colour features with a classifier, [36] initially obtains a 

high density Harris corner feature set. It then clusters heavily overlapping responses and the final 

detection of vehicles is achieved with a colour-based binary classifier. The use of multiple feature 

classes is beneficial in aerial platform applications but can have high computational cost. Therefore 

[19] proposed the use of only Harris corner features at the cost of more complex classification which 

is achieved with unsupervised clustering and a cascade of boosted classifiers. In another study the 

search space was reduced by first applying background colour removal which allowed a larger variety 

of features to be extracted (Harris corner and canny edge detectors) [36]. Since colour features were 

initially obtained for background removal, it is also used for classification with Dynamic Bayesian 

Networks. Thereafter, k-means is used to cluster each observation whereas in the training phase, the 

conditional probability tables of the Bayesian Network model are obtained via the Expectation 

Maximization (EM) algorithm. An alternative is to use Gaussian Mixture Models (GMM) for 

classification as these are capable of representing real world data in an efficient and accurate way, thus 

fewer feature classes are required [38]. Since classification is a challenge with both knowledge and 

appearance based methods, it is worth investigating the use of GMM for classification. 

1.2 Object Tracking 

The aim of object tracking is to locate the position of an object over time from a video stream and to 

associate the position of the object in consecutive video frames. In multiple object tracking [5, 10], the 

association of each object is crucial, whereas for selected object tracking [39] it is important to 

differentiate the selected object from other objects in the scene. A key initial step is to first isolate the 

objects of interest, commonly used approaches are; background subtraction [21], motion detection [1], 

segmentation [10] and foreground detection [40]. Object detection approaches and their benefits in the 

context of tracking are discussed in Section 1.1.  

Since tracking is related to the motion of objects, several works explore motion-based techniques. [9] 

uses a Lucas-Kanade tracker to track cyclists. A two-frame differential method for motion estimation 

via optical flow is used to minimise the estimation error between subsequent frames. This method, 

however, it is better suited for stationary camera platforms because camera motion can complicate 
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optical flows. For aerial platforms, [41] uses the SNIFF object tracking algorithm to track vehicles and 

people. The algorithm was developed at Sarnoff Corporation for real-time application and is based on 

robust change detection and optical flow based linkage. Whereas [1] developed a real time detection 

and tracking method for moving objects (DATMO). They calculate the difference between artificial 

and real optical flow using homography and Lucas–Kanade methods respectively; and thereafter filter 

and group the dynamic object motion vectors. However, if the object becomes stationary, the motion-

based methods then assumes that the object is a background element and stops tracking. 

Region, Contour and Feature based techniques are able to continue tracking even after the object 

becomes stationary. These methods, including some motion based techniques, therefore require static 

tracking algorithms such as classification to operate. Popular tracking algorithms are Kalman and 

Particle filters. The Kalman filter is used to estimate the object position in the next frame by using the 

previously estimated states and current measurements to recursively estimate the next state [8]. While 

the Particle filter sequentially estimates the latent state variables of a dynamic system based on a 

sequence of observations using Monte Carlo sampling techniques [8].    

A region based tracker was developed by [16] using oriented bounding boxes and a Kalman filter. 

They assign a region to a specific track if a minimum threshold for the bounding box intersection area 

of region and Kalman prediction is exceeded. This method was applied to detection, segmentation and 

tracking of moving objects from UAVs. Whereas, Cao [13] proposed a feature based tracker with a 

Particle filter to track vehicles from aerial imagery. Cao [13] first estimates the camera’s motion for 

the filter and for each particle, using colour histogram and Hu moments. Another feature based 

method demonstrated by [15], uses SIFT features and classification instead of tracking algorithms for 

vehicle tracking. However, a drawback of this method is that a forward-backward tracking algorithm 

had to be developed to feedback information to the classifier, in order to generate more training 

samples. Subsequently, it is evident that improvements for classification in this area are required. 

1.3 Object Classification 

The discussion of object detection and tracking highlights the importance of classification and reveals 

challenges associated with it. A classifier has to distinguish different classes of object, and this poses a 

significant challenge when one considers the separability and variability of real data. Nevertheless 

classifiers are successfully utilised in several different ways. In some instances classification is used as 

part of the process to eliminate false positive detections [20, 36]. While in other cases objects are 
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classified into different categories for detection and/or tracking [23, 30, 34, 42], or used for object 

recognition [43, 44]. 

Statistical classifiers generally utilise two types of learning methods, namely, generative and 

discriminative learning. A generative model learns the joint probability distribution p(x,y) whereas a 

discriminative model learns the conditional probability distribution p(y|x). While the distribution 

p(x,y) from generative models are used to generate likely pairs, p(y|x) distribution from discriminative 

models is the natural distribution for classifying a given example x into a class, y. Both classification 

models are useful for tracking and detection, however discriminative classifiers generally outperform 

generative models in classification tasks in terms of computation cost and handling missing data [45].  

Binary classifiers are the simplest form of discriminative classification, which is restricted to two 

possible classes. Gleason [35] showed that a binary classifier can be used to detect vehicles from aerial 

imagery. The classifier uses heavily clustered corner features as input data and colour-based properties 

to further refine the models. However, binary classification can only describe linear decision 

boundaries and is overconfident, resulting in additional false positives. Furthermore, binary 

classification is inefficient as it is prone to over-fitting in high dimensions. To overcome these 

problems other classifiers have been developed. For non-linearity, State Vector Machine (SVM) is 

used while for overconfidence, Bayesian classifiers are utilised. Classification trees have been 

incorporated with boosting to further increase computational speed. Interestingly, Gaussian process 

classification assists in overcoming both non-linearity and overconfidence problems [46].  

Previously, Nizar [34] and Reilly [23] utilised a non-probabilistic approach, SVM, in its original form, 

by using extracted features for the classifiers. The SVM with a convex objective function guarantees 

convergence. While Nizar [34] proposes multi-object tracking and detection for transport surveillance 

with HoG features and Reilly [23] performed shadow detection with blob and wavelet features. 

Similar to the binary classifier, SVM also executes only on two classes. However another non-

probabilistic approach, AdaBoost, finds the best feature sets and constructs a cascade of classifiers to 

extend to multiple classes. AdaBoost can be used for different views (front, back, left and right view) 

of detection and tracking, and improves performance [9]. However, Viola and Jones [32] showed 

increased performance with active learning SVM for image retrieval. The disadvantage of non-

probabilistic approaches is that they do not assign certainty to its predictions.  

On the other hand, Probabilistic approaches, such as Bayesian, Gaussian and Classification trees 

assign certainties. Cheng [36] proposed a method for detecting vehicles from aerial imagery using 

Bayesian classification and multiple feature sets, namely, edge detection, corner detection, colour 
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transform and colour classification. The classifier successfully incorporated all the feature sets, 

regardless of the various forms and representations. Bayesian classifiers interpolate real world models 

with priors, therefore are more accurate. However specifying the priors is a challenge for complex 

models and can result in high computational cost. Random forest classifiers have tree-structured 

classification, where the processing for each data example is different and becomes steadily more 

specific. This is useful for multi-class problems [46]. Sedai [47] and Yu [48] use a combination of 

shape detectors and descriptors with random forest classifiers. Yu [48] applies to wide area remote 

sensing where multiple classes exist. This is well suited to the classifier. While Sedai [47] uses the 

classifier for complex multiscale detectors and descriptors for MRI images. Although tree classifiers 

significantly reduce computational cost, they tend to overfit data, thus it is not always efficient [46]. 

Gaussian process classification accurately represents and fits data in an efficient way [46]. GMM 

classification may meet these requirements. 

1.4 Gaussian Mixture Model Classification 

The GMM has gained recognition due to its ability to represent some classes of real-world data in an 

efficient and accurate manner [18]. They are capable of representing arbitrary univariate and 

multivariate distributions in a closed-form representation as a convex combination of Gaussian 

distributions. The GMM has been beneficial to numerous applications including other research areas, 

some examples include; emotion recognition [49], probabilistic trajectory prediction [50], spectral 

unmixing for multi-spectral data processing [51] and data classification in high energy physics [52]. It 

is further utilised for image processing of medical data  [53-57]. In other image processing areas, 

including the current research space, GMMs are used to aid the tracking and detection process [24, 58-

62]. The use of GMMs extending into multi-disciplines is an indication of its ability to adapt and 

efficiently represent data. 

A common approach with GMMs for detection, tracking and classification is background subtraction 

due to the ability to handle complex background scenes [63-67]. However, GMMs cannot properly 

model noisy or nonstationary backgrounds and requires additional methods for optimisation. An 

alternative approach to GMM background subtraction is to use GMMs for image classification and 

segmentation instead. Permuter [68, 69] has used this method by applying GMMs on colour and 

texture features. The classification with GMMs are achieved through Expectation Maximization (EM) 

and Maximum Likelihood algorithm. However, both works require careful initialisation of GMM 

parameters and optimal feature sets. To address this challenge, Tao [70] applied Figueiredo and Jain 

(FJ) algorithm instead of EM, which does not require initialisation of parameters. They developed an 
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optimized GMM classifier with FJ and SVM, applied to remote sensing images in urban areas. The 

methods from Permuter [68] and Tao [70] can be merged and adapted for detection from aerial videos. 

The application of FJ algorithm by Tao [70] can improve classification, while the methodology from 

Permuter [68] can simplify the classification process for detection and tracking from aerial platforms.   

In the context of detection from aerial platforms, a common trend is either to add several different 

feature sets or to use complex classification methods. Both Chen [15] and Gleason [35] utilise simple 

classification methods with multiple features sets, such as, colour, FAST (Features from Accelerated 

Segment Test), Harris corner detectors and HoG. The use of multiple types of features are beneficial in 

aerial platforms but can have high computational cost. To overcome this problem some works use 

fewer features with advanced classifiers. An example of this is from [19], who proposed the use of 

only Harris corner features with unsupervised clustering and a cascade of boosted classifiers. The 

unsupervised clustering through k-means is required to assist the classifiers by grouping data, at the 

cost of additional computation. Another method by Cheng [36] also uses clustering by k-means to aid 

classification with Dynamic Bayesian Networks. Further challenges arise in their training, where the 

conditional probability tables of the Bayesian Network model are required and obtained via the 

Expectation Maximization (EM) algorithm. An efficient alternative to clustering data through k-means 

is to use GMM, which will find data parameters while clustering the data, furthermore the training 

phase in [36] can be simplified with GMM classification. In addition, simpler low-dimensional feature 

spaces can be used and the GMM is capable of representing distributions within these spaces as a 

parametric probabilistic model [38].  

In the context of tracking from aerial platforms, there are proposed methods that treat the tracking 

problem as a classification task [71-75]. Despite the success they have demonstrated, numerous issues 

remain to be addressed. Firstly, these methods need a set of labelled training instances (samples) to 

determine the decision boundary for separating the target object. Secondly, in most cases, there is not 

sufficient instances for unsupervised learning. GMM classification is an efficient unsupervised 

alternative that is capable of labelling instances and requires fewer instances.  Since classification is a 

challenge for detection and tracking from aerial platforms, it is worth investigating the use of GMM 

classification. 

1.5 Feature Extraction 

The feature extraction process is a key factor for the GMM classification, as probability distribution 

functions (PDF) are generated from the feature sets. These functions represent the attributes that 
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identify and distinguish objects from the scene. The GMM classifiers create probabilistic models for 

the distributions thus simplifying the comparison process. Different types of feature sets are required 

for detection and tracking, namely, shape-based for the detection while colour-based features are used 

for tracking. Other applicable features in this area of research are texture-based and motion-based 

features. 

1.5.1 Shape Features 

Shape features are generally used in two different ways. Firstly, to identify the precise pixels that 

belong to an object from the current scene. Secondly, to extract information about the identity or other 

characteristics such as the position of the object [46]. The information is used for various applications, 

consisting of; representation [46], segmentation [10], recognition [44], detection [48] and tracking 

[41]. For shape feature extraction, detectors and descriptors can be utilised and can function as a 

collective. Detectors assist in determining the location of prominent key points which belong to 

objects of interest which are beneficial in reducing search space [76]. Descriptors are used to 

determine which key points come from the corresponding locations in different image regions. It is 

capable of representing a cluster of key points as a single point descriptor which is useful for data 

representation for classification [76].  

The Canny Edge Detector is widely used and highly cited and is commonly used with machine 

learning methods to identify object boundaries in images. In [36] the detector is used as one of the 

feature sets for the classification process in aerial video streams. However, since the illumination 

varies within a scene, different thresholds for the edge detector are required according. To overcome 

the problem, Cheng [36] applies the moment-preserving thresholding method, which adaptively 

selects the lower and higher threshold values. In the same works, Harris Corner detector is utilised 

without thresholding, implying that it is more robust to changes in aerial applications. The corner 

detector can also be used for motion detection, by tracking the features with Lucas–Kanade optical 

flow method [12], [77]. Furthermore, it is possible to use Harris as the only feature set for 

classification but in fixed images [19]. Yu [48] uses histogram-based shape descriptor to represent 

Harris corner features for wide area remote sensing application. Therefore feature descriptors are 

useful in representing detectors and can assist in the application for GMM classification.   

Histogram of oriented Gradients (HoG) and Scale Invariant Feature Transform (SIFT) are the most 

commonly used descriptors for aerial video stream applications.  SIFT has been used to detect 

corresponding Harris corners for camera estimation in wide area motion imagery [16]. A combination 

of both SIFT and HoG is proposed for classification of vehicles and surgical fixed images [77]. 
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However, for aerial platforms these descriptors require additional methods and/or advance 

classification techniques [1, 9, 15, 78], have demonstrated various combinations of HoG and SIFT 

with different detectors and provide a comparison of different feature detectors and descriptors for 

vehicle classification from UAV’s.  

1.5.2 Colour Features 

Colour-based methods are widely applied in image processing. A common use is for prior background 

subtraction, however colour-based methods can be used as a final refinement step for detection in 

aerial imagery [35]. Therefore, eliminating the background areas characterised by a monochromatic 

colour distribution. Others use colour and simple entropy to form a fingerprint for object detection 

from UAVs [10]. A further application is that of colour segmentation of breast infrared images using 

GMM [79].  

Colour histogram is a representation of the colour distribution of an image, and the number of pixels 

that have colours in each of a fixed list of colour ranges. The common method of colour histograms is 

to represent the colour space as a three-dimensional space of RGB (red, blue, green). This is not 

optimal as it has a large separation of data, which requires more storage space. The method of colour 

quantization reduces the amount of data storage required. Colour quantization divides the colour space 

into a certain numbers of small intervals; each interval is called a bin. The number of pixels in each of 

the bins forms a one-dimensional colour histogram that is well suited to be used for GMM. Colour 

histogram is a commonly used feature set as it is relatively constant within a video sequence and the 

amount of information conveyed. However changes in perspective, illumination and scale causes 

variations in the colour. Kviatkovsky [80] explores aspects of colour structure that are invariant to 

illumination for person re-identification. In addition, some works consider colour spaces other than 

RGB, namely, and LAB [1, 42] and HSV (hue, saturation, value) [15]. RGB does not require 

transformations to perceive the colour and has a lower computational cost, however it is not always 

useful for object specification and difficult to determine specific colour in RGB model [81]. LAB is 

perceived as uniform but suffers from unintuitive. While for HSV, the hue and saturation components 

is the way humans perceive colour and well suited for image processing. Additionally, the hue 

component can be used for segmentation with better speed since only one component needs to be 

processed. However, undefined achromatic hue points are sensitive to value deviations of RGB and 

instability of hue [81]. 
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2 Motivation and Research Objective 

In the area of visual surveillance, detection, classification and tracking of objects are beneficial in 

numerous applications, as shown in previous works [1-5]. It has been applied to fixed [6-9] and mobile 

[1, 10-12] camera platforms for both image and video analysis. Furthermore aerial platforms have an 

additional advantage of larger surveillance scope and higher mobility. However, existing works have 

identified various factors that contribute to noise, namely; change in viewpoint, parallax errors, and 

low contrast between objects and background. Despite the challenges, the ever growing volume of 

data creates a need for automated interpretation tools that reduce human error and human workload. 

Visual surveillance assists in military and civil applications such as law enforcement, situational 

awareness, search and rescue, traffic monitoring and crowd surveillance [2, 4, 12, 13]. Furthermore, 

Unmanned Aerial Vehicle (UAV) surveillance platforms may be utilised. These are increasingly cost-

effective, safer and, quick to set up and deploy. Several publications identify and address challenges in 

the use of UAVs for surveillance of multiple object types [14-17]. These publications have identified 

various disruptive factors emanating from such data streams, for example; moving background [13], 

unrestricted pose variation [2], illumination [4], and target occlusion [12]. To overcome these 

problems, classification has become a key factor for detection and tracking. For detection from aerial 

platforms, a common trend is either to add several different feature sets or to use complex 

classification methods. The use of multiple feature sets can significantly increase computational cost, 

and complex classification methods often require extensive expertise to configure and deploy. 

Furthermore, complex unsupervised classification methods are also used in the context of tracking. 

These methods require a set of labelled training samples and in most cases, there are insufficient 

instances for successful unsupervised learning. GMM classification simplifies the process. A 

parametric model of the data is created, and classification is performed on model parameters instead of 

the high-dimensional data. Furthermore GMM classification does not require extensive training sets 

and labelled samples. Therefore the objective is to investigate whether the specification and adoption 

of GMM based classifiers on commonly used feature spaces is beneficial in alleviating the challenges 

associated with detection and tracking in UAV video streams.  
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3 Contributions of Included Papers 

The contributions of this dissertation are presented in two journal papers (Paper A and Paper B) which 

are included in Section II.  Paper A focuses on the detection of ground based objects using GMM 

supervised classifiers, with UAV video streams. While Paper B focuses on the tracking of detected 

ground based objects using GMM online classifiers for UAV video streams. 

3.1 Paper A 

T. Pillay, B. Naidoo, “Gaussian Mixture Model classifiers for detection in UAV video streams”, 

[Submitted for review to International Journal of Remote Sensing], 2017 

Paper A: The paper aims to simplify the classification process in a reduced feature space. The 

objectives are demonstrated with a vehicle detector using a single feature space, namely Histogram of 

Oriented Gradients (HoG) with Gaussian Mixture Model (GMM) classifiers. A low-dimensionality 

information-preserving feature space is developed and reduced to a parametric mixture model, further 

decreasing complexity.   The use of a likelihood function simplifies the classification process as the 

function provides likelihood estimate values for direct comparison. The proposed solution is tested on 

standard datasets, and performs well in comparison to related works. 

3.2 Paper B 

T. Pillay, B. Naidoo, “Gaussian Mixture Model classifiers for tracking in UAV video streams”, 

[Submitted for review to International Journal of Remote Sensing], 2017 

Paper B: This paper aims to simplify the classification process with a minimised set of unlabelled 

instances to reduce the problems experienced by complex classification. The objectives are 

demonstrated with a vehicle tracker using colour histograms, with Gaussian Mixture Model (GMM) 

classifiers and a Kalman filter. GMM classification is used to differentiate the tracked object from 

other elements in the scene using a likelihood function; and the Kalman filter provides a step-ahead 

estimate of the object location, thus reducing the search space. The GMM classification model is 

constantly updated with a limited set of instances obtained from recent frames. This allows the model 

to adapt to the changes in the appearance of the tracked object over a localised time-frame. GMM 

classification has resulted in a simplified classification process which is tested on standard datasets, 

and performs well in comparison to related works. 
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Abstract 

Unmanned Aerial Vehicle (UAV) visual surveillance is widely applied, and still actively researched 

with regard to detection and classification. Although object detection has improved significantly, it 

continues to pose challenges for UAVs, due to moving background, unrestricted pose variation, 

illumination and low contrast. Past solutions have resorted to multiple feature sets, which results in 

redundant feature spaces and complex classification. This study aims to simplify the classification 

process in a reduced feature space. The objectives are demonstrated with a vehicle detector using a 

single feature space, Histogram of Oriented Gradients (HoG), with Gaussian Mixture Model (GMM) 

classifiers. GMMs provide a concise parametric representation of the HoG distributions. GMM 

parameters are computed during a training phase and are categorised at a subsequent classification 

phase. The training model parameters are compared to candidate parameters using a likelihood 

function, thus providing classification. Detection is achieved with a simple two-stage GMM classifier, 

the stages are: (1) initial detection: find regions of interest (ROI) from video frames, (2) final 

detection: classify ROIs from stage 1 and output detections. A simple feature space is used and this is 

reduced to a parametric mixture model, further decreasing complexity.   The use of the likelihood 

function simplifies the classification process as the function provides likelihood estimate values for 

direct comparison. The proposed solution is tested on standard datasets, and performs well in 

comparison to related works. 
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1. Introduction 

Aerial visual surveillance research is widely applied, and continues to develop the fundamental 

processing steps of detection and classification.  Previous works have shown that detection and 

classification of objects are necessary steps in numerous applications [1-5]. These steps have been 

applied to fixed [6-9] and mobile [10-13] camera platforms for both image and video analysis. More 

specifically, unmanned aerial camera platforms have the advantage of broader surveillance scope and 

higher mobility. However, studies have identified various disruptive factors emanating from such data 

streams, for example; moving background [14], unrestricted pose variation [2], illumination [15], and 

low contrast between objects and background [12]. Despite these challenges, the growing volumes of 

data creates a need for automated interpretation tools that reduce human-operator workload and human 

error. Visual surveillance assists in military and civil applications such as; law enforcement, 

situational awareness, search and rescue, traffic monitoring and crowd surveillance [2, 4, 12, 14]. 

Several publications identify and address challenges in the use of unmanned aerial vehicle (UAV) 

surveillance [15-18].  

An efficient object detector has to accurately determine the location, extent and shape of the objects of 

interest, despite the challenges faced by aerial platforms [19]. In the past, numerous published works 

addressed the challenges associated with detection and classification [20-23]. There are various 

approaches to the problem. However, each approach only addresses a part of the entire problem, 

therefore a common trend with later works is to combine different approaches. The most common 

approaches for vehicle detection are feature based and applies the proposed object detection 

framework by Viola and Jones [24]. The approaches generally compensate for poor performance by 

extracting a large number of features and then combining several weak classifiers with a cascade 

structure to form one strong classifier. While other approaches, such as knowledge based methods, 

require extensive training of classifiers and complex classification, which leads to higher 

computational cost.  

It would be ideal to use a single feature set with simple classification, similar to [25], who uses 

Histogram of Oriented Gradients (HoG), with a State Vector Machine (SVM) classifier. This method 

can detect vehicles, motorcycles and people, implying that HoG can differentiate these objects well. 

However, the abovementioned method is applied to fixed camera imagery and is not sufficient for 

aerial platforms.  Therefore, a common trend for aerial platforms is either to add several different 

feature sets or to use complex classification methods. Both Chen [17] and Gleason [26] utilise simple 

classification methods with multiple features sets, such as, colour, FAST (Features from Accelerated 
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Segment Test), Harris corner detectors and HoG. The use of multiple types of features are beneficial in 

aerial platforms but can have high computational cost. To overcome this problem some works use 

fewer features with advanced classifiers. An example of this is from [19], who proposed the use of 

only Harris corner features with unsupervised clustering and a cascade of boosted classifiers. The 

unsupervised clustering through k-means is required to assist the classifiers by grouping data, at the 

cost of additional computation. Another method by [27] also uses clustering by k-means to aid 

classification with Dynamic Bayesian Networks. Further challenges arise in their training, where the 

conditional probability tables of the Bayesian Network model are required and obtained via the 

Expectation Maximization (EM) algorithm.       

 An efficient alternative to clustering data through k-means is to use Gaussian Mixture Models 

(GMM), which will find data parameters while clustering the data, furthermore the training phase in 

[27] can be simplified with GMM classification. In addition, simpler low-dimensional feature spaces 

are required and the GMM is capable of representing distributions within these spaces as a parametric 

probabilistic model [28]. Since classification is a challenge in this area of research, it is worth 

investigating the use of GMMs for classification. 

The GMM has gained recognition due to its ability to represent some classes of real-world data in an 

efficient and accurate manner [29]. They are capable of representing arbitrary univariate and 

multivariate distributions in a closed-form representation as a convex combination of Gaussian 

distributions. The GMM has been beneficial to numerous applications including other research areas, 

some examples include; emotion recognition [30], probabilistic trajectory prediction [31], spectral 

unmixing for multi-spectral data processing [32] and data classification in high energy physics [33]. It 

is further utilised for image processing of medical data [34-38]. In other image processing areas, 

including the current research space, GMMs are used to aid the tracking and detection process [39-44]. 

The use of GMMs extending into multi-disciplines is an indication of its ability to adapt and 

efficiently represent data. 

A common approach with GMMs for detection and classification is background subtraction due to the 

ability to handle complex background scenes [45-49]. However, GMMs cannot properly model noisy 

or nonstationary backgrounds and requires additional methods for optimisation. A different approach 

by  [50, 51], who applied GMMs on colour and texture features for image classification and 

segmentation. The classification with GMMs are achieved through Expectation Maximization (EM) 

and Maximum Likelihood algorithm. However, both works require careful initialisation of GMM 

parameters and optimal feature sets. To address this challenge, Tao [52] applied Figueiredo and Jain 
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(FJ) algorithm instead of EM, which does not require initialisation of parameters. They developed an 

optimized GMM classifier with FJ and SVM, applied to remote sensing images in urban areas. The 

methods from Permuter [50] and Tao [52] can be merged and adapted for detection from aerial videos. 

The application of FJ algorithm by Tao [52] can improve classification, while the methodology from 

Permuter [50] can simplify the classification process.   

This paper focuses on detection of ground-based vehicles from UAV video streams using GMM 

classifiers. The specification and adoption of GMM based classifiers on commonly used feature spaces 

forms the principal contribution of this work. Variations of HoG descriptors are used to extract 

features from the frames of the UAV video streams. The distributions of these features are computed 

and represented by a parameterised GMM. Thereafter, classification is performed on the parameters 

and not on the data, thus simplifying the process. A two stage cascade of GMM classifiers are utilised 

to first detect potential vehicles, and secondly to validate the detections, thus reducing false positives. 

The proposed work is directly compared to related works, as testing is performed on the benchmark 

VIVID dataset [53].  

The paper continues onto Section 2, which reviews the various parts of GMM and presents 

the proposed solution. Section 3, describes the test evaluation and shows the experimental 

results with comparisons with related works, while Section 4 presents the conclusions. 

2. Gaussian Mixture Model Classification 

The proposed method requires various elements, namely, feature extraction, GMM parameterisation, 

parameter classification and finally, detection functionality. GMM parameters are computed and 

stored during the training phase; whereas in the detection phase, current parameters are compared to 

trained parameters in order to classify the image regions as vehicle or background. This method is 

applied to both stages of the cascaded classifier to produce the final vehicle detection.    

2.1. Feature Extraction 

The feature extraction process generates data distributions, 𝑋(𝑁,𝐷) in the shape feature space, where the 

number of samples is 𝑁 and the dimensionality of the space is 𝐷. These distributions are modelled 

with GMMs to create a parametric probabilistic model for the training and comparative process of 

classification. Since GMMs represent probability density functions (PDF) as a weighted sum of 

Gaussian density functions, the input data must be PDF as well. Histogram of Oriented Gradients 

(HoG) descriptors represents a shape feature space that procedures PDF. HoG descriptors contain the 
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attributes that identify and distinguish objects from the scene. The HoG-edge feature space represents 

the shape of vehicles, while HoG-corner feature space is used to detect potential vehicle regions. The 

HoG-edge is capable of obtaining features that differentiate between vehicle and background, whereas 

HoG-corner detects all corners in an image, including both vehicles and background. Furthermore, 

some background elements contain similar distributions as vehicles. However, since fewer data points 

are generated, this is ideal for initial detection, where the entire frame is considered. The more detailed 

HoG-edge considers small regions of the frame and is ideal for validation. Details of the HoG 

descriptor can be found in [25, 54], while, HoG-corner in [55]. Fig. A.1 (a) – (c), are visual 

representations of the HoG-corner applied to entire frames from the VIVID dataset. Dense corner 

features are extracted in order to reduce false negatives. However, this can increase the false positive 

rate. Therefore, classification is used to filter out false positives. Fig. A.2 shows illustrations of HoG-

edge features extracted from regions of interest (ROI). HoG visualisation for vehicles is shown in Fig. 

A.2 (a)-(b) is a representation of a vehicle, while in Fig A.2 (c)-(d) for background elements. The 

illustrations show the difference in distribution between the two items however, some overlap does 

exist.    

   

   

(a) (b) (c) 

Fig.  A.1 Visual representation of HoG-Harris corner (a)-(c) from VIVID dataset frames 
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(a) (b) (c) (d) 

Fig.  A.2 Visual representation of HoG-edge (a)-(b) – HoG of vehicles, (c)-(d) – HoG of background 

 

2.2. Gaussian Mixture Models 

The general assumption is that, when simple natural data is represented as a PDF, the PDF is usually 

Gaussian in nature. However, complex real world data distributions often approximate linear 

combinations of Gaussian distributions. Thus, the motivation for using GMMs is to represent  𝑋(𝑁,𝐷) 

as multiple Gaussians in an efficient and accurate way. Assume that  𝑋(𝑁,𝐷) =  𝑋{𝑥1, … , 𝑥𝑁} is a set of 

𝑁 independent and identically distributed samples in 𝐷 dimensions; and its PDF approximates a 

multivariate Gaussian distribution, then the PDF of sample 𝑥 may be represented as [56]: 

𝑝(𝑥|𝜇, 𝜎2) =
1

√2𝜎2𝜋
𝑒

−
(𝑥−𝜇)2

2𝜎2  
 

(1) 

where, 𝜇 and 𝜎2 are the mean and variance parameters respectively. If given sufficient training 

samples, GMMs are capable of representing the PDF. The arbitrary set 𝑋(𝑁,𝐷), all 𝑝(𝑥|𝜇, 𝜎2), can be 

approximated by a weighted sum of 𝐾 Gaussian density functions, as illustrated below [56]: 

𝑝(𝑋|𝜇, 𝜎2) = ∑ 𝛼𝑘𝑝(𝑋|𝜇𝑘 , 𝜎𝑘
2)

𝐾

𝑘=1

 (2) 
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where, 𝛼𝑘(𝑘 = 1,2, … , 𝐾) are the prior probabilities (mixture weights) of the components 𝑘. The aim 

of GMMs is to estimate the parameters 𝜇, 𝜎2 and 𝛼, which is achieved by applying the Maximum 

Likelihood (ML) estimation to equation (2), [56]:  

log 𝑝(𝑋|𝜇, 𝜎2) = log ∏ 𝑝(𝑥𝑛|𝜇, 𝜎2)

𝑁

𝑛=1

= ∑ log ∑ 𝛼𝑘𝑝(𝑥𝑛|𝜇𝑘, 𝜎𝑘
2)

𝐾

𝑘=1

𝑁

𝑛=1

 

 

(3) 

2.3. Expectation Maximisation Algorithm 

The ML estimation, equation (3) does not converge to a close form solution, which is not ideal for 

computational purposes. A commonly used solution to this is the Expectation Maximisation (EM) 

algorithm, an iterative process that finds the local maxima of log 𝑝(𝑥|𝜇, 𝜎2). The algorithm maximises 

the likelihood function with respect to the parameters. The conditions that must be satisfied at a 

maximum of the likelihood function are found by setting the derivatives with respect to 𝜇 and 𝜎2 in 

equation (3) to zero. The required equations for the expectation and maximization steps are derived by 

multiplying the solution by 𝜎𝑘
−2 [57]: 

𝛾(𝑥𝑘) =  
𝛼𝑘𝑝(𝑥𝑛|𝜇𝑘, 𝜎𝑘

2)

∑ 𝛼𝑗𝑝(𝑥𝑛|𝜇𝑗 , 𝜎𝑗
2)𝐾

𝑗=1

 

 

(4) 

𝜇𝑘 =
1

𝑁𝑘
∑ 𝛾(𝑥𝑘)𝑥𝑛

𝑁

𝑛=1

 

 

(5) 

 

𝜎𝑘
2 =

1

𝑁𝑘
∑ 𝛾(𝑥𝑘)(𝑥𝑛 − 𝜇𝑘)

𝑁

𝑛=1

(𝑥𝑛 − 𝜇𝑘)𝑇 

 

(6) 

𝑁𝑘 = ∑ 𝛾(𝑥𝑘)

𝑁

𝑛=1

 

 

(7) 

 

𝛼𝑘 =
𝑁𝑘

𝑁
 

 

(8) 

 

 

 

where 𝑁𝑘 is the effective number of points assigned to component 𝑘 and 𝛾(𝑥𝑘) is the posterior 

probability which represents 𝑝(𝑥𝑘 = 1|𝑥) and can be found using Bayes theorem. The two main steps 

of EM is (i) evaluate posterior probability using the current parameter values, with equation (4) and 
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(ii) re-estimate the parameters using current posterior probabilities with equations (5), (6) and (7). The 

main steps are repeated until the solution converges by evaluating the log likelihood and checking for 

convergence of either the parameters or the log likelihood. If the convergence criteria are not satisfied, 

the main steps are repeated until the solution converges, provided that there is sufficient data.  

2.4. Improved EM Algorithm 

Although EM converges with sufficient data, the final model parameters are highly dependent on the 

training data and the initialisation of 𝜇, 𝜎2 and 𝐾. If the initialisation is not optimal, the GMMs will 

not fit the data well and the output will vary, even for the same set of data. Furthermore, in the case of 

classification, a common initialisation for all datasets are required, thus increasing the difficulty in 

finding optimal parameters.  A method to prevent this problem is the improved EM algorithm by 

Figueiredo and Jain [58], which is well suited for classification. The method does not require careful 

initialisation and is capable of selecting 𝐾. The algorithm only requires a minimum and maximum 

initial estimate for 𝐾, which is 𝐾𝑚𝑖𝑛 and 𝐾𝑚𝑎𝑥. Here, EM algorithm is used in the traditional way, 

however the difference is in the likelihood function. An additional criterion is added to ML estimate 

and is derived by first considering the Minimum Message Length (MML), which aims at finding the 

“best” overall model instead of the “model-class/model” approach used in EM. According to Shannon 

theory [56], for 𝑝(𝑋|𝜇, 𝜎2), the shortest code length is the ceiling of ⌈− log 𝑝 (𝑋|𝜇, 𝜎2)⌉, since 

𝜇 and 𝜎2 are unknown, the entire coding length is:    

 

Length((𝜇, 𝜎2), 𝑋) = Length(𝜇, 𝜎2) + Length(𝑋|𝜇, 𝜎2) (9) 

 

The minimum encoding length criteria for MML is that the parameter estimate is the one minimizing 

Length((𝜇, 𝜎2), 𝑋). A finite code-length can be obtained by quantising 𝜇 and 𝜎2 to finite precision, 

the quantised version is denoted as 𝜇 ̂and 𝜎2̂. If a fine precision is used, then Length(𝜇 ̂, 𝜎2̂) is large, 

which implies that Length(𝑋|𝜇 ̂, 𝜎2̂) can be made small therefore, 𝜇 ̂ and 𝜎2̂ can come close to the 

optimal value. The quantised version is as follows [56]: 
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(𝜇 ̂, 𝜎2̂) = arg minμ,σ2 {− log 𝑝(𝜇, 𝜎2) − log  𝑝(𝑋|𝜇, 𝜎2) +
1

2
log|𝐼(𝜇, 𝜎2)| +

𝐷

2
(1

+ log
1

12
)} 

(10) 

where, 𝐼(𝜇, 𝜎2) ≡ −E [𝐷𝜇,𝜎2
2 log 𝑝(𝑋|𝜇, 𝜎2)] is the Fisher information matrix and |𝐼(𝜇, 𝜎2)| is the 

determinant. Since 𝐼(𝜇, 𝜎2) cannot be determined analytically for mixtures, the expression is replaced 

by the complete-data Fisher information matrix with a block-diagonal structure. Therefore,  

𝐼𝑐(𝜇, 𝜎2) ≡ −E [𝐷𝜇,𝜎2
2 log 𝑝(𝑋, 𝑍|𝜇, 𝜎2)], which is the upper-bounds of 𝐼(𝜇, 𝜎2) [56].  

 

𝐼𝑐(𝜇, 𝜎2) = 𝑛 block − diag{𝛼1𝐼(1)(𝜇1, 𝜎1
2), … , 𝛼𝑘𝐼(1)(𝜇𝑘, 𝜎𝑘

2), (𝛼1𝛼2 … 𝛼𝑘)−1} (11) 

 

The final criterion is derived from equation (10) and (11), the full derivation is found in [58], the 

additional criterion for ML is as follows: 

 

ℒ((𝜇, 𝜎2), 𝑋) =
𝐹

2
∑ log (

𝑛𝛼𝑘

12
) +

𝐾𝑛𝑧

2
log

𝑛

12
+

𝐾𝑛𝑧(𝐹 + 1)

2
− log 𝑝 (𝑋|𝜇, 𝜎2)

𝑘:𝛼𝑘>0

 (12) 

 

where, 𝐾𝑛𝑧 is the number of non-zero-probability components, which is initially equal to the 

maximum initial estimate for 𝐾. While 𝐹 is the number of free parameters in 𝑝(𝑥|𝜇, 𝜎2). The aim is to 

obtain the minimum value of equation (12) to meet the new likelihood criterion. After convergence of 

EM, there is no guarantee that ℒ((𝜇, 𝜎2), 𝑋) is minimised. This is solved by excluding the least 

probable component of 𝛼𝑘 and rerunning the EM algorithm until it converges. The process is repeated 

until 𝐾𝑛𝑧 = 𝐾𝑚𝑖𝑛, then each ℒ((𝜇, 𝜎2), 𝑋) is compared to find the minimum value. The model 

parameter set with the minimum value is chosen as the optimal set, [𝐾𝑏𝑒𝑠𝑡 , 𝛼𝑏𝑒𝑠𝑡 , 𝜇𝑏𝑒𝑠𝑡 , 𝜎𝑏𝑒𝑠𝑡
2 ]. 
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2.5. Gaussian Mixture Model Classification 

GMM parameterisation enables the transformation of high-dimensional input spaces into lower-

dimensional GMM parameter spaces, while retaining adequate object description for subsequent 

classification. Classification in lower-dimensional parameter space is simpler. The GMM model is a 

set of 𝐾 parameter triplets {(𝛼1, 𝜇1, 𝜎1
2), … , (𝛼𝐾 , 𝜇𝐾 , 𝜎𝑘

2)} . The first stage classifier is built to detect 

regions of interest (ROI) across the frame, which consists of vehicle detections and some false 

positives (background). The classifier is trained with a set of positive and negative samples. HoG-

corner features are first extracted from all the positive samples to form  𝑋(𝑁𝑝𝑜𝑠,𝐷), while  𝑋(𝑁𝑛𝑒𝑔,𝐷) is 

generated for all the negative samples, where 𝑁𝑝𝑜𝑠 and 𝑁𝑛𝑒𝑔 are the total number of positive and 

negative samples data points respectively. Thereafter, GMMs are modelled on the sets  𝑋(𝑁𝑝𝑜𝑠,𝐷) and 

 𝑋(𝑁𝑛𝑒𝑔,𝐷) to establish model parameters for each set, (𝛼𝑝𝑜𝑠, 𝜇𝑝𝑜𝑠, 𝜎𝑝𝑜𝑠
2 ) and (𝛼𝑛𝑒𝑔, 𝜇𝑛𝑒𝑔, 𝜎𝑛𝑒𝑔

2 ). Each 

set represents the two different classes, vehicle and background, with the posterior probabilities as 

class labels. This classifier generates cropped images (ROIs) of potential detections. That are obtained 

during the comparative process. These ROIs are classified by the second classifier, to reduce false 

positives and verify vehicle detections. A similar process is applied to build the second stage classifier, 

however ROIs are used instead of frames and HoG-edge is used for feature extraction. The final 

comparative process produces the final vehicle detection locations.  

GMM classification is achieved with a likelihood function as in [50]. The classification model is 

defined on space ℂ that maps from the image domain to a set of 𝐶 classes with each class, 𝑐, that 

corresponds to a ROI. Therefore, each classification 𝑣 ∈ ℂ, assigns 𝑐 = 𝑣(𝑓𝑝) ∈ 𝐶 to each feature 

data point. Optimal classification is chosen by using a loss function and by defining the posterior 

probability distribution on ℂ. Furthermore, each ROI is divided into 𝐵 blocks, with individual blocks 

denoted as 𝑏; which corresponds to the block size used in the feature extraction. The likelihood of any 

ROI given the classification 𝑣, equation (13), and posterior probability of 𝑣 given a ROI, equation 

(14), is as follows [50]: 

 

𝑃𝑟(𝑅𝑂𝐼|𝑣) = ∏ 𝑃𝑟 (𝑅𝑂𝐼𝑏|𝑣𝑏)

𝑏∈𝐵

 (13) 𝑃𝑟(𝑣|𝑅𝑂𝐼) = ∏ 𝑃𝑟 (𝑣𝑏|𝑅𝑂𝐼𝑏)

𝑏∈𝐵

 (14) 
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To derive estimates of the 𝑣, the loss function is used, illustrated in equation (15), while the expected 

value of the loss function [32] is shown in equation (16): 

 

𝐿(𝑣∗, 𝑣) = − ∑ ∏ 𝛿(𝑣𝑏
∗ , 𝑣𝑏′)

𝑏′∈𝑃(𝑏)𝑏∈𝐵

 (15) 〈𝐿〉(𝑣∗) = − ∑ [ ∏ 𝑃𝑟 (𝑣𝑏′ = 𝑣𝑏
∗|𝑅𝑂𝐼𝑏′)

𝑏′∈𝑃(𝑏)

]

𝑏∈𝐵

 (16) 

 

where, 𝑣 is the true classification with known posterior probability 𝑃𝑟(𝑣|𝑅𝑂𝐼), while 𝑣∗ is the 

proposed classification. The classification rule is formulated by minimising the mean loss and using 

the posterior probability from equation (14) [50]:  

 

𝑣𝑏 = arg max𝑐∈𝐶 [ ∏ 𝑃𝑟 (𝑅𝑂𝐼𝑏′|𝑣𝑏′ = 𝑐)

𝑏′∈𝑃(𝑏)

] (17) 

 

The classification rule 𝑣𝑏 implies that the probability of the neighbourhood patch 𝑃(𝑏) of block 𝑏 is 

maximised if all the blocks in the patch 𝑃(𝑏) had class 𝑐, of which, class 𝑐 is assigned to block 𝑏. The 

full derivation of the classification rule with the likelihood function is shown in [50].  

2.6. Detection Algorithm 

The algorithm considers a set of frames from UAV video streams, and detection of vehicles are 

performed on each frame independently. The algorithm contains a main loop that iterates through all 

the frames and preforms the two-stage classification. Firstly, HoG-corner features are extracted from 

the entire frame and represented as GMM parameters. Thereafter, the parameters are classified based 

on the trained model parameters. The output is a matrix with all data points classified as either 

‘vehicle’ or ‘background’. Then data points denoted as vehicles are mapped back to the corresponding 

positions on the frame and stored in a matrix of positions. Overlapping positions within the same area 

are averaged and merged as one, then updated in the position matrix. An inner loop iterates through 

the matrix while defining ROIs within a box of fixed size that is centred on each positions. If the box 

size is not big enough, multiple boxes are assigned to a vehicle. The ROIs are cropped from the frame 
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and used by the second stage classifier. In this stage, HoG features are extracted from the ROIs and 

GMMs are used to obtain model parameters. Thereafter the ROIs are classified as either ‘vehicle’ or 

‘background’, the output is ‘true’ if a vehicle is found and ‘false’ if it is a background element. If the 

classifier output is ‘true’, the ROI is highlighted on the frame, thus indicating vehicle detections. The 

detailed detection algorithm is illustrated as pseudocode in Fig. A.3.   

 

Fig.  A.3 Proposed detection algorithm 

3. Experimental Results 

The proposed solution is implemented in Matlab and evaluated on the DARPA Video Verification of 

Identity (VIVID) dataset [53] (“egtest01”, “egtest02”, “egtest05” and “redteam”).  The videos are 

captured from a single camera mounted on an aerial vehicle at 30 frames per second (fps) at a 

resolution of 640 × 480 pixels. All of the targets in the sequences are motor vehicles on the ground. 

The datasets provide a wide variety of troublesome scenarios including arbitrary and abrupt camera 

motion, out-of-focus video, target occlusions, multiple target interactions, moving background, 
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unrestricted pose variation, changes in illumination, and low contrast between objects and background. 

Thus, creating an extensive test evaluation.  

3.1. Classifier Training  

Training data required for the classifiers are obtained from a subset of the total frames, furthermore, 

only small ROIs from the frames are used. The training data is further separated from the test data by 

training the classifiers with a set that differs from the current test set (e.g. train with “egtest01”, then 

tested on “egtest02”. Although, it is possible to use one set. Approximately 5% of the test set is 

sampled across the whole sequence and used as training data. If too much data is given, the 

performance is hindered, due to the overlap in data. It is also important to ‘balance’ the classifier in 

order to prevent class bias. Thus, for stage one, an equal number of vehicle and background samples of 

the same size are used. The same applies to stage two, but samples of different vehicle orientations are 

included (front, back, side and 45° angle views). The training data used directly influences the output, 

thus the output is not predictable and depends on the training data quality and class assignment. 

Therefore multiple configurations may exist for optimal solutions and this is worth exploring further.  

3.2. Test Evaluation Indicators  

The evaluation of the two stage GMM classifier for detection of vehicles are performed on all frames 

of the chosen test sets. The stage one classifier, performing the initial detection, is first tested without 

the second stage classifier, which performs final validation. Then testing with both stages is conducted 

to generate final detection results. Qualitative results are illustrated by images highlighting vehicle 

detections with false positives, and quantitative results are represented by performance indicators. Two 

indicators are used, the Detection Rate (DR) and the False Alarm Rate (FAR), illustrated in equation 

(18) and (19) respectively. Where, True Positive (TP) is the detected regions that correctly correspond 

to vehicles, False Positive (FP): detected regions that falsely correspond to a vehicle, and False 

Negative (FN): failure to detect a vehicle. With the ideal being, DR = 1 and FAR = 0. For each dataset 

(“egtest01”, “egtest02”, “egtest05” and “redteam”), the total number of TP, FP and FN is applied to 

equation (18) and (19) respectively, to calculate the DR and FAR.  

 

𝐷𝑅% = (
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
) × 100 (18) 𝐹𝐴𝑅% = (

𝐹𝑃

𝑇𝑃 + 𝐹𝑃
) × 100 (19) 
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3.3. Stage One – Initial Detection Results 

The stage one GMM-based classifier considered entire frames to provide initial detections for the next 

stage of classification. Since the feature space here does not differentiate between vehicle and 

background well, the FP detections are high. However the importance of this stage is to capture all 

potential positive detections. If a vehicle is not detected (FN), then the next stage will not be able to 

correct this error, as stage two only considers TP and FP from stage one. The qualitative results in Fig. 

A.4 illustrates all the vehicle detections (blue boxes) with a number of background elements being 

classified as vehicles. For the quantitative results, it is expected that both DR and FAR yields high 

values as indicated in Table A1. The increased sensitivity of the HoG corner feature set ensures high 

vehicle detection. The classifier is configured to except a low likelihood value. Furthermore, the 

feature space only represents locations, while the clusters of the corner detections are classified. Since 

the positions vary and the clusters differ for the same object, there is not enough data for full detection. 

The FAR is calculated based on TP and FP, since the FP values are high, the overall FAR yield high 

values. Higher FAR values are recorded in “egtest05” and “redteam” due to the increased number of 

FP caused by vegetation. The DR is based on TP and FN, therefore DR is high due to the acceptance 

of most detections (including FP). In some cases, where a vehicle is not detected (FN), this is caused 

by low contrast between objects and background, which may be caused by rapid camera movement 

and bad focus. As a result, shape detectors are unable to locate edges at object boundaries. This is 

especially evident in the end of “egtest02” where the camera moves rapidly from side to side and goes 

out of focus. Nonetheless, the overall DR recorded is relatively high. A 100% DR is recorded in 

“redteam” because there is no FN, which is ideal for detection. 
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Fig.  A.4. Results from stage 1 classifier (initial detection) on VIVID datasets. (a)-(d): “egtest01”, (e)-(h): 

“egtest02”, (i)-(l): “egtest05” and (m)-(q): “redteam”. As indicated, the classifier detects vehicles with many 

false positives. 

 

Table A.1: Quantitative results of stage 1 classifier on VIVID datasets    

Test Data Sets Detection Rate (DR) % False Alarm Rate (FAR) % 

Egtest01 96.36 42.71 

Egtest02 92.73 49.14 

Egtest05 94.28 53.88 

Redteam 100 67.19 
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3.4. Stage Two – Final Detection Results 

In this stage, the classifier solely considers ROIs generated from stage one, therefore the only potential 

improvement lies in the FAR. DR does not increase because there are no new TP detections. The 

classifier is capable of differentiating between vehicles and background, due to the feature space used 

and GMM classification. This classifier can be implemented on an entire frame, however, the feature 

space generates a large volume of data points which increases computational cost. The main purpose 

here is to reduce the high number of FP generated from stage one. Qualitative results visually 

illustrated this reduction, shown in Fig. A.5, while it is evident that the FAR is significantly reduced in 

the quantitative results, as indicated in Table A2. This result is due to the large difference between the 

GMM parameters, for vehicles and background. To further highlight the difference during 

classification, the ROIs are classified solely based on the likelihood of the prior probability 

representing the shape component. As a result, vehicles will always be classified correctly, while FPs 

occur for background elements containing shape components. However the algorithm tries to reduce 

multiple allocations for a single vehicle, to one box representing the detection. Therefore, in “egtest 

02”, where heavy overlap between vehicles occur, two vehicles are denoted as one, this causes a slight 

decrease in DR for “egtest02”, as shown in Table A2 and illustrated in Fig. A.5, row 2. Note that 

multiple detections for the same object are considered as a single TP or FP for both stages. For 

“egtest01” and egtest02, FP are significantly reduced as in Table A2, while in “redteam” FP are from 

powerline structures, as shown in Fig. A.5, row 2. In “egtest05”, a higher number of false positives are 

reported, due to highly dense vegetation in the scene, while FN are caused by shadows. The proposed 

solution is compared to two different methods that use the same dataset. Furthermore, the other 

methods also use feature extraction with classification. The method by Cheng [27] uses background 

colour removal, Harris Corner and Canny edge detection as features, then Dynamic Bayesian 

Networks for classification. While Xu [20] uses K-means clustering, Saliency region detection for 

features, then feature pooling with SVM classification. Table 3 shows the average DR and FAR for the 

VIVID datasets. The proposed work out performs both methods in terms of detection rate (DR). 

Table A.2 Quantitative results of stage 2 classifier on VIVID datasets    

Test Data Sets Detection Rate (DR) % False Alarm Rate (FAR) % 

Egtest01 96.36 1.23 

Egtest02 92.06 1.92 

Egtest05 94.28 5.18 

Redteam 100 2.04 
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Fig.  A.5. Results from stage 2 classifier (validation) on VIVID datasets, (a)-(d): “egtest01”, (e)-(h): 

“egtest02”, (i)-(l): “egtest05” and (m)-(q): “redteam”. As indicated, the classifier significantly 

reduced false positives from stage 1 as illustrated in Fig A.4 

 

Table A.3 Comparison with related works 

Method Detection Rate (DR) % False Alarm Rate (FAR) % 

Harris + Canny + DBN [27] 92.31 0.278 

Saliency regions + SVM [20] 94.0 5.4 

Proposed Solution 95.68 2.59 
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4. Conclusion 

The paper presents an approach for detecting ground based vehicles from UAV video streams using 

GMM classifiers. A two-stage cascade of GMM classifiers is developed, the first stage initially detects 

potential vehicle ROIs, then passes them to the second stage classifier, which validates the detections 

while reducing false positives. Stage one utilises HoG-corner feature space for frame-wide detections, 

while the second stage uses HoG-edge which provides a finer level of detail for classification. An 

improved algorithm for fitting GMM models is combined with a likelihood function to form the GMM 

classification. GMMs are used to form model parameters from the training data, which are then 

compared to GMMs of current candidate test parameters with the likelihood function. The function 

yields numeric factors for each class, thus providing confidence levels for classifications. The 

specification and adoption of GMM based classifiers on commonly used feature spaces formed the 

principal contribution of the work. The training process highlighted the sensitivity of training data and 

class configuration. Therefore, multiple configurations need to be explored to find optimal solutions 

that may exist. The method presented here is tested on the commonly used DARPA VIVID dataset, 

and proved to be comparable with related works. Overall, the detector has proven to be tolerant to 

moving background, changes in illumination and target occlusion. Unrestricted pose variation is 

compensated for by including different vehicle orientations in the training data. Abrupt camera motion 

and out-of-focus video caused a high number of FNs, indicating that shape features are not tolerant 

against low contrast between objects and background. GMM classification has been beneficial in 

reducing dimensionality of feature spaces, and classification is performed on the parameters instead of 

the data. Furthermore, the use of the improved EM algorithm, eliminated the need for parameter 

initialisation. Additionally, the likelihood function simplified the overall classification process. The 

proposed method performed well in comparison to related works in terms of Detection Rate, but falls 

sightly short for False Alarm Rate. However, this can be improved with better training data and 

additional classes for vehicles. The method outlined here can easily be modified to detect arbitrary 

objects and be can applied in other research areas.   
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Abstract 

Manual visual surveillance systems are subject to a high degree of human-error and operator fatigue. 

The automation of such systems often employs trackers and classifiers as fundamental building blocks. 

Tracking and classification are especially useful and challenging in Unmanned Aerial Vehicle (UAV) 

based surveillance systems. Previous solutions have addressed the challenges with complex 

classification, however these methods require a set of labelled instances for separating the tracked 

object and there is insufficient instances for online learning. This paper aims to simplify the 

classification process with a minimised set of unlabelled instances to reduce the problems experienced 

by classification. The objectives are demonstrated with a vehicle tracker using colour histograms, with 

Gaussian Mixture Model (GMM) classifiers and a Kalman filter. GMMs provide a concise parametric 

representation of the histograms. Subsequent classification is used to differentiate the tracked object 

from other elements in the scene using a likelihood function. While the Kalman filter provides an 

initial estimate of the location, thus reducing the search space. The GMM classification model is 

constantly updated with a limited set of instances obtained over time. This allows the model to adapt 

to the changes in the appearance of the tracked object with fewer instances. GMM classification has 

resulted in a simplified classification process which is tested on standard datasets, and performs well 

in comparison to related works. 
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1 Introduction 

Tracking is an active research area within visual surveillance, more specifically, tracking from aerial 

platforms such as (unmanned aerial vehicles) UAVs. These camera platforms have the advantage of 

broader surveillance scope and higher mobility. However, previous studies have identified numerous 

challenges;  moving background [1], unrestricted pose variation [2], illumination [3], and low contrast 

between objects and background [4]. Despite these challenges, there is a motivated need for this 

technology [1, 2, 4, 5]. In addition, automated tracking systems reduce human-operator workload and 

human error.  

The aim of object tracking is to locate and associate the position of an object over time from 

consecutive video frames. In multiple object tracking [6, 7], the association of each object is crucial, 

whereas for selected object tracking [8] it is important to differentiate the selected object. Some 

commonly used elements for both are; background subtraction [9], motion detection [10], 

segmentation [6] and foreground detection [11].  

A common approach is to use static tracking algorithms, such as, Kalman and particle filters. The 

Kalman filter estimates the object position in the next frame, using previously estimated states and 

current measurements to recursively estimate the next state [12], which is used by Cheraghi [13] to 

track regions from UAVs. While the particle filter sequentially estimates the latent state variables from 

a sequence of observations using Monte Carlo sampling techniques [12], used by Cao [14] to track 

colour and Hu features from aerial imagery.    

Another feature based method demonstrated by Chen [15], uses SIFT features and classification 

instead of tracking algorithms. There are other proposed methods that treat the tracking problem as a 

classification task [16-20]. Despite the success they have demonstrated, numerous issues remain to be 

addressed. Firstly, these methods need a set of labelled training instances (samples) to determine the 

decision boundary for separating the target object. Secondly, in most cases, due to change in 

appearance, there may be insufficient instances. However Gaussian Mixture Models (GMM) 

classification is an efficient unsupervised alternative that is capable of labelling instances and requires 

fewer instances. Since classification is a challenge for tracking, it is worth investigating the use of 

GMM classification.  

GMM is a closed-form representation of arbitrary univariate and multivariate distributions as a convex 

combination of Gaussian distributions. Thus GMM has gained recognition due to its ability to 

represent some classes of real-world data in an efficient and accurate manner [21].  
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A common method for using GMMs in tracking is background subtraction as a pre-processing step, 

due to the ability to handle complex background scenes [22-27]. However, GMM background 

subtraction requires additional methods of optimisation for noisy or nonstationary backgrounds. Other 

approaches incorporate tracking algorithms with GMM. Quast [28], proposed a shape adaptive object 

tracker with GMM and the mean shift algorithm. Whereas, Kim [29], developed a robust visual tracker 

by combining GMM with a particle filter. The tracking algorithm methods above, searches a localised 

area around the previous state with no prior knowledge of the next state. Prior knowledge can consist 

of predictions of the next state, which the Kalman filter provides. Xiong [30], used the Kalman filter to 

estimate the state for parameters of GMM, for tracking elliptical living objects. These methods 

produces good results in their respective fields, however for UAVs, additional methods such as 

classification are required. 

A GMM classification approach by Permuter [31, 32], who applied GMM on colour and texture 

features for image classification and segmentation. The classification with GMM was achieved 

through Expectation Maximization (EM) and Maximum Likelihood (ML) algorithm but careful 

initialisation of GMM parameters are required. To overcome this problem, Tao [33] applied 

Figueiredo and Jain (FJ) algorithm instead of EM, which does not require initialisation of parameters. 

They developed an optimised GMM classifier with FJ and SVM, applied to VHR remote sensing 

images in urban areas. The methods from Permuter [31] and Tao [33] can be merged and adapted for 

classification within tracking from aerial videos. The FJ algorithm can improve classification, while 

ML can simplify the classification process. 

This paper demonstrates the specification and adoption of GMM classification to track a user selected 

ground vehicle from UAV video streams. The user selection initialises the problem, then the tracker 

continues in an unsupervised manner. Colour histograms forms the feature space for vehicles, which is 

represented as GMM parameters. Then GMM classification is used to differentiate the selected object 

from other elements in the scene. The classification is conducted with a likelihood function on model 

parameters and not on the data, thus simplifying the process. The model parameters are constantly 

updating in order to adapt to changes in the appearance of the tracked vehicle. The GMM classifier is 

attached to a Kalman filter for next state estimations, which reduces the subsequent search space. The 

solution is limited to local tracking of ground vehicles, with the assumption that the location of the 

vehicle and the model does not change significantly between successive and successful image 

captures. The paper continues onto Section 2, which reviews the various parts of GMM and presents 

the proposed solution. Section 3, describes the test evaluation and shows the experimental results with 

comparisons with related works, while Section 4 presents the conclusions. 
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2 Gaussian Mixture Model Classification and Tracking 

The proposed method requires various elements, namely, colour feature extraction (Section 2.1), 

GMM parameterisation (Section 2.2), GMM parameter classification (Section 2.3), tracking algorithm 

functionality (Section 2.4) and finally Kalman filter estimation, (Section 2.5). Fig B.1, shows a block 

diagram of the proposed solution. 

 

Fig.  B.1 Proposed solution block diagram 

2.1 Colour Feature Extraction 

The feature extraction process represents the attributes that identify and distinguish objects. Colour 

histograms are used, as they depict a rich source of information. However changes in perspective, 

illumination and scale causes variations in the colour. Multiple colour spaces can represent a wider 

spectrum, thus more tolerant to change. Some works consider colour spaces other than RGB, namely, 

and LAB [31, 32] and HSV (hue, saturation, value) [15, 34]. RGB does not require transformations to 

perceive the colour and has a lower computational cost, however it is difficult to determine specific 

colour in the RGB model [35]. LAB is perceived as uniform but is not intuitive. While for HSV, the 

hue and saturation components is the way humans perceive colour and well suited for image 

processing. However, undefined achromatic hue points are sensitive to value deviations of RGB and 

instability of hue [35]. Therefore both RGB and HSV were combined for better performance. Let 

𝐻(𝐶,𝐷) ∈ {𝐻𝑅𝐺𝐵, 𝐻𝐻𝑆𝑉}, where 𝐻(𝐶,𝐷) is a set of colour histograms, 𝐶 is the number of colour spaces 

and 𝐷 is the number of dimensions representing the data. While 𝐻𝑅𝐺𝐵 are colour histograms in RGB 

and 𝐻𝐻𝑆𝑉are histograms in HSV colour space. Here 𝐶 = 2 and 𝐷 = 6, since RGB and HSV has 3 

channels each. 
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2.2 Gaussian Mixture Models  

The general assumption is that, real world data distributions form multivariate Gaussian distributions 

when a set of data is represented as a probability density functions (PDF). The multivariate 

distributions can be approximated by a linear combination of Gaussian distributions with the use of 

GMMs. Because GMMs provide a concise parametric representation of the distributions. The data to 

be represented is produced by the colour histograms of the feature extraction step, 𝐻(𝐶,𝐷) =

 𝐻{ℎ1, … , ℎ𝐷}, where the individual histograms forms multivariate Gaussian distributions. Therefore 

the PDF of a sample ℎ is approximated as a convex function of multiple components using GMM 

[36]: 

𝑝(ℎ|𝜃) = ∑ 𝛼𝑘𝑝(ℎ|𝜃𝑘)

𝐾

𝑘=1

 

 

(1) 

  

where, 𝜃𝑘 = (𝜇𝑘 , 𝜎2
𝑘) is defined as a vector, with 𝜇 and 𝜎2 are the mean and variance parameters 

respectively. Each component 𝑘 has a mixture weight 𝛼𝑘 (prior probabilities) assigned, all 𝛼𝑘 sum to 1 

[36].  

∑ 𝛼𝑘

𝐾

𝑘=1

= 1 

 

(2) 

  

Generally, the Expectation Maximisation (EM) algorithm is used to estimate the vector θ and 

parameters 𝛼 and to converge equation (1) to a close form solution [36]. However, the convergence of 

the EM algorithm is highly dependent on the data samples and the initialisation of 𝜃 and 𝛼. If the 

initialisation is not optimal, parameter estimation may not converge. To eliminate the need for 

initialisation, the improved EM algorithm by Figueiredo and Jain (FJ algorithm) [37] is used. The FJ 

algorithm is able to select an appropriate value for 𝐾, provided that minimum (𝐾𝑚𝑖𝑛) and maximum 

(𝐾𝑚𝑎𝑥) estimates for 𝐾 are stipulated.  

The FJ algorithm utilises expectation and maximisation steps of EM, but uses a different approach for 

the likelihood function.  
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2.3 Gaussian Mixture Model Classification 

Model representation through GMM parameters provides a simplified form for classification. This is 

due to the entire set 𝐻(𝐶,𝐷) represented by (𝛼, 𝜃) parameters and comparisons are made only between 

these parameters. Furthermore, model updates simply requires new data samples to be added to 𝐻(𝐶,𝐷), 

then GMM applied to obtain updated model parameters. The GMM model is a set of 𝐾 parameters 

{(𝛼1, 𝜃1), … , (𝛼𝐾 , 𝜃𝐾)}. Next the likelihood function is used for GMM classification similar to the 

method used in [31]. This method is used to segment the adaptive foreground object from the 

background. Successive GMM models track the adaptation of the foreground and enables the classifier 

to adaptively segment. The classification model regions of interest (ROI) is assigned to class 𝑐, which 

is a subset of 𝐶 classes. Therefore the model is defined on space ℂ, which maps from the image 

domain to the set of 𝐶 classes. This implies that, each classification 𝑣 ∈ ℂ, assigns 𝑐 = 𝑣(𝑝) ∈ 𝐶 to 

each pixel 𝑝. If the posterior probability distribution is defined the on ℂ and by using a loss function, 

optimal classification is achieved. If the ROIs are divided into 𝐵 blocks, with individual blocks, 𝑏; the 

likelihood of a ROI given the classification 𝑣 is defined in equation (3). The posterior probability of 𝑣 

given a ROI is defined in equation (4) [31]: 

 

𝑃𝑟(𝑅𝑂𝐼|𝑣) = ∏ 𝑃𝑟 (𝑅𝑂𝐼𝑏|𝑣𝑏)

𝐵

𝑏=1

 (3) 𝑃𝑟(𝑣|𝑅𝑂𝐼) = ∏ 𝑃𝑟 (𝑣𝑏|𝑅𝑂𝐼𝑏)

𝐵

𝑏=1

 (4) 

 

Equation (5) shows the loss function used to derive estimates of the 𝑣, and equation (6) shows the 

expected value of the loss function, 𝐿(𝑣∗, 𝑣) and expected value of this loss function, 〈𝐿〉(𝑣∗), [39]: 

 

𝐿(𝑣∗, 𝑣) = − ∑ ∏ 𝛿(𝑣𝑏
∗ , 𝑣𝑏′)

𝑃(𝑏)

𝑏′=1

𝐵

𝑏=1

 (5) 〈𝐿〉(𝑣∗) = − ∑ [∏ 𝑃𝑟 (𝑣𝑏′ = 𝑣𝑏
∗|𝑅𝑂𝐼𝑏′)

𝑃(𝑏)

𝑏′=1

]

𝐵

𝑏=1

 (6) 

 

The true classification with known posterior probability is 𝑣, whereas the proposed classification is 𝑣∗ 

and 𝑏′ is a function limited to block b. Using the posterior probability from equation (4) and 

minimising the mean loss, the classification rule is formulated [39]:  
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𝑣𝑏 = arg max𝑐∈𝐶 [∏ 𝑃𝑟 (𝑅𝑂𝐼𝑏′|𝑣𝑏′ = 𝑐)

𝑃(𝑏)

𝑏′=1

] (7) 

 

𝑃(𝑏) is the neighbourhood patch of block 𝑏, which is maximised if all the blocks in the patch 𝑃(𝑏) 

had class 𝑐, of which class 𝑐 is assigned to block 𝑏. This defines the classification rule 𝑣𝑏 [38] 

contains the full derivation with the likelihood function. The final outcome of the classifier is a 

segmented image of the selected vehicle to be tracked. Although classification is applied to fixed 

grids, the segmentation is not restricted to an individual grid, as each pixel is individually classified as 

either background or foreground. 

2.4 Tracking Algorithm  

The first step is to input the video frames 𝑓 = {𝑓1, 𝑓2, … , 𝑓𝑛}, and an initial ROI.  Next, a classification 

model is built by extracting colour histograms, 𝐻(𝐶,𝐷), from the ROI, and applying GMMs to 𝐻(𝐶,𝐷) to 

form model parameters 𝑀𝑐 =  (𝛼𝐾 , θ𝐾). Thereafter the GMM classifier defines pixels as foreground 

or background and outputs the new segmented ROI, which indicates the new position of the vehicle. 

This new position and the model parameters are given to the Kalman filter to update the state variable 

that encodes the predicted (step ahead) location of the object. The Kalman filter estimates the next 

state (i.e. location). From this predicted location, a future 3x3 search grid is defined and colour 

histograms, 𝐻𝑐(𝐶,𝐷), around the new region are extracted on arrival of the next frame. Thereafter 

GMM classification is applied to 𝐻𝑐(𝐶,𝐷) to determine which pixels belong to the selected object with 

the likelihood function. Once the objects new location is found, it marked with a boarder and the 

classification model is updated. The model is updated by adding the data points from  𝐻𝑐(𝐶,𝐷) to 

𝐻(𝐶,𝐷), then recalculating the GMM parameters. The final step is to update the state of the Kalman 

filter with the new parameters. The process is repeated for every frame, while the update occurs in 

every 5 frames. The detailed tracking algorithm is illustrated as pseudocode in Fig B.2.   
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Input: Set of video frames: 𝑓 = {𝑓1, 𝑓2, … , 𝑓𝑛}, and 𝑅𝑂𝐼  

Output: Boarder around tracked object 𝑡𝑟𝑎𝑐𝑘 = (𝑥, 𝑦, 𝑤𝑖𝑑𝑡ℎ, ℎ𝑒𝑖𝑔ℎ𝑡) 

1. Input first frame: 𝑓𝑟𝑎𝑚𝑒 = 𝑓1 

2. Input ROI:  𝑅𝑂𝐼 = (𝑥, 𝑦, 𝑤𝑖𝑑𝑡ℎ, ℎ𝑒𝑖𝑔ℎ𝑡) 

3. Extract colour histograms from ROI: 𝐻(𝐶,𝐷) = colourHistogram(𝑅𝑂𝐼) 

4. Obtain classification model parameters from 𝐻(𝐶,𝐷): 𝑀𝑐(𝛼𝐾, θ𝐾) = 𝐺𝑀𝑀(𝐻(𝐶,𝐷)) 

5. GMM classifier outputs new ROI position: 𝑅𝑂𝐼𝑛𝑒𝑤 = (𝑥, 𝑦, 𝑤𝑖𝑑𝑡ℎ, ℎ𝑒𝑖𝑔ℎ𝑡)  

6. Kalman filter to update state: UpdateState(𝑀𝑐(𝛼𝐾, θ𝐾)) 

7. Loop through all frames: for i = 1 to n do  

8.  Extract next ROI using updated state: 𝑝𝑜𝑠(𝑥, 𝑦) = NextState(𝑀𝑐(𝛼𝐾, θ𝐾)) 

9.  Extract colour histogram around 𝑝𝑜𝑠(𝑥, 𝑦): 𝐻𝑐(𝐶,𝐷) = ColourHistogram(𝑅𝑂𝐼) 

10.       GMM classify pixels in new ROI: 𝑅𝑂𝐼(𝑐𝑙𝑎𝑠𝑠𝐹,𝑐𝑙𝑎𝑠𝑠𝐵) = GMMclassify(𝐻𝑐(𝐶,𝐷)) 

11.       Output track boarder: 𝑡𝑟𝑎𝑐𝑘(𝑥, 𝑦, 𝑤𝑖𝑑𝑡ℎ, ℎ𝑒𝑖𝑔ℎ𝑡) = 𝑂𝑢𝑡𝑝𝑢𝑡(𝑅𝑂𝐼(𝑐𝑙𝑎𝑠𝑠𝑋,𝑐𝑙𝑎𝑠𝑠𝑌)) 

12.       Update classification model: 𝑀𝑐(𝛼𝐾, θ𝐾) = 𝐺𝑀𝑀(𝐻(𝐶,𝐷) + 𝐻𝑐(𝐶,𝐷)) 

13.       Kalman filter to update state: UpdateState(𝑀𝑐(𝛼𝐾, θ𝐾)) 

14. end loop     

 

Fig.  B.2 Proposed tracking algorithm 

2.5 Kalman Filter Estimation  

The Kalman filter is used to predict the next state (i.e. location) of the selected vehicle, these 

predictions are used as the initial parameters of the next frame. The state represents a physical 

location, while state updates represent predicted motion. The motivation for the filter’s use is to reduce 

the search space in the subsequent frame, thus lowering number of iterations and reducing 

computational cost. Kalman filters operate as a set of recursive mathematical equations that implement 

a predictor–corrector type estimator. The objective is to predict the object’s position for the next frame 

from the previous frame. This is achieved if states satisfy the linear time-invariant model, defined as 

[30]: 

{
𝑠(𝑡 + 1) =  𝛩𝑠(𝑡) + 𝑢(𝑡)  

𝑚(𝑡) = 𝛹𝑠(𝑡) + 𝑣(𝑡)
} 

(8) 
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where, 𝑠(𝑡) and 𝑚(𝑡) are the state vector and measurement vector at time 𝑡, respectively. 𝛩 is a matrix 

relating 𝑠(𝑡) to 𝑠(𝑡 + 1), 𝛹 is a matrix relating states and measurements. 𝑢(𝑡) and 𝑣(𝑡) zero mean and 

covariance of Gaussian white noise. The final estimates are predicted by the following steps:  

1. Initialise error covariance matrix 𝐸(0|−1) = 𝛱0 

2. Initialise state value 𝑠(0|−1) = 0 

3. Calculate the Kalman gain 𝐾(𝑡) and 𝐺(𝑡): 

𝐺(𝑡) = 𝛹𝐸(𝑡|𝑡 − 1)𝛹𝑇 + 𝑣(𝑡)                   (9) 

𝐾(𝑡) = 𝐸(𝑡|𝑡 − 1)𝛹𝑇                       (10) 

4. Calculate the estimated state vector 𝑠̂(𝑡 + 1|𝑡): 

𝑠̂(𝑡 + 1|𝑡) = 𝛩𝑠̂(𝑡|𝑡 − 1) + 𝛩𝐾(𝑡)𝐺(𝑡)−1 × (𝑚(𝑡) − 𝛹𝑠̂(𝑡|𝑡 − 1))       (11) 

5. Update the error covariance matrix 𝐸(𝑡 + 1|𝑡): 

𝐸(𝑡 + 1|𝑡) = 𝛩𝐸(𝑡|𝑡 − 1)𝛩𝑇 + 𝑢(𝑡) − 𝛩𝐾(𝑡)𝐺(𝑡)−1𝐾(𝑡)𝑇         (12) 

6. Return to step 2 

 

3 Experimental Results 

The proposed solution is implemented on MatLab and evaluated on the DARPA Video Verification of 

Identity (VIVID) dataset [56]. VIVID is an open source evaluation and tracking testbed. Tests are 

performed on the following test sets: “egtest01”, “egtest02”, “egtest04” and “egtest05”. The videos are 

captured from a single low resolution camera mounted on an aerial vehicle. The datasets provide an 

extensive test evaluation, as it includes arbitrary and abrupt camera motion, out-of-focus video, target 

occlusions, multiple target interactions, moving background, unrestricted pose variation, changes in 

illumination, and low contrast between objects and background. 

3.1 Kalman Estimation  

The Kalman filter does not enhance the classification accuracy, rather it improves the computation 

cost by reducing the search space, thus reducing the number of iterations. The filter estimates the 

position of the object in the next frame, while GMM classification is used to detect the object and 

provide the exact position. Kalman filters provide the state (position) estimates for the next frame 

while the GMM classifier provides exact or detected location in the current frame. This is repeated for 
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all frames, thus accurate and up to date information is exchanged between the two parts. In addition, 

when GMM classification cannot find a suitable fit, the filter’s prediction is used instead. This occurs 

during full occlusion of the object and if insufficient data points are extracted for the colour 

histograms, as can happen during extreme camera defocusing. Additionally, during rapid camera 

motion, the Kalman filter may cause a loss track due to the incorrect estimates of the position.  

3.2 Classification Model Update 

In order to build a strong classification model that represents the selected object, the model has to be 

updated as more instances are provided over time. This allows the model to adapt to the changes in the 

appearance of the selected object caused by scale, pose variation and illumination. The model is 

updated every 5 frames, which forms a model that represents the object accurately while keeping 

computational cost low. A matrix with first-in-first-out (FIFO) principle is implemented to store a 

current list up to 50 instances that are updated over time. This simplifies the updating process as 

classification models are formed from the matrix at different points in time. Although it is beneficial to 

have more instances, there is a point where too many samples causes the performance to deteriorate. 

Model quality decreased with extreme changes in the appearance of the object, therefore older samples 

are no longer applicable. The addition of this historical storage matrix proves to be beneficial, 

however an optimal solution would be one that can dynamically change the size of the matrix and the 

model update depending on the current scenario. This can be based on error observations between 

current and previous tracks.  

3.3 Test Evaluation Indicators  

The test evaluation of the proposed method is performed on all frames of the chosen test sets. Tracking 

results are compared to the ground truth values. To evaluate the performance, tracking rate (𝑇𝑅) is 

computed by: 

𝑇𝑅 =  
𝑁𝐹𝑆𝑇

𝑁𝑇
 (13) 

 

where, 𝑁𝐹𝑆𝑇 is the number of times that vehicles are successfully tracked, while 𝑁𝑇 is the number of 

times that a vehicle appears in the sequence. Therefore, there can only be one successful track per 

single frame. A successful track is defined by the precision (𝑃) and recall (𝑅), which is denoted as 

[14]:  
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𝑃 = 𝐸 ∩
𝐺

𝐸
 (14) 𝑅 = 𝐸 ∩

𝐺

𝐺
 (15) 

where, 𝐸 is the estimated area of the bounding box and 𝐺 is the ground truth of the selected vehicle. A 

track is only denoted as successful if the precision and recall are both above 0.5.  

3.4 Tracking via GMM Classification 

The algorithm requires a user selected the object to be tracked in the first frame. This selection effects 

the overall performance. Therefore, for the purpose of uniform testing, the selection is predetermined 

and provided by the data test sets. In addition, the 𝐾𝑚𝑖𝑛 and 𝐾𝑚𝑎𝑥 values chosen for the FJ algorithm 

has an influence on the output. A larger 𝐾𝑚𝑎𝑥 value leads to more iterations, while, if 𝐾𝑚𝑎𝑥 is too 

small, the representation of data is inefficient and inaccurate. For the current application, 𝐾𝑚𝑖𝑛 = 1 

and 𝐾𝑚𝑎𝑥 = 10. 

The test results for all frames of “egtest01”, “egtest02”, “egtest04” and “egtest05”, are represented 

quantitatively with tracking rate (𝑇𝑅) from equation (13) while the qualitative results highlights 

challenging events within the video sequences.  

    

(a) (b) (c) (d) 

    

(e) (f) (g) (h) 

Fig.  B.3 Tracking sequences from “egtest01”, (a)-(d) illustrates pose variation and changes in illumination as 

vehicles circle around, and (e)-(h) illustrates vehicle interaction as tracked vehicle overtakes another vehicle. 

 

The challenging events in “egtest01” occur when the vehicles make a U-turn, causing pose variation 

and changes in illumination as the sun reflects off different planes of the vehicles. A visual inspection 

of the frames in Fig B.3 (a)-(d) illustrates the colour variation. However the GMM classifier is able to 
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overcome this problem with the aid of the model update. Other challenging events occur when the 

tracked vehicle overtakes other vehicles, as shown in Fig B.3 (e)-(h). In this interaction where vehicles 

move closer to each other can cause the wrong vehicle to be tracked. 

    

(a) (b) (c) (d) 

    
 

(e) (f) (g) (h) 

Fig.  B.4 Tracking sequences from “egtest02”, (a)-(d) illustrates pose variation and vehicle interaction as 

vehicles pass each other, and (e)-(h) illustrates change of scale and rapid camera movement. 

    

In “egtest02” the vehicle interaction is increased when vehicles pass each other from opposite ends, 

causing vehicles to overlap and appear as a single vehicle, as illustrated in Fig B.4 (a)-(d). This 

reduces the quality of the classification model as other vehicles are included in the model update 

which decreases the precision. Fig B.4 (e)-(h) illustrates the change in scale and rapid camera 

movement. Scale does not affect the GMM classification, however the Kalman filter is unable to 

account for the camera movement and thus estimates incorrectly. 
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(a) (b) (c) (d) 

    

(e) (f) (g) (h) 

Fig.  B.5 Tracking sequences from “egtest04”, (a)-(d) illustrates camera defocusing and dropped frames which 

are duplicated in the sequence (no motion), and (e)-(h) illustrates full occlusion as tracked vehicle passes trees. 

  

The challenges in “egtest04” are illustrated in Fig B.5 (a)-(d). The camera defocuses and there are 

some frames that are dropped, causing no motion, followed by a sudden discontinuity. The GMM 

classifier does not cope well with camera defocus, because (i) object and background are less 

distinguishable, (ii) the clearly focused historic data does not represent the defocused current frame. 

Whereas for cases of dropped frames, the filter fails. For the sudden discontinuity, both means fail 

because the tracker only preforms tracking within a localised region. Other difficulties are full 

occlusion which occurs when the vehicle passes trees, as illustrated in Fig B.5 (e)-(h).      
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(a) (b) (c) (d) 

    

(e) (f) (g) (h) 

Fig.  B.6 Tracking sequences from “egtest05”, (a)-(d) illustrates full occlusion as tracked vehicle passes trees, 

and (e)-(h) illustrates changes in illumination as vehicles pass in and out of tree shadows. 

 

A further increase of full occlusion events are represented in “egtest05”, as vehicles pass through 

highly dense vegetation, shown in Fig B.6 (a)-(d). In addition, the test set contains events of extreme 

illumination changes, as vehicles pass in and out of areas with shadows created by trees, illustrated in 

Fig B.6 (e)-(h). These events cause variations between the colour histograms for each frame. However 

the GMM classifier overcomes the problem with the model update which includes instances that 

incorporate the changes in illumination.  

The quantitative results obtained from the test sets are directly compared to related works that have 

used the same VIVID tests, as shown in Table B.1. Mao et al [9] uses background subtraction to 

extract moving objects, then uses data association to evaluate overlap rates between the moving 

objects. Whereas, Hasan et al [40] first detects motion regions from stabilised videos then identifies 

targets of interest around the motion regions using appearance based pre-trained classifiers. The 

classifier uses a finite state machine (FSM) that incorporates both motion detection and target 

classification into a Kalman filter. These methods as well as the proposed solution considers all the 

frames within each test. 
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Table B.1: Quantitative results with track rate on VIVID datasets and comparisons with related works  

Method “egtest01” (𝑇𝑅%) “egtest02” (𝑇𝑅%) “egtest04” (𝑇𝑅%) “egtest05” (𝑇𝑅%) 

Proposed Solution 98.65 92.69 73.14 84.52 

Mao et al [9] 95.00 93.02 60.00 88.89 

Hasan et al [40] 96.00 92.00 82.00 85.50 

 

The “egtest04” test set, provided the most challenging scenarios for all works, however, the proposed 

solution still performs well in relation to the related works.  

4 Conclusion 

The paper presents an approach for tracking a selected ground based vehicle from UAV video streams 

using GMM classification with a Kalman filter. In this study, the GMM classification is simplified 

with the use of the likelihood function, while the GMM process is improved with the Figueiredo and 

Jain algorithm. The algorithm only requires the minimum and maximum number of Gaussian 

components to be initialised. If this is not chosen correctly, the performance is affected this is 

prevented provided that the initialisation is constant throughout all processes. The model update 

allows the tracker to adapt to changes in the appearance caused by scale, pose variation and 

illumination. However, too many model instances weakens the performance, as older instances 

become irrelevant. To overcome this problem a fixed number of instances is chosen. However an 

optimal solution would be to dynamically change the number of instances depending on the current 

scenario. The current work performs well and is comparable with related works. Furthermore, it is 

tolerant of moving background, pose variation, changes in illumination and scale. However arbitrary 

and abrupt camera motion, out-of-focus video, full occlusion and multiple target interactions poses 

challenges, as it may lose track. A method to overcome these challenges is to apply global tracking to 

require lost tracks and/or a method that stores historic model parameters with variance for a re-

initialise step.  The main contribution is the specification and adoption of GMM classification for local 

tracking of a user selected ground vehicle from UAV video streams. GMM classification has resulted 

in a simplified classification and minimises the number of required training instances. 
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1. Conclusion 

Detection, tracking and classification are especially useful and challenging in Unmanned Aerial 

Vehicle (UAV) based surveillance systems due to the wide surveillance scope and mobility of the 

platform. Previous solutions have addressed the challenges with complex classification. Therefore 

GMM based classifiers have been applied to simplify the process. Data are represented in lower 

dimensionality as model parameters and classification is performed on the parameter-space instead of 

actual data. The specification and adoption of GMM based classifiers on the UAV visual tracking 

feature space formed the principal contribution of the work. This was achieved with two main 

contributions in the form of submitted ISI accredited journal papers. 

The first paper demonstrated objectives with a vehicle detector incorporating a two stage GMM 

classifier applied to a single feature space, namely Histogram of Oriented Gradients (HoG). The first 

stage initially detects potential vehicle ROIs using the HoG-corner feature space; and then passes them 

to the second stage classifier which validates the detections while reducing false positives using the 

HoG-edge feature space. The training process highlighted the sensitivity of training data and class 

configuration. Therefore, multiple configurations were explored to find potentially optimal solutions. 

Overall, the detector has proven to be tolerant to moving background, changes in illumination, and 

target occlusion. Unrestricted pose variation is compensated for by including different vehicle 

orientations in the training data. Abrupt camera motion and out-of-focus video caused a high number 

of FNs, indicating that shape features are not tolerant of low contrast between objects and background. 

The proposed method performed well in comparison to related works in terms of Detection Rate, but 

falls slightly short for False Alarm Rate. However, this can be improved with better training data and 

additional classes for vehicles. 

The second paper demonstrated objectives with a vehicle tracker using colour histograms (in RGB and 

HSV), with Gaussian Mixture Model (GMM) classifiers and a Kalman filter. GMM classification was 

simplified with the use of the likelihood function, while the GMM process is improved with the 

Figueiredo and Jain algorithm. The algorithm only requires the minimum and maximum number of 

Gaussian components to be initialised. If this is not chosen correctly, the performance is affected. This 

is prevented provided that the initialisation is constant throughout all processes. The model update 

allows the tracker to adapt to changes in appearance caused by scale, pose variation and illumination. 

However, too many model instances weakens the performance, as older instances become irrelevant. 

To overcome this problem a fixed number of instances is chosen. However an optimal solution would 

be to dynamically change the number of instances depending on the current scenario. The current 
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work performs well and is comparable with related works. Furthermore, it is tolerant of moving 

background, pose variation, changes in illumination and scale. However, extreme circumstances such 

as arbitrary and abrupt camera motion, out-of-focus video, full occlusion and multiple target 

interactions still pose challenges, and result in loss of track. A method to overcome these challenges is 

to apply global tracking to re-acquire lost tracks and/or to broadly apply historic model parameters that 

span the scope of object variance in a re-initialise step.   

GMM classification has resulted in a simplified classification that minimises the number of required 

training instances and reduces the dimensionality of the problem representation.  

2. Future Work 

Both Paper A and Paper B, address issues within the tracking problem for aerial platforms. In the 

tracking domain for such platforms, tracking alone is not sufficient. Detection and classification assists 

in reducing the search space, establishment of knowledge priors and building of detailed 

representations. This improves performance and robustness as shown in the existing works. Detection 

and classification are addressed in Paper A, while Paper B addresses tracking with classification. The 

test evaluation from both papers demonstrates the use of GMM classification in different type of 

scenarios for objects with various appearances and behaviour. In addition, the evaluation of different 

feature sets provide useful information about the features behaviour and performance. The results 

highlight the benefits and shortfalls of each feature set across various scenarios, and shows the need to 

combine features to improve performance. The papers reveal the benefits of GMM classification and 

show how it can be used for different parts of the problem. Furthermore, different types of GMM 

classifiers are developed; offline learning for global surveillance in Paper one and online learning for 

local surveillance in Paper two. A combination of the two methods can form a stronger overall system 

with both global and local surveillance. This can be used to form either a two-mode tracker or tracking 

through detection methods. The appropriate combination of methods may offer benefits because each 

on its own addresses distinct aspects of the problem. 

 


