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Abstract 
 

This thesis is concerned with the challenging tasks of automatic and real-time vehicle 

detection and tracking from aerial video. The aim of this thesis is to build an automatic 

system that can accurately localise any vehicles that appear in aerial video frames and 

track the target vehicles with trackers.  

Vehicle detection and tracking have many applications and this has been an active 

area of research during recent years; however, it is still a challenge to deal with certain 

realistic environments. This thesis develops vehicle detection and tracking algorithms 

which enhance the robustness of detection and tracking beyond the existing approaches. 

The basis of the vehicle detection system proposed in this thesis has different object 

categorisation approaches, with colour and texture features in both point and area 

template forms. The thesis also proposes a novel Self-Learning Tracking and Detection 

approach, which is an extension to the existing Tracking Learning Detection (TLD) 

algorithm. There are a number of challenges in vehicle detection and tracking. The most 

difficult challenge of detection is distinguishing and clustering the target vehicle from the 

background objects and noises. Under certain conditions, the images captured from 

Unmanned Aerial Vehicles (UAVs) are also blurred; for example, turbulence may make 

the vehicle shake during flight. This thesis tackles these challenges by applying integrated 

multiple feature descriptors for real-time processing.  

In this thesis, three vehicle detection approaches are proposed: the HSV-GLCM 

feature approach, the ISM-SIFT feature approach and the FAST-HoG approach. The 

general vehicle detection approaches used have highly flexible implicit shape 

representations. They are based on training samples in both positive and negative sets and 

use updated classifiers to distinguish the targets. It has been found that the detection 

results attained by using HSV-GLCM texture features can be affected by blurring 

problems; the proposed detection algorithms can further segment the edges of the 

vehicles from the background. Using the point descriptor feature can solve the blurring 

problem, however, the large amount of information contained in point descriptors can 

lead to processing times that are too long for real-time applications. So the FAST-HoG 
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approach combining the point feature and the shape feature is proposed. This new 

approach is able to speed up the process that attains the real-time performance. Finally, a 

detection approach using HoG with the FAST feature is also proposed. The HoG 

approach is widely used in object recognition, as it has a strong ability to represent the 

shape vector of the object. However, the original HoG feature is sensitive to the 

orientation of the target; this method improves the algorithm by inserting the direction 

vectors of the targets. 

For the tracking process, a novel tracking approach was proposed, an extension of 

the TLD algorithm, in order to track multiple targets. The extended approach upgrades 

the original system, which can only track a single target, which must be selected before 

the detection and tracking process. The greatest challenge to vehicle tracking is long-term 

tracking. The target object can change its appearance during the process and illumination 

and scale changes can also occur. The original TLD feature assumed that tracking can 

make errors during the tracking process, and the accumulation of these errors could cause 

tracking failure, so the original TLD proposed using a learning approach in between the 

tracking and the detection by adding a pair of inspectors (positive and negative) to 

constantly estimate errors. This thesis extends the TLD approach with a new detection 

method in order to achieve multiple-target tracking. A Forward and Backward Tracking 

approach has been proposed to eliminate tracking errors and other problems such as 

occlusion. The main purpose of the proposed tracking system is to learn the features of 

the targets during tracking and re-train the detection classifier for further processes.  

This thesis puts particular emphasis on vehicle detection and tracking in different 

extreme scenarios such as crowed highway vehicle detection, blurred images and changes 

in the appearance of the targets. Compared with currently existing detection and tracking 

approaches, the proposed approaches demonstrate a robust increase in accuracy in each 

scenario. 
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Chapter 1   

Introduction 
 

Unmanned Aerial Vehicles, also known as UAVs, have become the new generation of the 

worldwide aviation industry. A UAV is an aircraft without an actual human pilot; instead, it 

has an autonomous system which can fly autonomously or be flown remotely from ground 

stations (Figure 1.1). The very first UAV product created was a balloon that carried 

explosives during the American Civil War [1]. At that moment, people realised that UAVs 

were a new key element in war. After some time had gone by, the first pilotless aircraft was 

created by the US in 1916, and during the WWII, more and more types of UAV were made 

in the technology rush [2]. During the cold war, the US military and the Soviet Union 

developed a number of types of UAV for spying and nuclear tests. Most applications of 

UAVs are for the beginning stages of military missions, such as reconnaissance. Nowadays, 

UAVs even have the ability to take part in attack missions. UAVs have the advantage of zero 

casualties occurring during battle, which is the major consideration in modern warfare.  

 

Figure 1.1: The different appearances of some modern UAVs. 

In recent years, UAVs have also been involved in civilian operations due to their 

potential abilities: high mobility, fast deployment and wide surveillance scope, as well as 

being able to be deployed in extreme environments and weather. UAVs can be equipped 

with different types of imaging camera depending on the mission. They also have GPS 



Chapter 1. Introduction 

2 

equipped on board, along with automatic positioning and stabilization systems. UAVs are 

light-weight, inexpensive components with low power consumption, which can easily 

complete extreme tasks. In May 2008, a magnitude 9.0Ms earthquake hit Wenchuan city and 

caused massive damage. All transportation and communication cut out, so the rescue teams 

could not get any information about the damages, casualties etc. Because of the complexity 

of the geographical conditions (the city is located 4,000 metres above sea-level), the flight 

conditions for planes or helicopters were terrible and it was too dangerous to send aircraft 

into the area, so the rescue teams had no idea what was happening out there. In situations 

like this, multiple low-cost UAVs can be sent to survey the area in order to get damage 

information. In 2010, the Yushu earthquake occurred, registering a magnitude of 7.1Ms. The 

Chinese military had learned a lesson form the Wenchuan earthquake, and sent multiple 

UAVs into the centre of the disaster area immediately after the earthquake happened. They 

received first-hand images of the destruction (Figure 1.2) in the city, so the rescue teams 

knew the precise places where help was needed and what tools they needed to take. These 

two incidents show how crucial UAVs can be in real life.  

 

Figure 1.2: An image captured from Yushu by a UAV after the earthquake [3]. 

Normally, UAVs are controlled by an operator with a terminal device that receives the 

aerial images taken from the UAVs. These operators will examine the images/videos 

themselves and then make decisions regarding how to control the UAVs, therefore it is 

basically a remote control. On the other hand, autonomous UAV control is where UAVs 

make their own decisions based on sensory information. In recent years, there has been 
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increased research into vehicle detection and tracking in surveillance traffic monitoring and 

in military applications such as border control, etc. However, moving object detection and 

tracking from a UAV platform remains very challenging under certain circumstances. Most 

of these challenges include complex backgrounds [4] and fast movement of UAVs [5] 

resulting in blurred images [6], and limited computational resources, etc.  

This thesis proposes various methods of detecting and tracking vehicles using the 

images and videos captured by UAVs. In particular, long-term video tracking and the 

detection of specific targets is considered, and the solutions to problems such as blurred 

images, target occlusions and other invariant requirements will be discussed in the following 

chapters. 

1.1 Vehicle Detection and Tracking 

Vehicle detection has received a great deal of attention in computer vision literature. 

Historically, many vehicle detection and tracking approaches have been developed in the 

fields of video surveillance by UAVs and fixed CCTV cameras. Recently, contributions have 

also focused on object model recognition for other categorisations. Recognition models 

usually need higher resolution images or videos for the detection method, and using these 

models, impressive results have been presented for the object classes of, for instance, 

vehicles and faces detection.  

This thesis proposes several successful methods and algorithms for the vehicle 

detection and tracking processes. The goal is to create a high-accuracy, long-term vehicle 

detection and tracking approach. The proposed system has been divided into three processes: 

vehicle detection, vehicle tracking and self-learning. The three methods used in the proposed 

detection system are: 1) a HSV-GLCM algorithm with blurring removal; 2) an ISM-SIFT 

algorithm and 3) a FAST-HoG algorithm.  For the tracking process, a Forward and 

Backward Tracking (FBT) algorithm is proposed. The FBT can monitor detection 

performance by using existing tracking results. For the learning process, two inspectors 

(positive and negative) have been developed for making error estimations for tracking 

performance. The proposed mechanism uses a generative object model in the tracking 

system, which can update the classification model throughout whole process. The process is 

carried out under the assumption that the tracking target model is not in the training 

categories, which means the system can learn the appearance of new categories 
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simultaneously. At the same time, the algorithm can reliably distinguish the distinctive 

features of vehicles from background structures. 

1.1.1 Applications 

Vehicle detection and tracking have a large range of applications from pure observation to 

interactive tasks, and are used with both fixed cameras and moving cameras. These 

applications always require real-time detection or tracking during the process. 

In the field of image processing, face detection is a mature technique that is commonly 

used in real life. Meanwhile, the image process of detection and tracking on people and 

vehicles from UAVs has raised a significant attention. In the previous researches, these are 

motivated by the military applications, such as aerial surveillance and automatic target 

recognition. However, in recent years there has been an increase in the civil and commercial 

applications from the UAVs. These applications are used in traffic monitoring [7], aerial 

surveillance [8], and security related tasks such as border control [9], search and rescue 

missions [10]. 

Nowadays, as the significant increasing of the vehicles, the road surveillance and transport 

control system are required. In these applications, large amount of videos or images are need to 

be captured and analysed, also most of the applications are require process in real-time. Thus, the 

automatic vehicle detection and tracking is becoming a key research topic. The researchers are 

focused on different applications, such as in the traffic monitoring, and the detection of the 

traffic flow, these applications also become the key element for the development of the future 

intelligent transportation system.  In the past, the traffic monitoring is applied in a fixed location 

on the crossing, which has several disadvantages such as the high maintenance cost and limited 

observation area, etc. As a result, traffic monitoring by using the UAVs has been increasingly 

invested. The advantage of using the UAVs, which can provide more flexible and accurate 

images and videos in the traffic incidents, also it has high mobility to detect and track vehicles. 

1.1.2 Goals and Challenges 

The task of this thesis is to create methods that can automatically detect and track multiple 

vehicles in both static and moving status from the video captured from the UAVs in complex 

environments. The aerial video is captured from a low altitude UAV that has a fixed, 

downwards-facing camera capable of capturing low-resolution video. The framework was 
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developed under the assumptions that the UAV has only camera information without any 

other sensors such as GPS.  

The challenges of vehicle detection and tracking can be summarised as follow: 

Challenge 1: Different UAV angles, altitudes and positions cause vehicles to have 

different shapes, sizes and orientations in images. There are many challenges in the 

vehicle detection and tracking, such as the UAV’s shooting angle, flight altitude and position 

can lead different detection results; also the size, shape and orientation of vehicles can 

change considerably in the images [11] (An example of the challenge is shown in Figure 1.3).  

 

Figure 1.3: The appearance of the target vehicles can be changed during filming or between 

the capturing of images. The sequence frames from (1-4) indicate that the vehicles are 

changing their appearances in the images. The video was filmed from UAV by VIVID [4]. 
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Challenge 2: The low resolution of the on-board camera can cause the shapes of 

vehicles to have simple textures. Another challenge is that, due to the low resolution of the 

captured video and the small size of the target in the images, the details of the vehicles are 

not clear enough, which makes them difficult to distinguish from similarly shaped objects 

[12]. In addition, the UAV is very sensitive to the atmospheric turbulence, which leads the 

blur images captured from UAV [13]. Figure 1.4 indicates the blurred images captured by a 

low resolution camera in UAV.  

 

Figure 1.4: The camera can have low image resolution and the relatively small size of the 

vehicles in the image means many of the details of the vehicles are not visible. The images 

can also be blurred due to atmospheric turbulence. The video was captured from our 

experiment in the urban road. 

 

Challenge 3: The background of the images can also affect the detection accuracy. 

Because the captured images are in low contrast, so the vehicles and the background are 

possible to have similar colours and features. Also, the lighting conditions in the video are 

changing, which require the detection to be invariant to the colour and illumination [4]. 
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Furthermore, the artificial objects such as road-light, windows and buildings may have 

similar feature to the vehicle [5]. Figure 1.5 shows the example of complex background 

challenge situation. 

 

Figure 1.5: The background can be very complex and make it difficult to identify the 

vehicles. The video was captured in a unban road from UAV in our experiment. 

 

Challenge 4: Tracking process involves the recognition of an individual vehicle in a set 

of sequence frames. 

The difficulties are raised for the multiple targets tracking purposes [14, 15]. Firstly, vehicles 

are moving fast at variable speed and different directions. With different shooting angles and 

the speed of the UAVs may change. Thus, the vehicle motion between the frames is affected 

by both movement of the target and the UAV. Furthermore, the tracking method employed 

must also be capable of tracking vehicles in potentially clustered and complicated scenes, 

where there might be multiple vehicles with similar appearances moving in close proximity 
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to each other and a potential for complete vehicle occlusions [16]. Figure 1.6 indicates an 

occlusion problem occurred during the video capture. 

 

Figure 1.6: Occlusions can be occurred when vehicles are close to each other. The video 

was filmed from UAV by VIVID [17]. 

 

1.2 Key Contributions 

This thesis builds on successful detection and tracking frameworks, which have already been 

proposed in the field of vehicle detection and tracking. A number of improved algorithms 

and algorithmic extensions in various areas of the original detection and tracking framework 

are proposed, which can successfully tackle the existing challenges. The system uses shape-

encoding local features and machine learning techniques to learn a model of the appearance 
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of vehicles. The proposed modification algorithms increase detection and tracking accuracy 

under certain circumstances related the challenging tasks in vehicle detection and tracking 

from aerial video. The following paragraphs will briefly outline the main contributions of 

this thesis. 

Firstly, a HSV-GLCM algorithm with blur remove is proposed, which is a modified 

vehicle detection method. This detection method uses texture identification combined with 

colour recognition to distinguish complex backgrounds to target vehicles. This proposed 

method can successfully tackle the Blur and low resolution challenges. Experimentation has 

shown that significant improvements on the original GLCM algorithm can be achieved by 

using the new method. Additionally, a Blind Deconvolution algorithm has been integrated 

into the HSV-GLCM algorithm to solve the detection errors caused by the blurring problem.  

Secondly, in order to improve detection performance and tackle the different angle, 

shape and orientations of the target challenge, a SIFT-ISM method of vehicle detection is 

proposed, which operates by detecting the SIFT points for predicting the centre of the 

vehicle. This allows the system to detect the appearance of particular shapes rather than 

textures, which can reduce the detection errors caused by the similarity between the target 

vehicles and the noise of the background. At the same time, the ISM contains a codebook 

system which can narrow the detection area, thus the process can become more efficient. The 

results of testing show that this method has a more stable detection performance and has 

more target information to provide for the tracking systems. 

Furthermore, a new detection method using the FAST-HoG feature is proposed. With 

this method, a more efficient performance can be achieved in order to tackle the complex 

background challenge. The proposed method uses the assumption of the rectangle shape of 

the vehicle, which narrows the detection area by searching for the corners first. A modified 

HoG algorithm is proposed to detect vehicles, which tackles the orientation invariant 

problem of the original HoG algorithm. Additionally, a smarter training scheme is proposed 

which improves the way training data is exploited in order to generate better classification 

models, which has more reliability to separate target and background objects.  

Finally, a framework of Self-Learning Tracking Detection (SLTD) is designed for 

vehicles (Figure 1.7). The proposed approach upgraded the existing Tracking Learning 

Detection (TLD) [18] approach; the proposed system can track multiple targets, rather than 

just a single target as tracked by the original TLD, in real-time. The tracking process 
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involves a FBT tracking process with two learning inspectors, which can not only monitor 

detection and tracking performance, but also learn the existing environment by updating the 

detection classification model. In the FBT, a Tracked Vehicle Database (TVD) has been 

developed which contains all the information about the vehicles tracked previously. The 

TVD has been developed for templet-matching purposes in later tracking. The proposed 

tracking framework can tackle the challenges of long-term tracking (because it assumes that 

the targets can suddenly disappear and reappear in the captured videos), the problem of 

significant appearance changes, and the problem of short-term occlusions during tracking.  

 

Figure 1.7: The framework of the SLTD approach. 

 

1.3 Thesis Outline  

This section provides an overview of the structure of this thesis. This thesis is organised into 

ten chapters and the summaries of each chapter are as follows: 

Chapter 2: Related Work  

The second chapter begins by reviewing a broad range of publications relevant to vehicle 

detection and tracking. This chapter briefly address the related methods and algorithms 

developed with the thesis, as well as the advantages of the method compared with others. 
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Chapter 3: HSV-GLCM and Blur Remove 

This chapter introduces the HSV-Grey-Level Co-Occurrence Matrix (HSV-GLCM) 

detection algorithm. The chapter includes an explanation of the basic algorithm and its 

implementations. This chapter indicate how the parameters were set step by step. It also 

explains the blur remove system used in the detection algorithms. Examples of the detection 

results are shown in the end of the chapter.   

Chapter 4: The Proposed ISM-SIFT Algorithm 

The Implicit Shape Model with the Scale-Invariant Feature Transform (ISM-SIFT) algorithm 

will be described in this chapter. The chapter introduces the general concept and formulation 

of the algorithm. The differences and the improvements from the original SIFT and ISM 

algorithms will also be addressed, as well as the detection results. This chapter conduct a 

comparison of the feature descriptors and interest point detectors in the Implicit Shape 

Model framework and show that significant performance improvements can be achieved by 

choosing the right descriptor. 

Chapter 5: The Proposed FAST-HoG Algorithm 

In Chapter 6, a Feature from Accelerated Segment Test and Histogram Oriented Gradient 

(FAST-HoG) approach to vehicle detection is proposed. This chapter describe the FAST-

HoG algorithm, and evaluate the strengths and weaknesses of all the detection approaches 

have addressed. The vehicle detection methods employ both region-based and point-based 

features. This chapter also will make a comparison between these two approaches and 

explain the reasons for the decisions. 

Chapter 6: The Proposed Self-Learning Tracking and Detection Algorithm with 

Forward and Backward Tracking 

The tracking system will be addressed in this chapter. The tracking system is formed of a 

Self-Learning Tracking and Detection (SLTD) system and a Forward and Backward 

Tracking (FBT) system. It is assumed that the processes of both detection and tracking can 

include errors, so that both processes should monitor each other and also keep up-to-date the 

detection and tracking results. A Forward and Backward Tracking (FBT) mechanism 

between detection and tracking is proposed; the main purpose of using FBT is to check 

whether there are any errors in the results of the detection and/or tracking process. The FBT 
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has a Tracked Vehicle Database (TVD) which stores SIFT information about previously-

tracked vehicles. The FBT results indicate whether all matching results between the trackers 

in the frame sequences are from the same vehicle. 

Chapter 7: Conclusions and Future Improvement 

This chapter will close the report and provides a conclusion on the outcomes of the project, 

followed by suggestions of future work to improve the system. 
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Chapter 2   

Related Works 
 

On-road vehicle detection and tracking has been a topic of great interest to researchers over 

the past few decades. Several sensing modalities have been used in detection; these include 

radar, LIDAR and computer vision. Image processing technology has progressed immensely 

in recent years. The very first computer image process of object recognition can be tracked 

back to the 1960s’ and 1970s’. Since then, several detection methods have been proposed. 

Recently these methods have improved significantly for certain applications. Thus, the 

image process of object recognition can handle different tasks by using particular methods 

and algorithms. This chapter briefly discusses the literature related works on vehicle 

detection and tracking.  

Firstly, the processes involved in any approach to vehicle recognition are classified. 

Basically, vehicle recognition can be divided into four sections: 

• Identification of the object’s appearance 

• Classification of the object into one of a number of different categories 

• Detection of the target object/s 

• Tracking of the target object/s 

Object identification addresses the unique features of a known object which can be 

identified by the computer as distinct from objects from other categories, and from 

background clutter in certain images and videos. Object classification tries to find 

similarities with a whole object category which can distinguish the object from others; a 

classification model can then be created for further detection. The object detection method is 

the next step of the overall process and can localise the position and other features of the 

target in the image. Object tracking is based on the detection results; a tracker is assigned to 

the targets which can re-detect the target in the following frame of the sequence. 
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This thesis focused on vehicle detection and tracking algorithms, in particular vehicle 

detection from aerial videos. The primary target is to develop a system which can 

automatically detect and track multiple vehicles in a video captured by a UAV. The system 

should give the user the position and appearance of any static and moving vehicles that 

appear in the images. 

Vehicle detection and tracking is one of the key object detection research areas, as 

many approaches are applicable in the field. These approaches have to deal with similar 

issues, such as complex background clutter, image blurring problems, etc. This thesis builds 

upon several generic object detection approaches which perform vehicle detection and 

tracking. The literature review is split into three parts: vehicle detection, vehicle tracking and 

machine learning.  

 

2.1 Vehicle Detection 

Vehicle detection refers to computer vision-object recognition, which is the scientific study 

of how machines, rather than human eyes, see. The basic task of vehicle detection is to let 

the system localise one or multiple vehicles in an input image. Vehicle detection is based on 

two methods: local features method [19] and the sliding window method [20]. Local 

features-based method approaches always follow the principles of finding the feature of one 

object or a class of objects first, and then categorising these features into classification 

models, which leads to the last step, in which the system identifies which group the testing 

object should belong to, and decisions are made based on the classification models. The 

main strength of this method is that features and geometry of the target objects are known 

before the detection of the target’s features. However, this strength can be the limitation of 

the method as it means the system can only detect targets from pre-learned object classes. A 

sliding window-based system works by scanning the input image in a certain number of 

windows of various sizes; it then decides whether the target appears in each window or not. 

It is noteworthy that, in a normal testing image, there are approximately 50,000 patches that 

need to be evaluated in every frame. So in order to achieve real-time detection performance, 

a sliding window-based method adopts a cascaded architecture method [21] which assumes 

that the sliding windows are more likely to process the background rather than the target area; 
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a classifier is therefore applied at a number of stages for the rejection of background patches, 

which can reduce the overall number of stages that have to be evaluated.  

For both methods, pattern recognition is an essential element of detection. Pattern 

recognition requires local descriptors to correspond to the object detection models. Local 

descriptor models have become popular in the pattern recognition field, and represent the 

object or a class of a kind of object. Generally, descriptors are grouped and clustered to 

represent a vocabulary or codebook of a type of object’s features, and a new test image is 

used to compare these features and match them with the vocabulary or codebook to 

distinguish the targets from the background clutter. Pattern recognition involves two kinds of 

classification: Supervised Classification and Unsupervised Classification. Generally 

speaking, supervised classification needs a lot of samples to support it, and the kind of 

measurement which is used to classify the target object may change. It is worth noting that, 

normally, both the local features-based method and the sliding window method are used with 

Supervised Classification, which means that a large number of training examples are needed 

to train the detector. These large numbers of training samples and intensive computations are 

used to accurately separate the decision boundary between the target and the background. In 

vehicle detection approaches, the features of the vehicle are used to create a generic model, 

constructed by representing the shape of the vehicle with a 2D/3D model e.g. a wire-frame 

representation. Detection is performed by extracting the features such as edges and grouping 

them together to create structures that can be compared to the model. These methods have 

proven very robust. However, because of the small size of vehicles in aerial imagery, models 

must be simplistic and are therefore in danger of matching many regions in the image. The 

inherent weaknesses of this approach are that the models generated by the classifiers are 

dependent on the training data and often struggle to generalise well as it cannot be assured 

that the training data captures changes in illumination, pose and other possible influences on 

vehicles’ appearance from neighbouring objects and the relative position of UAVs, which 

refers to the low resolution and blur; different size, orientation and illumination challenges. 

X. Wang et al [22] proposed a method of detecting objects in UAV footage by using 

edge detection (Figure 2.1). The proposed algorithm gives us an example of using edge 

detection to recognise artificial objects. This method uses an edge detection algorithm to 

detect the straight lines on a vehicle. The method removes background noise by using a 

higher threshold in its edge detection. Not only detecting vehicles by their edge texture 

features, J. Sokalski et al [23] also proposed a method that uses edge detection and colour 
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features to distinguish natural and artificial objects. The difference is that in this paper, the 

authors extract nine features from the different colour channels of the original image and use 

these features to identify edges and changes of edge to distinguish natural and artificial 

objects (Figure 2.2). These two papers gave us the idea of summarising local descriptors into 

colour features and texture features. The process is faster when using the colour feature to 

detect objects, but the accuracy is challenged, especially in scenarios that have complex 

backgrounds. The objects in images are more accurately represented by the texture feature, 

because texture holds more information about an object. However, both papers use detection 

with Unsupervised Classification, which means no training occurs before detection, so 

neither proposed method can detect any specific objects.  

 

Figure 2.1: Examples of vehicle detection using edge features at different thresholds. The 

background noise can be removed in higher threshold detection. [22] 
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Figure 2.2: Object detection using edge and colour features. This method uses mean-shift 

segmentation and edge features to detect artificial objects. [23] 

The two papers above use texture and colour features for object detection, which is 

typical for object detection. Using colour features to detect objects is the simplest method. N. 

Baha et al [24] presented empirical landmark recognition experiments of using colour and 

texture features. Once landmarks are recognised from a class of geo-referenced images, they 

can be used to estimate the UAV’s position and help autonomous navigation. This paper 

uses one set of aerial geo-referenced images and another set of aerial images of the same 

region, collected at a different time, which are not geo-referenced. This work presents a 

landmark recognition system based on the extraction of colour and texture features. The 

proposed method uses these features to provide information about surface orientation, shape 

and colour. This approach is being studied for application in a PITER (Real-Time Image 

Processing) research project that is being carried out at the Institute for Advanced Studies 

(IEAv – Instituto de Estudos Avancados), and applied in autonomous UAV navigation based 

on images. In this project, 126 samples are used for supervised learning, which is a particular 

type of machine learning algorithm that allows the prediction of the class of a previously 
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unknown instance based on the knowledge of the class of a training sample. A HSV colour 

and Gray Level Co-occurrence Matrix (GLCM) feature is used to train the classifier the 

detection. The method uses a sliding-window approach in detection. In this paper shows 

clearly that the combination of colour and texture features can improve the accuracy of 

detection; the usage of the Supervised Classification method can also improve detection 

performance.  

Saman G et.al [25] proposed a vehicle detection approach by the density measurement. 

The gradient vectors have been calculated in the edge map of the aerial images. It is 

proposed that, the directions of the gradient vectors are changing significantly in the 

boundary of the target and by calculating the standard deviation of the gradient vectors. So 

by predefine the threshold, the vehicles can be detected within the value.  The evaluation 

used the aerial images taken from road in Turkey and achieved 86% accuracy in F-measure. 

However, such detection methods without the training have a common drawback, which the 

target objects are difficult to distinguish from the complex background situations. 

Peng W et.al [26] proposed a vehicle detection method that improves background 

extractor. This approach used pavement segmentation with 8-neighborhood filling to 

removing the road markers in order to filtering the complex background. The result indicates 

that the proposed method can avoid the detection errors caused by the misleading of the road 

markers. However, this detection method is based on fixed camera detection, which is 

contrary to the purpose of this thesis, but the background extractor mechanism can be 

adopted. 

J. Susaki et al. [27] proposed a two-stage approach to the automatic detection of 

vehicles within aerial imagery. Their approach is based on the use of multiple cascaded Haar 

classifiers [28] for vehicle classification and a secondary verification stage that attempts to 

eliminate non-vehicle candidates based on UAV altitude and vehicle size constraints. The 

cascaded Haar classifier provides a reliable detector that is invariant to vehicle colour, type 

and configuration. To achieve vehicle orientation invariance, they use four separate cascaded 

Haar classifiers trained in sample vehicle images categorised into four positional orientations. 

The four classifiers are then evaluated using a query image at multiple scales and positions 

using a sliding window approach and multiple classifier detection, and detection overlaps are 

resolved using a spatial merging technique (Figure 2.3). J. Berni et al. [29] later extended 
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this work with the use of additional thermal imagery for thermal signature confirmation, 

which improved performance considerably. 

 

Figure 2.3: In the first image, A shows the Haar-like features; B shows the line features and 

C shows the centre-surround features. The second image shows the training samples for 

Haar-like features and the last image shows the detection results of the feature. [27] 

Gleason et al. [30] focused on automatic vehicle detection in rural environments. Their 

approach consists of a cascade detection algorithm, which is comprised of two stages. In the 

first stage, a Harris corner detector is used to identify features of interest in the images; the 

authors argue that “vehicles in particular have a large number of edges and corners compared 

to natural objects”. Next, an efficient sliding window approach is used to determine regions 

with a feature density higher than a predetermined threshold. Overlapping regions are 

grouped together and further refined based on the colour characteristics of background areas. 

The regions selected in this stage are then put through image classification techniques in the 

second stage, which determine the presence of a vehicle. These authors’ research compared 

the performance of two image patch descriptors, a modified Histogram of Oriented 

Gradients (HoG) feature and Histogram of Gabor Coefficients features. They also 

investigated the performance of three statistical classification techniques; K-Nearest 

Neighbours (k-NN), Random Forests (RF) and Support Vector Machines (SVM). From the 

first stage of their algorithm, they obtained an average detection rate of 85% and found the 

top performing classifier to be Random Forests using Histogram of Gabor Coefficients 

features; this was capable of classifying 98.9% of vehicles and 61.9% of background images 

correctly. Sebastien R et.al [31] proposed a vehicle detection method in unconstrained 

environments with state-of-the-art object detection approaches, which is using the sliding 

window classification method with the SVM classifiers.  
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Figure 2.4: Two examples of HoG feature vectors: vehicle image (a); HoG vector (b); 

Gabor histogram (c); background image (d); corresponding HoG feature (e) and Gabor 

histogram (f). [30] 

Nguyen et al. [32] proposed a boosting based framework for vehicle detection in aerial 

images. They used Haar features, Histogram of Oriented Gradient (HoG) features and Local 

Binary Patterns (LBP) with an online version of the AdaBoost training algorithm to select 

the most informative features. In this approach, each feature resembles a single weak 

classifier and boosting is used to select an informative subset from these features to create a 

strong classifier. To create a weak classifier from the features they model the probability 

distribution of each feature in vehicle and background images, using a Bayesian learning 

algorithm for the Haar features and a nearest neighbour learning algorithm for the two 

histogram-based features. Detection is performed by using a sliding window approach and 

threshold the output confidence values. Overlapping detections are grouped together by 

applying mean shift clustering to the probability density distribution of the classifier outputs. 

Histograms of Gradients (HoG) have become very popular and widely used in object 

detection in recent years. HoG has proved that it is robust in various lighting conditions and 

generalise well for object recognition. Dalal and Triggs [33] presented an evaluation of the 

use of HoG for object detection and compared it with other approaches, such as Haar 

wavelets; the HoG has an advantage in object detection. One of HoG’s main aims is to 

locally normalise image gradients so low contrast areas can be compensated for certain 

images. The authors proposed a method that divides the detection window into small, 

overlapping rectangular or circular blocks of various sizes. Each block is subsequently 

divided again into a number of cells; the original concept divides each block into 2 × 2 cells, 
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but it is noting that the block size and the cells can vary. The HoG orientation of each cell in 

the block is computed. The HoG interpolates both spatially, between neighbourhood cells, 

and with respect to the gradient orientation angle. This can avoid discretisation during 

processing. Thus, each block can concatenate a block feature vector and the concatenated 

normalisation of these block features vectors are the final descriptors of the HoG. Dalal and 

Triggs trained an SVM classifier model based on two sets of training samples: positive and 

negative images of object in the target class and background objects. Their evaluation shows 

that they achieved low false positive rates by using their algorithm.  

Xianbin Cao [34] created a new feature a boosting Light and Pyramid Sampling 

Histogram of Oriented Gradients (bLPS-HoG). This method was proposed for use together 

with a linear support vector machine (SVM) for vehicle detection. The output of vehicle 

detection is denoted by regions which may potentially contain vehicles. These regions are 

refined for the improvement of vehicle detection performance and the computation of the 

trajectories of vehicles for measuring traffic information (Figure 2.5). A Spatio-Temporal 

Appearance-Related Similarity (STARS) measure is proposed for analysing the motion of 

detected vehicles. The STARS measure can help to effectively correlate vehicles from 

different frames and obtain the vehicles’ trajectories for analysis. This paper offers two 

major contributions: first, for the speeding up of feature extraction and the retention of 

additional global features at different scales for higher classification accuracy, a bLPS-HoG 

feature extraction method is proposed; second, to efficiently correlate vehicles across 

different frames for vehicle motion trajectory computation, a STARS measure is proposed. 

Compared to other representative existing methods, the experimental results showed that this 

proposed method is able to achieve a better performance, with a higher detection rate, a 

lower false positive rate, and faster detection. 

Kang et.al [35] proposed a Fast-Multiclass Vehicle detection approach by using the 

HoG feature extraction. The method used two stages approach for the detection including a 

binary sliding-window detector and a multi-direction detection. The method sets a fixed 35 × 

70 pixels scale detector for the sliding-window approach by using the HoG to classify the 

target with AdaBoost classifier in a soft-cascade structure. The HoG factors were set in 4 × 4 

cell size and 1 × 1 block size, which was the best performance the authors got. The detection 

result has reached 98.2% in their testing images. They also suggested that the detection 

window can be increase in a higher resolution testing images. 



Chapter 2. Related Works 

22 

Sahli et al. [36] proposed a local feature-based approach for automatic vehicle detection 

in low-resolution aerial imagery. Their approach was developed with the aim of being free 

from the constraints related to detection methods based on a vehicle’s visual appearance, i.e. 

a vehicle’s rectangular shape and the presence of frontal and/or rear windows. Their 

approach is based on the extraction of Scale-Invariant Feature Transform (SIFT) features 

from vehicle and background images. These features are used to train a Support Vector 

Machine (SVM) classifier to define a model that can be used to classify SIFT features 

extracted from the cars and background in a query image. The collection of SIFT features 

that are predicted to belong to a vehicle are then clustered in the 2D image space into subsets 

associated with individual cars. The authors’ clustering method is based on a modified 

Affinity Propagation (AP) algorithm that is bound by the spatial constraints related to the 

geometry of vehicles at the given resolution. They obtained a classification accuracy of 95.2% 

in aerial imagery of a parking lot containing 105 cars, with no false-positive detections. 

 

Figure 2.5: The workflow for the extraction of bLPS-HoG features. [34] 

Abdulla et.al [37] developed a context-driven framework that uses scene context to 

improve the detection of moving vehicles in urban environments. Their approach is 

comprised of three stages; motion detection, vehicle detection and an online method of road 

network estimation for detection filtering. To detect moving objects, they use an image 

stabilisation technique, through which Speeded Up Robust Features (SURF) features are 
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registered across successive frames and fitted to an affine model for image warping. With 

stabilised frames, background subtraction is used to detect regions that do not move 

according to the estimated homography. A cascade of Support Vector Machine (SVM) 

classifiers that use shape and size and Histogram and Oriented Gradient (HoG) features are 

then used to detect vehicles in the candidate regions. In the final stage, multi-object tracking 

is used to track the trajectories of the detected objects in order to estimate the road network 

and use this information to discard detected vehicles that are not on the roads. These authors 

evaluated their system using the CLIF data set and obtained positive and negative 

classification rates of 0.843 and 0.797 respectively for their cascade classifier. 

Jinhe Lan et al. [38] proposed a new framework of multi-motion layer analysis to 

detect and track moving vehicles from airborne platforms. Moving vehicles are first detected 

by registration and temporal differencing to establish motion layers. After the motion layers 

are constructed, they are maintained over time for tracking vehicles. All vehicles are tracked 

by maintaining their corresponding motion layers. The proposed framework is based on 

features that are tracked from frame to frame. Firstly, background features are separated by 

region division and motion consistence to form the background motion layer. By using 

background layer features, an affine transformation can be computed to register a frame to 

its previous frame. After registration, temporal differencing is applied to detect moving 

objects. Features that belong to vehicles are clustered in a coarse-to-fine mode to form 

different vehicle motion layers, i.e. individual feature groups. Thus vehicles are tracked by 

maintaining the related vehicle motion layers. 

Motion detection methods were also used by R. Wu et al. and D. He et al. [39, 40]. 

Both of these authors used motion features to detect moving vehicles. The approach 

proposed performs object detection by using the background subtraction technique. 

Background subtraction considers the static part of an image as background, and the 

difference between an image and its corresponding background model is considered the 

foreground. One famous background subtraction method is the background mixture model, 

based on Gaussian mixture [41, 42]. 

There lots of other features of object detection those have been used in other field. In 

paper [43], a feature called Maximally Stable Extremal Regions (MSER) [44] is used to 

describe images’ features. MSER is affine invariant regions with irregular shapes, which are 

highly robust to changes in 3D viewpoint, altitude and illumination. Compared to some other 
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affine invariant region detectors, such as Harris-affine [45] and Hession-affine [46], the 

MSER detector is better in terms of anti-interference ability, robustness and speed. Therefore 

it is widely used in wide baseline stereo matching, image indexing and so on. In paper [47], a 

feature Local Energy based Shape Histogram (LESH) is used for the recognition of road 

traffic signs. The Local Energy Model was first introduced by M. Concetta et al. [48] 

proving that features can be extracted at those points in an image where local frequency 

components represent maximum uniformity. In the paper [49] the LESH was used for the 

vehicle make and model recognition.  

In drawing a conclusion about global approaches to vehicle detection, this can state 

that the methods use two kinds of local descriptor: area local descriptors and point local 

descriptors. Area local descriptors are descriptors that are extracted from regions in an image 

which may represent certain objects. On the other hand, point local descriptors the points 

extracted from an image to represent the information about a single point in the image. 

Area descriptor methods Point descriptor methods 

Grey Level Co-occurrence Matrix (GLCM) Scale Invariant Feature Transform (SIFT) 

Maximally Stable Extremal Region  (MSER) Principal Components Analysis  SIFT (PCA-
SIFT) 

Local Energy based Shape Histogram 
(LESH) 

Affine-SIFT (ASIFT) 

Local Binary Feature (LBF) Speed Up Robust Feature (SURF) 

Shape-let Feature (SF) Harris Corner Points (HCP) 

Implicit Shape Model (ISM) Features from Accelerated Segment Test 
(FAST) 

Haar-like Features (HF) SUSAM Corner Detector (SCD) 

 Scale Invariant Feature Transform (SIFT) 

 

2.2 Vehicle Tracking 

Beyond recognising and identifying vehicles from the current frame, vehicle tracking is also 

the task of the prediction of predicting vehicles’ positions and motion characteristics in 

upcoming frames in a video. This tracking is based on a vehicle’s position in the previous 
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frame according to the vehicle detection results. It is also worth noting that tracking typically 

assumes that the targets are visible throughout the process. Various approaches to object 

tracking are used in practice, for example, tracking by points articulated models, shapes and 

optical flow. 

P.Sand et al. [50] proposed a new approach to motion estimation in a video sequence. 

The authors represented video motion by using a set of particles. Each particle represented a 

single point sample in the input image, with a long-duration trajectory and other properties. 

They matched points along the particle trajectories with the distortion between the particles. 

This approach is useful for various applications which cannot be directly achieved by using 

existing methods such as optical flow or feature tracking. It also increased the accuracy of 

motion estimation in challenging real-world videos, including complex scene geometry, 

multiple types of occlusion, regions with low texture, and non-rigid deformations. 

J. Ding et al. [51] proposed an automatic tracking system. The system has two stages: 

firstly, it builds a model of the appearances of people in a video and then it tracks those 

people based on detecting those models in each frame (“tracking by model-building and 

detection”). They developed two algorithms to form the model: a bottom-up approach, which 

groups together candidate body parts found throughout a sequence and a top-down approach 

that automatically builds people-models by detecting convenient key poses within a 

sequence. The tracking results of this method have shown that building a discriminative 

model of appearance is quite helpful since it exploits structure in a background. 

V. Diaz-Ramirez et al. [52] derived a probabilistic framework for robust, real-time, 

visual tracking of multiple previously unseen objects from a moving camera. The algorithm 

uses objects’ poses and shapes to observe the image. The poses are formed by a group of 

transformations and the shapes are represented by an implicit contour level set. These 

methods also demonstrate how motion models can be incorporated within the same 

probabilistic framework and show how this enables the system to track complete occlusions. 

This method has proven very effective in a variety of challenging video sequences. 

Vehicle tracking using the approach of object tracking can be split into two kinds of 

vision approach: partial detailed monocular approaches and stereo vision approaches. In 

both kinds of tracking, estimation and filtering methods are applied to tracking algorithms. 

2.2.1 Monocular Vision Tracking Approach 
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In monocular vision, vehicles are detected and tracked in an image sequence. Tracking 

vehicles by using the monocular method has two main aims: firstly, the estimation of the 

vehicles’ motion and prediction of their positions, and secondly, enforcing temporal 

coherence, which can maintain awareness of the detected vehicles from a previous frame that 

disappear in the following frames and filter out the false positives during the tracking 

process. Oron et al. [53] proposed a learning algorithm for vehicle tracking. This method 

used a Harr-like feature matching process with a weighted correlation. The object tracker 

searches features that have already been calculated for detection, thus it is possible to reuse 

features for detection and tracking. The weight values of features of the vehicles are 

optimised for the tracking system. Additionally, the kalman filter is applied. 

Template tracking is a unique vision-based tracking method. The object is described 

by a template, which is normally an image patch or a colour histogram. Template tracking 

can also be divided into static template tracking, where the template of the target does not 

change during the tracking process, and adaptive template tracking, which means the 

template has extracted from previous frames. W. Liu et al. [54] proposed monocular vision-

based rear vehicle detection and tracking system. In their tracking system, they used 

template tracking method; the templates are dynamically created online based on the 

detection results, and they estimated the motion to adaptively adjust the tracking window. In 

the other words, their tracking approach is based on the similarity in appearance of the 

vehicles from frame to frame. This can define this method as appearance-based tracking, that 

is, based on cross correlation scores during the tracking process.  

Working from the appearance-based tracking approach, vision-based tracking is taken 

one step further by using feature-based tracking. In W. Zhao et al.‘s [55] approach, the target 

vehicles’ locations are predicted using a kalman Filter in the following image. A similarity 

feature score takes place in the local search of the input image during the tracking process, 

which gives a prediction of the target even if detection has failed in the input frame.  

Optical flow also has been proposed for the tracking process; this can predict the 

target’s position by measuring the displacement of interest points. M. Li et al. [56] proposed 

a detection framework using appearance, scene geometry and vehicle motion. They applied 

an optical flow motion detector and it was shown that this approach greatly improves the 

robustness and reliability of a detection system. 
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Bayesian filter techniques are widely used in vehicle tracking literature. The filter 

techniques can be divided into two methods: the particle filtering technique [57] and kalman 

filtering technique [58]. 

Particle filter, also known as Sequential Monte Carlo (SMC), is a method that uses 

online posterior density estimation algorithms to predict posterior density. The particle filter 

takes a sampling approach, using a set of particles to represent posterior density. Each 

sample has a set of particles, each of which has weight assigned to it. The weight represents 

the probability of these sample particles from the probability density function. 

Y. Liu et al [59] proposed an automatic vision-based system to detect and track 

vehicles on highways under various lighting and weather conditions. The authors generated 

the distribution of probabilities on the vehicles as part of a particle filter framework. A 

modified particle filter was proposed, which can detect multiple targets with a single particle 

filter through a high-level cluster tracking strategy. The particle filter vector typically 

consists of the pixel coordinates in a rectangular area in the image and the pixels’ moving 

velocities.  

C. Idler et al [60] proposed a multi-instance-based multi-target-tracking method using 

particle filters. The authors developed a robust system that can process the real-time tracking 

of vehicles using early-vision image features. In the object localisation and tracking 

processes the probabilistic approach utilising a particle filter is taken. The system calculate 

the particle weighting vectors for multiple sets of particles to track different vehicles 

simultaneously, rather than a single target, as in the original particle filter approach. 

S. Sivaraman et al [61] proposed a general active-learning framework for robust 

vehicle detection and tracking on-road. The framework involves a novel active learning 

approach to vehicle detection and tracking systems. The proposed approach used a classical 

supervised learning system in detection and an active learning-based model was created. In 

their tracking system, the authors integrated a particle filter into the proposed model to build 

an Active learning-based Vehicle-Recognition and Tracking (AlVeRT) system. Toledo-

Moreo et al [62] and Lee et al [63] also used particle filters in their tracking systems.  

Kalman filter, also known as linear quadratic estimation, is an algorithm that uses a 

measurement series o which estimates variables over certain of time. It keeps track of the 

estimated state of the targets, as well as the uncertainty of the targets. The kalman filter 
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works in two parts; a prediction step and an average weighting step. Once estimations of the 

current state have been calculated, these estimations are updated using the weighted average.  

Fontanelli et al. [64] proposed a real-time vision-based side vehicle detection system 

that employs a parts-based boosting algorithm. Window-based tracking is employed in their 

system. Kalman filtering is also used to predict the position of each part of each vehicle in 

the input image. The proposed approach can relocate tracking windows effectively during 

the tracking process, and the system improves efficiency and accuracy under different 

lighting conditions, changing vehicle poses, and partial occlusions. 

J. Arrospide et al [65] used a kalman filter in their tracking system to smooth the 

trajectories of the predicted targets. They used a central outlier rejection stage to strengthen 

the tracker based on probabilistic techniques. B. Aytekin et al [66] also used a kalman filter 

to estimate the position and size of vehicles’ shadows in the following frames.  

2.2.2 Stereo Vision Approach 

Vehicle tracking using stereo vision measures and estimates the position and velocity of the 

target vehicle. The state vectors often include the lateral and longitudinal positon, the width 

and the height of the vehicle, as well as their velocity. Like in monocular vision tracking, a 

kalman filter is widely used in prediction; linear motion and Gaussian noise are considered 

optimal for prediction [67]. Kalman filter is widely used for stereo vision vehicle tracking 

[68]. Noise in stereo matching is generally modelled as Gaussian noise [69, 70], and filter 

over time can make a cleaner disparity maps in the tracking system [71].  

Having noticed that vehicle motion is nonlinear in real life; A. Barth et al [72] 

proposed an Extended Kalman filter (EKF) to predict nonlinear parameters by linearising the 

motion equations for estimation. The filter combines the movement information of points on 

the background with a dynamic model of the vehicle. The EKF is widely used in stereo 

vision vehicle tracking, especially in the cases of nonlinearity in motion and observation 

models. The EKF was used to predict turning behaviour in [73, 74]. 

M. Grinberg et al [75] proposed that the EKF is significantly affected by the position 

of the camera in vehicle tacking. The authors used a side-mounted stereo camera to observe 

the nonlinear motion of the target vehicles. Z. Duan et al. [76] used EKF to model the 
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nonlinearity of the 3D position of vehicle into a stereo image. B. Kitt et al. [77] used EKF 

combined with Longuet-Higgins-equations and optical flow to estimate the motion. 

Particle filter has been also fairly commonly used for vehicle tracking. To be specific, 

particle filtering can be defined as an alternative method to EKF in the estimation of 

nonlinear parameters. A particle filter has multiple hypotheses which are weighted by a 

likelihood function. G. Catalin et al. [78] proposed a vehicle tracking particle filter system 

based on a grey histogram with sparse optical flow detection in stereo images. The proposed 

approach used a 2D tracked feature to compute 3D correspondence, which can improve 

particle filter tracking performance. This method integrates vision based particle filter 

tracking with stereovision of optical flow, which creates a robust object tracking algorithm. 

C. Hermes et al. [79] proposed a hierarchical tracking system which includes optical 

flow prediction and kinematic prediction with a particle filter-based motion pattern method 

based on the trajectories of learned objects. This method achieves higher accuracy than the 

standard kinematic prediction method.  

R. Danescu et al. [80] proposed a novel occupancy grid tracking method that uses 

particles for tracking the dynamic driving environment. The particles in the system have 

hypotheses which are also used to build model blocks with the parameters of position, speed 

and the motion. The system has a weighted resampling mechanism which can create and 

destroy specific particles, which is the same as the original particle filter algorithm. 

This thesis focuses on the frame-to-frame tracking method, in which vehicles are 

represented by their geometric shapes and their motions between consecutive frames. As 

mentioned above, template tracking is the most straightforward method for a tracking system, 

and it includes static and adaptive tracking. These two template methods can also be 

combined in a tracking system. P. Singh et al. [81] and H.Lim et al. [82] proposed a tracking 

approach that has both offline and online tracking methods. This can make it relatively easy 

for the system to build trackers, and different trackers can be used in different situations, 

which improves tracking efficiency. However, template tracking has limited modelling 

capabilities because each tracker can only represent a single appearance of the target features. 

In order to build more appearance models, the generative models are been proposed. 

Generative models can be built offline or online during the tracking process. M.J et al 

[83] proposed a matching system using an offline generative model which can particularly 
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improve situations involving occlusion, background clusters, noise etc. X. Cheng et al. [84] 

and Z. Wang et al. [85] proposed tracking approaches that incrementally learn low-

dimensional subspace representations and efficiently adapt the appearance of the target 

online. The system updates the model based on the sample mean and an error factor, which 

means it can expend less modelling power. Both features improve overall tracking 

performance. Generative trackers only model the appearance of the target object, so tracking 

can be fail on complex, cluttered backgrounds. To tackle this issue, more recent trackers also 

model the environments in which the targets are located. Two approaches to environment 

modelling have been proposed. In the first, the environment is selected for supporting the 

target motion which is correlated in the region of interest. G. Zhu et al. [86] and Y. Liu et al. 

[87] proposed this method, in which online supporter learning is takes place in order to 

determine the most likely predicted position of the targets in the scene. These supporters can 

help the tracking process when the targets disappear from the image or undergo complex 

transformations. The second approach is to consider the environments as negative class, as 

opposed to positive class, which discriminates the target from the background. The most 

common approach is to build a binary classifier, which represents the decision boundary 

between the object and the background that can discriminate the different trackers during the 

process. Y. Wu [88] proposed a static discriminative tracker that trains the object classifier 

before tracking takes place. This method has the limitation that the applications must know 

an object’s class, which means the tracker cannot track unknown objects. Thus, an adaptive 

discriminative tracker has been proposed. Q. Liu et al. [89], J. Xiao et al. [90], A. Karami et 

al. [91] and S. Li et al. [92] all proposed adaptive discriminative trackers in their tracking 

systems, in which the classifier is built during tracking. The most essential characteristic of 

adaptive discriminative trackers is the processing of updates. The tracker extracts the nearest 

neighbourhood features of the current target location and uses them as positive training 

samples, while the distant and surrounding features of the target are used as negative training 

samples. This process is applied in every frame to update the classifier. It has been proven 

that this updating process can handle unpredicted appearance changes in the target, short-

term occlusions and complex backgrounds. However, this method can also cause errors 

when the object disappears from the image for longer than expected. Sh. Pang et al. [93] 

proposed an auxiliary classifier, which is trained in the first frame and can tackle the 

disappearance problem. Z. Wang et al. [94] and Q. Yu et al. [95] also proposed that training 

two independent classifiers for trackers can solve the problem.  
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In conclusion, the tracking systems can be summarised as follows: 

Monocular Vision Stereo Vision 

Optical flow Kalman filtering 

Geometric constraints Extended Kalman filtering 

Template matching Particle filtering 

Feature-based tracking  

Particle filtering  

 

 

2.3 Learning 

As discussed above, classification is an important component in pattern recognition. 

Classification can be either supervised or unsupervised. Object features are learned under the 

assumption that all the training samples are labelled before detection or tracking take place. I. 

Misra [96] and Ororbia II et al [97] proposed a semi-supervised learning approach that can 

be used under the assumption that the labels of entire training samples are too strong in 

certain training cases, and the detector is only required to train from a single labelled sample. 

A number of learning algorithms based on similar assumptions have been proposed, which 

include Expectation-Maximisation (EM), self-learning and co-training. 

Expectation-Maximisation (EM) is a generic method for predicting model 

parameters by using unlabelled data. EM is an iterative binary classification process which 

alternates estimates over unlabelled data and trains a classifier. K. Nigam et al [98] and J. 

Garriga et al [99] used EM for object classification and object category learning, and their 

systems show reasonable performance. In the semi-supervised learning method, the EM 

algorithm is based on the low-density separation assumption proposed by O. Chapelle [100] 

which means that the separation of different classes can be performed well.  

Self-learning is a process that trains an initial classifier from a set of labelled training 

samples. Then the classification model is evaluated using a set of unlabelled samples. The 

most confident data as decided by the classifier model will be added to the training set for 

the retention of the classifier, which means this is an iterative process. J. Kuen et al [101] 

used self-learning in human eye detection. However, their results showed that detection 
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improved more if the unlabelled data was selected by independent measurement rather than 

selected by the classifier. Their conclusion suggests that the low-density separation method 

is not suitable for object detection. 

Co-training is a learning method which uses independent classifiers that can mutually 

train each other. Co-training assumes that independent feature space is available when 

creating these independent classifiers. Learning starts with the training of two separate 

classifiers using labelled training data, and both classifiers are then evaluated using 

unlabelled training samples. The two classifiers then iteratively augment each other’s 

training sets. Co-training can achieve a better performance for problems with independent 

modalities, such as text classification or biometric recognition systems, which include 

appearance and finger print recognition. F. Li et al. [102] and B. Zhong et al. [103] applied 

co-training to vehicle detection by surveillance cameras and moving-object recognition 

methods. However, co-training is limited for object detection or tracking because the 

samples are extracted from a single environment, which means the results can be dependent 

and rely on the training samples.  

2.4 Conclusions and Inspirations 

Many implicit modelling approaches have been proposed for the tasks of automatic vehicle 

detection and tracking. The general approach is to decompose the problem into two stages; a 

detection stage followed by a filtering and verification stage. In most cases, detection is 

achieved using a sliding window strategy, in which an exhaustive search is performed across 

position and scale. To accelerate detection, some approaches make use of integral images 

and histograms for the real-time computation of features. Features that encode shape 

information are the most commonly used for vehicle representation and appear to perform 

well. The classification approaches used vary; however, most choose to create discriminative 

learning models as opposed to probabilistic models, with the most prominent classifier being 

the Support Vector Machine. 

The inspiration for this thesis comes from vehicle detection and tracking methods. 

Previous literature has used various methods to approach vehicle detection. Firstly, the 

detection process adopts the vehicle descriptor feature from colour and texture. A 

combination of GLCM and HSV is one of the standard approaches to detection, but this 

method is limited by blur problems and the improvement upon this approach was proposed. 
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Further inspirations for this thesis come from various descriptor feature approaches, 

which use both area descriptors and point descriptors. The Implicit Shape Model (ISM) has 

been used mostly in pedestrian detection rather than vehicle detection. The approach 

integrates point descriptors and area descriptors together to increase the detail of the target 

features, which could make a better classification model for detection. The SIFT point 

descriptor has been used in object matching. The segmentation abilities of ISM with the 

scale-invariance of the SIFT feature were used to create a detection approach. 

HoG features are also widely used in object detection, and several improved HoG 

features have been proposed. Most HoG features are used with a sliding window approach, 

which is very inefficient. This is counterproductive to the aim of real-time processing. 

However, the detection could use edges and corners which are the most characteristic 

features of vehicles. There are various approaches to finding edges and corners; the FAST 

corner approach is most appropriate method for us to use because of its fast processing 

performance. An integrated FAST and HoG feature was used to make a novel vehicle 

detection process. 

Furthermore, the Tracking Learning Detection (TLD) algorithm has been a source of 

motivation, and the learning approach in this algorithm was used in the proposed tracking 

system, which built a self-learning tracking process with the proposed detection system to 

make a system which can detect and track multiple vehicles, and beyond detection and 

tracking the system can learn the detected vehicle by itself to improve the classification 

model for later tracking and detection. This method is aimed for a long-term self-learning 

vehicle tracking and detection approach. 
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Chapter 3   

HSV-GLCM Feature with Blur-removal  

 

In this chapter, a vehicle detection method is proposed that uses HSV-GLCM (Hue, 

Saturation, Value and Grey Level Co-occurrence Matrix). The proposed feature combines 

the GLCM texture recognition method with the HSV colour system to detect vehicles and 

avoid the false detection of non-vehicles; this method also integrated blur-removal into the 

detection feature which solved the problem of blurred detection errors.  

3.1 Basic Concept of GLCM  

Definition: The GLCM (Grey Level Co-occurrence Matrix) is a tabulation of how often 

different combinations of pixel brightness values (grey levels) occur in an image. In 

summary, there are five necessary steps in generating a GLCM matrix [104]: 

• Create a framework matrix 

• Decide on the spatial relation between the reference and neighbour pixel 

• Count the occurrences and fill in the framework matrix 

• Add the matrix to its transpose to make it symmetrical 

• Normalise the matrix to turn it into probabilities.  

An example will be introduced to explain the definition and how to generate a GLCM 

matrix in detail. Here is a test image: 

 

Figure 3.1: A GLCM testing image. 
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As the Figure 3.1 shows, the image has four different values of grey. Each pixel value 

in the image is shown in Table 3.1. 

The value form is as shown below: 

 X-axis 
Y-axis 0 0 1 1 

0 0 1 1 
0 2 2 2 
2 2 3 3 

Table 3.1: Values of the GLCM testing image. (the top-left corner is the origin in [0,0]) 

The GLCM is a "second order" texture calculation. It only considers the relationship 

between two pixels; one is the reference pixel and the other is its neighbour (the distance 

may not be equal to 1). First order and higher order calculations are easy to understand. First 

order means the data that used to analyse the texture feather is directly from the original 

image, such as the variance, which does not consider the pixel-neighbour relationships in the 

image. The higher order is more complex than GLCM, because it needs to take account of 

the relationship of three or more pixels.  

Before discussing how the GLCM matrix can be generated, the measurements used to 

extract values from the original image to build the matrix should be chose. First, “the spatial 

relationship between two pixels”; in brief, this just means the orientation between a reference 

pixel and a neighbour pixel. In a GLCM matrix, values are extracted from four different 

orientations: 0°, 45°, 90° and 135°. For example, in the given image, pixel (0, 1) and pixel (0, 

2) have the relationship, and the distance is 1. This type of relationship is called as “(1, 0) 

relation”, because it consists of one pixel in the x direction and 0 pixels in the y direction. It 

may found that this combination happens again between pixel (1, 1) and pixel (1, 2). 

Therefore, the frequency of this combination is 2. Moreover, this kind of combination is 

based on a 0°orientation.   

In fact, the given image window may be a small part of the original picture, and the 

reason for using this method to analyse images is that it reduces the amount of necessary 

calculation. Each pixel within the window becomes a reference pixel in turn, starting in the 

upper left-corner and proceeding to the lower-right. Pixels along the right edge have no right 

hand neighbour, so they are not used for this count.   
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Secondly, there is “separation between two pixels” meaning the distance between a 

reference pixel and a neighbour pixel. In the same example, pixel (0, 1) and pixel (0, 2) have 

a relationship, and it is called “1 pixel offset”, which refers to the reference pixel and its 

immediate neighbour. Actually, if the window is large enough, using a larger offset is 

possible. This chapter will discuss the value of offset that should be chosen, and also use 

statistical data to prove it. As mentioned above the offset distance may not equal to 1, this is 

because if the only the neighbour pixels are considered, the system will require a large 

amount of calculations. Thus, by using the larger offset distance, the system can reduce the 

numbers of pixels that needs to calculate, which can increase the speed of the process. 

The final step before building the GLCM matrix is based on the grey level to get a 

combination form. In the given image window, only four grey levels are available: 0, 1, 2 

and 4. So 4 × 4 data cells can be obtained: 

Reference pixel 
value 

Neighbour pixel value 
0 1 2 3 

0 0,0 0,1 0,2 0,3 
1 1,0 1,1 1,2 1,3 
2 2,0 2,1 2,2 2,3 
3 3,0 3,1 3,2 3,3 

Table 3.2: GLCM combination form. 

It is assumed that the orientation is east (left to right), and the distance between two 

pixels is 1. Then the GLCM matrix is obtained as: 

2 2 1 0 
0 2 0 0 
0 0 3 1 
0 0 0 1 

Table 3.3: GLCM matrix for the testing image. 

The first value is 2, which means the combination of the reference pixel being 0 and its 

eastern neighbour also being 0 occurs twice. A value of 3 means the reference pixel is 2 and 

its neighbour is also 2, etc., three times. 

Texture calculations require a symmetrical matrix. The next step is therefore to change 

the GLCM into this form. It should be noted that if the west orientation matrix was 

calculated, a matrix would be as shown below: 
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2 0 0 0 
2 2 0 0 
1 0 3 0 
0 0 1 1 

Table 3.4: GLCM matrix of the testing image’s west orientation. 

 

The form shows that east matrix and the west matrix have a diagonal relationship. East 

(i, j) = West (j, i). To reflect this attribute, a new matrix was used, which called a 

symmetrical matrix. The matrix is shown below: 

4 2 1 0 
2 4 0 0 
1 0 6 1 
0 0 1 2 

Table 3.5: Symmetrical GLCM matrix of the testing image. 

As the figure shows, symmetry will be achieved if each pixel pair is counted twice: 

once "forwards" and once "backwards" (interchanging the reference and neighbour pixels for 

the second count). 

After making the GLCM symmetrical, there is still one step to take before texture 

measures can be calculated. The measures require that each GLCM cell contain not a count, 

but rather a probability. Usually, this operation is referred to as normalization. The following 

equation can be used to realise normalisation of the symmetrical matrix: 

 P(𝑖𝑖, 𝑗𝑗) =  
Vi, j

∑ Vi, jN−1
i,j=0

 ( 3.1 ) [104] 

 

where ‘i’ is the row number and j is the column number. After calculation, the normalised 

matrix is shown as:  

4/24 2/24 1/24 0 
2/24 4/24 0 0 
1/24 0 6/24 1/24 

0 0 1/24 2/24 
Table 3.6: Normalised GLCM matrix of the testing image. 
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After the normalisation matrix has been obtained, this matrix can be used to calculate 

the texture measures. In brief, most texture calculations are weighted averages of the 

normalised GLCM cell contents. For example, CON = GLCM × W, where  W =  (𝑖𝑖 − 𝑗𝑗)2 . 

The texture measures can be classified into three groups:  

Contrast group: Measures related to contrast use weights related to the distance from the 

GLCM diagonal. For example, Contrast, Dissimilarity and Homogeneity.  

Orderliness group: Measures related to orderliness show how regular (orderly) the pixel 

values are within the window. For example, as ASM, MAX Probability and Entropy.  

Group using descriptive statistics of GLCM texture measures: these measures consist of 

statistics derived from the GLC matrix. For example, GLCM Mean, GLCM Variance, and 

GLCM Correlation.  

A note on the contrast group: As per the definition, the results of this group’s measures 

are mainly affected by the value is separated from the diagonal. The Contrast (CON), and 

Homogeneity (HOM) will be discussed in the following sections and the reasons of not 

using other features to measure the images in this method will also be discussed later. 

3.1.1 Contrast (CON) 

Contrast (CON) is also called “sum of squares variance”. It can be expressed as: 

 � P(i, j)
N−1

i,j=0

 × (𝑖𝑖 − 𝑗𝑗)2 ( 3.2 ) [104] 

 

The equation ∑ P(i, j)N−1
i,j=0  expresses all the elements of the normalised symmetrical 

matrix of GLCM. The equation  (𝑖𝑖 − 𝑗𝑗)2 is the value of the weight, element closer to the 

diagonal in value will be nearer to 0. On the contrary, the value will increase. As learned, an 

element around the diagonal indicates that the value of the reference pixel is similar to its 

neighbour. Therefore, a small value of CON means the differences of values between the 

image’s pixels are small.  
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In summary, contrast also reflects the sharpness and depth of texture furrows. The 

deeper texture furrows will be easier to recognise and have greater CON values. Conversely, 

shallow-textured furrows will result in lower CON values.   

3.1.2 Homogeneity (HOM) 

Homogeneity is also called the “inverse difference moment”. It can be expressed as: 

 � P(i, j) ×
N−1

i,j=0

1
1 + (𝑖𝑖 − 𝑗𝑗)2 ( 3.3 ) [104] 

 

Unlike CON, as the elements get further away from the diagonal, their weight will 

decrease. That is to say, the value of CON indicates the difference in values in the image. If 

all the pixels are similar to one certain value, the CON value will be close to 1.    

In summary, the inverse difference moment reflects the homogeneity of the image and 

measures local changes in the image. A high value of HOM means the texture between 

regions does not vary.  

There are also measures related to orderliness, i.e. how regular (orderly) the pixel 

values are within the window. These include ASM, MAX probability and entropy. This 

group is mainly discussed ASM and entropy (ENT), which are the key measures in texture 

feature analysis. However, there is redundancy between these two measures, so the trade-

offs between them in this approach will also be discussed.  

The following example of two images will demonstrate what orderliness is and the 

difference between that and contrast group measures.  

Image 1 Image 2 
1 2 3 4 3 4 3 2 

1 2 3 4 1 2 3 4 

1 2 3 4 2 3 4 5 

1 2 3 4 4 5 6 7 

Table 3.7: Two testing images features. 
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Assume that only 0° (horizontal orientation) is being taken into consideration, and the 

offset is 1. From the perspective of the contrast feature the two images are the same, because 

the difference between each pair of reference pixel and neighbour pixel is 1. So depend on 

CON or HOM alone to distinguish between these two images is impossible. Orderliness 

measures also use a weighted average of the GLCM values, but the difference is that this 

weight is affected by the how many times a given pair occurs: 

• A weight that increases with commonness will yield a texture measure that increases 

with orderliness.  

• A weight that decreases with commonness yields a texture measure that increases 

with disorder 

In comparison, although image 1 has few combinations, the number of times each 

combination occurs is more than that of image 2. For instance, pair (1, 2) occurs four times 

in image 1 but only once in image 2. So the value of the orderliness will be different, which 

this attribute can be used to distinguish between these two images.  

3.1.3 Angular Second Moment (ASM) and Energy 

Angular Second Moment (ASM) and energy - also called uniformity 

ASM and Energy use each 𝑃𝑃𝑖𝑖𝑖𝑖 as a weight for itself. High values of ASM or Energy occur 

when the window is very orderly. This is expressed as: 

 � 𝑃𝑃𝑖𝑖𝑖𝑖
2

N−1

i,j=0

 ( 3.4 ) [104] 

 

The square root of the ASM is sometimes used as a texture measure, and is then called 

energy. Energy reflects the uniformity and thickness of the texture. As the equation above 

shows, if each element in the GLCM has the same value, the outcome will be a small ASM 

value. In contrast, if some elements have greater values than others, a large ASM value will 

be calculated. If the elements of GLCM are concentrated within the matrix, the ASM value 

will be large. In summary, a large ASM indicates a more uniform and regular change in 

texture pattern. 
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3.1.4 Entropy (ENT)  

This is expressed as:  

 � 𝑃𝑃𝑖𝑖,𝑖𝑖�− ln 𝑃𝑃𝑖𝑖,𝑖𝑖�
𝑁𝑁−1

𝑖𝑖,𝑖𝑖=0

 ( 3.5 ) [104] 

 

Entropy means the amount of information of the image contains. Texture also belongs 

to image information, and it is a random measure. The maximum value of ENT is 1, and this 

maximum is reached when the elements of GLCM have maximum randomness, scattered 

distribution and all probabilities are equal. In other word, ENT indicates the non-uniformity 

or complexity of the image. 

The other group uses descriptive statistics of GLCM texture measures; these measures 

consist of statistics derived from the GLC matrix. Members of this group include GLCM 

mean, GLCM variance, and GLCM. Compared to the contrast and orderliness groups, this 

group is more considerate of the GLCM matrix itself. The pixel value is weighted not by the 

frequency of its occurrence by itself (as in a "regular" or familiar mean equation) but by the 

frequency of its occurrence in combination with a certain neighbour pixel value.  

The GLCM correlation texture measures the linear dependency of grey levels on those 

of neighbouring pixels. The equation shown below: 

 � 𝑃𝑃𝑖𝑖,𝑖𝑖

⎣
⎢
⎢
⎡(𝑖𝑖 − 𝜇𝜇𝑖𝑖)�(𝑖𝑖 − 𝜇𝜇𝑖𝑖)�

�(𝜎𝜎𝑖𝑖
2)�𝜎𝜎𝑖𝑖

2� ⎦
⎥
⎥
⎤𝑁𝑁−1

𝑖𝑖,𝑖𝑖=0

 ( 3.6 ) [104] 

 

where 

𝜇𝜇𝑖𝑖 =  � 𝑖𝑖�𝑃𝑃𝑖𝑖,𝑖𝑖�
𝑁𝑁−1

𝑖𝑖,𝑖𝑖=0

, 𝜇𝜇𝑖𝑖 =  � 𝑗𝑗�𝑃𝑃𝑖𝑖,𝑖𝑖�
𝑁𝑁−1

𝑖𝑖,𝑖𝑖=0

, 𝜎𝜎𝑖𝑖
2 =  � 𝑃𝑃𝑖𝑖,𝑖𝑖(𝑖𝑖 − 𝜇𝜇𝑖𝑖)2

𝑁𝑁−1

𝑖𝑖,𝑖𝑖=0

, 𝜎𝜎𝑖𝑖
2

=  � 𝑃𝑃𝑖𝑖,𝑖𝑖�𝑗𝑗 − 𝜇𝜇𝑖𝑖�2
𝑁𝑁−1

𝑖𝑖,𝑖𝑖=0

 
( 3.7 ) [104] 
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GLCM correlation is quite a different calculation from the other texture measures 

described above. As a result, it is independent of them (i.e. it gives different information) 

and can often be used profitably in combination with another texture measure. It also has a 

more intuitive relationship with the actual calculated values: 0 is uncorrelated, 1 is perfectly 

correlated. However, if an image has only one grey value, the variance of the GLCM will be 

0. Moreover, the result of the correlation will be NaN (not a number), because the result is a 

certain number divided by 0.  

The equation also indicates that correlation measure the similarity of row or column 

elements in GLCM matrix, which means, the correlation value reflects the correlation of 

certain parts of the image. If the matrix element values are equal, the correlation value is 

large. Conversely, if the values of the elements differ, the correlation value will be small. 

Furthermore, if the image mainly has a horizontal texture, then the COR value in this 

direction will be larger than the other orientation’s COR value. 

3.2 GLCM Parameter Decisions  

Once the basic conception of GLCM and its related parameters were explained, the GLCM 

descriptors can be used in artificial object detection. However, the texture measurements 

need to be set first, which are: 

• Window size 

• Number of grey levels 

• Direction of offset 

• Offset distance 

• Which channel to run 

• Which measure to use 

 

3.2.1 Window Size Decision  

The test images are selected from the training video, which are listed in the Appendix. The 

video was captured by UAVs on a motorway near an urban area. The size of the images is in 

720 × 576 pixels. The Figure 3.2 shows an example of an image from the video. 
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Figure 3.2: Sample image (720 × 576 pixels). 

The detection window should be a square and include all the texture detail of the 

vehicles, a size of 70 ×70 pixel window was set in the proposed detection approach. This 

window size value can be changed based on the size of the vehicles appeared in the images 

as the different altitude of the UAVs. The figure below shows an example of window 

samples.  

 

Figure 3.3: Target window samples. 

3.2.2 Number of grey levels 

As is well known, an 8-bits grey image has 256 grey levels, so there will be 256 x 256 

(65,536) combinations in the GLCM matrix; analysing it will require huge computing power 

and waste lots of time. Therefore, to save time and computing power, this could reduce the 

number grey levels. Usually, it has the choice of 16, 32, or 64. The greater the value, the 

better the effect, but also the longer the time required. In this approach, 32 grey levels was 

chose. The reason for this choice is that it is easy to get a “NaN” value of COR values by 

using a small grey level. This is because the denominator of the COR equation will be 0 in a 

uniform image. Such phenomenon more often occurs in small windows and at low grey 
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levels. So in the proposed approach, taking into account both the operation time of the 

programme and the error occurrence rate, thus 32 grey levels has been used. 

3.2.3 Direction of Offset 

The GLCM matrix is calculated from four different orientations: 0°, 45°, 90°, and 135°. This 

is because GLCM is not direction invariant. Vehicles are coming from different directions in 

the video, so four main directions were defined to detect vehicles, which can solve this 

invariant problem.  

3.2.4 Offset Distance 

Usually, a value of 1 is chosen for the distance between the two pixels. F. Zhou et al. [105] 

proposed that idea that there are relationships between distance and the calculated values 

(CON, COR, HOM, etc). In the perspective of the authors of this paper, using a Markov 

Random Field (MRF) could prove that a calculation is correct only when the distance is 

greater than the value of a GLCM feature. Conversely, when the distance is small, the results 

of GLCM calculations are random or change. A. Chaddad et al. [106] also proposed the 

same idea; in their opinion, when the distance is small, or the two chosen pixels are close 

together, the result of GLCM calculations rapidly change with any increase of distance. But 

when the distance becomes large, the result will be more stable.  The conclusions of these 

two papers are same. As a result, it is essential to find a suitable value for the distance. 

As it is well known, the most used features in GLCM texture analysis are contrast 

(CON), correlation (COR), homogeneity (HOM), energy (ASM) and entropy (ENT). In this 

proposed detection method the GLCM has therefore been divided into five groups, each 

group focusing on one specific feature. The unit of x-axis is the distance, and the unit of y-

axis is the value of one of the features. Moreover, in each diagram, four different curves 

were found which indicates the values of four vehicles in the sample image (Figure 3.4).   
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Figure 3.4: Graphs of GLCM texture values for four vehicles. 

The simulation’s results confirmed the conclusions of F. Zhou et al. and A. Chaddad et 

al. [105, 106]. The GLCM calculation results become stable past a certain value. It can also 

be noted that changes of CON, COR, ASM and HOM are affected by pixel distance, but 

ENT is less affected. With increases in distance, the values of ASM, COR, and HOM 

decrease. Furthermore, the decrease slows down when the distance has reached 2. When the 

distance is between 3 and 5 the change is significantly smaller. On the other hand, with an 

increase in pixel distance, CON also increases, but the increase rate is reduced when reaches 

2; once the distance is larger than 3, the value of CON is stable. In summary, when the 

distance is between 3 and 5, the curve becomes stable; especially after 10, when the curve 
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becomes flat. Therefore, when the distance equals to 3, the texture features will be better for 

measuring the vehicles. 

3.2.5 GLCM Channel 

It has been suggested the GLCM features could be calculated on several different channels. 

For example, a coloured image may consist by three channels: R, G and B. So, the image can 

be measured by three CON values rather than only one CON value, which will increase the 

accuracy of the feature descriptor. However, more computational resources are required for 

all three channels, so a grey level image has been used as the input image. 

(  The grey level image = 0.212671 × R + 0.715160 × G + 0.072169 × G ). After the 

shift to grey level, the image looks like this: 

 

Figure 3.5: Grey level testing image. 
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3.2.6 GLCM Measurement 

P.Mohanaiah et al. [107] suggest that GLCM has 14 features with which to measure an 

image, but researchers often only use six of them: CON, COR, ASM, HOM, ENT and DIS. 

X. Qu et al. [108] shows that there are lots of redundancies among the 14 features, and even 

amongst the six often-used features, there are still some redundancies. 

In the discussion of the three GLCM measure group (the contrast groups, measures 

related to orderliness and the group that uses descriptive statistics of GLCM texture 

measures), it was noticed that all the groups shared some common features. 

 In the contrast group, the result of the measure is mainly affected by the position of 

the element in the GLCM matrix, or the difference between the two chosen pixels. In the 

second group, the result of the measure is mainly affected by the value of the element in the 

GLCM matrix, or the element itself. In the third group, the result is affected by the entire 

GLCM matrix.  

B. Hua et al. [109] uses the same idea as this approach. After comparing the 

expressions of the six features, they state that ΔCON > ΔDIS > ΔHOM, ΔENT > ΔASM. 

Therefore, the authors suggested that CON, ENT and COR should be used as texture feature 

measure. Y. Bin et al. [110] provide a more detailed table which discloses the correlation of 

11 texture features. These forms were summarised, and picked out the relationships of the 

five most commonly used features. The table is shown below: 

 Asm Con Cor Ent Hom 
Asm 1.00 - 0.69 0.32 - 0.94 0.83 
Con - 0.69 1.00 -0.59 0.87 - 0.80 
Cor 0.32 - 0.59 1.00 - 0.37 0.75 
Ent - 0.94 0.87 - 0.37 1.00 - 0.83 

Hom 0.83 - 0.80 0.75 - 0.83 1.00 
Table 3.8: Correlation of GLCM features. 

The table disclosed the correlation of the features, the absolute value closest to 1, the 

two most relevant, and the redundancy. Values that is larger than 0.8 have been marked in 

the table. To solve the redundancy problem, two features were removed from the table. One 

had to be ASM or ENT, the other CON or HOM. Because ΔENT > ΔASM, which kept ENT 

as a measure feature. However, though ΔCON > ΔHOM, the HOM was still chose as the 

second texture measure. This is because the value of HOM is between 0 and 1, but the value 
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of CON is not. That is to say, the absolute values of COR, ENT and CON are all already 

normalised, because they are all in the interval of 0 to 1. For the purposes of study, it is very 

easy to allocate a weight to them. As a result, a new correlation form was generated as below. 

 COR ENT HOM 
COR 1.00 - 0.37 0.75 
ENT - 0.37 1.00 - 0.83 
HOM 0.75 - 0.83 1.00 

Table 3.9: The correlation of the three selected GLCM features. 

 

3.2.7 Parameters  

Parameter Value 

Window size 70 × 70 pixels 

Number of grey levels 32 

Direction of offset four directions (0°, 45°, 90°, 135°) 

Offset distance three pixels 

Channel one channel (grey level) 

Measurements correlation (COR), entropy(ENT) and homogeneity (HOM) 

Table 3.10: The parameter of selected GLCM features. 

 

3.3 GLCM Feature Training 

After these three texture features for GLCM detection were selected, the SVM classifier 

could be trained. First of all, a total of 850 vehicle images (Figure 3.6) from the training 

video were selected. For each sample, the mean and variance of correlation, entropy and 

homogeneity were calculated (Figure 3.7). These features were set as the positive samples 

represented by 1 in the classifier. Then 260 images of objects in the environment, such as 

grass, trees, road markings and buildings, were selected as the negative samples (Figure 3.8). 

The mean and variance of correlation, entropy and homogeneity (Figure 3.9) were also 

calculated. These features were set as the negative samples, represented by 0 in the classifier. 
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The classifier gave us a classification model (Figure 3.10) for making decisions on the 

identification of vehicles. 

 

Figure 3.6:  Examples of positive training samples. 
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Figure 3.7: GLCM features for positive samples. 

 

Figure 3.8: Examples of negative training samples. 
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Figure 3.9: GLCM features for negative samples. 

 

Figure 3.10: The SVM classification. 
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The diagram shows the distribution of the values of the texture measures. The diagram 

shows that the values of the six texture features are within certain ranges, especially that of 

entropy. The results are as follows: 

Positive samples 
 stdCorp mCorp stdEntp mEntp stdHomp mHomp 

MIN 0.0409 0.4324 0.0005 0.3321 0.0174 0.3731 
AVG 0.1049 0.6797 0.0192 0.8445 0.0625 0.6248 
MAX 0.2352 0.9022 0.0924 0.9995 0.1262 0.8012 

Negative samples 
 stdCorn mCorn stdEntn mEntn stdHomn mHomn 

MIN 0.0258 0.1270 0.0000 0.0369 0.0013 0.2850 
AVG 0.1327 0.6569 0.0212 0.4759 0.0397 0.7065 
MAX 0.6141 0.9329 0.1034 0.9990 0.2140 0.9950 

Table 3.11: The range of GLCM features. 

Table 3.11 shows the minimum, average and maximum values of the GLCM features 

for both positive and negative samples. Now knowing the range of each classifier and the 

training model, the approach was applied to the testing video 1. The frame images sizes are 

in 720 × 576 pixels and the window size was 70 × 70 pixel, which were divided in every 35 

pixels. So in the test images, there were 17 × 22 (374) windows have been tested. For each 

test window, six GLCM texture features were calculated then those features were inserted 

into the SVM classification model. The SVM model makes the decisions that whether the 

test window was a vehicle or not by giving the prediction labels 1 or 0. Windows with the 

predict label 1 were considered as the vehicles, and will be marked by red rectangles (Figure 

3.11). 
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Figure 3.11: An example of the detection results by using the GLCM approach.  

 

After the testing, a problem has occurred as Figure 3.11 shows, although the vehicle 

was marked correctly, the street light was also marked as vehicle, which is a false positive 

detection. Vehicles are typical artificial objects, but other common artificial objects that may 

appear in the environment include houses, bridges, road markings and street lights, which 

could have similar GLCM features. The differences between vehicles and the environments 

are their sizes, shapes and colours. 50 positive and negative samples from the training data 

were selected and the GLCM features were calculated for each sample. 
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Figure 3.12: Vehicle GLCM features (top circle); environment GLCM features (bottom 

circle). 
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The diagram in Figure 3.12 show the feature distribution of the two kinds of artificial 

objects, vehicles (top circle) and other objects in the environment (bottom circle). It is 

noticed that the general feature distribution of vehicles and other objects is similar, but the 

mean, of the entropy (purple line) are different from each other. Thus, the entropy factor in 

the SVM training model was adjusted. The new entropy model: 

 � 𝑃𝑃𝑖𝑖,𝑖𝑖�− ln 𝑃𝑃𝑖𝑖,𝑖𝑖� 𝐸𝐸𝐸𝐸𝐸𝐸 ∈ [0.85, 1.00]
𝑁𝑁−1

𝑖𝑖,𝑖𝑖=0

 ( 3.8 ) [104] 

where 𝑃𝑃𝑖𝑖,𝑖𝑖 is the weight, the N is the pixel number and the ENT is the entropy. After 

applying the new entropy model to the SVM classifier, the approach was applied into the 

same testing video again and one example of the detection results in shown in Figure 3.13 

indicated that the vehicle is now marked by three markers rather than only one (Figure 3.11), 

this is because by using the new entropy model, more features around the vehicle can be 

detected. However, the road light is still marked as a vehicle. It is found that such error 

occurs at the junction of two textures, the road and grass, which has similar GLCM textures 

as vehicles. Texture detection has its advantages, such as being less affected by colour and 

light. However, only using texture to distinguish artificial objects from natural objects is far 

from enough. Having encountered the problem that some junctures will cause error windows, 

the colour feature was combined into the GLCM texture based approach. 

 

Figure 3.13:  The new example of the detection result by using the new ENT model. 
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3.4 Basic Conception of HSV Space 

HSV space [111] is a system used to describe colour. Like RGB space, it has three channels: 

hue, saturation, and value. The advantage of HSV space is this system is similar to the way 

humans recognise colour. For instance, the colours always describe as their base colour and 

its brightness. HSV colour space can be shown as below (Figure 3.14). 

 

Figure 3.14: An example figure of HSV space. 

As the figure shows, the bottom of the cylinder's central axis is black, the top is white 

and the middle is grey. The angle around the axis corresponds to hue, and the distance to this 

axis corresponds to saturation, moreover, the distance along this axis corresponds to value.  

The hue is the most essential parameter, because it decides the colour category, while other 

parameters just affect how bright the colour looks. For example, grass can be described as 

green-based, which is represented by the hue value. The saturation indicates what kind of 

green it is and the value indicates the brightness of the colour.  

The Algorithm of HSV: 

The R, G and B values are divided by 255 to change the range from 0 – 255 to 0 – 1: 

 

𝑅𝑅′ =  𝑅𝑅
255�  ;  𝐺𝐺′ =  𝐺𝐺

255�  ;  𝐵𝐵′ =  𝐵𝐵
255�  

𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑀𝑀𝑀𝑀𝑀𝑀 (𝑅𝑅′, 𝐺𝐺′, 𝐵𝐵′ ) 

𝐶𝐶𝑚𝑚𝑖𝑖𝑚𝑚 = 𝑀𝑀𝑖𝑖𝑀𝑀 (𝑅𝑅′, 𝐺𝐺′, 𝐵𝐵′ ) 

∆ = (𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 −  𝐶𝐶𝑚𝑚𝑖𝑖𝑚𝑚) 

( 3.9 ) [111] 
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Hue calculation: 

 H =  

⎩
⎪⎪
⎨

⎪⎪
⎧60° × �

𝐺𝐺′ − 𝐵𝐵′
∆

𝑚𝑚𝑚𝑚𝑚𝑚6� , 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑅𝑅′

60° × �
𝐵𝐵′ − 𝑅𝑅′

∆
+ 2� , 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐺𝐺′

60° × �
𝑅𝑅′ − 𝐺𝐺′

∆
+ 4� , 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐵𝐵′

 ( 3.10 )[111] 

 

Saturation calculation:  

 S =  �
0  , 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 = 0

∆
𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚

, 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚  ≠ 0  ( 3.11 )[111] 

 

Value calculation: 

 V =  𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 ( 3.12 )[111] 
 

The figure below (Figure 3.15) shows examples of the HSV colour feature of 

environment samples and one vehicle sample. The colour is shown in histograms of hue, 

saturation and value. In order to show the difference of the HSV colour feature between the 

vehicles and environment objects, one vehicle sample and four different environment 

samples were selected to compare the patterns of the HSV colour feature. Firstly, the hue 

histogram figures indicate that different base colour histograms have different distributions. 

Furthermore, when the colour distribution of the sample is similar, the histogram has a 

conspicuous peak value. Conversely, the histogram has a dispersed distribution. This pattern 

also applies to the “saturation” and “value” feature. As a result, this method can use the 

mean and variance for each feature of HSV to classify the environment.  
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Figure 3.15: HSV histograms for the examples (In top-down orders).  

As known, the HSV colour feature is very sensitive to the base colour of the samples, 

so the environment training samples were divided into different groups: trees, grasses, 

buildings, road markings, street lights, etc. 60 random samples from each group were 

selected and the HSV features were calculated. The HSV feature distributions are shown in 

the figure below (Figure 3.16), which shows that in each group, there is a clear pattern for 

the HSV feature, so HSV features were added to the classification descriptors used for 

detection. 
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Chapter 3. HSV-GLCM Feature with Bur-removal 

61 

 



Chapter 3. HSV-GLCM Feature with Bur-removal 

62 

 

Figure 3.16: HSV distributions for the environments samples. 

The HSV model was applied to the detection algorithm. The main propose of using 

HSV is to identify objects in the environment other than vehicles. After detection using the 

GLCM feature, the results were checked again with the HSV model to detect whether the 

result windows contained environmental object colour. One of the testing examples is shown 

in Figure 3.17. After implementing the HSV feature, the environment windows that 

contained grass and street lights were marked in green marker. The statistical results of the 

comparisons of applying the HSV feature into GLCM with the pure GLCM feature will be 

shown in the section 3.6. 
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Figure 3.17: The result of testing with the HSV feature added to the GLCM feature. 

This detection method is a combination of the GLCM texture feature with the HSV 

colour feature. In the detection process, objects can be divided into different categories by 

their texture features. However, the texture of objects from different groups can be similar to 

each other, which can cause false detections. Thus, the HSV colour feature is used in the 

proposed detection method to reduce false detection based on the GLCM texture. The unique 

colours of the background (grass, trees and building) were selected from training images to 

set the boundaries of the environment objects in order to remove the fault detections caused 

by similar textures.  

3.5 Blur Removal 

During testing, the detection result was affected badly by blurred images. Figure 3.18 shows 

an example of detection in a blurred image using the proposed detection method, which 

shows that most of the vehicles in the images were miss detected.  
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Figure 3.18: A blurred image and the detection result. 

Several different methods have been developed in literature for image de-blurring 

[112,113,114]. In the de-blur process, a variable of distortion is set which gives the noise 

function which has caused the blur. However, in this situation, the blurring noise is unknown 

so the system has to simulate a noise level by itself. In this proposed approach, the Blind 

Deconvolution Algorithm (BDA) [115] de-blur mechanism was used to estimate the noise. 

The BDA is shown below;  𝐻𝐻 is the estimated blur function of the input image 𝑈𝑈 and its 

degraded image 𝑉𝑉 according to the image 𝑈𝑈 in 𝑀𝑀 number of blocks. 

 log|𝐻𝐻| =
1
𝑀𝑀 �[log|𝑉𝑉𝑘𝑘| − log|𝑈𝑈𝑘𝑘|]

𝑀𝑀

𝑘𝑘=1

 ( 3.13 ) [115] 

 

After the calculation of the blur function, a Point Spread Function (PSF) was applied, 

which describes the diffraction pattern of light emitted from a point and transmitted to the 

image plane. In the process of the PSF, the estimated blur function 𝐻𝐻 can be used as the size 

of the PSF, which is the most important variable in the de-blur process. In order to improve 

de-blurring, a weighted array was created to filter out the high-contrast areas, which could 

reduce contrast-related ringing in the outcome. The de-blurring process has multiple 

iterations and processes which help to reduce the blurring of pixels and re-join similar 

elements in blurred images. Figure 3.19 shows the de-blur results and the detection results 

after the de-blurring process. 
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Figure 3.19: Detection results using the new de-blurring approach. (Top row: five iterations; 

middle row: three iterations; bottom row: one iteration) 

 

3.6 Evaluation 

3.6.1 Evaluation Criteria 

For the evaluation of the detection and tracking, vehicles are located by bounding boxes, 

which outline the positions in the image sequences. The most common detection accuracy 

evaluation methods used by the researchers are Receiver-Operating-Characteristic (ROC) 

[116], Recall-Precision-Curve (RPC) [117] and the F-measure [118].  

First of all, in each frame, correctly detected vehicles are referred to as True Positives 

(TP), background regions that are incorrectly classified as vehicles are considered False 
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Positives (FP), and vehicles that were missed are recorded as False Negatives (FN). The 

detection and tracking hypotheses are shown in Table 3.12. 

 Predicted positive Predicted negative 

Positive Ground truth (PG) True Positive (TP) False Negative (FN) 

Negative Ground truth (NG) False Positive (FP) True Negative (TN) 

Table 3.12: The detection hypothesis matrix. 

The Receiver-Operating-Characteristic (ROC) has been developed to measure the 

binary classifier performance by calculate the true positive rate and false positive rate, which 

are computed as: 

 true positive rate =  
𝐸𝐸𝑃𝑃

𝐸𝐸𝑃𝑃 + 𝐹𝐹𝐸𝐸 ( 3.14 ) [116] 

 false positive rate =  
𝐹𝐹𝑃𝑃

𝐹𝐹𝑃𝑃 + 𝐸𝐸𝐸𝐸 ( 3.15 ) [116] 

The true positive and false positive rate can be plotted in a 2D coordinate system. In 

the literature [116], ROC has been used as the evaluation criteria. However, in order to apply 

the ROC in object detection, a sliding window search has to done over the test image to 

estimate the possible locations. In this case, ROC plot is sensitive to the number of windows 

tested, which the results could be changed by the parameter of the sliding window approach. 

Therefore, the ROC curves are not reliable. 

The Recall Precision Curve (RPC) indicates the relationship between the detection 

recall to the detection precision, which the recall measure the number of positive examples 

successfully detected by the system and the precision measures the hypotheses percentage. 

The values are computed as: 

 recall =  
𝐸𝐸𝑃𝑃

𝐸𝐸𝑃𝑃 + 𝐹𝐹𝐸𝐸 ( 3.16 ) [117] 

 precision =  
𝐸𝐸𝑃𝑃

𝐸𝐸𝑃𝑃 + 𝐹𝐹𝑃𝑃 =  
𝐸𝐸𝑃𝑃

ℎ𝑦𝑦𝑦𝑦𝑚𝑚𝑦𝑦ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ( 3.17 ) [117] 
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In the literature [117], RPC has been used as the evaluation criteria. In addition, both recall 

and precision value depends on the true negative value, which is not necessarily needed 

during the detection. Thurs, it is believed that the RPC is more reliable for the object 

detection evaluation.  

The F-measure metric can provide a more informative measurement in the evaluation 

by using the recall and precision value. The F-measure is calculated as: 

 F = 2 ×
𝑦𝑦𝑝𝑝𝑒𝑒𝑝𝑝𝑖𝑖𝑒𝑒𝑖𝑖𝑚𝑚𝑀𝑀 × 𝑝𝑝𝑒𝑒𝑝𝑝𝑀𝑀𝑟𝑟𝑟𝑟
𝑦𝑦𝑝𝑝𝑒𝑒𝑝𝑝𝑖𝑖𝑒𝑒𝑖𝑖𝑚𝑚𝑀𝑀 + 𝑝𝑝𝑒𝑒𝑝𝑝𝑀𝑀𝑟𝑟𝑟𝑟  ( 3.18 ) [118] 

where the F-measure can provide a value between 0 and 1, which larger value indicates 

higher detection rate.  

According to the literature, it is believed that F-measure is the best measure to evaluate 

the detection performance in the realistic scenario. In addition, the detection rate was 

evaluated, i.e. its ability to correctly identify the regions in the testing videos that contain 

vehicles. To assess the detection rate across all the video sequences it is assumed that for 

each frame the number of positive detections t is indicted by pt and the number of ground-

truth vehicles is indicted by Ng
(t); the detection accuracy can be computed as:  

 Detection Accuracy =  
∑ pt

Nframes
t=1

∑ Ng
(t)Nframes

t=1

 ( 3.19 ) 

 

3.6.2 Evaluation results 

The testing process was carried out using the five testing videos as explained in the appendix 

with different challenges. Testing was split into different steps. First of all, detection using 

only the GLCM was applied. Secondly, the HSV feature was added to the detection in order 

to see the difference the improved method can provide. Finally, the de-blur feature was 

added to the detection process. The detection performance was evaluated by the detection 

hypotheses matrix and the F-measure metric.  

Detection was run on each frame and all of the detections were accumulated. Table 

3.13 shows the detection results for each video using the GLCM feature only. The average 
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detection results floated around 88% in accuracy and the F-measure, except Video 4, which 

achieved a very low detection rate of 61.85%. Video 4 is the blurred image challenge, so it 

can be concluded that GLCM feature detection is very sensitive to noise in an image. In 

Video 5, the detection rate is very high because the video contains only a single vehicle 

against a simple background, which is very easy to detect. 

Data 
set Vehicles TP FP FN Accuracy 

(%) 
F-measure 

(%) 

Video 1 5324 4579 531 745 86.00% 87.77% 
Video 2 5511 4847 452 664 87.95% 89.68% 
Video 3 5134 4603 387 531 89.66% 90.93% 
Video 4 1848 1143 204 705 61.85% 71.55% 
Video 5 1918 1876 63 42 97.81% 97.28% 
Table 3.13:  The results of detection using the GLCM feature only. (Vehicles means the sum 

of total vehicles appeared in each frame) 

Then the HSV colour feature was added to the GLCM feature. The performance 

resulting from using the HSV-GLCM feature is shown in the Table 3.14. With the HSV-

GLCM feature, the results increased for every testing video. This is because the false 

positive errors were reduced by adding the colour feature; the compression between Table 

3.13 with Table 3.14 shows that the FN figure for each video has dropped. HSV successfully 

distinguished environment objects with similar feature; however, the detection results were 

still very low in the Video 4, which means the HSV colour feature cannot solve the blur 

problem.  

Data 
set Vehicles TP FP FN Accuracy 

(%) 
F-measure 

(%) 

Video 1 5324 4938 326 386 92.74% 93.27% 
Video 2 5511 5213 265 298 94.59% 94.87% 
Video 3 5134 4936 157 198 96.14% 96.52% 
Video 4 1848 1267 198 581 68.56% 76.49% 
Video 5 1918 1883 55 35 98.17% 97.66% 
Table 3.14:  The results of detection using the GLCM and HSV feature. (Vehicles means the 

sum of total vehicles appeared in each frame) 

Next, the de-blur mechanism was integrated into the detection process; the results of 

detection using HSV-GLCM with de-blurring are shown in Table 3.15. The detection results 
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generally remained the same, but the results for Video 4 increased to 90.47% and 87.60%, 

which means the detection performance is no longer affected by blur problems.  

Data 
set 

Vehicles TP FP FN Accuracy 
(%) 

F-measure 
(%) 

Video 1 5324 4942 328 382 92.82% 93.29% 
Video 2 5511 5231 266 280 94.92% 95.04% 
Video 3 5134 4938 166 196 96.18% 96.46% 
Video 4 1848 1643 152 205 88.91% 90.20% 
Video 5 1918 1884 56 34 98.22% 97.67% 
Table 3.15:  The results of detection by using HSV-GLCM feature with de-blurring. 

The chart in Figure 3.20 shows the results of using all three detection methods on all 

five testing videos. The y-axis indicates the percentages of detection accuracy and F-measure. 

The chart shows that the detection rate when using HSV-GLCM and de-blurring was the best, 

above 90%; it also solved problem of the large amount of false negative errors caused by the 

blur problem in Testing Video 4. Figure 3.21 shows some example outcomes of detection 

using this proposed detection method. 

 

Figure 3.20: Chart of the results of using all three methods in all testing videos. 
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Figure 3.21: Detection outcome examples (Images 1 to 4 indicate the detection result 

examples in 4 different frame images from 1 UAV video; images 5 to 8 indicate the 

detection results in a continuous frame sequence, Red boxes are the predicted vehicles and 

green boxes are the predicted environment; the image 9 to 12 indicate the detection results 

before and after the de-blur process.). 

 

3.7 Conclusions 

In this chapter, a novel combination detection method has been proposed. The detection 

method combines the GLCM texture feature extraction and the HSV colour description to 

achieve the vehicle detection task. Additional, a de-blur algorithm has added in the detection 

scheme in order to tackle the blurring challenge. In the introduction chapter, 4 different 

challenges of vehicle detection and tracking have been proposed. The main challenge in the 

vehicle detection process is to distinguish between the target vehicles and the environmental 

objects. In the object detection process, the objects in a testing image can be classified into 

different groups according to their texture values; in this case, the GLCM texture. However, 

the texture of objects from different groups can be similar, which causes the false detections. 

In order to tackle this problem, the HSV colour feature was added into the classification 
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process, which can provide more accurate descriptor of the testing object. Moreover, a de-

blur mechanism by using BDA with PSF has been added into the detection process to solve 

the blurring challenges. Finally, the different size and orientation challenge can be solve 

during the parameter setting in the GLCM feature descriptor. According to the detection 

results, the proposed detection method can successfully solve the challenges. For example, 

the detection result in video 4 indicates that by adding the HSV colour descriptor, the 

accuracy and F-measure increased from 61.58%, 71.55% to 68.56%, 76.49% and by adding 

the de-blur mechanism the accuracy and F-measure increased to 88.91%, 90.20%. However, 

the results can provide the conclusion of the HSV-GLCM with de-blur method is very 

sensitive to the resolution of the image and easy to affected by the blur problem. To enhance 

the detection accuracy under these situations, a novel detection method of ISM-SIFT will be 

introduced in the following chapter. Also, the comparison of the detection accuracy to other 

methods will be present in the following chapter, which to indicate whether the proposed 

method can improve the detection accuracy than the existing approaches. 
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Chapter 4   

The Proposed Implicit Shape model with 

SIFT Detection Algorithm 

 

In this chapter, an ISM-SIFT vehicle detection method is proposed. This method includes the 

features of Scale Invariant Feature Transform (SIFT) and the Implicit Shape Model (ISM). 

The main contribution of this method is the integration of the SIFT process and the ISM in 

vehicle detection system which increases the detection accuracy compared with the results of 

the detection using each process separately. 

In 2004, David G. Lowe first proposed the Scale Invariant Features Transform (SIFT) 

feature to extract key points and compute their descriptors [119] and then made further 

improvements [120]. Lowe not only presented SIFT point descriptors but also discussed key 

point matching [121]; the SIFT descriptors are scale invariant, rotate invariant and affine 

distortion invariant. SIFT descriptors have more specific information for each key point than 

the FAST corner point; each SIFT point has a unique descriptor of 128 bytes. So the same 

point can be found in different frames, even if its status has changed. However, because a 

SIFT descriptor carries so much information, processing can take a long time. So the Implicit 

Shape Model (ISM) was applied to the detection with SIFT so the system can narrow down 

the detection region, which speeds up the detection process.  

 

4.1 Scale-Invariant Feature Transform (SIFT) 

During flight, UAVs can be affected by turbulence, which can cause unstable images. 

The size of the target vehicle can change according to the flight status of the UAV; for 

instance, the altitude of the UAV can change the size of the vehicle, a sudden change of the 

speed and vibration may blur the image, and different capture angles can change the shape of 
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the target during continual flight. SIFT descriptors are the extreme points of Gaussian scale 

space differences. In a Gaussian image, each key point is the results of either the maximum 

or minimum values from the comparison of its 26 neighbourhood pixels with the current, 

upper and lower scales. The SIFT algorithm calculates the unstable extreme point and the 

accurate position of the pixel by using the Taylor expansion and the Hessian matrix. In a 

Gaussian image, the gradient value and direction of each pixel in the neighbourhood near the 

key point is also calculated to find the key point independence scale and the direction. SIFT 

key points can be invariant to scale, rotation, and translation. These features can solve the 

problem of unstable images during flight. There are four main steps involved in SIFT feature 

extractions which are: 

Insert image and detect extreme points 

Determine and filter the keypoints 

Orientate each key point 

Generate the SIFT vector for each key point 

 

4.1.1 Detecting Extreme Points in Scale Space 

Firstly, scale-invariance is one of the characteristics of the SIFT point feature. Koenderink 

and Lindeberg [122, 123] proved that a Gaussian convolution kernel is only for linear 

nuclear scale transformations. So an input image was defined as I(x, y). The keypoints are 

the stable points across the image, which can help identify the possible scale-invariant 

locations. The scale space of an image can be defined as L(x, y, σ) with the variable scale 

Gaussian function G (x, y, σ), and σ is the scale factor. 

 L(x, y, σ) = G(x, y, σ) × I(x, y) ( 4.1 ) [119] 

The Difference of Gaussian (DoG) was used in the detection of the stable key points, which 

can find the scale-space extrema in DoG. 

 
D(x, y, σ) = �G(x, y, kσ) − G(x, y, σ)� × I(x, y)

= 𝐿𝐿(𝑀𝑀, 𝑦𝑦, 𝑘𝑘𝜎𝜎) − 𝐿𝐿(𝑀𝑀, 𝑦𝑦, 𝜎𝜎)  
( 4.2 ) [119] 

where k is a constant factor which separates two adjacent scales from the original image and 

G D(x, y, σ) is the Difference of Gaussian(DoG).  
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Figure 4.1: Gaussian and Difference of Gaussian. 

To find the key points that are invariant to scale, it is necessary to find the difference 

of the adjacent scale images. A pyramid was created to calculate the DoG (Figure 4.1). After 

generating the DoG, the system can compare each pixel in the DoG with its neighbours. 

Each keypoint has to be compared with eight neighbours in the same scale and another 2×9 

= 18 neighbours in the upper and lower scales, which means there are 8+2×9 = 26 

neighbours in total to compare.  If a point is the maximum or minimum in all 26 neighbours, 

it will be classified as a key point in the image scale (Figure 4.2).  
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Figure 4.2: Maxima and minima of the Different of Gaussian images. 

 

4.1.2 Determining and Filtering the Key Points 

The DoG method is sensitive to the noise and edges in an image, so this method has to set a 

filter to reject low contrast points and poor points along the edges. Using the fitting 3D 

quadratic function, the location and the scale of the key points can be more accurately 

identified. 

4.1.3 Orientate each point 

For each keypoint, the direction of the point to the maximum of the gradient direction in the 

histogram is generated. The subsequent descriptor structure takes this direction as a 

reference. For each image L(x, y), the gradient magnitude m(x, y) and the orientation θ(x, y) 

are calculated as: 

m(x, y) = ��𝐿𝐿(𝑀𝑀 + 1, 𝑦𝑦) − 𝐿𝐿(𝑀𝑀 − 1, 𝑦𝑦)�
2

+ �𝐿𝐿(𝑀𝑀, 𝑦𝑦 + 1) − 𝐿𝐿(𝑀𝑀, 𝑦𝑦 − 1)�
2
 (4.3) [119] 

θ(𝑀𝑀, 𝑦𝑦) = tan−1 𝐿𝐿(𝑀𝑀, 𝑦𝑦 + 1) − 𝐿𝐿(𝑀𝑀, 𝑦𝑦 − 1)
𝐿𝐿(𝑀𝑀 + 1, 𝑦𝑦) − 𝐿𝐿(𝑀𝑀 − 1, 𝑦𝑦) (4.4) [119] 

The sampling area of a keypoint is in the centre of its neighbours, which adapts 

histogram statistics to the gradient direction of the neighbour pixel. The range of the gradient 
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histogram is 0 to 360 degrees (36 in total; 10 degrees each). The main key point direction of 

its neighbours’ gradient is represented by the peak of the histogram and if there is other 

energy that reaches 80% of the peak value, this will be represented as the secondary 

direction of the key point. As a result, each keypoint has a total numbers of eight directions.  

4.1.4 Generating the SIFT Vector 

In the last step, each keypoint is assigned a descriptor, which has gradients to achieve further 

invariance. In the construction of these descriptors, the direction of each descriptor is rotated 

to the main direction of the image, which satisfies rotational invariance. After that, an 8×8 

window of the keypoint is created. As shown in Figure 4.3, the centre point in the left image, 

in which every cell represents a pixel of a key point’s neighbourhood, uses the formula to get 

the gradient and gradient direction of each pixel. The arrow direction represents the gradient 

direction of the pixel and the length represents the gradient modulus. The blue circle 

represents the ranged Gaussian weight. Further calculations give the direction of the 

gradients of the eight direction histograms for each 4×4 block, which accumulates the value 

of each gradient direction. Finally, the total of the neighbourhood’s directional information 

can reduce the noise, which can provide a better fault tolerance for detections.  

Lowe proposed 4 × 4 = 16 seeds to describe each keypoint in the calculation process in 

order to increase the matching rate.  So 4 × 4 × 8 = 128 bytes of data are formed for each key 

point. This is then normalised to unit lengths, which can reduce the defects caused by 

illumination changes. Any change in contrast in any pixel is cancelled by vector 

normalisation. 

Now the SIFT feature has removed all the invariance effects, including changes in 

scale, rotation and illumination. Two vectors were found which are: the coordination 

position of the key points with the orientation and scale value, and a 128 bytes descriptor. 

Ultimately, the key point can be located from the coordination and classify the key point 

using the descriptor. 
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Figure 4.3: Key point gradients and descriptor. 

 

4.1.5 SIFT Parameters 

 

4.1.5.1 Scale Space Parameters 

The SIFT detector and descriptor are generated from the Gaussian scale space of the input 

image I. The formula for the Gaussian scale space is: 

 G(𝑀𝑀; 𝜎𝜎) ≜ (𝑔𝑔𝜎𝜎 × 𝐼𝐼)(𝑀𝑀) ( 4.5 ) [119] 

where 𝑔𝑔𝜎𝜎is an isotropic Gaussian kernel of variance 𝜎𝜎2 I, 𝑀𝑀 is the spatial coordinate and 𝜎𝜎 is 

the scale coordinate. This algorithm can also apply to the Difference of Gaussian (DoG), 

which is the scale derivative of the Gaussian scale space. The scale space G(𝑀𝑀; 𝜎𝜎) represents 

the image I at different levels of scale which can reduce the redundancy. The domain of the 

variable 𝜎𝜎  is discretised in logarithmic steps into O octaves, and each octave is further 

divided into S sub-levels. At each successive octave, the data is spatially reduced by half, so 

the distinction between the octaves and sub-levels is significant. The octave index o and the 

sub-level index s are represented by the corresponding scale𝜎𝜎 : 

 𝜎𝜎(𝑚𝑚, 𝑒𝑒) = 𝜎𝜎
02𝑜𝑜+𝑠𝑠/𝑠𝑠  , o ∈  𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚 + [0, … , 𝑂𝑂 − 1], 𝑒𝑒 ∈  [0, … , 𝑆𝑆 − 1] ( 4.6 ) [119] 

where 𝜎𝜎0 is the base scale level. The Gaussian scale space parameters include: 
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• Number of octaves 

• Index of the first octave 

• Number of sub-levels 

• Base smoothing 

4.1.5.2 Detector Parameters 

SIFT frames (𝑀𝑀, 𝜎𝜎)  are the local extreme points selected in the DoG scale space. The 

selection is based on the parameters of: 

• Local extrema threshold 

• Local extrema localisation threshold 

• Boundary point removal 

4.1.5.3 Descriptor parameters 

The SIFT descriptor is a weighted and interpolated histogram of the gradient orientations 

and locations in a patch surrounding the keypoint. The parameters for the descriptors are: 

• Magnification factor 

• Number of spatial bins 

• Number of orientation bins 

4.1.5.4 SIFT Parameter Settings 

The SIFT descriptor can detect different numbers of the extreme points in an image with 

different threshold settings. Also, the descriptors need to set a suitable threshold for 

detection in order to increase the efficiency of the programme. In the testing, seven different 

SIFT descriptor thresholds were applied to one image to select the best threshold (Figure 

4.4).  



Chapter 4. The Proposed ISM with SIFT Detection Algorithm 

80 

 

 

 



Chapter 4. The Proposed ISM with SIFT Detection Algorithm 

81 

 

Figure 4.4: SIFT points at different thresholds. 

 

Testing results: 

Threshold Value 0 0.5 1 2 5 7 10 

Number of SIFT points 3925 1910 1314 771 235 116 52 

Processing Time(s) 1.857 1.760 1.748 1.739 1.713 1.717 1.715 

Table 4.1: SIFT point results at different thresholds. 

 

Table 4.1 and Figure 4.4 shows the SIFT point detection in one image at different 

thresholds. According to the results, it can be conclude that a higher threshold can filter un-

useful SIFT points, which cost more computational recourses. Table 4.1 shows that the 

processing time for SIFT points is around 1.7 seconds. The processing time for thresholds 5, 

7 and 10 are similar which means the processing time will not be further reduced when the 

threshold increases. Also, according to the result images at threshold 10, all important 

objects were detected by the SIFT points and with the lowest noise points. As a result, the 

SIFT threshold was set as 10. The table below shows all the setting of the SIFT detection 

according to the experiments. 
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Parameters Values 

𝝈𝝈𝑵𝑵 (SigmaN) 0.5000 

𝝈𝝈𝑶𝑶 (SigmaO) 2.0158 

 𝑶𝑶 (Number of Octaves) 7.0000 

𝑶𝑶𝟏𝟏 (First Octave) -1.0000 

𝑺𝑺𝒎𝒎𝒎𝒎𝒎𝒎 (Smin) -1.0000 

𝑺𝑺𝒎𝒎𝒎𝒎𝒎𝒎 (Smax) 3.0000 

EdgeThreshold 10.0000 

Table 4.2: SIFT parameters. 

4.1.6 Classification 

The interest points extracted by the SIFT feature from an image are sent to a classifier model 

by SVM. First of all, the SIFT feature is scale-and-rotational invariant, so it is unnecessary 

to organise the training samples into different directions and scales. However, the positive 

and negative points have to be distinguished for the generation of the classification model. 

The background was removed from the sample images and collect the SIFT point descriptors 

of the vehicles in the images, which can remove the SIFT point descriptor from the 

background in order to set as the positive sample (Figure 4.5). 

 

Figure 4.5: Examples of positive sample selections of SIFT points (First row: original 

sample images; second row: the background removal; third row: distributions of SIFT 

point’s). 
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4.1.7 Bag-of -Words 

After extracted the SIFT points, Bag-of-Words feature [124] was applied into classification. 

The goal of using this approach is to distinguish the SIFT points as being part of particular 

vehicles or other objects in the environment. Having extracted SIFT features from the 

training data, both positive and negative samples, the recognition algorithm determines 

which the testing area belongs to by selecting the most often occurring SIFT combinations 

matching the classification, which is the “Bag” feature.  

The first step of the algorithm is to collect SIFT features from the training samples and 

cluster them into a visual vocabulary, called “visual words”. After all of these features were 

extracted from the training data, these can be clustered using k-means clustering, which the 

cluster centres can be defined as the “visual words” (Figure 4.6).  

 

Figure 4.6: Bag-of-Words process. 

 

4.1.8 SVM Classifier Model 

850 positive samples were selected, which 42,617 SIFT points were extracted, and 260 

negative samples, which 16,518 SIFT points were extracted. Each SIFT point has a 128 

bytes descriptor. All 59,135 SIFT point descriptors were inserted into the SVM classifier to 

create the training model. The SVM can find hyper plans in a kernel-induced feature space, 

which can divide the training samples into two separate groups: a positive sample group, 

labelled as 1 and a negative sample group, labelled as 0. After the SVM modelling, the 

system can now make decisions on whether the input point is related to a vehicle or others 

object based on the point descriptors.  
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Figure 4.7: Examples of detection results using the SIFT feature approach. 

The system was now able to carry out vehicle detection by itself; however, the detection 

results were not good enough. In the Figure 4.7, which is an example of the detection results, 

two environment objects were detected as the vehicle and one of the vehicles was detected as 

two vehicles separately. To improve detection performance, a dimension for final decision 

making was applied, which is the Implicit Shape Model. The ISM algorithm was intergraded 

with the SIFT model, which created a new detection process and increased the detection 

accuracy.  

The classification accuracy was evaluated by using different SIFT thresholds. The 

thresholds of the SIFT can directly affect the numbers of SIFT points that can be detected; 

with a larger threshold applied, less SIFT points can be detected. Furthermore, the AdaBoost 

feature was also applied into the SVM classifier training process, which increased the 

classification accuracy. Figure 4.8 shows the classification accuracy of different SIFT 

vectors, with and without the AdaBoost. As the Figure 4.8 shows, when the threshold of the 

SIFT is decreased, more points will be extracted, so there will be more information on the 

features, which increases the accuracy of classification. Below a threshold value of 10, the 
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accuracy has reached its saturation, so there is no need to use a lower threshold; that would 

give us too many points, which could reduce the efficiency of the process. 

In addition, the results using AdaBoost are clearly higher than those attained by using 

just the original SVM model. The AdaBoost can perform a constrained gradient descent to 

optimise the margin in order to minimise the errors. In the literatures [125, 126, 127, 128], 

the detection performance can be boosted by adding the AdaBoost mechanism into the 

classification process. Thus, the AdaBoost was used in the classification training process. 

 
Figure 4.8: Classification results using SVM and SVM with AdaBoost. 

 

4.2 Implicit Shape Model (ISM) 

The Implicit Shape Model was originally proposed by Leibe and Schiele [129]. It offers 

reasonably good detection results for various object categories. The ISM separates object 

detection and figure-ground segmentation, which are the most distinct features of the object 

detection process, into two interactional processes. The ISM approach is based on a model of 

the object and the shape descriptors of the object. The centre of the object is predicted by 

locating the local features around it. With different descriptors, totally different results from 
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each object category group can be created, so the local image descriptors for the training 

samples need to be carefully considered before generating the overall object category. In the 

proposed approach, edge feature descriptors were used to determine the centres of vehicles. 

The Implicit Shape Model framework can be divided into five steps: 

• Codebook generation 

• Learning of spatial occurrence distribution 

• Hypothesis generation 

• Figure-ground Segmentation 

• Minimum-description-length based verification 

4.2.1 Codebook Representation 

The first step of ISM is to create a vocabulary codebook based on the training samples 

(Figure 4.9). The key reason for this is to let the ISM automatically learn a large group of 

samples and generate local appearance prototypes. This process can divide the modelling 

into sub-sectors which can achieve better representative structures.  

The codebook process is linked with the SIFT point detection method that is an earlier 

step of the programme. The reason for use this method was to identify the informative and 

distinctive locations of vehicles. In this process, the edge features of the local area features 

were used around the SIFT point, which are extracted and represented in a feature 

description. The edge feature descriptors are then grouped with an unsupervised clustering 

scheme to model different types of similar features. The method used agglomerative 

clustering for the process because it is found that agglomerative clustering offers better 

object detection performance. The agglomerative method sets every feature as a separate 

cluster and computes the similarity between all clusters. It is also noticed that this feature 

similarity can be aggregated in different forms as the descriptors contain several features. 

The forms of measurements are: single-linkage, complete-linkage, group average, minimum 

variance etc. Similar clusters are then merged repeatedly based on these measurements until 

a single cluster has been computed. The final cluster results are represented in hierarchy 

format. However, Leibe points out that the agglomerative algorithm method requires higher 

computational resources. The agglomerative algorithm has to compute the similarity 

between the object matrixes, which requires more computer memory, which often limit the 

number of object features that can be processed. The programme used an algorithm based on 
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reciprocal nearest-neighbour pair construction, which means that if a point p is assumed the 

nearest neighbour of q, then point p and q will be considered a pair. However, this approach 

is only applicable to the clustering distance measure; in this case, Euclidean distance was 

used for shape context descriptors and Chamfer distance was used for edge patches. In the 

agglomerative clustering, when the distance between all pair clusters is above the threshold 

have been set, the clustering process is stopped. The clustering continued until the size 

reaches a certain value, to make the different feature representations more comparable. It 

was found that agglomerative clustering generates not only large clusters, but also many 

small clusters, which means some areas of the sample images are described in detail and 

others are more general. The experimental results show that this can create a better 

classification model for the recognition process compared with pure K-means clustering, 

which generates more balanced clusters.  

 
Figure 4.9: An example of a vocabulary codebook. 

4.2.2 The Spatial Occurrence Distribution 

After the generation and clustering of the codebook, the implicit shapes of vehicles were 

defined with different appearances that have consistent relevance to each other. The main 

purpose for using this method is that the codebook is flexible and similar testing images can 

be categorised in detection. After the first step, which is the SIFT point detection, lots of 

superimposed image patches were obtained for further detection. It is assumed that this 

would take longer time if all of these image patches have to processed, so the advantage of 

using implicit shapes is that the system can learn and classify from a relatively low number 

of samples, which somewhat reduces the processing time. Furthermore, the detection can 
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made sure that if the candidate image patch contains any edges or corners of vehicles, the 

system is able to combine this information and self-predict the centre of the vehicle. 

The model for clustering has fully covered all the possible shapes of vehicles; it also 

has a probability distribution for the shapes in the codebook which specifies the predicted 

positions of the centre of the vehicle. It is assumed that the distributions of the codebooks 

could be related to each other, the codebook objects were combined during detection. In 

order to predict the right direction of the centre of the vehicles, this method performs a 

further matching detection process on the descriptors around the interest points, where the 

descriptors will not only contrast with their nearest neighbours, but also with the entire 

codebooks’ images. The matching results were weighted by the probability of the alignment 

and the position relative to the vehicle’s centre. (Figure 4.10) 

The SIFT and ISM detection process is carried out as by a loop. In the first step, the 

SIFT point detection was applied to the input images which gives the descriptors of the 

interest points. Note that, before the process begins, a SVM model of the SIFT points from 

the training samples has been created, ready for the next step of the process. In the next step, 

all the SIFT point descriptors extracted from the input image were put into the SVM model. 

The model will classify the SIFT points into positive and negative results. In this case, it 

only needs the positive results that are related to vehicles. The regions around the positive 

SIFT points are extracted for matching with the codebook in the following step; also note 

that the codebook for vehicles must be created beforehand, the same as the model. In this 

step, two processes that must be carried out; the first is the decision of the SVM model on 

the SIFT points and the second is how the regions around these positive SIFT points relate to 

the codebook database. In each of these two processes, the threshold plays a crucial role that 

will directly affect the detection results. A low thresholds of the SIFT matching process was 

used according to the testing, which need as many interest points as possible to avoid 

missing any important features in the beginning of detection. However, a slightly higher 

threshold was used for the codebook matching process that can achieve a better matching 

result. At the same time, it can also allow the algorithm to avoid matching errors, as some 

local features are very similar to each other, so stricter thresholds are needed. Once the 

matching processes are completed, the algorithm gives us the rough location of the centre of 

the vehicles in the input images. Once the hypothetical centres of the vehicles in the input 

image are evaluated, their distributions were also analysed. The Figure 5.10 shows the 

process diagram of this proposed detection approach. 
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Figure 4.10: The diagram of the ISM-SIFT detection process.  

 

4.3 Evaluation 

As same as in the last chapter, the five testing videos containing different challenges were 

used in the testing of this detection approach (Figure 4.11). Testing was divided into separate 

steps. Firstly, detection using only SIFT was applied. Then the ISM and SIFT method was 

applied to compare the results. Detection performance was evaluated by the detection 

hypotheses matrix and the F-measure metric. 

 

Figure 4.11: An example of the ISM-SIFT detection process. (Left: the SIFT point detection, 

Middle: codebook selections, Right: final detection) 

Using this approach, vehicles can be detected based on interest point features and 

shape features. The proposed detection approach is invariant to image translation, scaling 
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and rotation, and partially invariant even to illumination changes, which means it can tackle 

most vehicle detection challenges (Figure 4.12).  

 

Figure 4.12: Examples of detection results using the ISM-SIFT detection approach. 

The detection process was applied to each frame of each of the videos and the overall 

detection results were calculated. Table 4.3 shows the results of using the SIFT feature only. 

As the table shows, the detection achieved around 90% accuracy and F-measure, except 

Video 5, which has a higher accuracy. This is because, in Video 5, only one vehicle appears 

in each frame, so there is less noise to affect the detection process. 

Data 
set Vehicles TP FP FN Accuracy 

(%) 
F-measure (%) 

Video 1 5324 4863 802 461 91.34% 88.51% 
Video 2 5511 4938 513 573 89.60% 90.09% 
Video 3 5134 4722 489 412 91.98% 91.29% 
Video 4 1848 1589 305 259 85.98% 84.93% 
Video 5 1918 1886 55 32 98.33% 97.75% 
Table 4.3: The results of detection using SIFT feature only. 

Then the ISM and SIFT detection method was used on each testing video. Table 4.4 

displays the results of using this method. The detection results are improved over those in 

the last table. The false positive values have been decreased by this method because of the 

ISM feature. The detection results have achieved above 90% in both accuracy and F-measure.  
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Data 
set 

Vehicles TP FP FN Accuracy 
(%) 

F-measure (%) 

Video 1 5324 5142 411 182 96.58% 94.55% 
Video 2 5511 5212 336 299 94.57% 94.26% 
Video 3 5134 4837 316 297 94.22% 94.04% 
Video 4 1848 1699 223 149 91.94% 90.13% 
Video 5 1918 1893 47 25 98.70% 98.13% 
Table 4.4: Results of detection using ISM+SIFT feature. 

The bar chart in Figure 4.13 shows a general view of the detection results of using both 

methods. 

 

Figure 4.13: A bar chart of all detection results. 

 

4.4 Conclusions 

This chapter has proposed a novel detection approach of ISM-SIFT. The proposed 

approach has been explained in details in this chapter, which it used combinations of point 

with shape features to detection the vehicles. The main contribution of the proposed 
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approach is to solve the challenges of different size, shape and orientation of the target 

vehicles during the detection. The point feature detection has the benefits of scale invariant, 

rotate invariant and affine distortion invariant then the region texture features and it also has 

the benefit of insensitive to the blur problem. This can be concluded in the detection 

accuracy result comparison with the HSV-GLCM approach in the previous chapter. The 

detection results in in the video 4, which is the blurring problem taking place, are 88.91% vs 

91.94% in the final approach, and also in the video 5, which is the changing appearance and 

size challenge, the detection result is higher than others in 98.22% and 98.70%. The average 

detection accuracy in video 1, 2 and 3 is around 94% in both ISM-SIFT and HSV-GLCM 

approach. This can be conclude that the proposed method could handle the complex 

background, occlusion and blocked vehicle challenges. 

However, there are few points that still have to be discussed. First of all, the false 

positive values given by the SIFT method were very high, which is because the SIFT values 

of the background are similar to those of vehicles. Adding the ISM feature meant there was 

one more filter which could detect the shape of the object and predict the centre, so the false 

positives were decreased significantly. Moreover, both the ISM and SIFT method require 

high computational resources leading to an inefficient process. In order to increase the 

performance speed and efficiency, a novel FAST and HoG detection approach will be 

discussed in the following chapter.  
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Chapter 5   

The Proposed FAST and HoG Detection 

System 

In this chapter, the FAST and HoG features for vehicle detection systems will be described. 

The proposed detection system that uses these features comprises three stages: region of 

interest selection, classification and detection. The vehicle detection system is initialised 

with the region of interest selection process, which attempts to identify the regions of the 

image that are more likely to have vehicles. This process uses the FAST corner detector and 

a density estimation technique to identify the regions with high-density corner points. Then 

the classification stage categorises the regions of interest into vehicle and environment 

through the extraction of the Histogram of Oriented Gradients (HoG) feature. The 

classification stage uses Support Vector Machines (SVM) to create a classification model 

using training samples. Finally, the detection process attempts to locate the vehicles in the 

image from the overlapping detected windows. 

5.1 Region of Interest Selection (ROI) 

Performing an entire search over all image sections on multiple scales is very 

computationally expensive and often excessive, as vehicles are more likely to occupy a small 

area in the image. Therefore, selecting regions of interest prior to classification is an 

important stage in the development of a real-time system. The selection of regions of interest 

depends on the observation of man-made objects, specifically vehicles, which have a large 

number of edges and corners in a certain area compared to other background objects such as 

roads, trees and buildings. With this observation, the algorithm uses an efficient sliding 

window technique to select regions in the images with a high density of corner features, and 

consequently selects the regions that are most likely to contain vehicles. To detect the corner 

features, this detection method proposes the use of the Feature from Accelerated Segment 

Test (FAST) corner detector. The reason for use FAST is that it has a similar corner response 

to other features, such as the Harris corner detector [130], but it processes faster.   
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5.1.1 Feature from Accelerated Segment Test (FAST) 

The Feature from Accelerated Segment Test (FAST) detector was developed by Rosten and 

Drummond [131] and is based in principle on the SUSAM corner detector [132]. The FAST 

detector classifies a pixel p as a corner by performing simple brightness tests on a discretised 

circle of 16 pixels around p. The basic method is shown in Figure 5.1. If there are 12 

contiguous pixels around pixel p with intensities that are all brighter or darker than the 

centre pixel p by a threshold t, pixel p is detected as corner. For this test condition to be 

satisfied, three of the four pixels at circle positions 1, 5, 9 and 13 must have intensity above 

or below the intensity of p by threshold t. This allows the test process to be optimised by 

testing these four pixels first before examining all pixels in the circle.  

In contrast to the Harris corner detector, the FAST detector does not compute a corner 

response function. Therefore, to perform non-maximal suppression the following score 

function must be evaluated for each candidate corner: 

 Score (𝑦𝑦) = MAX � � �𝐼𝐼𝑞𝑞 − 𝐼𝐼𝑝𝑝�
𝑞𝑞∈𝑆𝑆𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ𝑡𝑡

− 𝑦𝑦,   � �𝐼𝐼𝑝𝑝 −  𝐼𝐼𝑞𝑞� − 𝑦𝑦
𝑞𝑞∈𝑆𝑆𝑑𝑑𝑑𝑑𝐵𝐵𝑑𝑑

�  ( 5.1 ) [131] 

where Sbright is the subset of pixels in the circle that are brighter than p by threshold t and 

Sdark is the subset of pixels that are darker than p by t. 

 

Figure 5.1: The FAST corner detector; a discretised circle of 16 pixels around pixel p. 
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With different thresholds t applied to the FAST detection, the detector gives us 

different corner detection results. If the threshold t is high, fewer corners are detected and 

less computational process time is needed; otherwise, more corners are detected and more 

computational power are required (Figure 5.2). During detection, there is no need to get too 

much corner information. Thus, in this approach, the threshold for the FAST corner detector 

is set to 30 (Figure 5.3) which detects most corner features are needed. The threshold was 

tested on the training videos and it satisfied the requirement. 

 

Figure 5.2: The number of corner points at different FAST thresholds. 
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Figure 5.3: FAST corner detection with different thresholds t. 

5.1.2 Feature Density Estimation 

Having detected the FAST corner features, the next stage of the algorithm is to identify 

regions within the image that have a high concentration of these features. This is achieved by 

sliding a window over every location in the test image and selecting the windows that have a 

feature density greater than a certain threshold.  The density maps are shown in Figure 5.4 

which gives us a general idea of the corner point density distributions. 
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Figure 5.4: FAST corner density at different thresholds t. 

Given a window with whose top left corner is (𝒎𝒎, 𝒚𝒚) with width w and height h, the 

feature density for this window is calculated by the score function: 

 Score (𝑀𝑀, 𝑦𝑦, 𝑤𝑤, ℎ) =
𝑒𝑒𝑚𝑚,𝑦𝑦,𝑤𝑤,ℎ

𝑤𝑤 × ℎ   ( 5.2 ) 

where Sx,y,w,h is the number of features detected within the window. By sliding the 

window over the image at multiple scales and normalising Sx,y,w,h by the area of the window, 

this allows to build a scale-invariant detector with the ability to detect vehicles at multiple 

scales in the image.  
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The efficient computation of the number of features in a window is determined using 

integral images. Given a set of FAST corners for a query image, a corner image i(𝑢𝑢, 𝑣𝑣) can 

be created where the value at any point is 1 or 0, indicating the presence or absence of a 

corner respectively. For this corner image, the corresponding integral image I(𝑖𝑖, 𝑗𝑗) is the 

image, where each point (𝑖𝑖, 𝑗𝑗) is computed as the sum of all the corners above and to the left 

of (𝑖𝑖, 𝑗𝑗) inclusive: 

 I(𝑖𝑖, 𝑗𝑗) = � 𝑖𝑖(𝑢𝑢, 𝑣𝑣)
𝑢𝑢≤𝑖𝑖,𝑣𝑣≤𝑖𝑖

 
( 5.3 ) 

This image can be computed efficiently in a single pass over the corner image. Once 

computed this image allows for the evaluation of any window in constant time with only 

four lookups, where by the number of features in the window is computed as:  

 𝑆𝑆𝑚𝑚,𝑦𝑦,𝑤𝑤,ℎ = 𝐼𝐼(𝑀𝑀 + 𝑤𝑤, 𝑦𝑦 + ℎ) + 𝐼𝐼(𝑀𝑀, 𝑦𝑦) − 𝐼𝐼(𝑀𝑀 + 𝑤𝑤, 𝑦𝑦) − 𝐼𝐼(𝑀𝑀, 𝑦𝑦 + ℎ)  ( 5.4 ) 

 

Figure 5.5: Feature density estimation sliding windows. 
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5.2 Feature Extraction 

Feature extraction is a special form of dimensionality reduction; it is the process of 

transforming an image into a reduced representation that describes the most informative 

features in the image. In the proposed system, feature extraction is used to transform the 

image patches selected by region of interest detection into a representation that can be 

presented to a classifier. The representation must be invariant to changes in scale and 

rotation to enable vehicles to be recognised irrespective of their size and orientation in the 

image. In addition, this representation must also be invariant to illumination changes, colour 

and motion blur, as well as intra-class variations and partial occlusions. These properties are 

necessary to ensure that the classifier generalises well and is capable of identifying a diverse 

variety of vehicles under a wide range of conditions. Furthermore, the representation also 

needs to be sufficiently distinctive in order to maximise the classification accuracy, and due 

to the real-time requirement of the system it must also be computationally fast. 

Humans are very good at recognising vehicles in aerial imagery, for this reason Zhao 

et al. [133] carried out a series of psychological tests to find out what features of vehicles 

humans use to allow us to make the decision about the presence of a vehicle. They found that 

the two most significant features were the rectangular shape and the presence and position of 

the frontal and rear windshields. Shape is recognised by the presence and position of edges, 

for a vehicle these edges consist of four primary edges that identify the outline of the vehicle 

and a set of secondary edges for the windshields. Therefore, to capture this information a 

feature descriptor is required, which is capable of encoding this edge information.  

The idea behind the Histogram of Oriented Gradients (HoG) descriptor is that the 

shape of objects can often be well described by the distribution of edge directions, even 

without precise information on the edges themselves. This makes it a good choice for vehicle 

detection, because edges on vehicles can generally be grouped in two major edge directions; 

the direction of the sides and the direction of the back, front and windshield edges. 

Furthermore, these edge orientations are largely perpendicular and therefore this gives a 

common distribution of edge directions among vehicles. In addition, the HoG descriptor is 

advantageous as it is relatively invariant to the geometric and photometric changes described 

above. A weakness of the HoG descriptor is that it is not rotationally invariant; however, this 

functionality is provided by the classification approach. The remainder of this section 
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describes the theoretical aspects and the problem specific formulation of the HoG feature 

vector. 

5.2.1 Histogram of Oriented Gradients (HoG) 

The Histogram and Oriented Gradients (HoG) feature was developed by Dalal and Triggs 

[33] and was originally proposed for the task of human detection. The main principle of HoG 

descriptors is the identification of the appearance and shape of objects in an image by using 

the distribution of intensity gradients or edge directions. The implementation of these 

descriptors can be achieved by dividing the image into small regions called cells; for each 

cell, a histogram of gradient directions or edge orientations for the pixels within that cell is 

compiled. The descriptor represents the combination of these histograms. To improve the 

performance of the HoG descriptor, the local histogram can be contrast-normalised by 

calculating the intensity across the region of the image (called a block), and then using this 

value to normalise all cells within the block. This normalisation results in better invariance 

to changes in illumination or shadowing. The extraction of a HoG feature vector from a 

detection window is composed of five steps:  

 Normalise gamma and colour  

 Compute gradients  

 Weighted vote into spatial and orientation cells  

 Contrast normalise overlapping spatial blocks  

 Collect HoG’s over detection window  

After colour and gamma normalisation, edges are detected by convolving the image 

patch with the simple 1D [−1,0,1] mask both horizontally and vertically. Specifically, this 

method requires filtering the greyscale image with the filter kernels: 

 𝐷𝐷𝑚𝑚 = [−1 0 1] 𝑀𝑀𝑀𝑀𝑚𝑚 𝐷𝐷𝑦𝑦 = �
1
0

−1
�  ( 5.5 ) [33] 

In the second step the image patch is subdivided into rectangular regions called cells. 

The gradient for each pixel within each cell were computed. In colour images the gradient is 

computed separately for each channel and the largest gradient is chosen for the gradient for 

that pixel. So, being given an image I, the x and y derivatives were obtained by using a 

convolution operation: 
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 𝐼𝐼𝑚𝑚 = 𝐼𝐼 × 𝐷𝐷𝑚𝑚 𝑀𝑀𝑀𝑀𝑚𝑚 𝐼𝐼𝑦𝑦 = 𝐼𝐼 × 𝐷𝐷𝑦𝑦  ( 5.6 ) [33] 

The magnitude of the gradient is: 

 |𝐺𝐺| = �𝐼𝐼𝑚𝑚
2 + 𝐼𝐼𝑦𝑦

2  ( 5.7 ) [33] 

The orientation of the gradient is given by:  

 θ = arctan
𝐼𝐼𝑦𝑦

𝐼𝐼𝑚𝑚
  ( 5.8 ) [33] 

 

In the next step, each pixel within the cell then computes a weighted vote for the 

orientation of the cell, where the vote is weighted by the gradient magnitude (i.e. the L2 

norm). These votes are accumulated into orientation bins; a vote is cast into the closest bin in 

the range 0 to 180 degrees or 0 to 360 degrees, depending on whether it is unsigned or 

signed gradient. In this algorithm, the gradient is unsigned, so the range is 0 to 180 degrees. 

These gradients are stored in a histogram. Dalal and Triggs found that using a conjunction 

with nine channels in the histogram for unsigned gradients can lead to better performance by 

the algorithm. 

In the penultimate step, local contrast normalisation is used to suppress the effects of 

changes in illumination and contrast with the background on the gradient magnitude. This 

stage was found to be essential for good performance and is achieved by grouping cells into 

large blocks and normalising within these blocks, ensuring that low-contrast regions are 

stretched. In addition, to ensure consistency across the image patch but still keep local 

variations, overlapping blocks can be used. The HoG descriptor is then the vector of the 

components of the normalised cell histograms from all of the block regions. 

There are different methods for block normalisation. Let v be the non-normalised 

vector containing all histograms in a given block, ‖𝑣𝑣𝑘𝑘‖be its k-norm for k = 1, 2 and e be the 

constant. The normalisation factor L2-nor: 

 𝑓𝑓 =
𝑣𝑣

�‖𝑣𝑣‖2
2 + 𝑒𝑒2

  ( 5.9 ) [33] 

Finally, the normalised orientation histograms for each cell are collected together and 

result in a b × 𝑝𝑝𝑚𝑚 × 𝑝𝑝𝑦𝑦–dimensional feature vector where the number of orientation bins is, 

𝑝𝑝𝑚𝑚 × 𝑝𝑝𝑦𝑦is the number of image cells.  
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The HoG approach provides a reasonably flexible descriptor that can be tuned for 

different applications.  Naturally this leads to a range of choices that have to be made, such 

as cell size, block size and number of orientation bins, which will be discuss in the next 

section, on classification. 

5.3 Classification 

The HoG feature vectors extracted from the Regions of Interests (RoI) are set to a binary 

classifier which determines the presence of a vehicle in the image patch. As mentioned, the 

HoG features need to set a range for cell size, block size and number of orientation bins. It is 

also noticed that the HoG features are not rotationally invariant in the previous section. As a 

result, the parameters for the HoG feature were evaluated in order to achieve better detection 

performance. 

First of all, the HoG features are not rotationally invariant, therefore to facilitate the 

detection of vehicles at all orientations, this functionality must be provided at the 

classification stage. The conventional method to achieve this is to train one classifier on 

images of vehicles at a single “norm” orientation and then evaluate each region of interest at 

multiple orientations by rotating the detection window. However, the drawback of this 

method is that the HoG features have to be recomputed for each rotation, which is 

computationally expensive. Instead, four separate Support Vector Machine (SVM) models 

are trained on sample vehicles images that are categorised into one of four angular offsets to 

horizontal, which are 0°, 45°, 90° and 135° (Figure 5.6). These four SVM models are then 

combined to construct a single classifier that evaluates a rotationally invariant response for a 

single HoG feature vector.  

 

Figure 5.6: Original sample, 0° orientation, 45° orientation, 90° orientation, 135° orientation. 

The parameters of HoG include the size of HoG cell, the number of cells in a block, 

the number of overlapping cells between adjacent blocks and the number of orientation 

histogram bins.  
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Cell size is specified in pixels as a two-element vector. For large-scale object feature 

extraction a larger cell size is needed, but when the cell size is increased, small-scale detail 

might be lost. Block size is the number of cells in one block. A small block size helps to 

capture the significance of local pixels; it can also help suppress illumination changes to 

HoG features. The number of orientation histogram bins is specified as a positive scalar. To 

encode finer orientation details, the number of bins should be increased. Increasing this 

value increases the size of the feature vector, which requires more time to process. 

The training and detection window of this algorithm is 70 × 70 pixels. So the best 

combination of cell size and block size will be divisible by 70. The testing was categorised 

into six groups by cell size, and for each group different block size were extracted (Table 

5.1). In each combination of cell size and block size, the number of orientation histogram 

bins was set to nine, which provided a reasonably low dimensional feature vector that 

delivered good descriptive power and resulted in better classification accuracy. 

Cell size (pixel) Block Size (Cell) 
35 × 35 1 × 1 2 × 2    
14 × 14 1 × 1 2 × 2 3 × 3 4 × 4 5 × 5 
10 × 10 1 × 1 2 × 2 3 × 3 5 × 5 7 × 7 
7 × 7 1 × 1 2 × 2 4 × 4 7 × 7 10 × 10 
5 × 5 1 × 1 2 × 2 3 × 3 4 × 4 14 × 14 
2 × 2 1 × 1 2 × 2 7 × 7 14 × 14 35 × 35 

Table 5.1: Cell size and block size table. 

The HoG features were extracted from the training samples with different parameters 

to get HoG descriptors. The training samples were grouped into positive samples and 

negative samples (Figure 5.7). The positive samples selected were basic 70 × 70  pixel 

windows containing a single vehicle. Additionally, 10 samples were selected from different 

frames in the video for each vehicle so it could obtain training sample features in different 

conditions. The negative samples were selected from the environment objects in the videos, 

such as road markings, street lights, buildings and plants. Because the HoG feature is a 

texture-based detection method, the samples should be selected from featured objects rather 

than coloured objects, unlike GLCM feature training samples. The sizes of the HoG feature 

descriptors vary depending on the cell size and block size. These descriptors of both positive 

and negative samples were applied to the SVM classifier to create the classification model, 

and then the classification performances of each model were evaluated. The most accurate 

model was used as the HoG parameter setting for the detection system. 
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Figure 5.7: Examples of positive samples (top) and negative samples (bottom). 

There were 2,100 positive samples (labelled as 1) and 1,810 negative samples (labelled 

as 0) selected. The classification models calculated by the SVM are based on these samples. 

To evaluate the models’ performance, all the training data were applied to the SVM model, 

which gives a prediction label for each training sample.  

The following figures (5.8 to 5.13) show HoG descriptor visualisations and the 

histogram charts for a single training sample (Figure 5.7) which gives a general idea of how 
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the HoG feature applied during the detection. The tables (5.2 to 5.7) display the descriptor 

size and the evaluation results of the classification model with different parameters (cell size 

and block size).  

 

Figure 5.8: HoG descriptors and histogram values of cell size group 35 × 35. 

Cell Size 
(Pixel) 

Block Size 
(Cell) 

Number of 
descriptors 

TPR 
(%) 

FPR 
(%) 

TNR 
(%) 

FNR 
(%) 

35 × 35 1 × 1 36 89.57 11.77 88.23 10.43 
35 × 35 2 × 2 36 93.48 18.84 81.16 6.52 

Table 5.2: Classification accuracy for cell size group 35 × 35 pixels. 

 

 

Figure 5.9: HoG descriptors and histogram values of cell size group 14 × 14 pixels. 
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Cell Size 
(Pixel) 

Block Size 
(Cell) 

Number of 
descriptors 

TPR 
(%) 

FPR 
(%) 

TNR 
(%) 

FNR 
(%) 

14 × 14 1 × 1 225 97.05 5.64 94.36 2.95 
14 × 14 2 × 2 576 99.19 2.10 97.90 0.81 
14 × 14 3 × 3 729 98.95 2.76 97.24 1.05 
14 × 14 4 × 4 144 94.90 8.51 91.49 5.10 
14 × 14 5 × 5 225 96.00 7.46 92.54 4.00 

Table 5.3: Classification accuracy for cell size group 14 × 14 pixels. 

 

Figure 5.10: HoG descriptors and histogram values of cell size group 10 × 10 pixels. 

Cell Size 
(Pixel) 

Block Size 
(Cell) 

Number of 
descriptors 

TPR 
(%) 

FPR 
(%) 

TNR 
(%) 

FNR 
(%) 

10 × 10 1 × 1 441 98.95 2.98 97.02 1.05 
10 × 10 2 × 2 1296 99.90 0.55 99.45 0.10 
10 × 10 3 × 3 2025 99.90 0.61 99.39 0.10 
10 × 10 5 × 5 900 97.43 3.70 96.30 2.57 
10 × 10 7 × 7 441 96.19 5.52 94.48 3.81 

Table 5.4: Classification accuracy for cell size group 10 × 10 pixels. 

 

Figure 5.11: HoG descriptors and histogram values of cell size group 7 × 7 pixels. 
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Cell Size 
(Pixel) 

Block Size 
(Cell) 

Number of 
descriptors 

TPR 
(%) 

FPR 
(%) 

TNR 
(%) 

FNR 
(%) 

7 × 7 1 × 1 900 100 0.17 99.83 0 
7 × 7 2 × 2 2916 100 0 100 0 
7 × 7 4 × 4 2304 100 0.39 99.61 0 
7 × 7 7 × 7 1769 98.43 2.65 97.35 1.57 
7 × 7 10 × 10 900 97.05 4.03 95.97 2.95 

Table 5.5: Classification accuracy for cell size group 7 × 7 pixels. 

 

 

Figure 5.12: HoG descriptors and histogram values of cell size group 5 × 5 pixels. 

 

Cell Size 
(Pixel) 

Block Size 
(Cell) 

Number of 
descriptors 

TPR 
(%) 

FPR 
(%) 

TNR 
(%) 

FNR 
(%) 

5 × 5 1 × 1 1764 100 0 100 0 
5 × 5 2 × 2 6084 100 0 100 0 
5 × 5 3 × 3 11664 100 0 100 0 
5 × 5 4 × 4 5184 100 0 100 0 
5 × 5 14 × 14 1764 97.62 2.87 97.13 2.38 

Table 5.6: Classification accuracy for cell size group 5 × 5 pixels. 
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Figure 5.13: HoG descriptors and histogram values of cell size group 2 × 2 pixels. 

Cell Size 
(Pixel) 

Block Size 
(Cell) 

Number of 
descriptors 

TPR 
(%) 

FPR 
(%) 

TNR 
(%) 

FNR 
(%) 

2 × 2 1 × 1 11025 100 0 100 0 
2 × 2 2 × 2 41616 100 0 100 0 
2 × 2 7 × 7 44100 100 0 100 0 
2 × 2 14 × 14 28224 100 0 100 0 
2 × 2 35 × 35 11025 100 0 100 0 

Table 5.7: Classification accuracy for cell size group 2 × 2 pixels. 

 

Figure 5.14: False positive rate for different cell size groups. 
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According to the tables (5.2 to 5.7) and figures (5.7 to 5.14) above, it can conclude that 

a small cell size gives more HoG feature information, which can achieve greater 

classification model accuracy. It is also noticed that, as the number of HoG descriptors 

increases, more computational resources are needed, which entails a longer processing time. 

The False Positive Rate (FPR) figure for all of the groups to compare has shown which 

combination is the best for detection (Figure 5.14). According to all the results, cell size 

groups 35 × 35 and 2 × 2 should be rejected, because cell size group 35 × 35 offers less 

much lower classification accuracy and cell size groups 2 × 2 and 5 × 5 have many more 

descriptors, which are not necessary for such a large amount of data. Two combinations have 

been selected as the candidates for the final parameters: cellsize 10 × 10 with blocksize 2 × 2, 

and cellsize 7 × 7 with blocksize 1 × 1.  Both sets have a nearly 100% true positive rate, and 

a less than 1% false positive rate. The difference between them is that the 10 × 10 group has 

1,296 descriptors and 7 × 7 group has 900, which can reduce the computational resources 

needed. So both descriptors were used in the classifications which will be discussed later in 

this chapter. 

As mentioned, the classification model was trained from four angular offsets to 

horizontal to solve the rotational invariance problem. Figure 5.15 below gives the HoG 

features for all offset groups from a training sample. Each offset group created one 

classification model and all of these were integrated into one main classification model.  

 

Figure 5.15: Four orientations offset group for training. 
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The testing used two size combinations: cell size 10 × 10 pixels and block size 2 × 2 

cells, and cell size 7 × 7 pixels and block size 1 × 1, which were the candidates for HoG 

parameters, to train the models separately. The images below show the SVM training model 

graph of both cell size groups in each orientation of all training samples.   

 

 

Figure 5.16: SVM training model for cell size 10 × 10. (Top-left: 0°, top-right: 45°, bottom-

left: 90°, bottom-right: 135°) 
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Figure 5.17: SVM training model for cell size 7 × 7. (Top-left: 0°, top-right: 45°, bottom-

left: 90°, bottom-right: 135°) 

According to the graphs (Figures 5.16 and 5.17), models of cell size 10 have more 

centralised distributions and models of cell size 7 have more scattered distributions, which 

means the features of each group are more independent to each other  in terms of vehicle 

detection. Both classification models were used in the programme to test the accuracy. The 

results (Figure 5.18) show clearly that cellsize 10 × 10 with blocksize 2 × 2 parameters 

achieve the best detection results. As a result, cell size 10 × 10 and block size 2 × 2 were 

used as the HoG parameters. Furthermore, in order to boost the classification accuracy, 

AdaBoost has been applied to the SVM classification which boosted the classifier model.  

 

Figure 5.18: Testing results for 7×7 cellsize (left) and 10×10 cellsize (right). 

 



Chapter 5. The Proposed FAST and HoG Detection System 

112 

 

5.4 Evaluation 

Again, the testing used five videos of different scenarios. This time the AdaBoost 

mechanism was used in classification to improve accuracy. Table 5.8 and 5.9 shows the 

detection accuracy results for each testing video by using FAST-HoG and FAST-HoG with 

the AdaBoost. Figure 5.19 shows some examples of detection results. 

 

Data 
set 

Vehicles TP FP FN Accuracy 
(%) 

F-measure 
(%) 

Video 1 5324 4763 412 561 89.46% 90.73% 
Video 2 5511 4893 431 618 88.79% 90.32% 
Video 3 5134 4679 387 455 91.14% 91.75% 
Video 4 1848 1643 209 205 88.91% 88.81% 
Video 5 1918 1821 58 97 94.94% 95.92% 
Table 5.8: Detection results when using the FAST-HoG method. 

 

Data 
set Vehicles TP FP FN Accuracy 

(%) 
F-measure 

(%) 
Video 1 5324 4972 351 352 93.39% 93.40% 
Video 2 5511 5213 387 298 94.59% 93.83% 
Video 3 5134 4814 296 320 93.77% 93.99% 
Video 4 1848 1723 153 125 93.24% 92.53% 
Video 5 1918 1875 48 43 97.76% 97.63% 
Table 5.9: Detection results when using FAST-HoG with AdaBoost.  



Chapter 5. The Proposed FAST and HoG Detection System 

113 

 

Figure 5.19: Examples of the detection results of using the FAST-HoG approach (with 

AdaBoost). 

5.5 Comparison and Evaluations 

After introduced all three vehicle detection approaches, this section discusses the 

compressions of the proposed detection methods performance to each other and other vehicle 

detection approaches. This could clearly carry out the improvement of the proposed methods 

to others, also indicates the better approach in different scenarios.  

5.5.1 Detection performance 

The tables below (Table 5.10 to Table 5.14) summaries the detection accuracy and F-

measure values obtained by using the three proposed methods (HSV-GLCM with de-

blurring feature, ISM-SIFT feature and FAST-HoG feature) on each testing video. These 

tables can give us a general idea of which detection method performed better in each 

different scenario. 
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Detection Results in Video 1 (2461 frames) 

Method Vehicles TP FP FN Accuracy F-measure 

HSV-GLCM 5324 4942 328 382 92.82% 93.29% 

ISM-SIFT 5324 5142 411 182 96.58% 94.55% 

FAST-HoG 5324 4972 351 352 93.39% 93.40% 
Table 5.10: Detection results for the complex background video (Video 1). 

 

Detection Results in Video 2 (1301 frames) 

Method Vehicles TP FP FN Accuracy F-measure 

HSV-GLCM 5511 5231 266 280 94.92% 95.04% 

ISM-SIFT 5511 5212 336 299 94.57% 94.26% 

FAST-HoG 5511 5213 387 298 94.59% 93.83% 

Table 5.11: Detection results for the occlusion video (Video 2). 

 

Detection Results in Video 3 (1833 frames) 

Method Vehicles TP FP FN Accuracy F-measure 

HSV-GLCM 5134 4938 166 196 96.18% 96.46% 

ISM-SIFT 5134 4837 316 297 94.22% 94.04% 

FAST-HoG 5134 4814 296 320 93.77% 93.99% 

Table 5.12: Detection results for the blocked vehicle video (Video 3). 

 

Detection Results in Video 4 (168 frames) 

Method Vehicles TP FP FN Accuracy F-measure 

HSV-GLCM 1848 1643 152 205 88.91% 90.20% 

ISM-SIFT 1848 1699 223 149 91.94% 90.13% 

FAST-HoG 1848 1723 153 125 93.24% 92.53% 

Table 5.13: The detection results in blurred images video (Video 4). 
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Detection Results in Video 5 (1918 frames) 

Method Vehicles TP FP FN Accuracy F-measure 

HSV-GLCM 1918 1884 56 34 98.22% 97.67% 

ISM-SIFT 1918 1893 47 25 98.70% 98.13% 

FAST-HoG 1918 1875 48 43 97.76% 97.63% 

Table 5.14: Detection results for the changed vehicle size video (Video 5). 

For general viewing, the ISM-SIFT approach has the highest average detection rate 

(95.20%, 94.22%), and is better than HSV-GLCM (94.21%, 94.53%) and FAST-HOG 

(94.55%, 92.28%). However, in certain situations, such as the occlusion challenge in Video 

2 and the blocked vehicle challenge in Video 3, HSV-GLCM achieved higher accuracy than 

the others. In the blurring challenges of Video 4, FAST-HoG method offered the best 

detection results. Therefore, each detection approach achieves differently under different 

difficulties and challenges presented by the testing videos. The proposed tracking system 

with a learning process to constantly update the classifier during the tracking process was 

able to improve detection performance. 

5.5.2 Impact of the training samples 

Each detection approach requires training samples for the classification to be used during the 

detection process. The testing used different numbers of training samples to evaluate the 

effects on classification performance and the sensitivity to the use of different numbers of 

training samples. 

The numbers of training samples were used from 300 to 1,200, which contained 

positive samples and negative sample. The classifier was tested after adding each one more 

sample, and the classification accuracy against the number of training samples was 

calculated.  
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Figure 5.20: The trend lines of detection accuracy based on different training sample sizes. 

The Figure 5.20 shows that the classification accuracy of each method is very sensitive 

to the training samples numbers, which increased when larger training sample size was used. 

However, each curve eventually level off after 1,000 training samples were used, which 

means it became saturated in the end so there is unnecessary to use too much training 

samples in the classifications.  

 

5.5.3 Comparison of Detection Performance 

This experiment evaluated the detection components of the detection approaches. For each 

video sequence the proposed approaches were compared with the approaches using:  

• Vehicle detection by using bLPS-HOG feature [134] 

• Vehicle detection by using SIFT point feature [135] 
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• Vehicle detection by using PLS Hough transform [136] 

• Vehicle detection by using HSV-GLCM approach 

• Vehicle detection by using ISM-SIFT approach 

• Vehicle detection by using FAST-HOG approach 

Table 5.15 shows the results achieved. The accuracy and F-measure are shown for 

each approach. In the Video 1, which contained significant background clutter and objects 

similar to the vehicles, all of the detection results are above 90% as opposed to the compared 

approaches, which offer results lower than ours, especially the PLS Hough, the accuracy of 

which was around 70%. The detection rates in the occlusion situation are lower for all 

approaches, because the detection process is only based on the current image’s features, and 

when the vehicles’ features are joined together detection will fail. However, this problem can 

be solved during the tracking process with additional previous detection and tracking 

information. This phenomenon also applies to the blocked vehicle situation, in which 

vehicles are blocked by the environment. The SIFT and ISM-SIFT approaches are very 

strong in the detection of blurred images and changing size and appearance situations, with 

above 90% detection accuracy. This is due to the nature and characteristics of the SIFT 

feature, which include strong descriptor information.  
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Table 5.15: Comparisons of detection performance using different detection methods. 

 

Data set bLPS-HoG SIFT PLS Hough HSV-GLCM ISM-SIFT FAST-HOG 

Video 1 89.90%/87.13% 70.14%/69.12% 70.52%/68.14% 92.82%/93.29% 96.58%/94.55% 93.39%/93.40% 

Video 2 80.17%/79.16% 70.96%/68.83% 74.21%/72.15% 94.92%/95.04% 94.57%/94.26% 94.59%/93.83% 

Video 3 73.43%/70.96% 74.18%/72.48% 67.15%/65.19% 96.18%/96.46% 94.22%/94.04% 93.77%/93.99% 

Video 4 82.21%/80.33% 93.01%/90.16% 75.33%/73.48% 88.91%/90.20% 91.94%/90.13% 93.24%/92.53% 

Video 5 75.09%/73.66% 96.05%/92.17% 97.91%/95.16% 98.22%/97.67% 98.70%/98.13% 97.76%/97.63% 
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5.6 Conclusions 

This chapter has proposed a FAST-HOG approach to vehicle detection. The approach 

used a modified HoG approach with FAST corner point extraction. This method can 

significantly tackle the complex background and the direction invariant challenges, this 

method also can improve the performance of the process by narrow down the testing regions 

using corner point detection. The AdaBoost mechanism was also added into the 

classification process. According to the experimental results, detection performance is 

improved by using AdaBoost. Also note that for Testing Video 4, the detection results were 

around 90%, thus the blur problem did not affect detection performance. However, because 

this detection method was based on the region texture feature, which means the detection 

performance is relied on the training classifier. Thus, the detection will become unreliable if 

a brand new testing video with environment is used. This challenge can be solved by using 

adaptive model tracking process which can update the detection classifier during the process, 

which will discussed in the following chapter. 

In additional, this chapter compared the three proposed vehicle detection approaches 

(HSV-GLCM, ISM-SIFT and FAST-HoG) with other existing detection methods (bLPS-

HoG, SIFT and PLS Hough). According to the comparison results, it can be concluded that 

the new proposed approaches have improved detection performance under various 

conditions and have better detection accuracy than others. In the next chapter, a new tracking 

mechanism will be discussed. 
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Chapter 6  

The Proposed Self-Learning Tracking 
Detection Approach 
 

In this chapter, a Self-Learning Tracking and Detection (SLTD) approach is proposed. The 

proposed approach can achieve long-term tracking of multiple vehicles in aerial videos. The 

idea of this approach was inspired by the Tracking-Learning-Detection (TLD) approach [18], 

in which the detection and tracking systems are linked by a learning component. The 

learning process can estimate missed detections and false alarms in the tracking process. 

Inspired by this idea, this chapter propose a new self-learning method, which can estimate 

the detector errors and update the detection classification model using the results from 

trackers. It is also assumed that the trackers may make errors during the tracking process, so 

a Forward and Backward Tracking (FBT) approach is proposed in order to monitor tracking 

performance. This approach estimates the discrepancies between the tracked results in time 

sequence order so that unusual appearances in a tracker compared with the previous trackers 

will be considered errors.  

 

6.1 Introduction 

The main challenge of vehicle tracking is caused by the fact that the target vehicle might 

change its appearance or disappear and reappear during the tracking process, which can 

cause errors. The tracking process should be able to handle various problems. First of all, the 

tracker and detector should be scale-invariant to the targets, which can solve the problem of 

the target potentially changing scale in the image when the UAV changes altitude during 
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flight. Secondly, the UAV’s flight direction changes rapidly and unpredictably, which can 

cause apparent changes in the detection of the target. Thus, a rotationally invariant system is 

needed for the process. Furthermore, the illumination of the target may vary depending on 

the UAV’s flight direction and the shooting angle relative to the target which means 

illumination invariance also is a requirement. When the UAV changes its flight direction, the 

images captured by the camera may become blurred and warped, so the images get 

transformed. When such a problem occurs, transformation invariance is needed. It might also 

come across other issues, such as background confusion and targets occlusion.  

The Tracking-Learning-Detection (TLD) algorithm [18] was discussed in the literature 

chapter. The TLD algorithm is a novel tracking process that uses a P-N learning process 

between the tracking and detection steps of the process, which can estimate errors. The TLD 

approach begins with the selection of a region that contains a target; that region is defined as 

a detector, which stores the feature of the target. In the following frame, a tracker is 

addressed to the target, which will predict the trajectories of the target between the 

consecutive frames. The detector treats every frame as independent and carries out a full 

scan of the image to localise the targets that have been learned in the previous frames. The 

learning observes the performances of both tracker and detector and basically estimates the 

errors made by the detectors (either false positive errors or false negative errors). The 

learning process generates training samples, which can help avoid errors in future tracking. 

The classical tracking approaches have a common problem, which is the lack of 

communication between the detectors and the trackers. The TLD approach tackled this 

problem by creating a novel algorithm for a P-N learning system between the detection and 

tracking processes. However, it is found that the TLD has the following drawbacks and 

difficulties: 

 The TLD approach can only track a single target during the process. This limits tracking 

performance in real-life applications which usually have several targets. 
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 The TLD approach requires the manual selection of the target at the beginning of the 

tracking process; this can be seen as an advantage in that no pre-training is needed for 

the tracking process. However, this defeats the point of this research, which is to 

automatically detect and track the target.  

 In TLD tracking, the tracker and the detector will monitor each other’s performance 

horizontally trough the learning component. It is noted that, in the scenario of the P-N 

Learning component making an error, there is no process that can monitor its 

performance which could lead to detectors errors 

 

To tackle these problems a method of Self-Learning Tracking Detection (SLTD) 

approach was proposed for detection and tracking, the main process of which is shown in 

Figure 1.7 and a detailed chart in Figure 6.1. The process makes the assumption that both the 

detection and tracking process may make errors. The P-N learning was applied to the 

detection and tracking processes so they can monitor each other. The difference between the 

proposed approach and the TLD approach is that, during detection process, vehicles are 

detected automatically by the detection approach while TLD needs to manually select the 

target at the beginning. Furthermore, the proposed approach can track multiple vehicles 

rather than just a single target, as in the TLD approach. This method also revised the P-N 

learning approach so that it not only estimates the errors between tracking and detection, but 

also updates the classification model for detections and saves the estimated positive and 

negative samples from the current process into the classifier database. This has the 

advantage that, when using the application in an unknown environment, the system can learn 

and adopt the features in the current scene. In the original TLD P-N learning is a semi-

supervised learning, which means the training data has been used as the supervisory 

information in order to classify the unlabelled data. There are two types of experts in the P-N 

learning: P-experts and N-experts which can identify the classified samples by certain 

criterions. The classified samples used in the P-N learning were from the selection of the 
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first frame, which has limited ability to identify the objects apart from the selected target. In 

this proposed method, the learning components are selected from detectors and tracker in 

every frame, which means the learning, is taking place during the process. The trajectory 

estimation of tracker is also considered in the tracking and learning process. 

Like in the tracking and detection components, it is also assumed that the learning 

component could make errors, so a Forward and Backward Tracking (FBT) mechanism was 

proposed. The main purpose of using the FBT is to check whether there are any errors in the 

tracking result sequences. Basically, this method saved all the tracked vehicles’ features in to 

the Tracked Vehicle Database (TVD), in which each vehicle has an individual array. The 

FBT will detect suspicious results in the trackers based on the information in the TVD. For 

example, it is assumed that if the tracker is tracking a specific vehicle in a sequence of 

frames, the features of the current tracking result in the tracker should be very similar to the 

previous results. So when there is a significant change between the current and previous 

tracker in term of the feature matching, the FBT will determine the tracking result is an error. 

When such an error occurs, the tracker will stop the tracking process and go into a standby 

mode. In the meantime, there are two decisions that the tracker can be made, first decision is 

address a new tracker to this error if this error result is the features of another vehicle; 

second decision is considered the result as real error, which is the features of the 

environment object. The main advantage of using the FBT is that, when the learning 

component identifies a fault, it responds to the detector, which will lead to the tracker 

making an unnoticed error; at this point, the FBT can estimate such errors and correct from 

them, and the samples in the learning component will also update the training samples for 

classification in future detection. This method applied the SIFT matching method to the FBT 

process, because SIFT offers a considerable matching performance and its processing 

resources requirements are acceptable. 

The FBT has a tracked vehicle database (TVD) which stores the SIFT information 

about previously tracked vehicles. The FBT will compare the SIFT feature in current tracker 
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with the tracker in the previous frame sequences, if the matching result is above the 

threshold value, which means the current tracker is tracking a same vehicle as previous and 

the SIFT information of this target will be saved in the TVD. When the current tracker is 

considered as tracking the same target, it will be compared with the detector of this target in 

the next coming frame. This new matching process will monitor whether the detector is 

correct or not, which the detection result will be used for updating the detection classifier as 

positive or negative sample. On the other hand, if the matching result is below the threshold 

when compare with the previous frame sequences the FBT will consider the current tracker 

has tracked another vehicle or environment objects. When the FBT is considered the current 

tracker is a new tracked vehicle, a new tracker will be addressed to this new target, which 

also will be saved into the TVD. All these results in the FBT will be considered positive or 

negative samples for further classification.  

 

6.2 Self-Learning Tracking and Detection Algorithm 

 

This section investigates the SLTD framework. The purpose of this approach is to improve 

vehicle detection and tracking performance in real-time video stream. The SLTD approach is 

designed for the long-term tracking of multiple vehicles after the detection process is 

complete. The diagram of the SLTD process is shown in Figure 1.7. The framework contains 

three components: Trackers (Forward and Backward Tracking) estimate the position of the 

targets in the frame sequences, under the assumption that the target is visible in the 

following frame; Detectors (Detection) perform full scans of every frame and get the 

position of the targets, (note that the detectors are independently to the trackers). As 

mentioned above, under the assumption that both detection and tracking can make mistakes 

during the process, and that there are two types of errors that can occur: false positives and 

false negatives. Thus, a Self-learning (Learning) model was created to monitor the 
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performance of both the detectors and the trackers and to evaluate any errors made by them 

in order to update the classification model continuously throughout the process and avoid 

these errors in future detection and tracking. Through this learning process, the classification 

model can absorb new vehicle appearances for later detection and tracking. In every frame of 

the video, the aim is to be able to evaluate the current detector and tracker to identify 

whether there are any errors and update the classification model in order to avoid these 

errors occurring again. The key idea of SLTD is that the errors between detectors and 

trackers can be identified (these errors come in two types: false negatives and false positives).  

Figure 6.1 shows a detailed process diagram of the entire process. In this process, the FAST 

and HoG detection method is used for the detection process. 
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Figure 6.1: The detailed process diagram of the self-learning detection and tracking process. 
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6.2.1 Forward and Backward Tracking 

After the detection, the Forward and Backward Tracking (FBT) process is followed. 

This method utilises a TLD tracking algorithm based on optical flow and extends it to track 

multiple targets. The FBT method has been proposed to monitor the vehicle tracking and 

detection results. FBT runs in parallel with detection and monitor the tracking results by 

setting the detection results as ground truth. It can also run self-check based on prior and 

later information. 

Algorithm 6.1 : Forward and Backward Tracking 

Input: target coordinates 𝐶𝐶𝑓𝑓
𝑚𝑚 , target image 𝐼𝐼𝑓𝑓 

𝑚𝑚, threshold 𝛼𝛼, 𝑓𝑓𝑝𝑝𝑀𝑀𝑚𝑚𝑒𝑒𝑀𝑀𝑢𝑢𝑚𝑚𝑓𝑓𝑒𝑒𝑝𝑝 

Output: tracking results 𝐸𝐸𝑓𝑓
𝑚𝑚 

  𝑅𝑅𝑓𝑓+1
𝑚𝑚  ← generate RoI (𝐶𝐶𝑓𝑓+1

𝑚𝑚 , 𝐹𝐹𝑓𝑓+1)  (𝐶𝐶𝑓𝑓+1
𝑚𝑚  refer to algorithm 7.2) 

  𝑅𝑅𝑓𝑓−1
𝑚𝑚  ← generate RoI (𝐶𝐶𝑓𝑓−1

𝑚𝑚 , 𝐹𝐹𝑓𝑓−1)  (𝑅𝑅𝑡𝑡
𝑚𝑚 = Region of Interest) 

for 𝑓𝑓 = 1 ∶ 𝑓𝑓𝑝𝑝𝑀𝑀𝑚𝑚𝑒𝑒𝑀𝑀𝑢𝑢𝑚𝑚𝑓𝑓𝑒𝑒𝑝𝑝 

    𝑆𝑆𝑓𝑓
𝑚𝑚   ← calculate SIFT features of  𝐼𝐼𝑓𝑓 

𝑚𝑚 

    𝑆𝑆𝑓𝑓+1
𝑚𝑚   ← calculate SIFT features of 𝑅𝑅𝑓𝑓+1

𝑚𝑚  

    𝑆𝑆𝑓𝑓−1
𝑚𝑚   ← calculate SIFT features of 𝑅𝑅𝑓𝑓−1

𝑚𝑚  

    ( 𝑆𝑆𝑓𝑓
𝑚𝑚 =  SIFT descriptors ) 

    Matching score 𝑚𝑚𝑚𝑚+1 ← SIFT matching (𝑆𝑆𝑓𝑓
𝑚𝑚, 𝑆𝑆𝑓𝑓+1

𝑚𝑚 ) 

    Matching score 𝑚𝑚𝑚𝑚−1 ← SIFT matching (𝑆𝑆𝑓𝑓
𝑚𝑚, 𝑆𝑆𝑓𝑓−1

𝑚𝑚 ) 

  If  𝑚𝑚𝑚𝑚+1 > 𝛼𝛼 and  𝑚𝑚𝑚𝑚−1  > 𝛼𝛼 

    Continue tracking and  𝐸𝐸𝑓𝑓
𝑚𝑚  ∈ 𝑀𝑀𝑝𝑝 (𝑀𝑀 = tracked vehicle database ) 

  else 

    Stop tracking and  𝐸𝐸𝑓𝑓
𝑚𝑚  ∈ 𝑀𝑀𝑚𝑚  

End for 
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An algorithmic description of FBT is given in Algorithm 6.1. After the detection 

process, all detected vehicles are labelled by the centre coordinates 𝐶𝐶𝑚𝑚
𝑓𝑓(𝑀𝑀, 𝑦𝑦) and the image 

window 𝐼𝐼𝑚𝑚
𝑓𝑓, where 𝑀𝑀 is the number of the target and 𝑓𝑓 is the current frame number, the 𝐼𝐼𝑚𝑚

𝑓𝑓 is 

from the detector results.  

Set 𝐹𝐹𝑓𝑓 as the current image at frame 𝑓𝑓, the region of interest (RoI) in the next frame 

(𝑅𝑅𝑓𝑓+1
𝑚𝑚 ) and previous frame (𝑅𝑅𝑓𝑓−1

𝑚𝑚 ) of the target is calculated by using the current target 

coordinate  𝐶𝐶𝑚𝑚
𝑓𝑓  and the images from next and previous frames (𝐹𝐹𝑓𝑓+1, 𝐹𝐹𝑓𝑓−1 ). The RoI is 

selected around the coordinate of the target in the next frame, it is assumed that the target is 

impossible to appear to a place in next frame where is far away from the location in the 

current frame, unless the target is blocked and will be appeared again in further frame. If the 

blocking issue occurs, the forward and backward matching process with tracked vehicle 

database can solve this problem. The RoI can be selected as: 

 𝑅𝑅𝑚𝑚𝐼𝐼 = 𝑀𝑀𝑝𝑝𝑒𝑒𝑀𝑀 ( (𝐶𝐶𝑚𝑚
𝑓𝑓(𝑀𝑀) − 𝑤𝑤

2� ), 𝐶𝐶(𝑚𝑚
𝑓𝑓(𝑦𝑦) − ℎ

2� ) , 𝑤𝑤, ℎ ) ( 6.1 ) 

where the 𝑀𝑀 and 𝑦𝑦 is the centre coordinates of target, 𝑤𝑤 and ℎ is the width and height of the 

region.  

The forward and backward matching process is conducted with the image patches of 

the targets 𝐼𝐼𝑓𝑓 
𝑚𝑚, the region of interest 𝑅𝑅𝑓𝑓+1

𝑚𝑚  and 𝑅𝑅𝑓𝑓−1
𝑚𝑚 , which gives their SIFT descriptors 𝑆𝑆𝑓𝑓

𝑚𝑚, 

𝑆𝑆𝑓𝑓+1
𝑚𝑚  and 𝑆𝑆𝑓𝑓−1

𝑚𝑚 . Then the SIFT matching process, which refers to the detection method in 

chapter 5, is taking place, which generates the matching score 𝑚𝑚𝑚𝑚+1 and 𝑚𝑚𝑚𝑚−1. A threshold 

𝛼𝛼 was set for classify the weather the RoI contains the target or not by compare the similarity 

of SIFT feature between the target image patch with the RoI in both next and previous 

frames. If both matching score are higher than the threshold, which means the current 

tracking result is correct. 

Algorithmically, the tracker 𝐸𝐸𝑓𝑓
𝑚𝑚 in the tracking system computes the similarity of SIFT 

features between the detected vehicles’ image patches and the RoI. The detected vehicles’ 

area is based on the detection in the previous frame of the video; this area is considered a 

sample of the vehicle and is used to find matching features in the regions of the following 

frames. Each frame of tracking will give a positive or negative result from the matching 

processes. However, these results might be inaccurate if there are any other vehicles similar 
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to the sample vehicle. For instance, it may find matching results just above the threshold, or 

when the target exits the image, there may still be a vehicle similar to the target. The 

proposed FBT method solves this kind of issue. It is assumed that, if the tracker is tracking 

the same vehicle in the video, the features of that vehicle will be highly similar throughout. 

Thus, this thesis compares each tracking result to the next frame (forward) and to the 

previous frame (backward). If the similarity of the feature is lower than the threshold, it is 

considered a lost target or a target that has left the image. Tracked vehicle databases 𝑀𝑀𝑃𝑃, 𝑀𝑀𝑁𝑁 

are created to store the positive results and the negative results, which will be of use in 

further tracking and detection processes. The main purpose of creating Tracked Vehicle 

Database (TVD) M is to let the system continuously update the database for the detection 

classifier. For each frame, the regions of interest undergo a matching process with each 

vehicle in positive memory MP. 𝑚𝑚𝑚𝑚+1 > 𝛼𝛼 and  𝑚𝑚𝑚𝑚−1  > 𝛼𝛼 

 𝐸𝐸𝑉𝑉𝐷𝐷 =  �
𝑀𝑀𝑝𝑝  ∈  𝐸𝐸𝑓𝑓

𝑚𝑚 (𝑚𝑚𝑚𝑚+1 > 𝛼𝛼 and  𝑚𝑚𝑚𝑚−1  > 𝛼𝛼)
𝑀𝑀𝑚𝑚 ∈  𝐸𝐸𝑓𝑓

𝑚𝑚 (𝑚𝑚𝑚𝑚+1 > 𝛼𝛼  or  𝑚𝑚𝑚𝑚−1  > 𝛼𝛼)  ( 6.2 ) 

 

6.2.1.1 Forward Trajectory Estimation 

Algorithm 6.2 shows the process of the trajectory estimation. It is assumed that the 

same single object appearing in several locations in a single frame is unlikely to happen and 

each object should appear at one position in each frame in the sequence and can build up a 

trajectory path, so let the system predict a trajectory for the target by analysing the locations 

of the tracker in prior frames. In other words, a trajectory prediction can identify incorrect 

detectors in the following frames. The resulting trajectory is measured by the appearance of 

the SIFT points of the target in the forward and backward frames. Set the 𝐹𝐹𝑓𝑓
𝑚𝑚 =

�𝐶𝐶𝑓𝑓
𝑚𝑚, 𝐶𝐶𝑓𝑓+1

𝑚𝑚 … 𝐶𝐶𝑓𝑓+𝑘𝑘
𝑚𝑚 � where 𝑓𝑓 stands for the frame number and 𝑘𝑘 indicates the length. The SIFT 

point set of a target is 𝑆𝑆𝑓𝑓
𝑚𝑚 and the 𝑆𝑆𝑓𝑓−1

𝑚𝑚 , 𝑆𝑆𝑓𝑓+1
𝑚𝑚  are the SIFT points of this target in the previous 

and next frame.  

The process creates a temporal structure in the video and assumes that the object 

moves along a trajectory. The tracking result has the location information of the object in the 

previous frame and predicts the object’s location in the future frame using a tracker. The 

tracker not only contains the texture features of the target but also has the location 

coordinates of the target. If the detector has labelled the current location as negative, i.e. if 
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the detection system has made a false negative error, the PNSL generates a positive training 

sample. It also assumes the target can only appear at a single location in the frame image 

patch, so it selects the most likely patch in the testing frame. Note that there are multiple 

image features that are similar to the trackers in the testing image, unlike the detector. The 

patches that are not overlapping with the most likely detector are labelled as negative 

samples and the most likely patch can relocate the tracker in the following testing frame. 

Figure 6.2 shows an example of how this system works. The vehicle is detected by the 

detection process and a tracker is assigned to the detected vehicle. The tracker represents the 

positive outputs which will be sent to the positive training sample database.  

Algorithm 6.2 : Forward Trajectory Estimation 

Input: target coordinates 𝐶𝐶𝑓𝑓
𝑚𝑚 , target image 𝐼𝐼𝑓𝑓 

𝑚𝑚 , region of interest 𝑅𝑅𝑓𝑓+1
𝑚𝑚 , 𝑓𝑓𝑝𝑝𝑀𝑀𝑚𝑚𝑒𝑒𝑀𝑀𝑢𝑢𝑚𝑚𝑓𝑓𝑒𝑒𝑝𝑝 

Output: target coordinates 𝐶𝐶𝑓𝑓+1
𝑚𝑚  

 for 𝑓𝑓 = 1: 𝑓𝑓𝑝𝑝𝑀𝑀𝑚𝑚𝑒𝑒𝑀𝑀𝑢𝑢𝑚𝑚𝑓𝑓𝑒𝑒𝑝𝑝 

    𝑆𝑆𝑓𝑓
𝑚𝑚   ← calculate SIFT features of  𝐼𝐼𝑓𝑓 

𝑚𝑚 

    𝑆𝑆𝑓𝑓+1
𝑚𝑚   ← calculate SIFT features of 𝑅𝑅𝑓𝑓+1

𝑚𝑚  

    𝑆𝑆𝑓𝑓−1
𝑚𝑚   ← calculate SIFT features of 𝑅𝑅𝑓𝑓−1

𝑚𝑚    ( 𝑆𝑆𝑓𝑓
𝑚𝑚 =  SIFT descriptors ) 

    SIFT difference ← （
�(𝑆𝑆𝑓𝑓+1

𝑛𝑛 − 𝑆𝑆𝑓𝑓
𝑛𝑛)�

𝑆𝑆𝑓𝑓
𝑛𝑛 +

�𝑆𝑆𝑓𝑓
𝑛𝑛− 𝑆𝑆𝑓𝑓−1

𝑛𝑛 �

𝑆𝑆𝑓𝑓−1
𝑛𝑛 ）  

   If SIFT difference < 0.2 

    𝐶𝐶𝑓𝑓+1
𝑚𝑚  ← 𝐶𝐶𝑒𝑒𝑀𝑀𝑦𝑦𝑝𝑝𝑒𝑒 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑀𝑀𝑀𝑀𝑦𝑦𝑒𝑒𝑒𝑒 𝑆𝑆𝑓𝑓+1

𝑚𝑚  

  else 

    𝑢𝑢𝑦𝑦𝑚𝑚𝑀𝑀𝑦𝑦𝑒𝑒 𝑆𝑆𝑓𝑓+1
𝑚𝑚   

End for 
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Figure 6.2: The detector process in a sequence of frames. The red boxes are the detectors 

that detected vehicles in the current frame. The blue boxes are the prediction areas in the 

following frame and the arrows are the moving factors of the detectors. 

Figure 6.3 shows an example of the FBT process. The figure contains the tracking 

process of three trackers. In the first row, the first tracker was assigned by the detector in the 

first frame. Then in the second frame, the target was tracked by the tracker and the tracker 

run a backward matching process with the tracker in the first frame, the matching result was 

98.7%. Furthermore, the tracker in the second frame also made a forward matching process 

with the next frame tracker when it became available. The forward and backward matching 

results was 98.7% and 99.2%, which were high enough to conclude that the tracer was 

tracking the same target, which a green face was assigned. In the meanwhile, if the system is 

tracking a same target, the feature of the tracker can set as a reference substance for 

monitoring the detector. As same as the first row, the tracker in the second row was tracking 

the same vehicle in the first five frames, however, because there were two vehicles very 
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close to each other so the tracker has tracked the other vehicle, which lead a low backward 

matching result and forward matching result in the previous tracker. In this case, the tracker 

was compared with the detector in the same frame to check if this is a vehicle or not, if the 

detector response a positive feedback, which means what the tracker tracked is a vehicle. 

Then the tracker was searched in the TVD to find weather this vehicle has already been 

detected or not, if yes, the tracker of this vehicle will be replaced to the current tracker, if not, 

a new tracker was assigned and the feature of the tracker was stored into the TVD. Finally, 

the third row shows the situation that the tracker was tracked a non-vehicle feature, which 

has low backward matching result and cannot match with the detector, so a false positive 

error was made and the feature was stored as negative training sample. 

 

Figure 6.3: An example of the FBT process. 

 

6.2.2 Positive and Negative Self-Learning (PNSL) 

This section introduces the self-learning process. The purpose of self-learning is to improve 

the performance of vehicle detection by using the tracking results, and vice visa, by using the 

detection result to ensure the tracking accuracy. In order to evaluate the detector(s) in each 

frame, two different self-learning inspectors are included in the proposed approach: positive 

inspectors (P) and negative inspectors (N). Positive inspectors are used to identify whether a 
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tracker labelled as positive by the classifier has been recognised as negative by the detector. 

Negative inspectors are used to identity whether those trackers labelled as negative by the 

classifier have been recognised as positive by the detector.  

The self-learning process has four steps: 

 Generation of a HoG classification model from the images in TVD 

 Collection of labelled data from the tracking results in TVD 

 Supervised training based on labelled data from detection and tracking results 

 Generation of positive and negative training samples to update the SVM detection 

classification model 

As shown in Figure 6.1, the learning component is linked with the tracking results and 

the training classification model in the detection process. In the tracking process, the 

tracking results from tracker 𝐸𝐸𝑓𝑓
𝑚𝑚 are stored in the TVD and each result contains the target 

image 𝐼𝐼𝑓𝑓
𝑚𝑚. The training process is initialised by generate a SVM classification model using 

the HoG feature descriptors from the targets’ images in the TVD. Followed by calculate the 

HoG feature descriptors from the current tracking image are calculated. By using these two 

values the SVM gives the decision of whether the tracker is the vehicle or not, which 

generates a label 𝐿𝐿𝑓𝑓
𝑚𝑚 of this tracker (𝐿𝐿 ∈   {0, 1}), which is considered as labelled data 𝑆𝑆𝑙𝑙. The 

𝐿𝐿𝑓𝑓
𝑚𝑚  is assigned to the training classifier from the training samples, then it passed to the 

supervised learning to trains the SVM classifier 𝜃𝜃. Then the iterative bootstrapping is applied 

after the classifier is generated.  

As mentioned, the process proceeds iteratively, and in iterationk, the classifier trained 

in 𝑓𝑓 − 1  assigns labels to the training samples formed from the tracking results; 𝐿𝐿𝑓𝑓
𝑚𝑚 =

𝐶𝐶𝑟𝑟𝑀𝑀𝑒𝑒𝑒𝑒𝑖𝑖𝑓𝑓𝑖𝑖𝑒𝑒𝑝𝑝� 𝐼𝐼𝑓𝑓
𝑚𝑚�𝜃𝜃𝑓𝑓−1�, where the 𝐿𝐿𝑓𝑓

𝑚𝑚 is the tracking label of the  image  𝐼𝐼𝑓𝑓
𝑚𝑚 of the tracking 

result 𝐸𝐸𝑓𝑓
𝑚𝑚 vehicle at 𝑓𝑓 frame. Note that, the classifier can operate on multiple trackers at the 

same time. Then the self-learning system is used to check whether the labels assigned by the 

classifier are correct or not. The sample labels that are incorrect are corrected and added to 

the training samples. The iteration is ends with the retraining of the classifier with the 

updated tracking results.  
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6.2.2.1 P/N inspector constraint 

The input to the P/N inspector system is a labelled data 𝑆𝑆𝑙𝑙 and an unlabelled data Su 

where 𝑟𝑟 ≪ 𝑢𝑢. This is because the number of ground truth data has to be larger than the 

unpredicted data, which the classification can be accurate. The task of the P/N process is to 

estimate the detection result error based on the labelled tracking results 𝑆𝑆𝑙𝑙 and generate the 

positive and negative training samples to update the detection classifier. 

The process is started by inputting the labelled data set into the training set. Then the 

detection classification model is trained using the training set data, in this process, the SVM 

classification model was used. After the SVM classifier has been created, the P/N process 

then proceeds with an iterative bootstrapping. In this process, the classifiers which have been 

trained on the labelled detector data classify the unlabelled tracker data as shown in Figure 

6.4. Then the P/N inspector analyses the classification and estimates which data have been 

tracked and detected incorrectly. These data are then re-inserted into the training data with 

modified labels. The process continuously iterates until the tracking is finished. 

 

Figure 6.4: The P/N process diagram (the number indicates the process order). 

The most important element of PNSL is the estimation of the errors between the 

detectors and trackers. The key purpose is to differentiate the false positives from the false 

negatives. As a result, the unlabelled data were separated into two groups; the positive label 

group and the negative label group. The PNSL process separately analyses the positive and 



Chapter 6. The Proposed Self-Learning Tracking Detection Approach. 

135 

negative label data, and define these processes were defined as P-inspector and N-inspector. 

The P-inspector analyses the data that is classified as negative, identifying false negatives 

and assigning positive labels to the testing data. The N-inspector analyses the data that is 

classified as positive, identifying the false positives. Set 𝑀𝑀+(𝑘𝑘) as the P-inspector and 

𝑀𝑀−(𝑘𝑘) as the N-inspector in the iteration k. The P-inspector and N-inspector can increase the 

generality and the discriminability of the classification model through the learning process. 

The framework of the approach is shown in Figure 6.4. As shown in Figure 6.4 an unlabelled 

tracker has been input into the system and assigned a label by the current existing classifier. 

Then the tracker is send to the P/N inspectors, in this process, the tracker will be classified 

by both inspectors by their own classification model. The P-inspector requires a high 

threshold, which in this case was set to 95%. In the other hands, the N-inspector requires 

lower threshold. Thus, the training samples are updated according to the inspector 

constraints. 

To supervise the bootstrapping of the learning classifier, the tracker data were put into 

the PNSL under the assumption that the labels of the data are known. By comparing the 

labelled data and the unlabelled data it can directly recognise the mislabelled data and add 

them to the training sample set with the correct labels. This method is commonly referred to 

as supervised bootstrapping [137]. Bootstrapping is normally focused on decision making in 

the classification process, and it often processes randomly training samples. This method 

used the same idea of focusing on the decision boundary in the PNSL; the difference is that 

the labels of input data in this method are unknown, which means the process can be defined 

as standard bootstrapping in the unlabelled data scenario and the labels are decided by the 

P/N inspectors.  

Based on this assumption, the inspectors of the PNSL were analysed as follow. In the 

classifier f, the errors will be characterised by false positives α (f) and false negatives β (f). 

Let 𝑀𝑀𝑐𝑐
+(𝑓𝑓) be the number of training samples for which the label was correctly changed in 

the TVD and 𝑀𝑀𝑖𝑖
−(𝑓𝑓) the number of samplesfor which the labels that was incorrectly changed 

in the TVD. The error of the classifier will be: 

 α(f + 1) =  𝛼𝛼(𝑓𝑓) −  𝑀𝑀𝑐𝑐
−(𝑓𝑓) + 𝑀𝑀𝑖𝑖

+(𝑓𝑓)  ( 6.3 ) [18] 

 β(f + 1) =  β(𝑓𝑓) −  𝑀𝑀𝑐𝑐
+(𝑓𝑓) + 𝑀𝑀𝑖𝑖

−(𝑓𝑓)  ( 6.4 ) [18] 
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The quality of the checking process is characterised by four measures. P-true is the 

number of correct positive samples divided by the total number of results. P-false is the 

number of correct positive samples divided by the number of false negatives; N-true is the 

number of correct negative samples divided by the number of results. Finally, N-false is the 

number of correct negative samples divided by the total number of false positives. It is 

assumed that self-learning is characterised by fixed measures throughout the training. The 

number of correct and incorrect results is then expressed as follows: 

 𝑀𝑀𝑐𝑐
+(𝑓𝑓) = 𝑅𝑅+ β(𝑓𝑓),  𝑀𝑀𝑖𝑖

+  
(1 − 𝑃𝑃+)

𝑃𝑃+  𝑅𝑅+β(𝑓𝑓) ( 6.5 ) [18] 

 𝑀𝑀𝑐𝑐
−(𝑓𝑓) = 𝑅𝑅− α(𝑓𝑓),  𝑀𝑀𝑖𝑖

−  
(1 − 𝑃𝑃−)

𝑃𝑃−  𝑅𝑅−α(𝑓𝑓) ( 6.6 ) [18] 

These equations were combined together to get: 

 α(𝑓𝑓 + 1) =  (1 − 𝑅𝑅−)α(𝑓𝑓) +  
(1 − 𝑃𝑃+)

𝑃𝑃+  𝑅𝑅+β(𝑓𝑓) ( 6.7 ) 

 β(𝑓𝑓 + 1) =  
(1 − 𝑃𝑃−)

𝑃𝑃−  𝑅𝑅−α(𝑓𝑓) +  (1 − 𝑅𝑅+)β(𝑓𝑓)  ( 6.8 ) 

As set vector �⃗�𝑀(𝑓𝑓) =  [α(𝑓𝑓) β(𝑓𝑓)]𝑡𝑡  and L = �
1 − 𝑅𝑅− (1−𝑃𝑃+)

𝑃𝑃+

(1−𝑃𝑃−)
𝑃𝑃− (1 − 𝑃𝑃+)

� , which can get the 

final equation: 

 �⃗�𝑀(𝑓𝑓 + 1) = 𝐿𝐿�⃗�𝑀(𝑓𝑓) ( 6.9 ) [18] 

This equation shows the errors from the classifier during the process. The dynamic system 

was used to understand the conditions that could cause more errors. Notice that matrix L is 

the quality measurement and the state vector 𝑀𝑀��⃗ , which converges to zero if both eigenvalues 

𝜃𝜃1𝜃𝜃2 of matrix L are smaller than 1. Therefore, if the quality measurements are known, this 

allows us to obtain the status of the learning process. 

The approach was tested using the testing videos captured from UAVs. The purpose 

was to analyse the performance of the PNSL system. The process is started by assigning an 

initial detector, which is done by the detection element of the system. Then the system 

evaluates the current detector which can estimate the errors of the detector and update the 

labels from the detector; then the results are put into the training database.  
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6.3 Implementation of the system 

First, during the tracking process, target vehicles are represented by their trackers, which is a 

bounding box that estimates each detected vehicles between the sequence frames, also the 

feature of the first tracker is assigned by the detector in the first frame, and each tracker has 

two possibilities: indicated by either a bounding box or an empty state (when the vehicle is 

out of the image). The bounding box is given a fixed aspect ratio by the initial detection 

results and the box will be updated based on the tracking results. The rotation of the 

bounding box is not considered.  

The tracker estimates the position of a number on points of the target. This method 

used SIFTS point matching approach to measure the similarity between the tracker and 

detector. In the original TLD, it is assumed that the targets will always be visible in the 

videos, so in a real-life scenario, if the target moves out of the camera’s range, the tracker’s 

search will cause an error. This problem can be tackled using two methods. The first method 

is a simple approach of setting an edge boundary in the image; if the tracker moves to the 

edge of the image, which means the target is about to exit the image, the tracker will 

terminate the searching process and when the detector redetect a new target the tracking will 

be restart the searching. The second method assumes that the target might be blocked by 

something in the environment, such as trees, buildings etc. In this case, the target might be 

disappearing in the middle of the image during tracking, which cannot be processed by using 

the first approach. In this case, the FBT can solve such problem, which the tracker can be re-

assigned to the disappeared target if it reappears and detected by the detector, because the 

target has been saved in the TVD and the matching process between the detector and the 

TVD can easily find the feature of this target. This method can also identify failures caused 

by sudden motion or fast occlusion of the target. When a failure is detected, the tracker will 

terminate its current tracking and initialise for further tracking.  

The detectors and trackers combine their bounding boxes together in the main process 

and if both tracker and detector are fail to return a bounding box; the system will decide 

there are no visible targets. Otherwise, the system will measure the similarity between the 

tracker and the detector. Because detection is applied first, the detectors have the location 

information of the target first and the tracker located by using the detector information, so 

the tracker can put the new tracked data into the training database for detections and also the 

TVD. 
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Figure 6.5 shows the tracking process when an occlusion problem occurs. The red and 

green boxes are indicated two different detected targets. During the occlusion, the red 

vehicle target was blocked by the green vehicle target so in these frames where the occlusion 

was take place, the red tracker was tracked the other vehicle which belongs to the green 

tracker, so the red tracked stopped tracking. However, the detection process was not stopped 

in the following frame, so the blocked target was re-detected by the detector and the tracker 

belongs to this target was re-assigned to it after the occlusion. 

 

 

Figure 6.5: An illustration of the example of the tracking process. 
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According to the evaluation, the main advantage using the FBT is that it can prevent 

tracking failure in cases where moving targets are moving faster than expected or when the 

target is temporarily blocked by the environment. Such challenges can be tackled by the 

region of interest estimations and the feature matching processes of the trackers in FBT, for 

example, Algorithm 6.1 indicates the process of FBT, each current tracker is compared with 

the previous and afterwards trackers for the feature similarities so the tracking process can be 

monitored by the sequences of the frames. The FBT mechanism provides a compression of 

the tracking results in the tracking sequence and also with the detector by SIFT matching 

process. Also, with this method, multiple targets can be tracked in the same video.  

 

6.4 Evaluation of the SLTD Approach 

In this experiment, several goals were set to test the performance of this approach. The 

testing was split into: 

 Analyse classification performance with the learning component 

 Compare tracking performance with and without the learning component 

 Analyse the performance of Forward and Backward Tracking  

 Test tracking performance in different circumstances 

In order to prove that the learning process of SLTD could increase the performance of 

both tracking and detection, the detector in SLTD was replaced by all three proposed 

detection methods (HSV-GLCM, ISM-SIFT and FAST-HoG) and tested on each testing 

videos. In this tracking experiment, the Multiple Object Tracking Accuracy (MOTA) metric 

[138] was used to measure performance. This provides an accuracy score that takes into 

account the number of missed detections, the false positive rate and mismatches between the 

trackers and actual vehicles. Assuming that for frame t the number of missed detections is 

indicated by fpt, the number of false positives is indicated by Trt and the number of tracker 

mismatches using the previous vehicle detection results in frame (t − 1) is indicated by Trt, 

the MOTA can be computed as:  

 𝑀𝑀𝑂𝑂𝐸𝐸𝑀𝑀 = 1 −
∑ (𝑝𝑝𝑚𝑚(𝑚𝑚𝑡𝑡) + 𝑝𝑝𝑓𝑓(𝑓𝑓𝑦𝑦𝑡𝑡) + 𝑝𝑝𝑠𝑠(𝐸𝐸𝑝𝑝𝑡𝑡))𝑁𝑁𝑓𝑓𝐵𝐵𝑑𝑑𝑓𝑓𝑓𝑓𝑠𝑠

𝑡𝑡=1

∑ 𝐸𝐸𝐺𝐺
(𝑡𝑡)𝑁𝑁𝑓𝑓𝑑𝑑𝑓𝑓𝑓𝑓𝑠𝑠

𝑡𝑡=1

 ( 6.10 ) [138] 
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The accuracy and the MOTA value were calculated throughout the tracking process. 

Two assumptions were made before testing. The first assumption is that, in the detection 

process, classification accuracy should be increased, because the training data has been 

updated by the learning process so the classifier model should adapt to the current situation, 

which will allow accurate detection. The second assumption is that the tracking performance 

should be better because of the improvement of the detection results. 

6.4.1 Classification Performance 

Testing was carried on all five testing videos in the data set, which were captured from 

UAVs above vehicles. A different video was used from the data set to train the detector’s 

classification model; therefore the training sample and the testing video are totally unrelated. 

During the tracking process, the classification model is updated based on the tracking results 

in every frame. After every update, the classification model is evaluated based on the testing 

video sequences to measure its performance by using the F-measure. The performance of the 

classification and the detector is shown in the Figure 6.6; at the beginning of the process, the 

classification accuracy was lower than what are expected because the process was applied in 

a brand new environment, so the vehicles’ features are different than in the classification 

model, but as the process continued, the accuracy of classification increased, showing that 

the model had adopted the features of the new environment. 
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Figure 6.6: A classification accuracy chart for the testing videos. The F-measure value is the 

average results from all five testing videos. 

 

6.4.2 The Tracking Performance with and without PNSL  

In order to test the proposed PNSL approach’s performance, the results of the tracking 

process were compared using the PNSL approach with its performance without the PNSL. In 

testing without PNSL system, the learning and detector components were removed from 

PNSL and the system simply predicted the trajectories of the vehicles using the trackers. All 

five testing videos were used from the data set. To evaluate the overall performance of the 

system, an experiment was performed to assess the system’s ability to accurately detect and 

track vehicles. In this experiment, accuracy measure for the system was used by the MOTA 

metric. This is because the MOTA is more suitable for evaluate the tracking performance 

and the accuracy measurement used in the classification is more suitable for evaluate 

detection performance [139]. The results are shown in the following figure (Figure 6.7). 

During testing, 10 vehicles were chosen randomly and tracked in each testing video to get 

the average MOTA values. 
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Figure 6.7: Average result of tracking with PNSL and without PNSL. 

Using the MOTA metric, it is found that an accuracy of 0.922 was obtained overall for 

the tracking process that used the PNSL, and an accuracy of 0.876 was obtained through the 

process without PNSL.  According to the results, tracking accuracy was improved by using 

the PNSL, which means the proposed PNSL can improve tracking performance by adding 

the learning component. 

 

6.4.3 Forward and Backward Tracking Performance 

The performance testing of FBT used Test Video 1, which was captured above a motorway 

in a suburban area. The video contains a very complex background, full of objects which 

might have similar features as vehicles, so the detector was likely to get confused between 

them. In cases like this, the FBT can avoid such problems. Figure 7.4 shows an example of 

the FBT process. The first tracker continually tracked on vehicle; all matching results were 

above the threshold. The second tracker, in the middle, mistakenly tracked the neighbouring 

vehicle towards the end, which was detected by the FBT process; however, the detector 

considered the patch positive, and another tracker was already tracked this vehicle, so this 
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patch was saved into the neighbour vehicle’s database. Finally, the third tracker lost the 

target in the end; the matching result was very low. In the meantime, the tracker did not find 

any features similar to those of the last patch, but the detector sent a positive result message 

to the tracker, which was clearly a mistake. So the detector was corrected from positive to 

negative by the FBT process, and the patch has been saved as a negative training samples. 

Figure 6.8 indicates the average tracking accuracy and MOTA value in all three testing 

processes. The SLTD+FBT approach had the highest detection accuracy, with more than 90% 

for every testing video, which means FBT can also improve tracking performance by 

reducing the detector errors. This process also compared the false positive and false negative 

rates and found that both errors were reduced dramatically by using the FBT approach 

(Figure 6.9).  

 

 

Figure 6.8: A comparison of the tracking results of using different methods. 
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Figure 6.9: The false positive and false negative rates. 

 

 

6.4.4 Testing Tracking Performance in Different Circumstances 

In this test, three videos were selected (video 2, video 3 and video 5) from the data set which 

contained the challenges of occlusion, changing appearance and blocked vehicles. The 

reason to use these three videos is that they are the classic challenges in the object tracking 

process, so it would be helpful to see whether the approach could successfully tackle these 

challenges. 

Figures 6.10 to 6.12 show some example results from this testing, the statistics results 

can be found in Figure 7.8. Each figure illustrates the moment when the challenge occurred 

and the results of the tracking process. As shown, most of the challenges were dealt with and 

the tracking was successful.  
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Figure 6.10: Tracking results from a situation in which two similarly-featured vehicles are 

moving closed to each other. The red boxes are the target tracker, and other trackers are 

shown as green boxes. 
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Figure 6.11: Tracking results from a situation in which the target changes appearance and 

size during tracking. 

 

Figure 6.12: Tracking results in a situation in which the target disappears for a short period. 

Each differently coloured tracker was issued to an individual target. 
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6.5 Comparison of Tracking Performance 

Comparisons were conducted of the tracking results of the proposed method and six other 

tracking algorithms, including: 

• Online Boosting (OB) [140] 

• Iterative Visual Tracking (IVT) [141] 

• Online Discriminative Features (ODB) [142] 

• Multiple Instance Learning (MIL) [143] 

• Co-trained Generative-Discriminative tracking (CoGD) [144] 

• Tracking Learning Detection (TLD)[18] 

First of all, because some of the tracking approaches can only track single targets, the 

tracking comparison process only focused on a single target vehicle. The testing process was 

based on the number of frames in which the target vehicle was successfully tracked 

compared to the total number of frames in which it actually appeared. Table 6.1 shows a 

comparison of the tracking results. It shows that the proposed SLTD achieved the best score 

for each video and matched the performance of the original TLD and CoGD. In certain 

situations, such as occlusions, SLTD performed better than others. 

Video Frames OB IVT ODB MIL CoGD TLD SLTD 

1 367 109 131 76 297 367 367 367 

2 255 87 121 93 175 240 240 248 

3 307 198 226 204 279 281 290 290 

4 108 85 83 95 90 108 108 108 

5 207 123 136 153 188 204 205 207 

Table 6.1: A table of the numbers of successfully tracked frames. 

Moreover, MOTA and MOTP (Multiple Object Tracking Precision) metrics have been 

used to compare the tracking performance in each testing video with different challenges. 

According to the literature [138], MOTA and MOTP could provide the quality and the main 

characteristics for evaluating the tracking systems. The MOTP can be extracted as: 
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𝑀𝑀𝑂𝑂𝐸𝐸𝑃𝑃 =

∑ ∑ �
�𝐺𝐺𝑖𝑖

(𝑡𝑡) ∩  𝐷𝐷𝑖𝑖
(𝑡𝑡)�

�𝐺𝐺𝑖𝑖
(𝑡𝑡) ∪  𝐷𝐷𝑖𝑖

(𝑡𝑡)�
�𝑁𝑁𝑓𝑓𝐵𝐵𝑑𝑑𝑓𝑓𝑓𝑓𝑠𝑠

𝑡𝑡=1
𝑁𝑁𝑓𝑓𝑑𝑑𝑚𝑚𝑚𝑚𝑓𝑓𝑑𝑑
𝑖𝑖=1

∑ 𝐸𝐸𝑚𝑚𝑚𝑚𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚
𝑖𝑖𝑁𝑁𝑓𝑓𝑑𝑑𝑓𝑓𝑓𝑓𝑠𝑠

𝑖𝑖=1

 
( 6.11 ) [138] 

 

where Nmapped  refers to the tracked objects during the video in t  frames. However, as 

mentioned before, the TLD approach can only track single target at a time, so it has been 

excluded in the MOTA and MOTP process. Table 6.2 indicates the tracking results for all 5 

testing videos with different challenges, which showing that the SLTD can perform a better 

tracking result in all challenges.  

 

Video 
OB IVT ODB MIL CoGD SLTD 

MOTA and MOTP values 

1 0.297/0.276 0.357/0.308 0.631/0.605 0.829/0.803 0.903/0.887 0.927/0.903 

2 0.348/0.320 0.479/0.468 0.482/0.457 0.697/0.672 0.939/0.928 0.941/0.928 

3 0.644/0.631 0.736/0.711 0.614/0.598 0.903/0.875 0.901/0.892 0.915/0.881 

4 0.787/0.771 0.769/0.752 0.790/0.773 0.882/0.865 0.945/0.910 0.947/0.918 

5 0.594/0.562 0.658/0.621 0.726/0.709 0.903/0.891 0.937/0.925 0.937/0.925 

Table 6.2: A table of the MOTA and MOTP results. 

 

6.6  Conclusions 

This chapter has proposed a Self-Learning Tracking Detection approach, which modified 

and expanded the Tracking-Learning-Detection (TLD) approach and upgraded a multiple 

vehicle tracking system, which the original TLD can only track a single target. P-N learning 

was applied in the learning component to monitor the tracking and detection processes. In 

addition, the classification model of the detector was linked to the learning process so the 

model could be updated based on the tracking results. A Forward and Backward Tracking 

(FBT) mechanism was also proposed to monitor the learning process, so the tracking process 

and detection process is monitored by each other. The test results showed that tracking 

accuracy was improved by both FBT and SLTD. The classification model of the detector can 
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also be adjusted by adding more training samples when the system is applied in a new 

environment. 

The detection process takes place at the beginning, the corners in input image are 

detected by the FAST algorithm and the area around each corner point has selected as the 

region of interest. The regions have extracted by the HoG features. Before the detection, a 

SVM classifier is created by the HoG extraction from the training samples. Then the SVM 

model will decide whether the region of interest is a vehicle or not. Once the SVM gives a 

positive result, which means a vehicle has detected, then the detection results is send to the 

tracking process. In the tracking process, the current tracker is compare with the trackers 

from previous and afterward frames, the matching process can decide if the current tracker is 

tracking a same vehicle, a different vehicle or not a vehicle. The tracked vehicles are sand to 

the Tracked Vehicle Database. Finally, the tracking results are sent to the learning 

component, consider the current tracking result is an unlabeled data and it has been assigned 

a label by the classifier of the tracking. Then this label will be check by the P/N inspectors 

and the results will be stored as either positive samples or negative samples which are used 

as the training samples to update the classification model for the detection.  
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Chapter 7   

Conclusions and Future Work 
 

 

This thesis investigated vehicle detection and tracking from UAVs.  Unlike many existing 

approaches, the detection and tracking processes was linked together and let them monitor 

each other. This thesis has pointed out the challenges and showed that the proposed 

approaches can solve them.  

 This main work includes three detection approaches and one tracking approach. Several 

existing detection and tracking methods were adapted, and a number of modifications, 

extensions, and verification stages to these methods have been proposed. The proposed 

algorithms increase both detection and tracking performance. This method particularly 

focused on the mutual monitoring between the tracking and detection processes, which let 

the system learn the appearances of targets and check errors during the process. 

 Significant progress was made during work on this thesis in the development of 

automatic vehicle detection and tracking which offers reliable results. Additional steps are 

necessary to further increase the performance of detection; the classification model could be 

improved by using more featured positive and negative training samples. Understanding 

more about the background and geometric shape of objects in the environment could also 

improve performance, because the target and background could be differentiated better. 

7.1 Discussion of Contributions 

The main contribution of this thesis is that it offers a way to make the vehicle detection and 

tracking process more robust in different situations. 

Firstly, this thesis proposed a HSV-GLCM vehicle detection approach. This method is 

based on the texture and colour features of vehicles. It adjusted the parameters of GLCM for 

vehicle features and modified the original GLCM feature, which is a second order texture 
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calculation. Multiple order calculation was applied to feature extraction, so the processed 

texture pixel not only interacts with neighbour pixels, but also consider a further level of 

pixels, which can put more feature information in the descriptors. It also added the colour 

feature to the descriptors, which can identify background features as distinct from vehicles. 

This is because the colour features of background objects are sometimes very similar to 

those of vehicles. However, this method was able to distinguish objects such as trees, 

buildings and road lights etc. by their colour features. The proposed method could increase 

the classification accuracy of the detection, which tackles the complex background challenge 

in object dejection. Furthermore, this method integrated a de-blur component to boost the 

detection accuracy for the low resolution and blur challenge, the results indicate the accuracy 

have increased by apply the de-blur component. This approach achieved detection results of 

90.09% of accuracy and 88.68% of F-measure value in different detection situations. Also, 

the approach was compared with similar detection methods from the literature which used 

the PLS Hough transform approach and the results showed that the performance was higher 

than that of the PLS Hough transform, the accuracy of which was 77.02% and a 74.82% F-

measure value. 

This thesis also proposed an ISM-SIFT detection approach. The traditional ISM 

approach is mostly used in people detection because it has strong shape descriptors. ISM 

directly uses grey level images for the process, which are strongly influenced by illumination 

changes and noise, which is a disadvantage in vehicle detection using UAV footage. The 

SIFT point descriptor has the advantages of scale, illumination, transformation and rotation 

invariance and finds more specific information for each point. Thus this approach can tackle 

the different size and orientation; complex background; low resolution and blurred 

challenges. The SIFT algorithm was used in matching process and showed a great 

performance. Unlike the matching process, which is the comparison between two similar 

images, vehicle detection needs more unique features from vehicles in order to classify the 

target as distinct from the background, otherwise points from the background that have 

similar descriptors as vehicles will be misdirected. Bag-of-Words approach was used to 

narrow down the detection candidate patches. However, the detection results were still 

unreliable. So the SIFT and ISM features were combined together in order to detection 

vehicles on complex backgrounds. The proposed approach used the vehicle’s unique 

rectangular shape feature to extract information from the input images. In addition, based on 

the SIFT point, the centres of vehicles can be predicted in order to detect the vehicles 
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correctly. The approach achieved 94.69% detection accuracy and a 94.34% in F-measure 

value, which is higher than the SIFT approach, with 80.87% detection accuracy and a 78.55% 

F-measure value. 

The third detection approach is the FAST-HoG approach. FAST is a corner detection 

algorithm which is very high efficient at in the detection. HoG is a classical detection 

descriptor which is mostly used in human detection. The HoG feature has a strong edge 

extraction performance, which is a great advantage in vehicle detection because of the shape 

of vehicles. However, the HoG feature is not rotation-invariant, so its detection is very 

sensitive to the direction of the target. This problem was solved by adding an orientation 

feature into the training samples for classification models. The proposed approach also 

improved the efficiency of the detection process compared with the classical HoG approach 

because we expedite detection by identifying the image regions that are most likely to 

contain vehicles. This is done using the FAST corner process, and proposed a density 

estimation technique to narrow down the candidate patches. In the classification stage, the 

system uses shape encoding local features and robust machine learning techniques to 

perform efficient vehicle detection. As same as the ISM-SIFT approach, this approach can 

tackle most of the research challenges. To evaluate the proposed system we performed a 

number of experiments to test both the overall system’s performance and the comprising 

stages individually. To evaluate the region of interest selection stage, the detection rate was 

tested across the entire video data set; this stage performed very well and we achieved a 

detection rate of 98.3%. To evaluate the classification stage, it assessed its ability to 

correctly classify the regions of interest selected in the previous stage; to do this the 

classification accuracy was evaluated over a subset of the data set. This stage performed well 

and achieved an F-measure value of 78%, which indicates a fairly high classification rate. 

Finally, this approach achieved higher detection accuracy than the bLPS-HOG approach 

(94.20% and 93.77 against 80.16% and 78.25%).  

Finally, a Self-Learning Tracking Detection (SLTD) approach was proposed. This 

approach solved a tracking and detection problem, and training samples were taken from 

other videos rather than the actual testing video. The appearance of a vehicle is affected by 

the altitude, speed and image resolution of the UAV filming it.  This system can learn 

vehicles’ features and create a unique detection model for each testing video during the 

tracking process. A Forward and Backward Tracking (FBT) approach was also proposed, 

which can check the errors made by the tracking and detection process and allow the system 
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to avoid them in subsequent tracking processes. The proposed system demonstrates a 

reasonably high accuracy and is capable of successfully detecting and tracking a variety of 

differing vehicle types under varying rotation, sheering and blurring conditions, especially it 

can tackle the occlusion challenge in the object tracking research. The Multiple Object 

Tracking Accuracy (MOTA) measure was used on the system and other tracking approaches. 

Note that this approach was inspired by the Tracking-Learning-Detection (TLD) approach; 

the compared tracking results have shown that this approach can achieve higher tracking 

accuracy than the TLD approach under certain complex circumstances, such as occlusions 

and blocked vehicles on a complex background. Also the proposed SLTD can track multiple 

vehicles rather than only one achieved by TLD. Intensive experiments have been conducted 

to compare our proposed approaches in vehicle detection and tracking with other approaches 

in the literature and demonstrated the better performance of our approaches 

7.2 Perspectives and Improvements 

The proposed algorithms have achieved good detection and tracking results in different 

situations. However, there are still lots of modifications and extensions that can be applied to 

improve the robustness of their detection and tracking.  

In the HSV-GLCM approach, it is found that errors always occurred on certain unique 

artificial objects, such as buildings, car park markers etc. This is because these objects have 

similar texture and colour features to vehicles. This issue could be solved by generating a 

better training classification by adding negative samples similar to these objects. In addition, 

although this method can tackle most challenges, the different size challenges can be a 

weakness. To improve this weakness, detect window can be more flexible depends on the 

altitude of the UAV in which the target size in the image is changeable. This requires the 

system extract the basic flying status from the UAV. 

The real-time process capabilities of the ISM-SIFT system could be improved. Each 

SIFT point has a 128-bytes descriptor, which requires a lot of processing resources that can 

directly affect the real-time process performance. This could reduce the SIFT descriptor 

from 128-bytes to a 64-bytes descriptor or lower; lowering the descriptor dimension without 

losing the feature abilities is an interesting research area.  

We could also investigate the performance of additional shape encoding features such 

as the Gradient Location and Orientation Histogram (GLOH) and the Local Energy based 
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Shape Histogram (LESH) with the FAST-HOG approaches. The Region of Interest selection 

process can be further optimised by parallelising the evaluation of the Support Vector 

Machines that comprise the classifier. In addition, a density-based clustering method could 

be used to reduce the total number of regions presented to the classifier. Training the system 

with a larger, more diverse data set that has a greater variety of vehicles and background 

appearances, would likely result in the improved generalisation of the classifier and better 

performance from both the detection and the tracking aspect of the system.  

In the SLTD approach, the learning component could be improved by adding more 

different experts to upgrade the checking system between the detector and tracker. The initial 

tracker and detector are directed based on the previous detection results, so the system can 

monitor any errors made by the tracker or the detector in the following process. However, 

the number of failed tracking results between the first tracker and the frame in which the 

system realises the error has occurred can be reduced. It is found that sometimes the tracking 

system takes a long time to find an error. It can be conclude that using more, stronger 

inspectors in the checking process could reduce this effect. Finally, the detection and 

tracking approach should have the real-time processing ability, which requires low 

computational resources. 

Finally, as the detection and tracking technology has been developed rapidly, new 

feature extractions will be proposed which can be more accurately to describe the artificial 

objects. Such as the extension of the SIFT features ASIFT, PCA-SIFT, etc. These new 

feature descriptions can be applied to generate more accurate detection and tracking 

approaches.  
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Testing Videos 
 

Most vehicle detection and tracking systems are evaluated using the videos captured from 

the front or back of the other vehicles. In this thesis, all testing videos were captured from 

UAVs above vehicles. In order to evaluate the performance of the proposed method, testing 

videos were also captured in different circumstances that involved certain challenging 

scenarios. 

Training and Testing Video Data Sets 

In order to evaluate the performance of the various vehicle detection and tracking algorithms 

proposed in this thesis, five testing scenarios were considered:  

 Scenario 1: Complex background 

 Scenario 2: Occlusion of vehicles 

 Scenario 3: Vehicles blocked by objects in the environment 

 Scenario 4: Blurred images 

 Scenario 5: Changes in vehicle size and appearance 

Based on these scenarios, five video sets were used for each challenge, and one video set 

was used for training purposes. All video sets in these scenarios contained natural images 

recorded in realistic environments by UAVs above the vehicles. These video sets were used 

in the performance evaluation of every proposed detection and tracking method in the 

following chapters. 

Training Video Set 

The training video set was captured above a motorway in a suburban area by a UAV (Figure 

A1). The vehicles were captured clearly from above and the UAV flew constantly along the 

motorway in one direction. The resolution of the video was 720 × 576 pixels. For training, 

the video was transformed into frame images, of which there were 1,609 in total; 97 vehicles 

appeared in these images. 
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Figure A1: Examples from the training set images. 

For the positive training set, each vehicle was cropped into a 70 × 70 pixel image patch 

from the video frames. The negative training set was selected from objects in the 

environment such as road markings, trees, buildings, etc. Figure A2 shows examples of both 

positive and negative samples. 
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Figure A2: Examples of training samples (left: positive; right: negative). 

 

Testing Video Set 1 

Testing video set 1 is very similar to the training video, as it comes from the same video 

sequence. The first half of the video was used for training purposes and the rest of the video 

was used for testing. This video was captured directly above a public motorway in a 

suburban area that contains lots of artificial objects such as street lights, bus stops and 

buildings. It also contains complex backgrounds, trees, grasses and lots of road markings. As 

a result, this video was considered a good test for complex background scenarios. This 

testing video is called “video 1”. Figure A3 shows some examples of video 1. The resolution 

of this video is 720 × 576 pixels and it consists of 2,461 frames in total.  
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Figure A3: Some examples of video 1 (complex background) 

In the top-left image of Figure A3, the vehicles not only appear on the road but are also 

located near the building. In these circumstances, vehicles are difficult to detect because they 

are much closer to the environment, so the detecting windows will inevitably contain 

negative texture. This issue could directly cause false negative errors in the detection process. 

In the bottom-left image, there are several parking space markers in the top right, which 

could easily cause false positive errors because of their similarities to the actual vehicles.  

Testing Video Set 2 

Test video set 2 was downloaded from the Defense Advanced Research Projects Agency 

(DARPA) website [145]. The video was captured from above vehicles on a wide country 

road. This video sets the challenge of the occlusion problem (Figure A4). In Figure A4, there 
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are six vehicles, lined up horizontally in two groups, moving towards to each other. This 

scenario can bring difficulties to both the detection and the tracking process, because the gap 

between the vehicles is very small, so in the view of the camera, these vehicles have joined 

together. Also, the vehicles on the far side are blocked by the vehicles in the front, which can 

be considered another occlusion challenge. The resolution of this video is 640 × 480 pixels 

and it contains 1,301 frames. Six vehicles appear in the video. 

 

Figure A4: Some examples of testing video 2(occlusion problem). 

 

Testing Video Set 3 

Testing video set 3 was also downloaded from the DARPA [145]. This video was selected to 

represent the scenario of blocked vehicles. Figure A5 shows some example frames from this 

video. Three vehicles appear in the video and are then blocked by the trees at the side of the 

road. Each vehicle disappears from the video for a certain period. This video can test 
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tracking performance when the target is lost in the image during tracking, i.e. whether the 

tracker can re-track the same target when it reappears. This video has a resolution of 

640 × 480 pixels and contains 1,833 frames in total. 

 

Figure A5: Some examples of testing video 3 (blocked vehicles). 

 

Testing Video Set 4 

Testing video set 4 was captured by a UAV above a highway. The UAV hovered overhead at 

a very high altitude while capturing the video. The images are blurred because the UAV was 

shaking badly. Figure A6 shows that most of the images are blurred, which could change the 

texture of the vehicles. The challenge of this scenario is to test detection and tracking 

performance when the testing images have been transformed. This video was designated 

“video 4”. It has 168 frames in total and a resolution of 720 × 406 pixels. 
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Figure A6: Some examples of testing video 4 (blurred image). 

 

Testing Video Set 5 

The final testing video was also downloaded from the DARPA [145]. Only one vehicle 

appears in this video, however, the UAV is chasing the vehicle from different angles and at 

different altitudes, so the appearance and size of the vehicle continuously change during the 

video. This is excellent data for testing tracking performance when the target keeps changing 

status; the tracking system has to adapt and learn the target’s appearance. Figure A7 shows 

some examples of this video. The resolution of this video is 352 × 240 pixels and only one 

vehicle appears in the entire video of 1,918 frames. 
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Figure A7: Examples of testing video 5 (changing appearances) 
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