173 research outputs found

    Evaluation of Haptic Patterns on a Steering Wheel

    Get PDF
    Infotainment Systems can increase mental workload and divert visual attention away from looking ahead on the roads. When these systems give information to the driver, provide it through the tactile channel on the steering, it wheel might improve driving behaviour and safety. This paper describes an investigation into the perceivability of haptic feedback patterns using an actuated surface on a steering wheel. Six solenoids were embedded along the rim of the steering wheel creating three bumps under each palm. Maximally, four of the six solenoids were actuated simultaneously, resulting in 56 patterns to test. Participants were asked to keep in the middle road of the driving simulator as good as possible. Overall recognition accuracy of the haptic patterns was 81.3%, where identification rate increased with decreasing number of active solenoids (up to 92.2% for a single solenoid). There was no significant increase in lane deviation or steering angle during haptic pattern presentation. These results suggest that drivers can reliably distinguish between cutaneous patterns presented on the steering wheel. Our findings can assist in delivering non-critical messages to the driver (e.g. driving performance, incoming text messages, etc.) without decreasing driving performance or increasing perceived mental workload

    HapWheel: in-car infotainment system feedback using haptic and hovering techniques

    Get PDF
    Abstract—In-car devices are growing both in complexity and capacity, integrating functionalities that used to be divided among other controls in the vehicles. These systems appear increasingly in the form of touchscreens as a cost-saving measure. Screens lack the physicality of traditional buttons or switches, requiring drivers to look away from the road to operate them. This paper presents the design, implementation, and two studies that evaluated HapWheel, a system that provides the driver with haptic feedback in the steering wheel while interacting with an Infotainment System. Results show that the proposed system reduced both the duration of and the number of times a driver looked away from the road. HapWheel was also successful at reducing the number of mistakes during the interaction.info:eu-repo/semantics/publishedVersio

    The cockpit for the 21st century

    Get PDF
    Interactive surfaces are a growing trend in many domains. As one possible manifestation of Mark Weiser’s vision of ubiquitous and disappearing computers in everywhere objects, we see touchsensitive screens in many kinds of devices, such as smartphones, tablet computers and interactive tabletops. More advanced concepts of these have been an active research topic for many years. This has also influenced automotive cockpit development: concept cars and recent market releases show integrated touchscreens, growing in size. To meet the increasing information and interaction needs, interactive surfaces offer context-dependent functionality in combination with a direct input paradigm. However, interfaces in the car need to be operable while driving. Distraction, especially visual distraction from the driving task, can lead to critical situations if the sum of attentional demand emerging from both primary and secondary task overextends the available resources. So far, a touchscreen requires a lot of visual attention since its flat surface does not provide any haptic feedback. There have been approaches to make direct touch interaction accessible while driving for simple tasks. Outside the automotive domain, for example in office environments, concepts for sophisticated handling of large displays have already been introduced. Moreover, technological advances lead to new characteristics for interactive surfaces by enabling arbitrary surface shapes. In cars, two main characteristics for upcoming interactive surfaces are largeness and shape. On the one hand, spatial extension is not only increasing through larger displays, but also by taking objects in the surrounding into account for interaction. On the other hand, the flatness inherent in current screens can be overcome by upcoming technologies, and interactive surfaces can therefore provide haptically distinguishable surfaces. This thesis describes the systematic exploration of large and shaped interactive surfaces and analyzes their potential for interaction while driving. Therefore, different prototypes for each characteristic have been developed and evaluated in test settings suitable for their maturity level. Those prototypes were used to obtain subjective user feedback and objective data, to investigate effects on driving and glance behavior as well as usability and user experience. As a contribution, this thesis provides an analysis of the development of interactive surfaces in the car. Two characteristics, largeness and shape, are identified that can improve the interaction compared to conventional touchscreens. The presented studies show that large interactive surfaces can provide new and improved ways of interaction both in driver-only and driver-passenger situations. Furthermore, studies indicate a positive effect on visual distraction when additional static haptic feedback is provided by shaped interactive surfaces. Overall, various, non-exclusively applicable, interaction concepts prove the potential of interactive surfaces for the use in automotive cockpits, which is expected to be beneficial also in further environments where visual attention needs to be focused on additional tasks.Der Einsatz von interaktiven Oberflächen weitet sich mehr und mehr auf die unterschiedlichsten Lebensbereiche aus. Damit sind sie eine mögliche Ausprägung von Mark Weisers Vision der allgegenwärtigen Computer, die aus unserer direkten Wahrnehmung verschwinden. Bei einer Vielzahl von technischen Geräten des täglichen Lebens, wie Smartphones, Tablets oder interaktiven Tischen, sind berührungsempfindliche Oberflächen bereits heute in Benutzung. Schon seit vielen Jahren arbeiten Forscher an einer Weiterentwicklung der Technik, um ihre Vorteile auch in anderen Bereichen, wie beispielsweise der Interaktion zwischen Mensch und Automobil, nutzbar zu machen. Und das mit Erfolg: Interaktive Benutzeroberflächen werden mittlerweile serienmäßig in vielen Fahrzeugen eingesetzt. Der Einbau von immer größeren, in das Cockpit integrierten Touchscreens in Konzeptfahrzeuge zeigt, dass sich diese Entwicklung weiter in vollem Gange befindet. Interaktive Oberflächen ermöglichen das flexible Anzeigen von kontextsensitiven Inhalten und machen eine direkte Interaktion mit den Bildschirminhalten möglich. Auf diese Weise erfüllen sie die sich wandelnden Informations- und Interaktionsbedürfnisse in besonderem Maße. Beim Einsatz von Bedienschnittstellen im Fahrzeug ist die gefahrlose Benutzbarkeit während der Fahrt von besonderer Bedeutung. Insbesondere visuelle Ablenkung von der Fahraufgabe kann zu kritischen Situationen führen, wenn Primär- und Sekundäraufgaben mehr als die insgesamt verfügbare Aufmerksamkeit des Fahrers beanspruchen. Herkömmliche Touchscreens stellen dem Fahrer bisher lediglich eine flache Oberfläche bereit, die keinerlei haptische Rückmeldung bietet, weshalb deren Bedienung besonders viel visuelle Aufmerksamkeit erfordert. Verschiedene Ansätze ermöglichen dem Fahrer, direkte Touchinteraktion für einfache Aufgaben während der Fahrt zu nutzen. Außerhalb der Automobilindustrie, zum Beispiel für Büroarbeitsplätze, wurden bereits verschiedene Konzepte für eine komplexere Bedienung großer Bildschirme vorgestellt. Darüber hinaus führt der technologische Fortschritt zu neuen möglichen Ausprägungen interaktiver Oberflächen und erlaubt, diese beliebig zu formen. Für die nächste Generation von interaktiven Oberflächen im Fahrzeug wird vor allem an der Modifikation der Kategorien Größe und Form gearbeitet. Die Bedienschnittstelle wird nicht nur durch größere Bildschirme erweitert, sondern auch dadurch, dass Objekte wie Dekorleisten in die Interaktion einbezogen werden können. Andererseits heben aktuelle Technologieentwicklungen die Restriktion auf flache Oberflächen auf, so dass Touchscreens künftig ertastbare Strukturen aufweisen können. Diese Dissertation beschreibt die systematische Untersuchung großer und nicht-flacher interaktiver Oberflächen und analysiert ihr Potential für die Interaktion während der Fahrt. Dazu wurden für jede Charakteristik verschiedene Prototypen entwickelt und in Testumgebungen entsprechend ihres Reifegrads evaluiert. Auf diese Weise konnten subjektives Nutzerfeedback und objektive Daten erhoben, und die Effekte auf Fahr- und Blickverhalten sowie Nutzbarkeit untersucht werden. Diese Dissertation leistet den Beitrag einer Analyse der Entwicklung von interaktiven Oberflächen im Automobilbereich. Weiterhin werden die Aspekte Größe und Form untersucht, um mit ihrer Hilfe die Interaktion im Vergleich zu herkömmlichen Touchscreens zu verbessern. Die durchgeführten Studien belegen, dass große Flächen neue und verbesserte Bedienmöglichkeiten bieten können. Außerdem zeigt sich ein positiver Effekt auf die visuelle Ablenkung, wenn zusätzliches statisches, haptisches Feedback durch nicht-flache Oberflächen bereitgestellt wird. Zusammenfassend zeigen verschiedene, untereinander kombinierbare Interaktionskonzepte das Potential interaktiver Oberflächen für den automotiven Einsatz. Zudem können die Ergebnisse auch in anderen Bereichen Anwendung finden, in denen visuelle Aufmerksamkeit für andere Aufgaben benötigt wird

    In-vehicle touchscreens : reducing attentional demands and improving driving performance.

    Get PDF
    Touchscreens are increasingly being used in cars, motorcycles, aircraft, ships, and agricultural machinery to access a wide range of vehicle functions. The primary motivation for incorporating touchscreens in vehicles is that they offer several advantages over physical mechanical controls, including inexpensive to pro- duce, lightweight, low space requirements, design flexibility to handle multiple input/output, quick and easy interface modification, and easy replacement. Touch- screens, on the other hand, lack some features that physical controls have, such as tactile feedback and the same tactile sensations for all controls. The absence of these features on a touchscreen increases visual attentional demands and re- duces driving performance, potentially posing a serious safety risk. We have set a primary goal for this research in order to address these issues: Develop new touchscreen interaction methods to improve driving performance by reducing visual attentional demands. We have set three objectives to achieve the primary goal of this research: (1) Examine the design and use of layout-agnostic stencil overlays for in-vehicle touchscreen; (2) To propose in-vehicle dashboard controls interaction framework; (3) To empirically characterise proprioceptive target acquisition accuracy for in-vehicle touchscreens while driving. Addressing goal (1). Prior stencil based studies suggested that stencil overlays can reduce the need for visual attention on the touchscreen while driving. However, those stencils were Layout-specific with cuts and holes at the underlying touch- screen controls’ location. As a result, each stencil could only be used with a single underlying interface. Because contemporary in-vehicle touchscreens are almost always multi-functional, with different interface layouts in different parts of the interface, this restriction is unrealistic for in-vehicle touchscreens. To address the limitations of previous stencil-based studies. We aimed to design Layout-agnostic stencils. Layout-agnostic means that one stencil can provide tactile guidance to user interface targets regardless of the underlying interface layout, with the term layout agnostic’ capturing our intention that the stencils should provide tactile guidance to user interface targets regardless of the underlying interface layout. We designed several versions of layout-agnostic stencils iteratively and evaluated them in a simulated driving scenario. Our layout-agnostic stencils failed to reduce visual attentional demands and worsen driving performance, according to the findings. Addressing goal (2). The failure of objective one prompted us to take a different approach in order to continue working on the research’s main goal. In this regard, we have set a new objective, aiming to yield a new understanding. Our stencils failed despite the iterative design process of layout-agnostic stencils, which was supported by prior studies that showed stencils could reduce visual attentional de- mands. We proposed a “In-vehicle dashboard controls interaction framework” to identify the root causes of layout-agnostic stencils failure. The framework allows for a better understanding of how the driver interacts with the vehicle’s dash- board controls. The framework could be used to create new dashboard interaction techniques as well as evaluate current ones. Addressing goal (3). We used the proposed framework to evaluate the results of layout-agnostic stencils and discovered three knowledge gaps regarding human- dashboard controls interaction while driving. The first knowledge gap was a lack of understanding of how precisely a human can use proprioception to reach a dash- board control. In this regard, we set another goal and conducted an experimental study to assess human proprioceptive abilities to reach dashboard controls in a simulated driving scenario in terms of distance from the body. We empirically characterise proprioceptive target acquisition accuracy for in-vehicle touchscreens while driving based on experimental results. From various distances, we can now determine how accurately humans can reach a specific location on the touchscreen. We proposed touchscreen control sizes (in cm) based on the characterisation. Ex- isting touchscreen user interfaces could be modified to enable eyes-free proprioceptive target acquisition while driving, which would improve touchscreen interaction safety, based on our recommended touchscreen control sizes. In conclusion, this thesis makes two minor and one major contribution to the field of in-vehicle touchscreen research. The minor contribution is as follows: (1) Better understanding the use of stencil overlays for in-vehicle touchscreens. The following are the major contributions: (2) We proposed a novel framework and it is the first framework in the vehicle dashboard interaction research domain to the best of our knowledge. The proposed framework provides a better understanding of how drivers interact with dashboard controls in vehicles. (3) We proposed a characterisation of the accuracy of proprioceptive target acquisition for in-vehicle touchscreens while driving

    Ambient hues and audible cues: An approach to automotive user interface design using multi-modal feedback

    Get PDF
    The use of touchscreen interfaces for in-vehicle information, entertainment, and for the control of comfort settings is proliferating. Moreover, using these interfaces requires the same visual and manual resources needed for safe driving. Guided by much of the prevalent research in the areas of the human visual system, attention, and multimodal redundancy the Hues and Cues design paradigm was developed to make touchscreen automotive user interfaces more suitable to use while driving. This paradigm was applied to a prototype of an automotive user interface and evaluated with respects to driver performance using the dual-task, Lane Change Test (LCT). Each level of the design paradigm was evaluated in light of possible gender differences. The results of the repeated measures experiment suggests that when compared to interfaces without both the Hues and the Cues paradigm applied, the Hues and Cues interface requires less mental effort to operate, is more usable, and is more preferred. However, the results differ in the degradation in driver performance with interfaces that only have visual feedback resulting in better task times and significant gender differences in the driving task with interfaces that only have auditory feedback. Overall, the results reported show that the presentation of multimodal feedback can be useful in design automotive interfaces, but must be flexible enough to account for individual differences

    Evaluating secondary input devices to support an automotive touchscreen HMI: a cross-cultural simulator study conducted in the UK and China

    Get PDF
    Touchscreen Human-Machine Interfaces (HMIs) are a well-established and popular choice to provide the primary control interface between driver and vehicle, yet inherently demand some visual attention. Employing a secondary device with the touchscreen may reduce the demand but there is some debate about which device is most suitable, with current manufacturers favouring different solutions and applying these internationally. We present an empirical driving simulator study, conducted in the UK and China, in which 48 participants undertook typical in-vehicle tasks utilising either a touchscreen, rotary-controller, steering-wheel-controls or touchpad. In both the UK and China, the touchscreen was the most preferred/least demanding to use, and the touchpad least preferred/most demanding, whereas the rotary-controller was generally favoured by UK drivers and steering-wheel-controls were more popular in China. Chinese drivers were more excited by the novelty of the technology, and spent more time attending to the devices while driving, leading to an increase in off-road glance time and a corresponding detriment to vehicle control. Even so, Chinese drivers rated devices as easier-to-use while driving, and felt that they interfered less with their driving performance, compared to their UK counterparts. Results suggest that the most effective solution (to maximise performance/acceptance, while minimising visual demand) is to maintain the touchscreen as the primary control interface (e.g. for top-level tasks), and supplement this with a secondary device that is only enabled for certain actions; moreover, different devices may be employed in different cultural markets. Further work is required to explore these recommendations in greater depth (e.g. during extended or real-world testing), and to validate the findings and approach in other cultural contexts

    May the Force Be with You: Ultrasound Haptic Feedback for Mid-Air Gesture Interaction in Cars

    Get PDF
    The use of ultrasound haptic feedback for mid-air gestures in cars has been proposed to provide a sense of control over the user's intended actions and to add touch to a touchless interaction. However, the impact of ultrasound feedback to the gesturing hand regarding lane deviation, eyes-off-the-road time (EORT) and perceived mental demand has not yet been measured. This paper investigates the impact of uni- and multimodal presentation of ultrasound feedback on the primary driving task and the secondary gesturing task in a simulated driving environment. The multimodal combinations of ultrasound included visual, auditory, and peripheral lights. We found that ultrasound feedback presented uni-modally and bi-modally resulted in significantly less EORT compared to visual feedback. Our results suggest that multimodal ultrasound feedback for mid-air interaction decreases EORT whilst not compromising driving performance nor mental demand and thus can increase safety while driving

    Supporting Eyes-Free Human–Computer Interaction with Vibrotactile Haptification

    Get PDF
    The sense of touch is a crucial sense when using our hands in complex tasks. Some tasks we learn to do even without sight by just using the sense of touch in our fingers and hands. Modern touchscreen devices, however, have lost some of that tactile feeling while removing physical controls from the interaction. Touch is also a sense that is underutilized in interactions with technology and could provide new ways of interaction to support users. While users are using information technology in certain situations, they cannot visually and mentally focus completely during the interaction. Humans can utilize their sense of touch more comprehensively in interactions and learn to understand tactile information while interacting with information technology. This thesis introduces a set of experiments that evaluate human capabilities to understand and notice tactile information provided by current actuator technology and further introduces a couple of examples of haptic user interfaces (HUIs) to use under eyes-free use scenarios. These experiments evaluate the benefits of such interfaces for users and concludes with some guidelines and methods for how to create this kind of user interfaces. The experiments in this thesis can be divided into three groups. In the first group, with the first two experiments, the detection of vibrotactile stimuli and interpretation of the abstract meaning of vibrotactile feedback was evaluated. Experiments in the second group evaluated how to design rhythmic vibrotactile tactons to be basic vibrotactile primitives for HUIs. The last group of two experiments evaluated how these HUIs benefit the users in the distracted and eyes-free interaction scenarios. The primary aim for this series of experiments was to evaluate if utilizing the current level of actuation technology could be used more comprehensively than in current-day solutions with simple haptic alerts and notifications. Thus, to find out if the comprehensive use of vibrotactile feedback in interactions would provide additional benefits for the users, compared to the current level of haptic interaction methods and nonhaptic interaction methods. The main finding of this research is that while using more comprehensive HUIs in eyes-free distracted-use scenarios, such as while driving a car, the user’s main task, driving, is performed better. Furthermore, users liked the comprehensively haptified user interfaces

    Multimodal feedback for mid-air gestures when driving

    Get PDF
    Mid-air gestures in cars are being used by an increasing number of drivers on the road. Us-ability concerns mean good feedback is important, but a balance needs to be found between supporting interaction and reducing distraction in an already demanding environment. Visual feedback is most commonly used, but takes visual attention away from driving. This thesis investigates novel non-visual alternatives to support the driver during mid-air gesture interaction: Cutaneous Push, Peripheral Lights, and Ultrasound feedback. These modalities lack the expressive capabilities of high resolution screens, but are intended to allow drivers to focus on the driving task. A new form of haptic feedback — Cutaneous Push — was defined. Six solenoids were embedded along the rim of the steering wheel, creating three bumps under each palm. Studies 1, 2, and 3 investigated the efficacy of novel static and dynamic Cutaneous Push patterns, and their impact on driving performance. In simulated driving studies, the cutaneous patterns were tested. The results showed pattern identification rates of up to 81.3% for static patterns and 73.5% for dynamic patterns and 100% recognition of directional cues. Cutaneous Push notifications did not impact driving behaviour nor workload and showed very high user acceptance. Cutaneous Push patterns have the potential to make driving safer by providing non-visual and instantaneous messages, for example to indicate an approaching cyclist or obstacle. Studies 4 & 5 looked at novel uni- and bimodal feedback combinations of Visual, Auditory, Cutaneous Push, and Peripheral Lights for mid-air gestures and found that non-visual feedback modalities, especially when combined bimodally, offered just as much support for interaction without negatively affecting driving performance, visual attention and cognitive demand. These results provide compelling support for using non-visual feedback from in-car systems, supporting input whilst letting drivers focus on driving.Studies 6 & 7 investigated the above bimodal combinations as well as uni- and bimodal Ultrasound feedback during the Lane Change Task to assess the impact of gesturing and feedback modality on car control during more challenging driving. The results of study Seven suggests that Visual and Ultrasound feedback are not appropriate for in-car usage,unless combined multimodally. If Ultrasound is used unimodally it is more useful in a binary scenario.Findings from Studies 5, 6, and 7 suggest that multimodal feedback significantly reduces eyes-off-the-road time compared to Visual feedback without compromising driving performance or perceived user workload, thus it can potentially reduce crash risks. Novel design recommendations for providing feedback during mid-air gesture interaction in cars are provided, informed by the experiment findings

    The cockpit for the 21st century

    Get PDF
    Interactive surfaces are a growing trend in many domains. As one possible manifestation of Mark Weiser’s vision of ubiquitous and disappearing computers in everywhere objects, we see touchsensitive screens in many kinds of devices, such as smartphones, tablet computers and interactive tabletops. More advanced concepts of these have been an active research topic for many years. This has also influenced automotive cockpit development: concept cars and recent market releases show integrated touchscreens, growing in size. To meet the increasing information and interaction needs, interactive surfaces offer context-dependent functionality in combination with a direct input paradigm. However, interfaces in the car need to be operable while driving. Distraction, especially visual distraction from the driving task, can lead to critical situations if the sum of attentional demand emerging from both primary and secondary task overextends the available resources. So far, a touchscreen requires a lot of visual attention since its flat surface does not provide any haptic feedback. There have been approaches to make direct touch interaction accessible while driving for simple tasks. Outside the automotive domain, for example in office environments, concepts for sophisticated handling of large displays have already been introduced. Moreover, technological advances lead to new characteristics for interactive surfaces by enabling arbitrary surface shapes. In cars, two main characteristics for upcoming interactive surfaces are largeness and shape. On the one hand, spatial extension is not only increasing through larger displays, but also by taking objects in the surrounding into account for interaction. On the other hand, the flatness inherent in current screens can be overcome by upcoming technologies, and interactive surfaces can therefore provide haptically distinguishable surfaces. This thesis describes the systematic exploration of large and shaped interactive surfaces and analyzes their potential for interaction while driving. Therefore, different prototypes for each characteristic have been developed and evaluated in test settings suitable for their maturity level. Those prototypes were used to obtain subjective user feedback and objective data, to investigate effects on driving and glance behavior as well as usability and user experience. As a contribution, this thesis provides an analysis of the development of interactive surfaces in the car. Two characteristics, largeness and shape, are identified that can improve the interaction compared to conventional touchscreens. The presented studies show that large interactive surfaces can provide new and improved ways of interaction both in driver-only and driver-passenger situations. Furthermore, studies indicate a positive effect on visual distraction when additional static haptic feedback is provided by shaped interactive surfaces. Overall, various, non-exclusively applicable, interaction concepts prove the potential of interactive surfaces for the use in automotive cockpits, which is expected to be beneficial also in further environments where visual attention needs to be focused on additional tasks.Der Einsatz von interaktiven Oberflächen weitet sich mehr und mehr auf die unterschiedlichsten Lebensbereiche aus. Damit sind sie eine mögliche Ausprägung von Mark Weisers Vision der allgegenwärtigen Computer, die aus unserer direkten Wahrnehmung verschwinden. Bei einer Vielzahl von technischen Geräten des täglichen Lebens, wie Smartphones, Tablets oder interaktiven Tischen, sind berührungsempfindliche Oberflächen bereits heute in Benutzung. Schon seit vielen Jahren arbeiten Forscher an einer Weiterentwicklung der Technik, um ihre Vorteile auch in anderen Bereichen, wie beispielsweise der Interaktion zwischen Mensch und Automobil, nutzbar zu machen. Und das mit Erfolg: Interaktive Benutzeroberflächen werden mittlerweile serienmäßig in vielen Fahrzeugen eingesetzt. Der Einbau von immer größeren, in das Cockpit integrierten Touchscreens in Konzeptfahrzeuge zeigt, dass sich diese Entwicklung weiter in vollem Gange befindet. Interaktive Oberflächen ermöglichen das flexible Anzeigen von kontextsensitiven Inhalten und machen eine direkte Interaktion mit den Bildschirminhalten möglich. Auf diese Weise erfüllen sie die sich wandelnden Informations- und Interaktionsbedürfnisse in besonderem Maße. Beim Einsatz von Bedienschnittstellen im Fahrzeug ist die gefahrlose Benutzbarkeit während der Fahrt von besonderer Bedeutung. Insbesondere visuelle Ablenkung von der Fahraufgabe kann zu kritischen Situationen führen, wenn Primär- und Sekundäraufgaben mehr als die insgesamt verfügbare Aufmerksamkeit des Fahrers beanspruchen. Herkömmliche Touchscreens stellen dem Fahrer bisher lediglich eine flache Oberfläche bereit, die keinerlei haptische Rückmeldung bietet, weshalb deren Bedienung besonders viel visuelle Aufmerksamkeit erfordert. Verschiedene Ansätze ermöglichen dem Fahrer, direkte Touchinteraktion für einfache Aufgaben während der Fahrt zu nutzen. Außerhalb der Automobilindustrie, zum Beispiel für Büroarbeitsplätze, wurden bereits verschiedene Konzepte für eine komplexere Bedienung großer Bildschirme vorgestellt. Darüber hinaus führt der technologische Fortschritt zu neuen möglichen Ausprägungen interaktiver Oberflächen und erlaubt, diese beliebig zu formen. Für die nächste Generation von interaktiven Oberflächen im Fahrzeug wird vor allem an der Modifikation der Kategorien Größe und Form gearbeitet. Die Bedienschnittstelle wird nicht nur durch größere Bildschirme erweitert, sondern auch dadurch, dass Objekte wie Dekorleisten in die Interaktion einbezogen werden können. Andererseits heben aktuelle Technologieentwicklungen die Restriktion auf flache Oberflächen auf, so dass Touchscreens künftig ertastbare Strukturen aufweisen können. Diese Dissertation beschreibt die systematische Untersuchung großer und nicht-flacher interaktiver Oberflächen und analysiert ihr Potential für die Interaktion während der Fahrt. Dazu wurden für jede Charakteristik verschiedene Prototypen entwickelt und in Testumgebungen entsprechend ihres Reifegrads evaluiert. Auf diese Weise konnten subjektives Nutzerfeedback und objektive Daten erhoben, und die Effekte auf Fahr- und Blickverhalten sowie Nutzbarkeit untersucht werden. Diese Dissertation leistet den Beitrag einer Analyse der Entwicklung von interaktiven Oberflächen im Automobilbereich. Weiterhin werden die Aspekte Größe und Form untersucht, um mit ihrer Hilfe die Interaktion im Vergleich zu herkömmlichen Touchscreens zu verbessern. Die durchgeführten Studien belegen, dass große Flächen neue und verbesserte Bedienmöglichkeiten bieten können. Außerdem zeigt sich ein positiver Effekt auf die visuelle Ablenkung, wenn zusätzliches statisches, haptisches Feedback durch nicht-flache Oberflächen bereitgestellt wird. Zusammenfassend zeigen verschiedene, untereinander kombinierbare Interaktionskonzepte das Potential interaktiver Oberflächen für den automotiven Einsatz. Zudem können die Ergebnisse auch in anderen Bereichen Anwendung finden, in denen visuelle Aufmerksamkeit für andere Aufgaben benötigt wird
    corecore