1,018 research outputs found

    Veröffentlichungen und Vorträge 2009 der Mitglieder der Fakultät für Informatik

    Get PDF

    Evaluating the impact of OpenMP 4.0 extensions on relevant parallel workloads

    Get PDF
    OpenMP has been for many years the most widely used programming model for shared memory architectures. Periodically, new features are proposed and some of them are finally selected for inclusion in the OpenMP standard. The OmpSs programming model developed at the Barcelona Supercomputing Center (BSC) aims to be an OpenMP forerunner that handles the main OpenMP constructs plus some extra features not included in the OpenMP standard. In this paper we show the usefulness of three OmpSs features not currently handled by OpenMP 4.0 by deploying them over three applications of the PARSEC benchmark suite and showing the performance benefits. This paper also shows performance trade-offs between the OmpSs/OpenMP tasking and loop parallelism constructs and shows how a hybrid implementation that combines both approaches is sometimes the best option.This work has been partially supported by the European Research Council under the European Union's 7th FP, ERC Grant Agreement number 321253, by the Spanish Ministry of Science and Innovation under grant TIN2012-34557 and by the HiPEAC Network of Excellence. It has been also supported by the Severo Ochoa Program awarded by the Spanish Government (grant SEV-2011-00067) M. Moreto has been partially supported by the Ministry of Economy and Competitiveness under Juan de la Cierva postdoctoral fellowship number JCI- 2012-15047. M. Casas is supported by the Secretary for Universities and Research of the Ministry of Economy and Knowledge of the Government of Catalonia and the Co- fund programme of the Marie Curie Actions of the 7th R&D Framework Programme of the European Union (Contract 2013 BP_B 00243).Peer ReviewedPostprint (author's final draft

    StarPU: a Runtime System for Scheduling Tasks over Accelerator-Based Multicore Machines

    Get PDF
    Multicore machines equipped with accelerators are becoming increasingly popular. The TOP500-leading RoadRunner machine is probably the most famous example of a parallel computer mixing IBM Cell Broadband Engines and AMD opteron processors. Other architectures, featuring GPU accelerators, are expected to appear in the near future. To fully tap into the potential of these hybrid machines, pure offloading approaches, in which the main core of the application runs on regular processors and offloads specific parts on accelerators, are not sufficient. The real challenge is to build systems where the application would permanently spread across the entire machine, that is, where parallel tasks would be dynamically scheduled over the full set of available processing units. To face this challenge, we propose a new runtime system capable of scheduling tasks over heterogeneous, accelerator-based machines. Our system features a software virtual shared memory that provides a weak consistency model. The system keeps track of data copies within accelerator embedded-memories and features a data-prefetching engine. Such facilities, together with a database of self-tuned per-task performance models, can be used to greatly improve the quality of scheduling policies in this context. We demonstrate the relevance of our approach by benchmarking various parallel numerical kernel implementations over our runtime system. We obtain significant speedups and a very high efficiency on various typical workloads over multicore machines equipped with multiple accelerators

    Multi-GPU support on the marrow algorithmic skeleton framework

    Get PDF
    Dissertação para obtenção do Grau de Mestre em Engenharia InformáticaWith the proliferation of general purpose GPUs, workload parallelization and datatransfer optimization became an increasing concern. The natural evolution from using a single GPU, is multiplying the amount of available processors, presenting new challenges, as tuning the workload decompositions and load balancing, when dealing with heterogeneous systems. Higher-level programming is a very important asset in a multi-GPU environment, due to the complexity inherent to the currently used GPGPU APIs (OpenCL and CUDA), because of their low-level and code overhead. This can be obtained by introducing an abstraction layer, which has the advantage of enabling implicit optimizations and orchestrations such as transparent load balancing mechanism and reduced explicit code overhead. Algorithmic Skeletons, previously used in cluster environments, have recently been adapted to the GPGPU context. Skeletons abstract most sources of code overhead, by defining computation patterns of commonly used algorithms. The Marrow algorithmic skeleton library is one of these, taking advantage of the abstractions to automate the orchestration needed for an efficient GPU execution. This thesis proposes the extension of Marrow to leverage the use of algorithmic skeletons in the modular and efficient programming of multiple heterogeneous GPUs, within a single machine. We were able to achieve a good balance between simplicity of the programming model and performance, obtaining good scalability when using multiple GPUs, with an efficient load distribution, although at the price of some overhead when using a single-GPU.projects PTDC/EIA-EIA/102579/2008 and PTDC/EIA-EIA/111518/200

    GPUMap: A transparently GPU-accelerated Python map function

    Get PDF

    Intermediate QoS Prototype for the EDGI Infrastructure

    Get PDF
    This document provides the first deliverable of EDGI JRA2. It is produced by the INRIA team, the SZTAKI team, the LAL/IN2P3 team and the University of Coimbra team. This document aims at describing achievements and results of JRA2 tasks "Advanced QoS Scheduler and Oracle" and "Support In Science Gateway". Hybrid Distributed Computing Infrastructures (DCIs) allow users to combine Grids, Desktop Grids, Clouds, etc. to obtain for their users large computing capabilities. The EDGI infrastructure belongs to this kind of DCIs. The document presents the SpeQuloS framework to provide quality of service (QoS) for application executed on the EDGI infrastructure. It also introduces EDGI QoS portal, an user-friendly and integrated access to QoS features for users of EDGI infrastructure. In this document, we first introduce new results from JRA2.1 task, which collected and analyzed batch execution on Desktop Grid. Then, we present the advanced Cloud Scheduling and Oracle strategies designed inside the SpeQuloS framework (task JRA2.2). We demonstrate efficiency of these strategies using performance evaluation carried out with simulations. Next, we introduce Credit System architecture and QoS user portal as part of the JRA2 Support In Science Gateway (task JRA2.3). Finally, we conclude and provide references to JRA2 production.Ce document fournit le premier livrable pour la tâche JRA2 du projet européen European Desktop Grid Initiative (FP7 EDGI). Il est produit par les équipes de l'INRIA, de SZTAKI, du LAL/IN2P3 et de l'Université de Coimbra. Ce document vise à décrire les réalisations et les résultats qui concernent la qualité de service pour l'infrastructure de grilles de PCs européenne EDGI

    Contributions to Desktop Grid Computing : From High Throughput Computing to Data-Intensive Sciences on Hybrid Distributed Computing Infrastructures

    Get PDF
    Since the mid 90’s, Desktop Grid Computing - i.e the idea of using a large number of remote PCs distributed on the Internet to execute large parallel applications - has proved to be an efficient paradigm to provide a large computational power at the fraction of the cost of a dedicated computing infrastructure.This document presents my contributions over the last decade to broaden the scope of Desktop Grid Computing. My research has followed three different directions. The first direction has established new methods to observe and characterize Desktop Grid resources and developed experimental platforms to test and validate our approach in conditions close to reality. The second line of research has focused on integrating Desk- top Grids in e-science Grid infrastructure (e.g. EGI), which requires to address many challenges such as security, scheduling, quality of service, and more. The third direction has investigated how to support large-scale data management and data intensive applica- tions on such infrastructures, including support for the new and emerging data-oriented programming models.This manuscript not only reports on the scientific achievements and the technologies developed to support our objectives, but also on the international collaborations and projects I have been involved in, as well as the scientific mentoring which motivates my candidature for the Habilitation `a Diriger les Recherches

    NIC-assisted cache-efficient receive stack for message passing over Ethernet

    Get PDF
    International audienceHigh-speed networking in clusters usually relies on advanced hardware features in the NICs, such as zero-copy capability. Open-MX is a high-performance message passing stack tailored for regular Ethernet hardware without such capabilities. We present the addition of a multiqueue support in the Open-MX receive stack so that all incoming packets for the same process are handled on the same core. We then introduce the idea of binding the target end process near its dedicated receive queue. This model leads to a more cache-efficient receive stack for Open-MX. It also proves that very simple and stateless hardware features may have a significant impact on message passing performance over Ethernet. The implementation of this model in a firmware reveals that it may not be as efficient as some manually tuned micro-benchmarks. But our multiqueue receive stack generally performs better than the original single queue stack, especially on large communication patterns where multiple processes are involved and manual binding is difficult
    • …
    corecore