
GPUMap: A Transparently GPU-accelerated Python Map
Function

Ivan Pachev
California Polytechnic State University

San Luis Obispo, California, USA
ipachev@calpoly.edu

ACM Reference Format:
Ivan Pachev and Chris Lupo. 2017. GPUMap: A Transparently GPU-accelerated
Python Map Function. In PyHPC’17: PyHPC’17: 7th Workshop on Python for
High-Performance and Scientifc Computing, November 12–17, 2017, Den-
ver, CO, USA. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/
3149869.3149875

1 INTRODUCTION
GPU computing has been adopted by many programmers to solve
a wide range of problems with high performance. Creating a GPU-
accelerated application or refactoring an existing application to be
GPU-accelerated is not always a trivial task. GPU programmers
are often required to be familiar with the architecture of the GPU
in order to create an efcient GPU program. For programmers
without any understanding of GPU architecture, learning GPU
programming in order to incorporate GPU-acceleration into their
applications is time consuming and sometimes difcult.

There are some existing eforts to develop software packages
that attempt to simplify GPU programming in higher-level lan-
guages such as Java and Python. They require programmers to
be familiar with the traditional GPU programming model which
involves some understanding of GPU threads, memory, and kernels.
These software packages usually restrict the use of object-oriented
programming. As a result, prior to using these software packages,
programmers are required to transform the data they would like to
operate on into arrays of primitive data.

Just as individual systems with GPU-computing capability have
become more available, so too have high-performance distributed
systems. A limiting factor in the computing power of many modern
cluster computing frameworks is that, although they are scalable,
the frameworks are typically constrained to CPU-exclusive dis-
tributed computing applications. This means that these frameworks
may lack the ability to harness the powerful GPUs belonging to
each system. Compute intensive tasks such as machine learning,
image processing, and data analytics will beneft from distributed
computation on systems with GPUs.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proft or commercial advantage and that copies bear this notice and the full citation
on the frst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specifc permission
and/or a fee. Request permissions from permissions@acm.org.
PyHPC’17, November 12–17, 2017, Denver, CO, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5124-9/17/11. . . $15.00
https://doi.org/10.1145/3149869.3149875

Chris Lupo
California Polytechnic State University

San Luis Obispo, California, USA
clupo@calpoly.edu

Building GPU-accelerated distributed applications is possible
using CUDA bindings such as PyCUDA [3] and JCUDA [15]. How-
ever, these libraries provide almost no simplifcations to GPU pro-
gramming, requiring programmers to already be familiar with GPU
programming prior to using them. Furthermore, requiring program-
mers to explicitly incorporate traditional GPU programming into
their distributed applications conficts with the purpose of the dis-
tributed computing frameworks, which is to abstract the underlying
distributed system.

There are also software packages that provide simplifed GPU
acceleration to distributed computing frameworks such as MapRe-
duce [1] and Spark [17]. Although these packages provide a sim-
plifed GPU programming experience, they do not do so in a com-
pletely abstracted manner.

The contributions of this paper are two-fold. The frst contri-
bution is GPUMap, a GPU-accelerated map function for Python.
GPUMap hides all the details of the GPU from the programmer, and
allows the programmer to accelerate programs written in normal
Python code that operate on arbitrarily nested objects made up of
primitive data using a majority of Python syntax. Using GPUMap,
certain types of Python programs are able to be accelerated up to
100 times over normal Python code.

The second contribution is GPU-accelerated RDD (GPURDD),
which is a Resilient Distributed Dataset (RDD) that is used with
Spark. GPURDD incorporates GPUMap into its map, filter, and
foreach methods in order to allow Spark applications to make use
of the simplifed GPU acceleration provided by GPUMap. These
transformations can be used with normal Python functions and do
not require objects in the RDD to be restructured in order to use
them.

This paper is organized as follows. Section 2 discusses back-
ground information on GPU computing, Python, and Spark. Sec-
tion 3 discusses related works that attempt to provide simplifed
GPU acceleration in both individual and cluster computing environ-
ments. Section 4 explains the design and implementation of both
GPUMap and GPURDD. Section 5 analyzes performance bench-
marks that use GPUMap and GPURDD, and Section 6 concludes
and provides directions for future research.

2 BACKGROUND
This section discusses necessary background information related
to GPUMap, the implementation of GPUMap itself, and testing
GPUMap. Some basic background information on GPU computing,
Python, and Spark is also presented.

https://doi.org/10.1145/3149869.3149875
https://doi.org/10.1145/3149869.3149875
https://doi.org/10.1145/3149869.3149875
mailto:clupo@calpoly.edu
mailto:permissions@acm.org
mailto:ipachev@calpoly.edu

2.1 GPU Computing
GPUs can be used as a powerful parallel processor that is capable of
more foating point operations and has higher streaming memory
bandwith than even the highest-end CPUs [7]. Although GPUs can
be used as general purpose parallel processors, GPU programming
usually focuses on quickly performing batches of numerical com-
putations, rather than running full multithreaded, object-oriented
programs. Developers must take into account the limitations of the
GPU when writing optimized GPU programs.

The following is a discussion of some CUDA GPU-programming
basics, as they are necessary in understanding the implementation
details of GPUMap.

2.1.1 Thread Hierarchy. Threads are organized into a thread hi-
erarchy [6] consisting of blocks and grids. Both of these hierarchical
levels can be indexed in one, two, or three-dimensions. Each thread
operates on a piece of data based on its position in the block and
the position of the block in the grid.

2.1.2 Memory Hierarchy. There are three diferent types of
memory on the GPU that are used for GPU computing: thread-local
memory, shared memory, and global memory [6]. Thread-local
memory is available for each thread and is used for the individual
runtime stack of each thread. This memory stores local variables
and information about function calls. Shared memory is larger than
thread-local memory and is shared between threads in a block. The
largest and slowest type of memory is global memory. Global mem-
ory can be accessed by any threads in any block and is the only
GPU memory that is directly accessible to the host processor.

2.1.3 Serialization. Prior to running any GPU code, the data
that will be operated on must be serialized into a stream of primi-
tives. Space for this serialized data must be allocated in the GPU’s
global memory. Serialized data must be copied from the host to the
allocated memory block on the GPU.

Once the execution on the GPU is complete, the data needs to
be copied back to the host. Once the data is copied back to the host,
the data must be deserialized and inserted into its originating data
structures.

2.1.4 Kernels. The program to be run on the GPU is written in
the form of a kernel [6]. The kernel is a function that is executed in
parallel for each thread. A pointer to the data set to be operated on
by the GPU is passed to the kernel function.

2.2 Python
Python is a general purpose, interpreted programming language
that supports object-oriented programming, functional program-
ming, and procedural programming. The language is dynamically
typed, meaning that functions can be passed any types of argu-
ments and can return any type. In addition, felds and variables can
store data of any type. Python does this by performing late binding,
which means that variable names are bound to their corresponding
objects at runtime.

The following is a discussion of object structure in Python,
Python’s map operation, and Python closures as they are necessary
in understanding the implementation details of GPUMap.

2.2.1 Object Representation. Python objects are stored in a hash
table called a dictionary [10]. The keys to the dictionary are the
names of the felds or methods of an object. The values of the
dictionary are the objects or methods referred to by the keys.

When a feld or method is accessed in Python, the name of the
feld or method is looked up in the object’s dictionary at runtime.
If the name belongs to a feld, the object contained in the feld is
returned. All functions and methods are callable objects in Python,
so when the name of a method is looked up in an object’s dictionary,
the callable object representing the method is returned. This callable
object can either be called or passed around as a normal object.

2.2.2 Map Function. One of the functional programming com-
ponents provided with Python is the map function. The map function
provides an efective abstraction for transforming a list by applying
a function to each element by accepting a function f and a list L,
and applying f to each element in L to produce a new list.

In Python 3, the value returned by the map function is a generator.
A generator is like an iterator, but the elements returned by the
generator are lazily produced when the generator is iterated upon.
Thus, when the map generator is iterated upon, f is applied to each
successive element over L, returning the result.

2.2.3 Closures. Python closures are supported, allowing func-
tions to refer to variables from an outer scope. Functions are objects
that can be stored and called later, so function objects must store
references to these outer scope variables for later access when the
function object is called.

Python stores these references by creating a mapping between
the variable names and the objects they refer to in the form of a
dictionary. This dictionary can be accessed by using the __clos__
feld of a function object.

2.3 Apache Spark
Apache Spark is an open-source, cluster-computing framework that
provides abstractions for the underlying distributed system that
allow programmers to harness the power of the system without
needing to understand how the system works [17].

Spark is efcient for iterative and interactive tasks due to the
nature of its underlying data model, the resilient distributed dataset
(RDD). A RDD is a read-only, fault-tolerant collection of items that
is partitioned across a cluster and can be operated on in parallel [16].
Spark’s workers are long-lived processes that keep RDD partitions
persistent in memory between operations, allowing them to be
easily reused in future operations [16].

Because RDDs are typically operated on in parallel, users should
see performance increases provided by GPU-accelerated implemen-
tations of RDD operations on the worker nodes.

3 RELATED WORK
There are other projects that aim to provide simplifed GPU pro-
gramming to languages such as Java and Python, including Root-
beer, Aparapi, and Numba. These projects allow programmers to
implement GPU algorithms and produce GPU-accelerated appli-
cations without needing to write any CUDA or OpenCL code. In
addition, there are some projects that attempt to provide GPU-
acceleration in both MapReduce and Spark, such as Multi-GPU

2

MapReduce, Hadoop+Aparapi, and Spark-Ucores. This section dis-
cusses these related projects.

3.1 Rootbeer
Rootbeer is a Java framework that aims to automate GPU program-
ming steps such as serialization of the input data, creating and
launching GPU kernels, and deserialization of the data back into
the CPU memory. Rootbeer allows developers to write their parallel
code in Java by implementing the Kernel interface which contains
only one method: gpuMethod. Rootbeer automatically fnds all felds
that are reachable from the Kernel class and serializes them to the
GPU [9].

Rootbeer allows usage of almost all Java features, including ar-
rays, composite objects, dynamic memory allocation, strings, and
exceptions. However, in order to implement a more complex appli-
cation, some of the underlying CUDA functionality, such as thread
confguration, shared memory and CUDA thread synchronization
must be manually specifed [9].

3.2 Aparapi
Aparapi is another Java library that attempts to automatically GPU-
accelerate user-supplied Java code [2]. However, rather than trans-
lating the Java bytecode into CUDA, the bytecode is translated into
OpenCL.

Aparapi only supports usage of primitives and allows operation
on them using normal Java syntax, as well as many of the functions
provided by java.lang.Math [2]. Aparapi does not support objects,
static methods, recursion, overloaded methods, exceptions, dynamic
allocation, synchronization, or switch statements [2].

3.3 Numba
Numba is a just-in-time (JIT) compiler for Python targeted towards
scientifc computing. Numba provides limited GPU-acceleration,
allowing programmers to operate on NumPy arrays in parallel
using the GPU [4]. GPU-acceleration with Numba is much easier
than writing CUDA code because Numba provides considerable
simplifcations to the traditional GPU programming model.

Numba does not require programmers to be well-versed in CUDA
programming. Instead, the code that is to be translated can be
written in a subset of Python. The reason only a subset of Python
is allowed is because Numba must be to be able to infer all types
in order to generate the proper GPU code [4]. This means that
object-oriented code cannot be used.

3.4 Multi-GPU MapReduce (GPMR)
Multi-GPU MapReduce is a fexible MapReduce implementation
that works on clusters where the compute nodes have GPUs. Multi-
GPU MapReduce outperforms the normal CPU implementation
of MapReduce, as well as other single-GPU implementations of
MapReduce [14]. Although the framework performs well and is
fexible, Multi-GPU MapReduce does not provide a high-level ab-
straction for the underlying system, which may cause difculty for
users without GPU programming experience.

3.5 Hadoop+Aparapi
Hadoop+Aparapi provides an improved interface over traditional
GPU programming [5]. The developers were not able to completely
abstract the GPU component due to limitations in Aparapi when
Hadoop+Aparapi was created. Thus, simplifcation of the Hadoop+Aparapi
API was not possible. The Aparapi team has added features that
may help simplify the Hadoop+Aparapi’s API such as the usage of
objects and lambda expressions in the GPU kernel code [2].

3.6 Spark-Ucores
Spark-Ucores also uses Aparapi to translate Java code into OpenCL[12].
The Spark-Ucores team has also forked Aparapi in order to pro-
vide support for FPGAs and APUs, resulting in the creation of
Aparapi-Ucores [12]. Spark-Ucores provides GPU-accelerated im-
plementations of a few parallel operations on RDDs, including map,
mapPartitions, and reduce.

Spark-Ucores does not provide an abstraction for its GPU compo-
nents, so programmers must have at least some GPU experience. In
order to use Spark-Ucores, the user must restructure their existing
Spark code, which may further discourage usage of Spark-Ucores.

4 IMPLEMENTATION
GPUMap is open-source software, and may be downloaded from
the repository at: https://github.com/ipachev/py_gpumap.

The primary goal of GPUMap is to provide transparent GPU-
acceleration, which involves automatic serialization, code trans-
lation, execution of the translated code, and deserialization. The
programmer should be able to write normal Python code that pro-
vides a function f and a list L and call gpumap(f, L) to produce a
list L ′, the same way that they would normally call map(f, L).

4.1 Requirements
The implementation of GPUMap imposes the following require-
ments to support GPU execution.

• Objects must contain only integers, foating point numbers,
booleans, or other objects.

• Objects of the same class must have the same felds and
the same types in their corresponding felds, i.e. must be
homogeneous.

• Objects cannot contain members of the their own class either
directly or indirectly.

• Lists must contain only one class of objects.
• Functions or methods must be passed arguments of the same
type every time they are called.

• Functions or methods must return the same type every time
they are called.

• When a function is called, the function must call the same
functions or methods every time.

4.2 Invocation
When the programmer calls gpumap(f, L), the following steps are
taken in order to perform the desired map operation:

(1) f is applied to the frst element of L, L0, to produce L0
′ and

runtime inspection is performed to analyze every function
call.

3

https://github.com/ipachev/py_gpumap

(2) The felds of L0 and L0
′ are inspected to collect data about

the classes of L0 and L0
′ .

(3) If f is a closure, any objects that are included in the clo-
sure bindings are also inspected and information is collected
about their classes.

(4) CUDA C++ class defnitions are created for the necessary
classes by using the information collected during runtime
inspection and object inspection.

(5) Any functions and methods, including constructors, that are
called when applying f to L0 are translated into CUDA C++.

(6) All of the elements of L1...n are serialized to the GPU. Any
of the objects or lists that have closure bindings in f are also
serialized.

(7) The map kernel, which includes all class, function, and method
translations, is compiled and executed on the GPU, applying
the translation of f , f ′, to each element in the serialized
version of L1...n .

(8) The serialized input list, L1...n , and any closure objects or
lists are deserialized and the data is re-incorporated into the
original objects.

(9) The output list L ′ is deserialized and is used to populate 1...n
a list of objects based on the structure of L0

′ .
(10) L0

′ is prepended to L ′ to form L ′ as desired and L ′ is1...n
returned.

4.3 Implementation Details
There are many details and important algorithms used in the im-
plementation of GPUMap. Some of the most pertinent steps are
described here, but the full discussion of the implementation is be-
yond the scope of this paper. For full details of the implementation,
the reader is referred to Reference [8], and the source repository
on GitHub.

4.4 Runtime Inspection
Prior to doing any code translation or serialization, some data must
be collected about the functions and methods that will need to
be called, as well as the objects that will need to be operated on.
This data is acquired through inspection of the felds of objects and
tracing function execution when the given function is applied to
the frst element in the list. Runtime inspection consists of call and
object inspection, which are performed to extract representations
of functions, methods, and objects.

Several pieces of information need to be known about a class of
objects in order to generate the appropriate CUDA class defnitions
and properly serialize objects of that class. This information is
stored in a Class Representation.

The Class Representation is a recursive data structure that may
contain multiple other Class Representations for each feld. A Class
Representation is extracted by examining all of the felds of a sample
object, obj , by iterating through obj’s felds as a normal Python dict,
using obj.__dict__. This dict contains a mapping from obj’s feld
names to the objects contained in those felds. For each entry in
this dict, the feld name is recorded, and a Class Representation is
extracted and recorded for the object contained in the feld. Figure 1
depicts a sample extraction of a Class Representation of an object
of a class called classA.

4.5 Code Generation
In order to operate on a list L by applying a function f to each
element in the list on the GPU, the necessary CUDA C++ class
defnitions and function/method defnitions must be generated.
This process is non-trivial, and requires the emulation of Python’s
pass-by-reference behavior by passing all objects as references to
functions.

Classes, methods, and functions are generated from the data
structures extracted from runtime inspection.

Built-in Functions. Support was added for built-in functions such
as math functions, len, print, and others. Some of these built-in
functions have existing counterparts in CUDA C++, such as the
math functions. Other functions that do not have existing counter-
parts, such as len, are implemented in C++ and are supplied in a
header during compilation. Due to the fact that the names of built-
in Python functions do not always match up with built-in CUDA
C++ functions, translating the names of built-in Python functions
may be necessary.

4.6 Kernel Generation
The fnal step of code generation is fnalizing the CUDA kernel
function that will be executed on the GPU. The kernel function is a
function that is executed by each GPU thread. In order to parallelize
the map process, the GPU thread will apply the top-level function
to a diferent list item.

4.7 Serialization
When calling gpumap(f, L) with a function f and a list L, L and
any closure variables of f must be serialized and copied to the GPU.
The list L and any closure variables are not cached on the GPU and
must be serialized for every call to gpumap, although this may be
addressed by future work to improve performance.

After the translated code is executed, L and f ’s closure variables
must be copied back to the host and deserialized.

4.7.1 Serializing Objects. Prior to copying an object to the GPU,
the object must be serialized into the proper format so that the
object can be processed by the translated CUDA code. Serializing
a Python object involves collecting all of its non-contiguous parts
and collecting them in a contiguous section of memory as normal
binary data, as depicted in Figure 2.

In order to collect all the data in an object, including the data in
its nested objects, the object’s felds can be recursively examined.
The order in which the felds are accessed must be in the same order
as the class defnition that is created during the class generation
phase.

4.7.2 Serializing Lists of Objects. The process for serializing an
entire list is similar to serializing a single object so that objects,
whether or not they originate from a list, can be accessed and
manipulated the same way, using the same C++ class defnition. The
same is true for deserialization. However, in the case of deserializing
the output list of the map operation, the objects do not yet exist
in the Python code, so a slightly diferent approach must be taken
that also involves object creation, so the data can be unpacked into
objects.

4

Figure 1: Sample Extraction of a Class Representation

Figure 2: A normal Python object and its serialized counterpart

For each object to be instantiated in the output list, the frst
output object, which was created during runtime inspection, is
deep copied and is used as a skeleton for the new object.

The object is then inserted into the output list. Once the correct
number of objects have been created, populated, and inserted into
the output list, the output list is returned.

4.8 Integration in Spark
GPUMap can be integrated in a variety of transformations and
actions that can be performed on Spark RDDs. This section describes
the implementation of GPURDD, which is a class that extends RDD
and provides alternative implementations of map, flter, and foreach.
The restrictions described at the beginning of this section regarding
lists also extend to Spark RDDs.

4.8.1 Map. The map method on a Spark RDD allows the pro-
grammer to perform a transformation on the RDD by individually
applying a function f to each element of the RDD to produce a new
RDD containing transformed elements.

The existing implementation of RDD’s map method defnes a
function д that takes an iterator of the input type of f and returns
an iterator of the output type of f . Because f is stored in the closure
bindings of д, f can be passed along with д. This closure д is then
passed to mapPartitions so that f is applied to each element in

a partition. The mapPartitions method accepts a function that
takes an iterator of the input type and produces an iterator of the
transformed type, making д an acceptable candidate.

The closure д that is implemented inside the body of map returns
a map generator that applies the function passed to map, f , to each
element returned by the iterator supplied to д. Map generators
are created by using Python’s built-in map function. Each time the
map generator is iterated upon, the generator lazily applies f to a
new element from the iterator passed to д and produces the output.
In order to obtain an iterator to an entire partition, д is passed
to mapPartitions, where д will be given the partition iterator.
The call to mapPartitions returns a handle to an RDD that will
eventually contain the items transformed using д, once the RDD is
evaluated, and this is returned from the RDD’s map method.

In order to incorporate GPUMap into GPURDD’s map function,
the implementation of д must be altered to create д ′. The function
д ′ must still take an iterator of f ’s input type and return an iterator
of f ’s output type. The application of f on many items from the
iterator must be evaluated immediately in parallel, rather than
producing a map generator to evaluate the application of f to each
element from an iterator in sequence. This means that access to all
the elements in a partition simultaneously is necessary, which can
be achieved by exhausting the iterator into a list. This list can then
be passed into GPUMap, along with f , in order to apply f in parallel

5

and produce a transformed list. Because GPUMap outputs a list
and not an iterator, д ′ must return an iterator over the list, rather
than just the list itself. The last step of GPURDD’s map method is
to return the return value of the call to mapPartitions, which is a
handle to an RDD that will eventually contain the values that will
have been transformed using д ′ .

Once an action is performed on the resulting GPURDD in order to
evaluate all of the transformations, д ′ will be called with an iterator
to the partition elements in order to transform them. Although
the partition iterator is exhausted by д ′, Spark’s lazy evaluation
model is still preserved because д ′ is passed to mapPartitions.
The mapPartitions method will only call д ′ when the time comes
to evaluate the RDD. RDDs are evaluated when an action, such as
collect, count, or foreach is performed on them.

4.8.2 Foreach. The foreach method on a Spark RDD allows
the programmer to apply a function f to each element of an RDD
without transforming the RDD. Instead, the foreach method is
used to produce side-efects in the elements of the RDD.

The existing implementation of foreach makes use of the RDD’s
mapPartitions method, similarly to the way map method does. The
foreach method simply defnes a function д that iterates through
a partition iterator, applying f to each item of the partition, ig-
noring the return value of the call to f . In order to comply with
the fact that any function passed to mapPartitions must return
an iterator, д returns an empty iterator. This function, д, is passed
to mapPartitions, which creates a handle to an empty, dummy
RDD. The reason an empty RDD is created is because д returns an
empty iterator. When this dummy RDD is evaluated, f is applied
to each element of the source RDD. In order to force evaluation of
the dummy RDD, the foreach method calls the count method of
this dummy RDD. The handle to the dummy RDD is not returned
from foreach, as a handle to the dummy RDD is not useful.

GPUMap preserves side-efects, and can be efectively incorpo-
rated into foreach. The approach taken to incorporate GPUMap is
similar to the approach taken with GPURDD’s map method. A func-
tion д ′ is defned that takes an iterator over a partition and returns
an empty iterator. The body of д ′ simply consists of exhausting the
partition iterator into a list, and calling gpumap with f and the list
created by exhausting the iterator. The return value of the call to
gpumap can be discarded as it is not useful.

Then, д ′ is passed to mapPartitions to create a handle to a
dummy RDD and, similarly to RDD’s foreach method, evaluation
of the dummy RDD is forced using the handle’s count method in
order to apply д ′ to each partition.

4.8.3 Filter. The filter method on a Spark RDD allows the
programmer to transform an RDD by removing elements from
the RDD by applying a function f to each element that returns a
boolean indicating whether or not to keep the element.

The filter method is implemented very similarly to how map
is implemented, incorporating the use of mapPartitions. This
method defnes a closure д that takes an iterator that provides
elements of the RDD and returns an iterator that provides elements
that did not get fltered. The closure д calls Python’s built-in filter
function with f to create an iterator that produces items from an
iterable for which a f returns true and simply returns this iterator.
Then, д is passed to mapPartitions, which provides д with an

iterator over a partition, so that the elements of the partition can be
fltered. An RDD handle is returned by the call to mapPartitions.

The purpose of incorporating GPUMap into GPURDD’s filter
method is to attempt to speed up the evaluation of f on each
element of the partition. Due to the fact that when using GPUMap,
the input list and output list must have a one-to-one correspondence,
GPUMap cannot be directly used to flter the elements. However, the
results of applying f to each item can be computed using GPUMap
and can be subsequently used to remove elements.

In order to implement GPURDD’s filter method, a function
д ′ must be created to be used with mapPartitions, similar to
GPURDD’s implementation of map. First, the iterator passed to
д ′ must be exhausted to produce a list of items that can be operated
on in parallel. Then, gpumap is called with f and the list of items
to produce a list of boolean values indicating whether or not to
keep an entry in the list of items. Once the list of items and the
list of booleans are available, Python’s zip iterator can be used to
provide tuples consisting of the item itself and its corresponding
boolean. Then, Python’s built-in filter function is used to create a
flter iterator from the zip iterator. This flter iterator will not return
tuples where the second feld of the tuple, the boolean, is false. Then
the tuples returned by the flter iterator can be converted back into
items by using a map generator. A map generator is created by
using Python’s built-in map function that maps a tuple yielded by
the flter iterator to the tuple’s frst feld, which is the item itself.
This map generator serves as an iterator over the fltered items and
is returned by д ′. This process is illustrated in Figure 3.

Then д ′ is passed to mapPartitions and the resulting RDD
handle is returned. Once an action is performed on the resulting
RDD, then the RDD will be evaluated and д ′ will be called on an
iterator over each partition, as with GPURDD’s implementation of
map.

5 EXPERIMENTS
In order to determine the types of workloads that can be accelerated
using GPUMap, performance benchmarks are performed. The tests
used for performance benchmarking GPUMap are the n-body test
and the bubble sort test. The tests used for performance bench-
marking GPURDD are the shell sort test and the pi estimation tests.
These benchmarks use a variety of algorithms with diferent time
complexities, allowing us to examine the viability of GPUMap or
GPURDD in these diferent scenarios.

The experimental setup consists of machines ftted with:
• Intel Xeon E5-2695 v3 CPU @ 2.30GHz
• NVIDIA GeForce GTX 980
• 32 GB Memory
• CentOS 7

The NVIDIA GeForce GTX 980 has 4GB of memory and 2048
CUDA cores running at 1126 MHz. The GTX 980 supports CUDA
Compute Capability 5.2 which allows up to 1024 threads per block
and a maximum one-dimensional grid size of 231 − 1. Although the
maximum number of threads per block is 1024, the benchmarks all
use a block size of 512 × 1 × 1. The grid size is ⌈n/512⌉ × 1 × 1 where
n is the size of the input list. This confguration allows GPUMap to
achieve an occupancy of 100%, meaning that all 2048 CUDA cores
on the GTX 980 are able to be used concurrently.

6

Figure 3: GPURDD flter method

Each machine shares the same GPU to run a graphical user
interface as well as CUDA kernels. As a result, the maximum possi-
ble CUDA kernel runtime is constrained, which in turn limits the
maximum possible data sizes that can be used.

In the cases where just GPUMap is benchmarked, only a single
machine is used. In the cases where GPURDD is benchmarked, a
Spark cluster consisting of 10 of these machines is used. The Spark
cluster is confgured so that each worker node only has one worker
process and the worker process is only allowed to use one core. This
confguration is used because there is only one GPU per machine
and so executing GPUMap simultaneously from diferent processes
is not possible.

The remainder of this section will discuss the diferent bench-
marks and perform a performance evaluation. Overall, the results
demonstrate that both GPUMap and GPURDD are not viable for
O(n) algorithms but provide considerable performance improve-
ments to algorithms with larger time complexities.

5.1 N-body Benchmark
The n-body test is an all-pairs n-body implementation based on the
outer loop approach from [13]. This test is used as a performance
benchmark for GPUMap. This is an O(n2) algorithm due to the fact
that on each step of the simulation, for each body, each other body
must be considered.

Prior to running the simulation, a warmup on 256 bodies is
performed using both Python’s map and GPUMap. Then, the simu-
lation is run starting with two bodies, all the way up to 8192 bodies
by powers of two. For each number of bodies, the simulation is run
fve times and the average execution time is computed.

Figure 4 shows the speed-up achieved by using GPUMap over
normal Python running the exact same code. With less than 256 bod-
ies, there is no speed-up and GPUMap is not viable. However, start-
ing with 1024 bodies, there is a considerable speed-up of slightly
above 12 times. With 8192 bodies, the program is able to execute
about 249 times faster.

The reason for this increase in performance is that because this
all-pairs n-body simulation is an O(n2) algorithm, the amount of
work needed to be done increases faster than the data that needs to
be serialized for increasing body count. Thus, for larger numbers of
bodies, the processing duration is not outweighed by serialization.

Figure 5 shows a breakdown of the run times of diferent stages
of GPUMap for the diferent input data sizes. These stages are:

• First call, where runtime inspection is performed by applying
the given function to the frst item in the list.

Figure 4: Speed-up using GPUMap with the N-body bench-
mark

• Code generation, where the appropriate CUDA code is gen-
erated and compiled using the information acquired from
frst call, as well as AST inspection.

• Serialize, where the closure variables as well as remaining
objects in the list are inspected, serialized, and copied to the
GPU.

• Run, where the CUDA kernel is executed in order to operate
on the data in parallel.

• Deserialize, where the serialized data is copied back from
the GPU and unpacked into its originating objects.

As expected, due to the fact this algorithm is O(n2), the frst call
and run stages’ durations increase much more quickly than the
serialization and deserialization stages’ durations with increases
in body count. Serialization and deserialization durations increase
with increases in body count, but not as quickly as frst call and run
durations due to the fact that serialization and deserialization are
only O(n). In addition, code generation seems relatively constant
across changes in input data size because the code that is generated
is independent of the input data size.

Overall, GPUMap is able to produce a considerable performance
improvement of 249 times over the exact same n-body simulation
code running through Python on the largest tested data set. How-
ever, GPUMap is not useful for n-body simulations with very small
data sets as GPUMap actually causes a slowdown.

7

Figure 5: Stage duration using GPUMap with the N-body
benchmark

5.2 Bubble Sort Benchmark
The bubble sort test is a simple test that involves sorting multiple
lists of randomly generated integers in parallel using bubble sort,
an O(n2) sorting algorithm. This test is also used as a performance
benchmark for GPUMap.

When sorting multiple lists in parallel using the GPU, some lists
may be more poorly sorted than others, causing certain threads
take longer to complete. This means that the execution time of all
the threads on the same block is always as long as the time taken
to sort the most poorly sorted list, resulting in more consistent
worst-case scenario performance for bubble sort.

Prior to performing the benchmark, a warmup is performed by
using both Python’s map and GPUMap to sort 1000 lists of 256
elements each. The benchmark consists of sorting 1000 lists of
particular length, starting with lists of size 2 all the way to lists
of size 4096 using both Python’s map as well as GPUMap. Then
another benchmark is performed that sorts 5000 lists of length from
2 to 4096 by powers of 2. For each data size, the benchmark is run
5 times and an average runtime is computed.

Figure 6 shows the performance increase that can be obtained
from using GPUMap to sort 1000 lists in parallel with bubble sort
over normal Python running the exact same code, sorting the same
lists. For lists of size less than 32, GPUMap is not viable as the serial-
ization duration outweighs the kernel runtime duration. For lists of
size 32 or greater, GPUMap is able to outperform normal Python’s
map function. The largest speed-up, 33.5 times, is obtained for the
lists of size 4096. However, this speed-up is not much greater than
the 33.2 times speed-up for the lists of size 2048. The results show
that with increasing list length, the speed-up converges asymptoti-
cally. One possible reason for this asymptotic convergence is due
to the fact that sorting 1000 lists in parallel does not fully exploit
the parallel nature of the GPU.

Figure 7 shows a breakdown of the run times of diferent stages
of GPUMap for the diferent input data sizes for the bubble sort
benchmark. Similarly to the n-body benchmark, due to the fact that

Figure 6: Speed-up using GPUMap to sort 1000 lists using
bubble sort

Figure 7: Stage duration using GPUMap to sort 1000 lists us-
ing bubble sort

this is an O(n2) algorithm, the durations of the frst call and run
stages increase much quicker than the durations of the serialize
and deserialize stages with increases in input data size. As previ-
ously mentioned, serialization and deserialization is O(n), so the
durations of these stages do not increase as quickly with increases
in input data size. Furthermore, the duration of code generation is
independent of the input data size as the same code is generated
each time.

The GPU is capable of running more than 1000 threads simulta-
neously, so a second benchmark is performed that involves sorting
5000 lists rather than 1000 lists. The purpose of this benchmark is
to examine diferent usage scenarios that may allow GPUMap to
take better advantage of the parallel processing power of the GPU.
The GPU is able to achieve a much better speedup when sorting
these 5000 lists in parallel, as shown in Figure 8.

8

Figure 8: Speed-up using GPUMap to sort 5000 lists using
bubble sort

With a larger number of lists to operate on in parallel, the GPU
is able to use more of its available threads simultaneously. As a
result, the maximum possible speed-up from increasing data size
increases from about 34 times in the benchmark with 1000 lists, to
about 145 times in the benchmark with 5000 lists.

Due to the fact that bubble sort is an O(n2) algorithm, using
bubble sort with GPUMap to sort multiple lists simultaneously pro-
duces considerable performance improvements, as the processing
time is not overshadowed by the serialization time. However, the
performance improvement seems to be somewhat dependent on
the data size, and unfortunately, reshaping the data into a shape
that maximizes performance may not be possible.

5.3 Shell Sort Benchmark
The shell sort test benchmarks the sorting of multiple lists in
parallel, similarly to the bubble sort. However, this test uses the
shell sort algorithm, which has a worst case time complexity of
O(nloд2n) [11]. In addition, this test designed for use with GPURDD
rather than GPUMap, and the list count is varied rather than the
list size. Varying the list count rather than the list size makes this
parallel list sort an O(m) where m is the number of lists.

Prior to running the benchmark, a warm up is performed using
100 lists of length 100 partitioned into 10 partitions. Then, the
tests are run in order measure the performance of sorting 100, 1000,
10000, and 100000 lists of length 10000, partitioned into 10 partitions.
The benchmark measures the time taken for the each set of lists to be
sorted using both RDD’s foreach method and GPURDD’s foreach
method. As shown in Figure 9, for this benchmark, GPURDD’s
foreach performs at least as well as RDD’s foreach on each of
these tests, with the exception of the smallest data set due to the
added overhead of GPUMap. The sorting smallest data set, 100 lists
of size 10000, results in poor performance because GPUMap is not
able to take full advantage of the GPU as there are only 100 lists
to sort, so only 100 GPU threads can be used. The most signifcant

speed-up, 13 times, occurs when there are 10000 lists of size 10000
being sorted.

Figure 9: Speed-up using GPURDD to sort lists of size 10000
using shellsort

The reason this benchmark results in smaller speed-ups than
the bubble sort benchmark is because this algorithm has better
time complexity than bubble sort. In addition, the number of lists
is varied rather than the number of elements in each list, causing
larger numbers of lists to linearly increase the amount of work to
do. This means that the kernel duration is not able to outweigh
the frst call and serialization stages’ durations. For bubble sort’s
benchmarks involving larger data sets, the kernel had a longer
duration than serialization, thus resulting in a larger impact on the
overall duration. However, on the shell sort tests, the total duration
was impacted by the frst call, serialization, and deserialization
stages more signifcantly than by the kernel run stage, as depicted
in Figure 10.

Overall, GPURDD may provide a slight performance improve-
ment over a normal RDD when using an algorithm such as shell sort
with a large enough data set. However, performance improvement
is dependent on the shape of the data, which can make depending
on GPURDD for performance improvements less feasible. In addi-
tion, due to the fact that in this experiment the work to be done
is O(m) on the number of lists, the serialization costs cannot be
outweighed with processing time.

6 CONCLUSIONS AND FUTURE WORK
This paper presents GPUMap, a Python map function that aims to
allow programmers to GPU-accelerate certain types of programs
with no extra efort or knowledge of GPU computing.. GPUMap
works with normal, object-oriented Python code and does not re-
quire users to do any serialization or write kernels. This paper also
presents GPURDD, which is a type of Spark RDD that incorporates
GPUMap into its map, filter, and foreach methods to provide
simplifed GPU acceleration in Apache Spark.

GPUMap performs automatic serialization, automatic code gener-
ation, automatic kernel execution, and automatic deserialization in

9

Figure 10: Stage duration using GPURDD to sort lists of size
10000 using shell sort

order to attempt to provide the programmer with a GPU-accelerated
map function that does not require any extra efort to use.

GPUMap achieves a considerable performance improvement for
certain types of programs. For compatible algorithms that have
considerably larger time complexity than O(n) and a large enough
data set, GPUMap may provide performance improvements. Dur-
ing benchmarking of GPUMap using the O(n2) n-body algorithm,
GPUMap was able to produce a speed up of 249 times on the largest
data set. However, for algorithms with O(n) time complexity or
better, GPUMap will likely not yield any considerable speed-ups
due to O(n) serialization complexity.

GPURDD was created to incorporate the simplifed GPU-acceleration
provided by GPUMap into Apache Spark. GPURDD’s map and
foreach methods use GPUMap to apply a given function to each
item in a partition. In the case of the filter method, GPUMap is
used to apply the fltering function to each item in a partition to
determine whether each element should be kept. The elements that
should be not kept are then pruned outside of GPUMap.

6.1 Future Work
There are some Python language features, data structures, and built-
in functions that are unsupported in code translated by GPUMap,
primarily because GPUMap does not make use of CUDA’s thread-
level dynamic allocation as it does not perform well when many
threads attempt to allocate memory simultaneously. This means
that variable length data structures such as lists, dicts, and strings
are unsupported by GPUMap. However, GPUMap supports limited
usage of lists that are included as input list elements or closure
variables. By using an alternative thread-level dynamic allocation
scheme, it may be possible to incorporate dynamic allocation into
GPUMap so that many more Python features can be implemented.

There are further performance improvements that can be made
to GPUMap by caching input lists and closure variables and par-
allelizing the serialization process, which may help GPUMap per-
form better overall by decreasing the serialization time. Because

GPURDD incorporates GPUMap, all of the limitations of GPUMap
carry over to GPURDD.

REFERENCES
[1] Jefrey Dean and Sanjay Ghemawat. 2008. MapReduce: simplifed data processing

on large clusters. Commun. ACM 51, 1 (2008), 107–113.
[2] Gary Frost and Mohammed Ibrahim. 2015. Aparapi Documentation. Technical

Report. AMD Open Source Zone. https://aparapi.github.io/http://developer.amd.
com/tools-and-sdks/open-source/

[3] Andreas Klöckner, Nicolas Pinto, Yunsup Lee, B. Catanzaro, Paul Ivanov, and
Ahmed Fasih. 2012. PyCUDA and PyOpenCL: A Scripting-Based Approach
to GPU Run-Time Code Generation. Parallel Comput. 38, 3 (2012), 157–174.
https://doi.org/10.1016/j.parco.2011.09.001

[4] Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. 2015. Numba: A LLVM-based
Python JIT Compiler. In Proceedings of the Second Workshop on the LLVM Compiler
Infrastructure in HPC (LLVM ’15). ACM, New York, NY, USA, Article 7, 6 pages.
https://doi.org/10.1145/2833157.2833162

[5] Y. Lin, S. Okur, and C. Radoi. 2012. Hadoop+Aparapi: Making heterogenous MapRe-
duce programming easier. Technical Report. hgpu.org. http://www.semihokur.
com/docs/okur2012-hadoop_aparapi.pdf

[6] NVIDIA Corporation. 2017. CUDA C Programming Guide. Technical Report.
NVIDIA Corporation. http://docs.nvidia.com/cuda/cuda-c-programming-guide

[7] John D Owens, Mike Houston, David Luebke, Simon Green, John E Stone, and
James C Phillips. 2008. GPU computing. Proc. IEEE 96, 5 (2008), 879–899.

[8] Ivan Pachev. 2017. GPUMap: A Transparently GPU-Accelerated Map Function.
Master’s thesis. California Polytechnic State University.

[9] Philip C Pratt-Szeliga, James W Fawcett, and Roy D Welch. 2012. Rootbeer:
Seamlessly using GPUs from Java. In High Performance Computing and Communi-
cation & 2012 IEEE 9th International Conference on Embedded Software and Systems
(HPCC-ICESS), 2012 IEEE 14th International Conference on. IEEE, Liverpool, United
Kingdom, 375–380.

[10] Python Software Foundation. 2017. Data Model. Technical Report. Python
Software Foundation. https://docs.python.org/3/reference/datamodel.html

[11] Robert Sedgewick. 1996. Analysis of Shellsort and Related Algorithms. In Proceed-
ings of the Fourth Annual European Symposium on Algorithms (ESA ’96). Springer-
Verlag, London, UK, UK, 1–11. http://dl.acm.org/citation.cfm?id=647906.739656

[12] Oren Segal, Philip Colangelo, Nasibeh Nasiri, Zhuo Qian, and Martin Margala.
2015. SparkCL: A Unifed Programming Framework for Accelerators on Hetero-
geneous Clusters. CoRR abs/1505.01120 (2015). http://arxiv.org/abs/1505.01120

[13] Artjoms Šinkarovs, Sven-Bodo Scholz, Robert Bernecky, Roeland Douma, and
Clemens Grelck. 2014. SaC/C formulations of the all-pairs N-body problem and
their performance on SMPs and GPGPUs. Concurrency and Computation: Practice
and Experience 26, 4 (2014), 952–971.

[14] J. A. Stuart and J. D. Owens. 2011. Multi-GPU MapReduce on GPU Clusters. In
2011 IEEE International Parallel Distributed Processing Symposium. 1068–1079.
https://doi.org/10.1109/IPDPS.2011.102

[15] Yonghong Yan, Max Grossman, and Vivek Sarkar. 2009. JCUDA: A programmer-
friendly interface for accelerating Java programs with CUDA. In Euro-Par 2009
Parallel Processing: 15th International Euro-Par Conference, Delft, The Netherlands,
August 25-28, 2009. Proceedings. Springer, Springer Berlin Heidelberg, Berlin,
Heidelberg, 887–899. https://doi.org/10.1007/978-3-642-03869-3_82

[16] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauly, Michael J. Franklin, Scott Shenker, and Ion Stoica. 2012. Re-
silient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster
Computing. In Presented as part of the 9th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 12). USENIX, San Jose, CA, 15–28. https:
//www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia

[17] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion
Stoica. 2010. Spark: Cluster Computing with Working Sets. HotCloud 10 (2010),
10–10.

10

https://aparapi.github.io/http://developer.amd.com/tools-and-sdks/open-source/
https://aparapi.github.io/http://developer.amd.com/tools-and-sdks/open-source/
https://doi.org/10.1016/j.parco.2011.09.001
https://doi.org/10.1145/2833157.2833162
http://www.semihokur.com/docs/okur2012-hadoop_aparapi.pdf
http://www.semihokur.com/docs/okur2012-hadoop_aparapi.pdf
http://docs.nvidia.com/cuda/cuda-c-programming-guide
https://docs.python.org/3/reference/datamodel.html
http://dl.acm.org/citation.cfm?id=647906.739656
http://arxiv.org/abs/1505.01120
https://doi.org/10.1109/IPDPS.2011.102
https://doi.org/10.1007/978-3-642-03869-3_82
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia
http:hgpu.org

	1 Introduction
	2 Background
	2.1 GPU Computing
	2.2 Python
	2.3 Apache Spark

	3 Related Work
	3.1 Rootbeer
	3.2 Aparapi
	3.3 Numba
	3.4 Multi-GPU MapReduce (GPMR)
	3.5 Hadoop+Aparapi
	3.6 Spark-Ucores

	4 Implementation
	4.1 Requirements
	4.2 Invocation
	4.3 Implementation Details
	4.4 Runtime Inspection
	4.5 Code Generation
	4.6 Kernel Generation
	4.7 Serialization
	4.8 Integration in Spark

	5 Experiments
	5.1 N-body Benchmark
	5.2 Bubble Sort Benchmark
	5.3 Shell Sort Benchmark

	6 Conclusions and Future Work
	6.1 Future Work

	References

