
HAL Id: inria-00467677
https://hal.inria.fr/inria-00467677

Submitted on 28 Mar 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

StarPU: a Runtime System for Scheduling Tasks over
Accelerator-Based Multicore Machines
Cédric Augonnet, Samuel Thibault, Raymond Namyst

To cite this version:
Cédric Augonnet, Samuel Thibault, Raymond Namyst. StarPU: a Runtime System for Scheduling
Tasks over Accelerator-Based Multicore Machines. [Research Report] RR-7240, INRIA. 2010, pp.33.
�inria-00467677�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50100595?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00467677
https://hal.archives-ouvertes.fr

appor t

de r ech er ch e

IS
S

N
0

2
4

9
-6

3
9

9
IS

R
N

IN
R

IA
/R

R
--

7
2

4
0

--
F

R
+

E
N

G

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

StarPU: a Runtime System for Scheduling Tasks over

Accelerator-Based Multicore Machines

Cédric Augonnet, Samuel Thibault, Raymond Namyst

N° 7240

Mars 2010

Centre de recherche INRIA Bordeaux – Sud Ouest
Domaine Universitaire - 351, cours de la Libération 33405 Talence Cedex

Téléphone : +33 5 40 00 69 00

StarPU: a Runtime System for Scheduling Tasks
over Accelerator-Based Multicore Machines

Cédric Augonnet∗, Samuel Thibault†, Raymond Namyst‡

Theme :
Équipe-Projet Runtime

Rapport de recherche n➦ 7240 — Mars 2010 — 30 pages

Abstract: Multicore machines equipped with accelerators are becoming in-
creasingly popular. The TOP500-leading RoadRunner machine is probably the
most famous example of a parallel computer mixing IBM Cell Broadband En-
gines and AMD opteron processors. Other architectures, featuring GPU accel-
erators, are expected to appear in the near future. To fully tap into the potential
of these hybrid machines, pure offloading approaches, in which the main core
of the application runs on regular processors and offloads specific parts on ac-
celerators, are not sufficient. The real challenge is to build systems where the
application would permanently spread across the entire machine, that is, where
parallel tasks would be dynamically scheduled over the full set of available pro-
cessing units.

To face this challenge, we propose a new runtime system capable of schedul-
ing tasks over heterogeneous, accelerator-based machines. Our system features
a software virtual shared memory that provides a weak consistency model. The
system keeps track of data copies within accelerator embedded-memories and
features a data-prefetching engine. Such facilities, together with a database
of self-tuned per-task performance models, can be used to greatly improve the
quality of scheduling policies in this context. We demonstrate the relevance of
our approach by benchmarking various parallel numerical kernel implementa-
tions over our runtime system. We obtain significant speedups and a very high
efficiency on various typical workloads over multicore machines equipped with
multiple accelerators.

Key-words: GPGPU, Multicore, Scheduling, Performance, StarPU.

∗ Cédric Augonnet is with the INRIA and the University of Bordeaux, E-mail:
cedric.augonnet@inria.fr

† Samuel Thibault is with the INRIA and the University of Bordeaux, E-mail:
samuel.thibault@labri.fr

‡ Raymond Namyst is with the INRIA and the University of Bordeaux, E-mail: ray-
mond.namyst@labri.fr

StarPU: un support exécutif capable
d’ordonnancer des tâches sur des machines

multicœurs équippées d’accélérateurs

Résumé : Les machines multicœurs équippées d’accélérateurs sont de plus
en plus répandues. Le RoadRunner, une des machines parallèles actuellement
les plus puissantes au monde est d’ailleurs constitué d’une combinaison de
processeurs IBM Cell Broadband Engines et d’AMD Opteron. D’autres ar-
chitectures à base d’accélérateurs (notamment de GPUs) devraient également
faire leur apparition dans un futur proche. Afin de réellement tirer la quintes-
sence de ces machines hybrides, il n’est plus suffisant de se contenter d’approches
uniquement fondées sur le déport de calcul, où le cœur de l’application tourne
sur des processeurs classiques alors que les parties véritablement coûteuses
sont déportées sur des accélérateurs. Le véritable défi consiste à concevoir des
systèmes où les applications sont réparties sur la totalité de la machine, c’est à
dire des qu’il faut être capable d’ordonnancer des tâches parallèles sur la totalité
des ressources de calcul disponibles.

Afin de faire face à ce défi, nous présentons un nouveau support exécutif
capable d’ordonnancer des tâches sur des machines hétérogènes à base d’accélé-
rateurs. Notre système comporte une mémoire virtuellement partagée qui assure
la cohérence des données. Il garde la trace des copies de chacune des données
dans les différentes mémoires embarquées sur les accélérateurs, et fourni des
mécanismes tels que le pré-chargement de données. Conjointement à l’utilisation
de modèles de coût auto-calibrés, ces fonctionnalités permettent d’améliorer
substantiellement la qualité de l’ordonancement dans le contexte des architec-
tures hybrides. Nous démontrons l’intérêt de notre approche en analysant les
performances de notre support exécutif sur différents algorithmes numériques
parallèles. Nous observons une réduction significative des temps de calcul, ainsi
qu’une grande efficacité dans l’utilisation des différentes ressources de calcul
pour différentes charges de travail typiques, notamment dans le cas de machines
multicœurs équippées de plusieurs accélérateurs.

Mots-clés : GPGPU, Multicœur, Ordonnancement, Performance, StarPU.

StarPU: a runtime system for accelerator-based multicore machines 3

1 Introduction

The High Performance Computing community has recently witnessed a major
evolution of parallel architectures. The invasion of multicore chips has impacted
almost all computer architectures, going from laptops to high-end parallel com-
puters. While researchers are still having a hard time trying to bridge the gap
between the theoretical performance of multicore machines and the sustained
performance achieved by current software, they now have to face yet another ar-
chitecture trend: the use of specific purpose processing units as side accelerators
to speed up computation intensive applications.

The Cell Broadband Engine processor, for instance, features a general pur-
pose core (PowerPC Processing Unit) surrounded by eight co-processors (Syn-
ergistic Processing Units), each featuring a specific vector instruction set and
equipped with a private local storage. This processor is currently used in several
multimedia hardware solutions – it most notably powers the Sony PlayStation
3 – but it is also a key component of the currently most powerful parallel ma-
chine: IBM RoadRunner. Although the future of the Cell processor in HPC is
not clear, many computer architects predict that future processors will follow a
similar design mixing general purpose cores and specialized co-processors.

Another popular practice is to use General Purpose Graphical Processing
Units as co-processors to speed up data parallel computations. GPUs are mas-
sively parallel devices that can run SIMD programs very efficiently. Many re-
search groups have already reported impressive performance boost thanks to the
offloading of part of their application to a GPU device. Although the general-
ization to multi-GPU computation is currently limited by the bandwidth of the
I/O buses connecting these devices to the host machine, some computer man-
ufacturers actually plan to build HPC architectures featuring multiple GPUs
racks. It is however expected that GPU-like co-processors and general purpose
cores will be part of the same chip in the near future. The future Intel Larrabee
processor, for instance, clearly belongs to that category of hybrid processors.

As a result, for an increasing part of the HPC community, the challenge has
somehow moved from exploiting hierarchical multicore machines to exploiting
heterogeneous multicore architectures. In the former case, many research efforts
are merely dedicated to enhancing existing compilers, runtime systems or par-
allel libraries to better meet the requirements of new multicore architectures.
Regarding heterogeneous machines, the gap with traditional multiprocessor ar-
chitectures is so huge that simply enhancing existing solutions is not an option.
Accelerator-based machines indeed introduce many hardware constraints – re-
lated to several memory limitations and to the execution model of accelerators
– that make traditional multithreaded approaches impractical. Indeed, acceler-
ators such as GPUs or Cell’s SPUs have their own local storage which is not
implicitly kept consistent with the main host memory. Thus, all data trans-
fers between the main memory and the accelerators must be explicitly done by
the software. Furthermore, because accelerators feature their own instruction
set and a specific execution model, the code offloaded to these co-processors
must be generated by a specific compiler and is completely different from the
code compiled for the regular cores, which makes it impossible to migrate tasks
between processors and accelerators during their execution.

As a result, exploiting this new generation of parallel computers requires
to revise the complete software stack, from the languages down to the runtime

RR n➦ 7240

StarPU: a runtime system for accelerator-based multicore machines 4

systems. Our contribution is the design of a new runtime system, called StarPU,
that meets the needs of heterogeneous, accelerator-based architectures. We
explain how StarPU is capable of scheduling tasks efficiently over the whole
range of processing units, thanks to the use of auto-tuned performance models
and optimized data transfers between processing units. Our runtime system is
typically intended to serve as a target for numerical kernel libraries and parallel
language compilers. We use the StarPU implementation over NVIDIA GPU
cards and Intel Nehalem processors to perform detailed performance studies of
our scheduling techniques on several numerical kernels. The results of these
studies provide insights into the impact of the accuracy of performance models
and the granularity of the data partitioning.

2 Background

We first review the main types of approaches to the problem of programming
accelerator-based machines.

2.1 New programming tools

To deal with accelerator programming, a wide spectrum of languages, tech-
niques and tools that have been specifically designed, ranging from low-level
development kits to new parallel languages.

2.1.1 Low-level development kits

Constructors usually provide low-level software development toolkits (SDK) to
program their particular type of accelerators. Since such accelerator-specific
APIs are usually the first available for the corresponding acceleration technolo-
gies, they are usually also the most widely used. CUDA, for instance, is the
official SDK provided by NVIDIA for their GPU cards, while the AMD com-
pany provides Stream, a totally different SDK for their ATI cards. Concerning
programming the Cell, LibSPE provided by IBM still remains the main SDK.

All these SDKs look similar at first sight, but they also export many hard-
ware capabilities to the application, allowing to develop very efficient, carefully
tuned code. However, their low-level API is hard to use and leads to non-
portable programs. They also do not provide support for distributing work
between regular cores and accelerators, they merely provide tools to drive com-
putations on the latter.

The recently announced OpenCL standard provides a portable low-level in-
terface, but it does not really help people in handling the complexity of such
challenging hardware: such kind of low-level library does not really take any
decision, and just obeys to the programmer’s orders. In order to achieve the
best performance a programmer would still have to know the intricacies of the
underlying hardware, to give judicious orders.

2.1.2 Optimized Kernel Libraries

Because many HPC applications are making extensive use of common numer-
ical kernels (BLAS for linear algebra [24], FFT for Fourier transforms [13]), it
is no surprise that numerous research groups have designed implementations

RR n➦ 7240

StarPU: a runtime system for accelerator-based multicore machines 5

of numerical kernel libraries specific to GPU or Cell accelerators [19]. These
highly optimized libraries are typically built using the aforementioned software
development toolkits. For instance, the CUBLAS library provides optimized
BLAS routines for NVIDIA GPU cards, and is implemented in CUDA.

Most existing libraries are only capable of exploiting a single accelerator
at a time, though. Some libraries such as MAGMA consider not only multi-
accelerator setups, but they are also currently getting support for using CPUs
and accelerators simultaneously [22]. However, their implementation is based
on a static distribution of tasks and data, which would not be suitable for com-
plex systems composed of multiple heterogeneous accelerators. Furthermore,
because existing implementation do not feature a true task scheduler, a parallel
numerical kernel can not be run in parallel with another instance of a kernel
without resulting to interferences. This problem prevents efficient parallel code
composability.

2.1.3 Programming Languages

Several new specific languages have been designed to write portable programs in
a high-level fashion that should take advantage of accelerator-based machines.

Many new languages are based on a streaming model. RapidMind and
BrookGPU provide convenient ways to explicitely manipulate data streams.
Other languages such as Sequoia or the MapReduce framework let the pro-
grammer express computations following some structure that exposes a suffi-
cient amount of parallelism.

There are also numerous propositions to extend existing languages with some
OpenMP-like constructs. StarSs and CellGen both propose a source-to-source
approach to perform target-specific code optimization (eg. vectorization or
tiling) and propose pragmas to delimit tasks and describe data accesses. Simi-
larly, PGI accelerator and HMPP also take care of transforming annotated
C/Fortran codes into efficient kernels for accelerators.

While those efforts attempt to save programmers from low-level architecture-
specific interfaces thanks to high-level and portable constructs, most of them
concentrate on generating efficient code. For instance, HMPP [10] relies on
a minimalist runtime system that simply uses a coarse-grain lock to protect
each processing units. Some languages such as Sequoia even map computations
in a static fashion [11]; this may not be realistic when it comes to irregular
applications and/or complex heterogeneous platforms. Runtime systems permit
to do dynamically what cannot be done statically anymore.

2.2 Towards new runtime systems

The numerous research efforts presented in the previous sections cover a wide
range of functionalities, but still suffer from relying on basic runtime systems.
We claim that implementations of numerical kernel libraries or parallel lan-
guages could achieve better performance over complex heterogeneous architec-
tures if they would use a runtime system capable of dynamically scheduling tasks
on the most appropriate processing unit.

Designing such a runtime systems raises a number of challenges related both
to the scheduling itself and to the management of data movements between the
host memory and the accelerators.

RR n➦ 7240

StarPU: a runtime system for accelerator-based multicore machines 6

GPU

Sc
he

du
le

r

GPU Driver

App.

B

ARAM

DSM
A

BA
f

1 2

3

5
6

t
f
cpu
gpu
spu

gpu

D
ep

en
de

ci
es 4

Figure 1: Execution of a Task within StarPU.

Scheduling. To allow the scheduler to dynamically assign tasks to any process-
ing unit, tasks should have several implementations, one per type of processing
unit that is capable of executing it. These implementations will obviously ex-
hibit very different performance, but the gap between the implementation for
an Intel Nehalem processor and the implementation for an NVIDIA Quadro
GPU can also vary a lot depending on the kind of computation itself. Thus, the
scheduler should be able to use performance prediction information as an input
for its scheduling policy, so as to compute the best possible task assignment.
Moreover, we think that the ability to easily tune and optimize scheduling poli-
cies incrementally is fundamental on this new generation of architecture, as we
will show in the following sections.
Data Management. Data management was already a delicate issue on mul-
ticore machines, due to the Non-Uniform Memory Accesses introduced by the
topology formed by the memory banks. On archictectures equipped with accel-
erators, the situation is even worse, especially if the accelerators are connected
via a slow I/O bus. Numerous data movements between the main memory and
the embedded memory of an accelerator can really hurt performance. Thus,
it is crucial that the runtime system keeps track of data copies linked to each
processing unit so as to avoid unnecessary data movement whenever possible.
Moreover, the runtime can go much further and estimate the data transfer times
to better compare different scheduling alternatives, or even provide a powerful
data management system able to optimize transfers of complex data structures
(cyclic column distributions, etc.) and perform data prefetching to overlap part
of the transfer cost.

The next section presents our answers to these challenges.

3 The StarPU runtime system

StarPU is a runtime system for scheduling a graph of tasks onto a heterogeneous
set of processing units, intended to provide the powerful features detailed in Sec-
tion 2.2 in a portable but still efficient way. It is meant to be used as a backend
for e.g. parallel language compilation environments and High-Performance li-
braries, here called the application. The two basic principles of StarPU is firstly
that tasks can have several implementations, for some or each of the various
heterogeneous processing units available in the machine, and secondly that nec-
essary data piece transfers to these processing units are handled transparently
by StarPU.

RR n➦ 7240

StarPU: a runtime system for accelerator-based multicore machines 7

Figure 1 gives an overview of the journey of tasks within StarPU, thus pro-
viding a general idea of how StarPU modules are related. The application first
submits tasks (1). When a task gets ready (2), it is dispatched to one of the
device drivers by the scheduler (3). The DSM ensures the availability of all
pieces of data (4). The driver then offloads the proper implementation for the
task (5). When the task completes, tasks depending on it are released and an
application callback for the task is executed (6). Before further sections provide
more details, the following subsections give the rationale for the DSM and the
scheduler modules, as well as a complete StarPU programming example.

3.1 A virtually shared memory system for heterogeneous
chips

Because StarPU schedules tasks at runtime, data transfers have to be done au-
tomatically and “just-in-time” between processing units, relieving the applica-
tion programmer from explicit data transfers. Moreover, to avoid unnecessary
transfers, StarPU keeps data where it was last needed, even if was modified
there, and it allows multiple copies of the same data to reside at the same time
on several processing units as long as it is not modified. To summarize, the
data management part of StarPU, detailed in Section 4, actually implements
a Software DSM (Distributed Shared Memory), with relaxed consistency and
data replication capability thanks to an MSI (Modified/Shared/Invalid) proto-
col. The application just has to register the different pieces of data by giving
their addresses and sizes in the main memory. Data can thus be dynamically
as well as statically allocated.

StarPU also provides an additional high-level abstraction to easily handle
partitioned data for block- and tile-based parallelism: filters. These can be
used to logically divide data into smaller blocks, according to the application
algorithm needs (e.g. MAGMA [22]). For instance, Figure 2 illustrates how a
matrix can be first divided into 3 ∗ 3 blocks, and then one of these blocks can
be further divided into 2∗2 sub-blocks, resulting in a tree of sub-data. Multiple
filters are provided and can be extended to match various splitting strategies
(bloc, cyclic, etc.) and various native memory access patterns (dense BLAS
matrices, sparse CSR matrices, etc.). Such filters can be applied dynamically at
runtime, to stick to the algorithm behavior, in particular application featuring
adaptive refinement methods, and allow the DSM to transfer to the processing
unit only the exact needed data, or to find it inside an already-transferred data
containing it.

3.2 A tasking model enabling heterogeneous scheduling

StarPU tasks can be executed by as many processing units as possible, those
which the programmer has provided an implementation for, including accelera-
tors which do not have access to the main memory. Therefore, the programmer
has to also explicit all the input and output data of tasks by using the handles
returned by the DSM, so that the latter can automatically fetch data as needed
right before execution.

The submission of tasks is asynchronous and termination is signaled through
a callback. This lets the application submit several tasks, including tasks which
depends on others. To express dependencies and thus actual graphs of tasks,

RR n➦ 7240

StarPU: a runtime system for accelerator-based multicore machines 8

block
subblock

(a) A partitioned
piece of data.

matrix

block

sub-block
(b) Its tree representation.

1 /* register the matrix to StarPU */

2 h = register_matrix (&matrix , ptr , n, n, ...);

3

4 /* divide the matrix into 3x3 blocks */

5 map_filters(matrix , 2, filter_row , 3, filter_col , 3);

6

7 /* divide the bottom lower block (2,0)

8 * into 2x2 subblocks */

9 block = get_sub_data(mat , 2, 2, 0);

10 map_filters(block , 2, filter_row , 2, filter_col , 2);

11

12 /* bottom left sub -block (1,0) */

13 subblock = get_sub_data(block , 2, 1, 0);

Figure 2: An example of partitioned data, its tree representation and the cor-
responding StarPU code

A

B C

D

1 declare_deps(tagB , 1, tagA);

2 declare_deps(tagC , 1, tagA);

3 declare_deps(tagD , 2, tagB , tagC);

4

5 taskA ->tag_id = tagA;

6 (...)

7 taskD ->tag_id = tagD;

8

9 submit_task(taskA);

10 (...)

11 submit_task(taskD);

12

13 tag_wait(tagD);

Figure 3: Expressing task dependencies with tags

RR n➦ 7240

StarPU: a runtime system for accelerator-based multicore machines 9

1 void cublas_SGEMM(data_interface_t *descr , void *arg) {

2 float *subA = descr [0]. matrix.ptr;

3 float *subB = descr [1]. matrix.ptr;

4 int nxA = descr [0]. matrix.nx;

5 (...)

6 cublasSgemm (... subA , nxA , subB , ...);

7 }

8

9 void cpu_SGEMM(data_interface_t *descr , void *arg) {

10 float *subA = descr [0]. matrix.ptr;

11 float *subB = descr [1]. matrix.ptr;

12 int nxA = descr [0]. matrix.nx;

13 (...)

14 SGEMM (... subA , nxA , subB , ...);

15 }

16

17 static starpu_codelet SGEMM_cl = {

18 .where = CORE|CUDA ,

19 .cpu_func = cpu_SGEMM ,

20 .cuda_func = cublas_SGEMM ,

21 .nbuffers = 3

22 };

Figure 4: An example of codelet implementing a matrix product (GEMM).

integers called tags are used to characterize the termination of some task. Fig-
ure 3 illustrates how the dependencies between 4 tasks can be expressed. The
advantage of decoupling tags from the tasks themselves is that a tag can depend
on another tag which has not been associated with a task yet, or on another tag
whose task is already finished. This lets the application avoid having to submit
all the tasks at once (because it would completely fill the memory or just does
not make sense, in the case of flow applications). A tag can also be explicitly
waited for by the main application to synchronize with the execution of StarPU
tasks.

3.3 Developing on top of StarPU: a case study

Figure 6 gives a global idea of how using StarPU looks like. It shows the
implementation of a blocked matrix multiplication taking advantage of all CPUs
and GPUs by leveraging both the existing CUBLAS and BLAS SGEMM kernels
at the same time.

On the left part, the CUBLAS and BLAS SGEMM operations are first
wrapped into generic functions to harmonize the calling convention, and the cl
structure groups them into just one codelet which will take 3 matrix parameters
and which is able to run on either a CPU or a GPU.

The right part shows how to submit tasks executing that codelet to perform
the computation block per block. The A, B, and C matrices are first registered,
then partitioned into blocks as represented on the bottom left figure: N rows and
M columns. A 2-dimension loop then creates N∗M tasks executing the SGEMM
codelet and assigns to them the proper sub-parts of the matrices. After waiting

RR n➦ 7240

StarPU: a runtime system for accelerator-based multicore machines 10

i,ji

get_sub_data(C_handle, 2, i, j)

j

filter_col (M=4)

fil
te

r_
ro

w
 (N

 =
 3

)

Figure 5: Manipulating sub-matrices with filters.

for the termination of all tasks, the C matrix can be unpartitioned and syn-
chronized, to make sure parts computed on GPUs are written back to the main
memory.

It is worth noting that this fast_SGEMM function, instead of waiting for task
completion itself, could also just return a tag depending on the termination of
all tasks, thus allowing the application to start other kinds of computations
concurrently, and StarPU to schedule them as efficiently as possible along the
SGEMM kernels. Also, such kind of code could be automatically generated for
a range of BLAS operations.

4 Managing Data

We now detail the internal principles of the data management module of StarPU,
in particular the DSM mechanisms being used.

4.1 Data replication and memory consistency

When the application registers some data to the DSM, StarPU allocates in the
main memory an array to record the MSI states of that data on the different
memory nodes, as illustrated by Figure 7(b). This permits to replicate the data
on multiple memory nodes (multiple-reader Shared access) or to keep a modified
version on one memory node (single writer Modified access) while keeping read-
write consistency thanks to the MSI protocol. Here, for instance, the memory
node number 2, a GPU, requests both Read and Write access, and it does not
have a copy of the data (Invalid state). The data is transferred for the Read
access, and other copies are invalidated due to the requested Write access.

By default, modified data is not immediately written back to the main mem-
ory. This lazy approach permits StarPU to save bus bandwidth when data is
re-used by several tasks. If however the programmer knows that the data will
not be re-used he can request for a write-through strategy. When enough mem-
ory is not available on some processing unit for the data required by a task,

RR n➦ 7240

StarPU: a runtime system for accelerator-based multicore machines 11

1 void fast_SGEMM(float *A, float *B, float *C, int N,

int M) {

2 /* Register the matrices */

3 register_matrix (&A_handle , A, ...);

4 register_matrix (&B_handle , B, ...);

5 register_matrix (&C_handle , C, ...);

6

7 /* Partition data */

8 partition_data(A_handle , filter_row , N);

9 partition_data(B_handle , filter_col , M);

10 map_filters(C_handle , 2, filter_row , N, filter_col , M

);

11

12 /* Submit tasks */

13 for (i = 0; i < N; i++) //loop on cols

14 for (j = 0; j < M; j++) //loop on rows

15 {

16 task = starpu_task_create ();

17 task ->cl = &SGEMM_cl;

18

19 task ->buffers [0]. handle =

20 get_sub_data(A_handle , 1, j);

21 task ->buffers [0]. mode = STARPU_R;

22 task ->buffers [1]. handle =

23 get_sub_data(B_handle , 1, i);

24 task ->buffers [1]. mode = STARPU_R;

25 task ->buffers [2]. handle =

26 get_sub_data(C_handle , 2, i, j);

27 task ->buffers [2]. mode = STARPU_RW;

28

29 submit_task(task);

30 }

31

32 wait_all_tasks ();

33

34 // make matrix C available to the app.

35 unpartition_data(C_handle);

36 sync_data_with_mem(C_handle);

37 }

Figure 6: Blocked matrix multiplication written with StarPU using the codelet
defined in Figure 4 and the filters described on Figure 5.

RR n➦ 7240

StarPU: a runtime system for accelerator-based multicore machines 12

CPU

CPU

RAM
1

GPU RAM
2

GPU RAM
3

(a) Data transfer to a GPU.

RW
2

S I S
1 2 3

I M I
1 2 3

(b) Data state is updated.

Figure 7: The MSI protocol maintains the state of each data on the different
memory node. This state (Modified, Shared or Invalid) is updated accordingly
to the access mode (Read or Write).

StarPU performs a memory reclaiming pass to flush some of the useless data
out.

As a result, even for a complex application with a graph of tasks dealing with
various data whose total size can not fit into the local memory of processing units
and for which having to issue data transfers by hand would be very difficult,
StarPU lets the programmer just express the blocked or tiled computation tasks
and data dependencies, and StarPU will transparently optimize the usage of the
limited local memory.

4.2 Asynchronous data management and data requests

Data transfers can be very long due to the main bus typically being a bottleneck.
Nowadays acceleration cards support asynchronous data transfer, i.e. these
transfers can be overlapped with computations. StarPU’s data management is
also completely asynchronous by associating each memory node with a queue
of pending data requests, possibly queued by various parts of StarPU, another
memory node requesting data for some task for instance. It also makes dynamic
prefetching of data quite natural: as soon as a task is scheduled to be run by
some processing unit, the data transfer order can be queued so that the execution
of the task can hopefully happen as soon as the processing unit has finished
previous tasks, thanks to data being transferred in parallel. More generally
the scheduling and the data management library of StarPU can collaborate to
optimize the whole execution.

5 Scheduling tasks and data transfers

Because a generic scheduler can not achieve the best performance for all kinds of
application with all hardware, StarPU aims at hosting a testbed to implement
and choose between various powerful scheduling strategies in a portable way.
This section details how schedulers can be implemented and describes a few
scheduler examples already provided along StarPU.

RR n➦ 7240

StarPU: a runtime system for accelerator-based multicore machines 13

Application
push

pop

(a) A portable interface.

Application

?

push

pop

(b) An example of strategy.

Figure 8: All scheduling strategies implement the same queue-based interface.

Table 1: Scheduling strategies implemented with StarPU
Name Policy description
greedy Greedy policy with support for priorities
no-prio Greedy policy without support for priorities

ws Greedy policy based on Work Stealing
w-rand Random weighted by processor speeds
heft-tm HEFT based on Task duration Models

heft-tm-pr heft-tm with data PRefetch
heft-tmdp heft-tm with remote Data Penalty

heft-tmdp-pr heft-tmdp with data PRefetch

5.1 A portable scheduling framework

The role of the StarPU scheduler is to dispatch tasks onto the different pro-
cessing units. From the point of view of the application, tasks are just pushed
to the scheduler, while from the point of view of the drivers of the processing
units, tasks are just poped from the scheduler, i.e. the simplest implementation
is a single FIFO queue as is shown on Figure 8(a). A more complex sched-
uler, like the one illustrated in Figure 8(b) thus can boil down to organizing
a set of queues (which can be FIFOs, stacks, deques, etc.) and implement the
above-mentioned push and pop operations. All distribution, load balancing, etc.
decisions are matters internal to the scheduler. This approach permits to design
various schedulers independently of the application and the drivers being used,
and to choose which one should be used at runtime. Table 1 gives a list of the
different portable policies that have been implemented in StarPU and which
will be described in the following subsections. More details can be found in a
previous paper [3].

5.2 Greedy Strategies

The simplest strategy consists in having all processing units share a single FIFO
as illustrated in Figure 8(a). A refinement of this is to make the push method
of the FIFO take programmer-provided priorities of tasks into account: more
prioritized tasks will be queue closer to the output of the FIFO, resulting to the
greedy StarPU scheduler, as opposed to the no-prio scheduler.

Such strategy however offers poor scalability w.r.t. the number of accelera-
tors due to locking contention, especially in case the tasks are fine grained. This

RR n➦ 7240

StarPU: a runtime system for accelerator-based multicore machines 14

27074MEMNODE0

FX5800
FX4600

CPU
CPU

Figure 9: A pathological case: Gantt diagram of a blocked matrix multiplication
with a greedy strategy.

CPU
CPU

FX5800
FX4600

(best)

Figure 10: The Heterogeneous Earliest Finish Time Strategy.

is commonly solved by decentralizing task queues as shown in Figure 8(b). A
Cilk-like [12] work-stealing strategy was implemented in the pop method of the
scheduler to steal tasks from other queues if the local queue is empty, resulting
to the ws scheduler.

These schedulers are very portable in that they work with generic tasks.
However, as discussed in details later in Section 6, the completion time of tasks
can very often be predicted by automatic cost models, at least with rough
precision. Greedy strategies can get huge benefit from this kind of information.

5.3 Cost model-guided scheduling strategies

Figure 9 shows an typical example of the distribution of tasks by the greedy or
ws scheduler onto a dualcore machine equipped with two GPUs with differing
performance. The heterogeneity of performance between different processing
units leads to a load imbalance, which could have been avoided if the scheduler
knew that task completion takes so much time on CPUs.

A common approach to tackle it is to consider the computational power of
each unit (e.g. sustained speed in GFlop/s). The w-rand StarPU scheduler
takes it into account by randomly dispatching tasks onto the processing units
with a probability proportional to the respective computational power. This
avoids the situation of Figure 9 and brings much better load balancing at the
end of the application completion. It however does not take into account that
some tasks may e.g. perform really well on a GPU and actually tend to reach
the theoretical computational power, while others do not perform so well, and
should rather be scheduled on the CPU, leaving the GPUs to the former. More
refined StarPU schedulers thus rather use models of the execution time of the
different tasks instead of just the processing units.

5.3.1 Taking task duration into account

The HEFT scheduling algorithm (Heterogeneous Earliest Finish Time [23]),
implemented in the heft-tm StarPU policy, is illustrated in Figure 10. It makes
use of performance prediction to keep track of the expected dates Avail (Pi) at
which each processing unit will become available (after all the tasks already
assigned to it complete). A new task T is then assigned to the processing

RR n➦ 7240

StarPU: a runtime system for accelerator-based multicore machines 15

unit Pi that minimizes the new termination time with respect to the expected
duration Est

Pi

(T) of the task on the unit i.e.

min
Pi

(

Avail (Pi)+ Est
Pi

(T)
)

5.3.2 Taking data transfers into account

The time to transfer data to e.g. accelerators is actually far from negligible
compared to task execution times, and can sometimes even become a bottleneck.
We therefore extended the heft-tm policy into the heft-tmdp policy which
takes data locality into account thanks to the tight collaboration between the
scheduler and the data management library presented in Section 4. In addition
to the computation time, the scheduler computes a penalty based on the times
Tj→i (d) required to move each data d from Pj (where a valid copy of d resides)
to Pi. Such penalty of course reduces to 0 if the target unit already holds the
data, i.e. j = i. The resulting minimization is

min
Pi

(

Avail (Pi)+ Est
Pi

(T)

︸ ︷︷ ︸

termination time

+
∑

data

min
Pj

(

Tj→i (data)
)

︸ ︷︷ ︸

data penalty

)

5.3.3 Prefetching data

As explained in Section 4.2, hardware often allows data transfers to overlap with
the actual computations, thus maximizing the time spent computing. This
is exploited by StarPU by having the scheduler request from the DSM data
transfers for a task as soon as the placement of that task gets decided. The
DSM then queues the required data transfer orders to the various device drivers
and the scheduler can reduce its estimation of the transfer time. This can be
particularly important when using multiple accelerators which do not support
direct transfer, in which case the data has to be written back to memory first,
hence at least doubling the transfer time. The heft-tm and heft-tmdp policies
have thus been extended into the heft-tm-pr and heft-tmdp-pr policies.

6 Predicting task completion time

We described how task scheduling can benefit from models that predict the
performance of task execution and data transfer. Diamos et al. mention [9]
that their Harmony runtime could also benefit from such models. It is worth
noting that in the case of StarPU, such models do not necessarily need to be
extremely accurate, since scheduling is done at runtime and can compensate
not-so-optimal decisions according to what actually happened. We now detail
how StarPU automatically builds these models.

6.1 Task performance models

More or less automatic ways exist to build task performance models. An ex-
treme approach is to have the programmer explicitly construct them. This
however requires extra experimentation, as well as a lot of knowledge of both

RR n➦ 7240

StarPU: a runtime system for accelerator-based multicore machines 16

Lookup

Performance
Feedback

Scheduler

GPU Driver

Submit
task

Assign
task

Execute & Measure
Execution TimeFeed

1.34±0.11 880x32
 3.1±0.52 400x52

...

hash time #
SGEMV on SPU

SGEMV on GPU

1.34±0.11 870x32
 3.1±0.52 420x52

...

hash time #
SGEMV on CPU

1.34±0.11 850x32
 3.1±0.52 420x52

...

hash time #
SGEMV on GPU

App.

Figure 11: Performance feedback loop.

the algorithm and the underlying machine. Such work also needs to be repeated
for each platform, due to details as simple as cache size, so that this is not a
realistic approach in general.

For very common kernels and libraries (BLAS, typically), an important liter-
ature includes performance models for the main kernels. Using them is possible
with some extra programming efforts to tune their parameters according to
the architecture. These models are however sometimes pretty simplistic (e.g.
limitations in the cache size), and offline precalibration often does not capture
real-world use, where contention and cache sharing can severely impact perfor-
mance.

In order to get performance models which actually match what can be ob-
served with real applications, we use history-based prediction models. When
a task is executed, StarPU measures its duration, and to schedule a task, it
can consult the history to take into account the performance obtained during
previous executions.

This assumes some regularity hypothesis: execution time should be indepen-
dent from the content of data itself, thanks to the flow control being static for
instance. This is accurate for the kernels mentioned above. When provided with
their literature performance models, StarPU can thus tune the latter during the
execution by regression analysis, according to the underlying architecture, but
also according to the general contention impact of the application.

In addition to that, StarPU can use history-based prediction for kernels
without literature performance model, by assuming that for a given application
they are mostly always called with the same parameters, the typical task gran-
ularity for instance. Given task parameters characteristics (the size of the data,
typically), StarPU computes a hash characterizing this task’s complexity, and
that can thus be used as an index in the history tables from which an average of
the previous execution times can be obtained. Figure 11 illustrates the result-
ing feedback loop between these tables, the Scheduler, and the actual execution
measurement The history is saved to a file to be re-used for further executions.
More details can be found in a previous paper [1].

The key advantages of this approach is not only being efficient, but also be-
ing transparent for the programmer (he already has to specify the data size for
transfers anyway), and it can thus be applied to any kernel which has regular
execution times. When unsure about the latter property, StarPU also computes
the standard deviation of the measurements and can even provide a histogram

RR n➦ 7240

StarPU: a runtime system for accelerator-based multicore machines 17

1 while (machine_is_running ())

2 {

3 task = pop_task ();

4

5 fetch_task_input(task);

6 task ->cl ->cpu_func(task ->interface , task ->cl_arg);

7 push_task_output(task);

8

9 handle_task_termination(task);

10 }

Figure 12: Driver for one CPU core

of the distribution of execution times, so that the variability of performance can
be checked. StarPU can also generate a detailed Gantt chart of the actual exe-
cution, which helps a lot in understanding performance, particularly on complex
heterogeneous architectures for which interference can happen between several
different parts of the application for instance..

6.2 Data transfer models

Compared to the internal memory bandwidth of accelerators (several hundreds
of GB/s), the speed of the PCI bus (half a dozen GB/s) is a real concern, and
data transfer time can become as important as the computation time itself and
thus be critical for scheduling decisions. To estimate the time to transfer some
data, StarPU simply uses an estimation of the latency and the asymptotic band-
width between these two memory nodes, which can be either measured through
offline experiments, or, better, inferred from online measurements through re-
gression analysis.

This approach catches various architecture artifacts, like heterogeneity and
topology of PCI buses (8x vs. 16x and NUMA effects), as well as asymmetry of
transfer paradigms (upload and download speeds are usually different on CUDA
devices).

7 Porting StarPU to various hardware

As a reminder of Figure 1, when a task is submitted by the application, it
first has to wait for its dependencies, then gets dispatched by the scheduler to
some driver, the DSM ensures that all the data are available and the driver
eventually offloads the codelet. When the latter completes, tasks depending on
it are released and a callback is executed.

Porting StarPU to a new kind of device actually boils down to implement-
ing functions transferring data between the device and the main memory, and
executing tasks on the accelerator. To achieve the latter, drivers run an ex-
ecution loop. For instance, Figure 12 summarizes the loop of the driver for
a CPU core. It continuously fetches tasks from the scheduler (pop_task), re-
quests the DSM to make sure all data are available (fetch_task_input, which
possibly calls transfer functions of other drivers to fetch data back to main
memory), and actually calls the codelet. After codelet termination, data can be

RR n➦ 7240

StarPU: a runtime system for accelerator-based multicore machines 18

LS

SPU

LS

SPU

EIB

L2

PPU
6

7

1

RAM

LS

SPU

3

4
2

5

LS

SPU

LS

SPU

LS

SPU

LS

SPU

Figure 13: Offloading tasks with the Cell-RTL.

released (push_task_output) and tasks depending on this task can be released
and the callback called (handle_task_termination). The driver work is thus
completely decoupled from the scheduling decision and DSM operation.

7.1 Heterogeneous multi-GPU

The implementation of the driver for an NVIDIA GPU is relatively straight-
forward: data transfer functions use the API from NVIDIA and the driver can
directly call the codelet’s cuda_func() function1 which makes standard CUDA
or CUBLAS kernel calls. Some shortcomings of CUDA raise issues when han-
dling multiple GPUs, but the design of StarPU overcomes them quite naturally.

Due to the CUDA specification and implementation, switching between the
CUDA context of different GPUs is very costly. StarPU’s CUDA driver thus
runs one execution loop in a separate kernel thread for each GPU device (this
is hence where the codelet’s cuda_func() function is called). Because the CPU
consumption of these threads is far from negligible, StarPU devotes CPU con-
texts (cores or hyper-threaded contexts) for them.

The CUDA API also does not permit to issue direct GPU-GPU memory
transfers, they have to be achieved in two steps through the main memory.
Thanks to its chained asynchronous data transfer described in Section 4.2,
StarPU overcomes this by issuing the two transfer orders to the two driver
instances.

7.2 The Cell B/E

The Cell B/E processor is a heterogeneous multicore chip composed of a main
hyper-threaded core, named PPU (Power Processing Unit), and 8 coprocessors
called SPUs (Synergistic Processing Units).

The StarPU port to the Cell [2] actually relies on the Cell-RTL (Cell Run
Time Library) [18] to perform task offloading and manage data transfers between
the main memory and local stores (LS) on the SPUs. Figure 13 depicts how the
Cell-RTL works: when a task for some SPU is submitted on the PPU, the latter
sends a message to the former (1); an automaton running on each SPU reads
the message, fetches data into the LS (2), executes the corresponding task (3),

1in the case of Figure 6, the cublas SGEMM function

RR n➦ 7240

StarPU: a runtime system for accelerator-based multicore machines 19

commits the output data back to the main memory (4), and sends a signal to
the PPU (5); when the latter detects this signal (6), a termination callback is
executed (7). To greatly reduce the synchronization overhead, the Cell-RTL can
submit chains of tasks to SPUs.

To fully exploit the possibilities of the Cell-RTL, the StarPU Cell B/E driver
loop automatically builds chains of tasks before submitting them. Thanks to
SPUs being almost full-fledged cores, the flexible Cell-RTL API permits to de-
vote only one thread to submitting tasks to the different SPUs.

In a way, StarPU leverages the Cell-RTL by adding scheduling facilities and
providing with the high-level data management and task dependencies enforce-
ment, permitting efficient task chaining. StarPU could leverage other backends
like IBM’s ALF [8] or CellSs’ runtime [6].

8 Evaluation

To validate our approach, we show that StarPU efficiently uses all the available
processing units with a low overhead, and we analyze the performance of some
numerical algorithms under different scheduling strategies. Eventually, we show
that selecting the best granularity is a challenging issue on accelerator-based
platforms.

8.1 Experimental testbed

To evaluate the performance of StarPU, we have used two platforms both run-
ning Linux 2.6 and CUDA 2.3:

A homogeneous multi-GPU platform composed of two X5550 (Ne-
halem) hyper-threaded quad-core processors running at 2.67GHz with 48GB
of memory divided in two NUMA nodes. It is equipped with 3 NVIDIA

Quadro FX5800 with 4GB of memory.
A heterogeneous multi-GPU platform composed of a E5410 Xeon

quad-core processor running at 2.33GHz with 4GB of memory. It is equipped
with an NVIDIA Quadro FX5800 with 4GB of memory and a: NVIDIA

Quadro FX4600 with 768MB of memory; the second GPU does not support
asynchronous data transfers.

8.2 Distribution of the computation among heterogeneous
platforms

Even with its simplest greedy, scheduler, StarPU simultaneously takes ad-
vantage of all available resources according to their respective computational
power: Figure 14 (resp. 15) shows the proportion of tasks attributed to the
different processing units in a multi-GPU system (resp. heterogeneous multi-
GPU system). On the left-hand side, we have a blocked matrix-product, and on
the right-hand side, we have a band-pass filter implemented using FFTW and
CUFFT. In both benchmarks, the GPUs become relatively more efficient than
the CPUs and thus get attributed more tasks when the granularity increases.
Figure 15 illustrates that StarPU is able to distribute task onto different models
of GPUs with respect to their respective speed: a Quadro FX5800 is given
more tasks than a Quadro FX4600 which is much less powerful.

RR n➦ 7240

StarPU: a runtime system for accelerator-based multicore machines 20

0 %

20 %

40 %

60 %

80 %

100 %

128
256

512
1024

2048

P
e

rc
e

n
t

S
c
h

e
d

u
le

d

Tile size
Matrix Product

0 %

20 %

40 %

60 %

80 %

100 %

16K
32K

64K
128K

256K
512K

1024K

Vectors size
1D FFTs

Processing Unit

5 x CPUs
FX5800 #0
FX5800 #1
FX5800 #2

Figure 14: Distribution of the computation on a multi-GPU system.

0 %

20 %

40 %

60 %

80 %

100 %

128
256

512
1024

2048

P
e

rc
e

n
t

S
c
h

e
d

u
le

d

Tile size
Matrix Product

0 %

20 %

40 %

60 %

80 %

100 %

16K
32K

64K
128K

256K
512K

1024K

Vectors size
1D FFTs

Processing Unit

2 x CPUs
FX4600
FX5800

Figure 15: Distribution of the computation on a heterogeneous multi-GPU sys-
tem.

Table 2: StarPU critical path overhead
Task

submission
Data

Management
Execution

1 CPU 468± 7.3 ns 94± 8 ns 364± 17 ns
8 CPUs 470± 8.2 ns 113± 11 ns 733± 26 ns

8.3 Overhead evaluation

It is important to make sure that StarPU only has a minimal overhead compared
to its potential gains. Table 2 gives the typical overhead measured during the
execution of chains of one million empty tasks, and by repeating this experiment
128 times. We distinguish the overhead of task submission, data management
(for a single piece of data), and the overhead of the task execution itself. The
second line gives the performance when this experiment is performed on 8 CPUs
which are all associated with only one single queue. Even in this extreme case
the overhead remains low, which shows that StarPU properly handles highly
contended situations with a typical overhead smaller than a few micro-seconds.

In comparison, Volkov and Demmel report that CUDA functions typically
incur a 3 to 7µs overhead for asynchronous launch, and 11µs for synchronous
calls [24]. Since data transfers are also taking tens of micro-seconds, we con-
clude that the overhead introduced by StarPU is acceptable with respect to the
performance improvement resulting from scheduling policies.

RR n➦ 7240

StarPU: a runtime system for accelerator-based multicore machines 21

10
0

10
1

10
2

10
3

0 s 2 s 4 s 6 s 10 s 12 s

N
u
m

b
e
r

o
f
re

a
d
y
 t
a
s
k
s With task priorities (550 GFlop/s)

10
0

10
1

10
2

10
3

0 s 2 s 4 s 6 s 10 s 12 s

N
u
m

b
e
r

o
f
re

a
d
y
 t
a
s
k
s Without task priorities (485 GFlop/s)

Figure 16: Impact of priorities on Cholesky decomposition.

8.4 A case study: LU and Cholesky decompositions

Implementing LU and Cholesky blocked decompositions for multicore machines
equipped with multiple GPUs is straightforward with StarPU, even for problems
that are larger than the memory available on the accelerators.

8.4.1 Prioritizing tasks

It is however crucial to maintain enough parallelism to feed such a massively
parallel machine during the entire application. The LU and Cholesky decompo-
sition algorithms are known to suffer from a lack of parallelism, that is usually
avoided by performing critical tasks as soon as possible by the means of task
priorities.

Figure 16 shows the evolution of the number of ready tasks during the ex-
ecution of a Cholesky decomposition running on the homogeneous multi-GPU
machine with our best scheduling strategy, heft-tmdp-pr. While every tasks
has the same priority on the top curve, we put a maximum priority for the criti-
cal tasks in the second case. Priority-aware scheduling here prevents substantial
loss of parallelism, so that we observe a typical 15% speed improvement.

8.4.2 Modeling task performance

Figure 17 shows the speed of LU decomposition according to the problem size,
and for various scheduling policies. The second bottom-most line gives the per-
formance obtained by the heft-tm strategy with the support of the automati-
cally tuned history-based performance models presented in Section 6.1. While
no application code modification was required compared to the greedy policy,
the heft-tm strategy significantly outperforms the simple greedy scheduling
policy, especially for small problems which tend to have little parallelism. In

RR n➦ 7240

StarPU: a runtime system for accelerator-based multicore machines 22

 0

 100

 200

 300

 400

 500

 600

 700

 800

 8192 16384 24576 32768 40960 49152

G
F

lo
p/

s

Matrix size

Scheduling policy

greedy
heft-tm

heft-tm-pr
heft-tmdp-pr

Figure 17: Impact of scheduling policies on LU decomposition.

15 %
20 %
25 %
30 %
35 %
40 %
45 %
50 %

 8192 16384 24576 32768 40960 49152

D
at

a
ac

ce
ss

es
 r

eq
ui

rin
g

 a
 m

em
or

y
tr

an
sf

er

Matrix size

Policy
heft-tm-pr

heft-tmdp-pr

0.0

0.5

1.0

1.5

2.0

2.5

 8192 16384 24576 32768 40960 49152A
vg

. a
ct

iv
ity

 o
n

bu
s

(G
B

/s
)

Matrix size

Policy
heft-tm-pr

heft-tmdp-pr

Figure 18: Penalizing non local data accesses reduces the total amount of data
transfers by lowering the ratio of data accesses that require memory transfers.

these cases, it is indeed critical that the most efficient processing units (ie.
GPUs) get the most critical tasks.

In a previous paper [3], we have shown that in the case of a quad-core ma-
chine equipped with a single GPU, this strategy obtains a super-linear efficiency:
the processing power of the hybrid system is slightly higher than the sum of the
powers of a GPU and of the CPUs, taken individually. This is possible because
the LU decomposition is composed of different types of tasks, with different rel-
ative speedups between their CPU and their GPU implementations. A matrix
product (gemm) could be accelerated 20 times by a GPU, while the resolution of
a triangular system (trsm) may only be accelerated 10 times by a GPU. With

RR n➦ 7240

StarPU: a runtime system for accelerator-based multicore machines 23

 0

 100

 200

 300

 400

 500

 600

 700

 800

 32 64 128 256 512 1024 2048 4096

G
F

lo
p/

s

Block size

Matrix size

64 MB
256 MB

1024 MB
2304 MB
4096 MB

Figure 19: Impact of granularity on the efficiency of LU decomposition on
GPUs+CPUs.

the heft-tm policy, the processing units therefore tend to receive the types of
tasks that they most efficiently handle, and they process less tasks for which
they are relatively inefficient. StarPU thus actually takes advantage of

the heterogeneous nature of accelerator-based platforms.

8.4.3 Scheduling data transfers

Taking data transfers into account while scheduling tasks is critical. This is
especially important for multi-accelerator platforms where memory buses are
major bottlenecks.

The heft-tm-pr policy attempts to mask the cost of memory transfers by
overlapping them with computations thanks to the prefetch mechanism de-
scribed in Section 5.3.3. Figure 17 shows a typical 20% speed improvement
over the heft-tm strategy which does not prefetch data.

However, data prefetching does not reduce the total amount of memory
transfers. In Section 5.3, we described how the heft-tmdp-pr strategy extends
heft-tm-pr by penalizing non-local data accesses. The average activity on the
bus is shown at the top of Figure 18: penalizing remote data accesses, and
therefore favoring data locality has a direct impact on the total amount of data
transfers which drops almost by half. Likewise, the bottom of Figure 18 shows
that the processing units tend to work more locally. On Figure 17, this translates
into another 15% reduction of the execution time.

8.5 How about granularity?

In this section, we show that selecting the best granularity is not trivial, es-
pecially in the context of heterogeneous platforms, and we give some insights
about how StarPU could handle this challenge.

RR n➦ 7240

StarPU: a runtime system for accelerator-based multicore machines 24

Table 3: Dynamically adapted granularity for the LU decomposition of a 1GB
matrix

Block size (512x512) (1024x1024) hybrid
Time (ms) 5991± 29 5974± 57 5691± 83

Speed (GFlop/s) 489.4± 2.4 490.8± 4.7 515.2± 7.4

8.5.1 Making trade-offs to select the a granularity

Figure 19 shows that depending on the problem size, the granularity for which
the best result is obtained can vary. Separately precalibrating the various com-
putational kernels individually for the different architectures is thus not suffi-
cient. Libraries relying on precalibration to detect optimal block sizes [26, 16]
should therefore take into account the factors that influence the value of the
optimal granularity.

Different factors may indeed affect the choice of the grain size in the context
of heterogeneous machines equipped with one of more accelerators. The relative
efficiency of a task on various architectures depends on the data size: GPUs are
for instance large vector systems that are only efficiently used when all the
vector processors are used simultaneously, which is not possible with tiny data
input. On the one hand, a small grain size means that there is a lot of small
tasks, which potentially leads to a high overhead. On the other hand, too big a
grain size causes processing units to become idle due to lack of parallelism.

Selecting the most appropriate granularity is therefore a matter of trade-offs
when dealing with heterogeneous platforms equipped with accelerators.

8.5.2 Dealing with multiple grain sizes

As a result, while there can be an optimal grain size for a specific problem on
a homogeneous machine, it may be that the best solution in a heterogeneous
context is a mixture of multiple granularities.

A first simple approach is to explicitely decompose an application into multi-
ple phases with different granularity, according to the evolution of the behavior
of the computation. In the case of LU decomposition, we observe that there is
a lack of parallelism at the end of the algorithm. Intuitively, we would like to
offload tasks with a big granularity at the beginning of the algorithm to get goot
performance on GPUs, and we should reduce the grain size when the amount of
parallelism becomes too low to avoid load imbalance. Table 3 gives the speed of
an LU decomposition on a 1GB problem with the heft-tmdp-pr strategy. The
first two columns gives the speed obtained with either (512×512) or (1024×1024)
block sizes. The last column gives the performance obtained by starting with
blocks of (1024×1024), and by reducing the grain size to (512×512) at the middle
of the algorithm execution. The performance improvements by this approach
which dynamically adapts the granularity are promising: the hybrid solution
gets better performance than the best performance obtained with a single grain
size (see the 1GB curve of Figure 19 which does not reach 500GFlop/s).

Besides, it is possible to use multiple granularities at the same time, either
explicitly or implicitly. Programmers could submit tasks with multiple grain
size by hand, but this requires significant programming efforts. This approach
is applicable for applications which explicitly select the tasks that should be

RR n➦ 7240

StarPU: a runtime system for accelerator-based multicore machines 25

executed on the accelerators, such as MAGMA [22], but such static schedules
are hardly conceivable in a portable fashion. Another solution is to have divid-
able tasks: when StarPU detects that the granularity is not adapted, it could
dynamically perform some local transformations on the graph of tasks, to either
divide or merge tasks (similarly to the task chaining mechanism that we use on
the Cell).

The difficulty of this implicit method is that StarPU would have to auto-
matically make appropriate decisions about when to change the grain size, and
how to select a better granularity. This could be achieved with performance
feedback mechanisms, either offline or online. A post-mortem analysis would
help in choosing the optimal block size or in detecting the different phases of
a regular algorithm. A dynamic approach could use the metrics available from
the scheduling engine, such as load imbalance, in collaboration with hardware
performance counters (e.g. to detect a sudden contention).

9 Related Work

Recent years have seen the democratization of accelerator-based computation. A
vast majority of the interests has however been devoted to writing efficient code
for the accelerators. Relatively few projects have investigated the problem of
tasks scheduling. To our knowledge we are the first to study this specific aspect
in depth while offering a portable and high-level platform to experiment with
task scheduling on such heterogeneous machines equipped with accelerators.

Various runtime systems have been designed (or adapted) to support het-
erogeneous multicore systems. Most of them are however offering an interface
to offload tasks on only a single type of accelerator. While those interfaces hide
most low-level technical issues, they also typically require the programmer to
decide where the computation should take place, so that some knowledge of the
underlying platform is still required.

Jimenez et al. [14] consider the problem of scheduling computations on mul-
ticore machines equipped with accelerators. However, contrary to StarPU which
schedules tasks at a fine granularity, they only dispatch whole applications with
respect to the relative speedups observed on the different processing units during
previous executions, regardless of the data input. The burden of data manage-
ment is also left to the programmer.

The Charm++ runtime system was also implemented for both GPUs [25]
and Cell processors [15] in a cluster environment. Even though the Offload
API they proposed in [15] was adopted by most task-based approaches, there is
currently no performance evaluation available yet, to the best of our knowledge.

Similarly to the low-level interface of OpenCL, IBM ALF [8] provides an
interface to offload tasks onto heterogeneous platforms, such as the RoadRunner.
ALF therefore supports both x86 and Cell processors. While ALF relieves
programmers from numerous low-level concerns, it only offers very basic load
balancing mechanisms thanks to the DaCS framework, and it is done at the
process level contrary to StarPU which actually schedules tasks.

Likewise, the Cell Run Time Library (or Cell-RTL) [18] provides a con-
venient interface to offload tasks onto the SPUs of a Cell processor. As we have
shown in Section 7.2, StarPU and the Cell-RTL are very complementary on
this platform. The Cell-RTL indeed provides low-level Cell-specific optimiza-

RR n➦ 7240

StarPU: a runtime system for accelerator-based multicore machines 26

tions (e.g. very efficient synchronization mechanisms) but it only has basic load
balancing mechanisms which StarPU can replace. Cell-RTL also handles data
movements within a Cell chip, but StarPU provides the higher-level abstractions
required to manage them consistently.

Diamos et al. [9] present a ”collection of techniques” for the Harmony run-
time system which they ”would like to implement in a complete system”. Some
of those techniques are similar to those implemented in StarPU: for instance
they consider the problem of task scheduling with the support of performance
models. Harmony however does not allow user-provided scheduling strategies
contrary to StarPU which makes it possible to select the most appropriate policy
at runtime. Besides the regression-based model also proposed by Harmony, the
tight integration of StarPU’s data management library along with the scheduler
allows much simpler, yet more accurate, history-based performance models [2].
The data management facilities offered by StarPU are also much more flexible
as it is possible to manipulate data in a high-level fashion that is much more
expressive than a mere list of addresses.

StarSs introduces #pragma language annotations similar to those proposed
by Ayguadé et al. [4]. They rely on a source-to-source compiler to generate
offloadable tasks. Contrary to StarPU, the implementation of the StarSs model
is done by the means of a separate runtime system for each platform (SMPSs,
GPUSs [5], CellSs [6]). Some efforts are done to combine those different runtime
systems: Planas et al. allow programmers to include CellSs tasks within SMPSs
tasks [20], but this remains the duty of the programmer to decide which tasks
should be offloaded. In contrast, StarPU considers tasks that can indifferently
be executed on multiple targets.

GPUSs permits to use multiple GPUs [5], but its load balancing mecha-
nisms and data management are still very simple. CellSs also consider advanced
task scheduling mechanisms taking data locality into account [7]. Contrary to
the Cell-RTL (which we used to offload StarPU tasks onto SPUs), the runtime
system of CellSs greatly benefits from software data caching which permits to
directly direct transfers between SPUs. Adding this feature into Cell-RTL or
using CellSs within StarPU’s Cell driver would significantly improve our sup-
port for the Cell processor. Likewise, we plan to use StarPU as a target of the
source-to-source compiler from StarSs.

The approach of the Anthill runtime system is very similar to StarPU.
Teodoro et al. experimented [21] the impact of task scheduling for clusters
of machine equipped with a single GPU and multiple processors. They im-
plemented two scheduling policies which are equivalent to the simple greedy
strategies we have shown in Section 5.2. The tight integration of data manage-
ment and task scheduling within StarPU makes it possible to tackle the problem
of task scheduling onto multiple GPUs while taking data movements overhead
into account, while Anthill only considers relative speedups to select the most
appropriate processing unit.

10 Conclusion and Future Work

The StarPU runtime system and the experiments presented in this paper can
be downloaded at http://runtime.bordeaux.inria.fr/StarPU/. The signif-
icant performance improvements that we exhibit on top of already optimized

RR n➦ 7240

StarPU: a runtime system for accelerator-based multicore machines 27

computation kernels show that task scheduling and efficient code generation
are orthogonal problems: producing the most efficient computational kernels is
wasteful if those are not scheduled judiciously. We advocate that such schedul-
ing techniques are required to cope with the growing number of accelerators
in a scalable fashion: StarPU massively reduces the amount of data transfers
without any application code modification.

The key contribution of StarPU is the tight collaboration between its high-
level data management library and its portable scheduling engine which permits
to easily design powerful scheduling policies. StarPU unlocks the portability of
performance on complex accelerator-based platforms: it is for instance generic
enough to transparently handle heterogeneous multi-GPU setups by hiding both
low-level heterogeneity and by dispatching tasks according to the capabilities of
the different units.

StarPU is not limited to multicore machines equipped with GPUs and Cell
processors. Its asynchronous event-driven design will for instance make it straight-
forward to implement an OpenCL backend. The Larrabee processor should also
benefit from the techniques adopted to exploit the Cell processor. Likewise, the
dynamic code loading mechanism that we implemented in the Cell StarPU driver
would be applicable to reconfigurable architectures such as FPGAs. StarPU
would also be helpful in the case of fixed-functions hardware such as multicore
DSPs which also raise heavy task and data scheduling requirements.

In the future, we plan to use StarPU as a backend for compiling environments
(such as StarSs) which would generate StarPU tasks. We intend to improve
our performance models with regards to the actual hardware: first by taking
NUMA effects into account when scheduling tasks, and then by considering
the non-uniform performance of the IOs on such NUMA platforms [17]. We will
experiment with better data prefetching and data reclaiming policies to improve
the performance in the case of out-of-core computations and data streaming
applications. The importance given to the penalty for non-local data accesses
should also be dynamically throttled depending on the load balance conditions.
Similarly, the scheduling engine should be assisted by some execution feedback
(e.g. from the hardware performance counters). Eventually, having different
instances of StarPU collaborating through MPI would allow to exploit clusters
of machines equipped with accelerators. Granularity is a key issue that we think
has yet been ignored in the context of accelerator-based computation until now:
we believe that our proposition of dividable tasks is an interesting basis to attack
this challenging problem.

More generally, we envision StarPU as a meeting point to leverage the efforts
in various research domains: it stands as a powerful backend for compiling
environments (eg. StarSs), it offers a high-level playground to experiment with
algorithms from the scheduling literature on actual platforms, and it provides
portable performance to HPC libraries such as MAGMA.

Acknowledgments

This work has been supported by the ANR through the COSINUS (PROHMPT
ANR-08-COSI-013 project) and CONTINT (MEDIAGPU ANR-09-CORD-025)
programs. We thank NVIDIA and NVIDIA’s Professor Partnership Program
for their hardware donations.

RR n➦ 7240

StarPU: a runtime system for accelerator-based multicore machines 28

References

[1] Cédric Augonnet, Samuel Thibault, and Raymond Namyst. Automatic Cal-
ibration of Performance Models on Heterogeneous Multicore Architectures.
In Proceedings of the International Euro-Par Workshops 2009, HPPC’09,
Lecture Notes in Computer Science, Delft, The Netherlands, August 2009.
Springer.

[2] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Maik Nijhuis.
Exploiting the Cell/BE architecture with the StarPU unified runtime sys-
tem. In SAMOS Workshop, Lecture Notes in Computer Science, Samos,
Greece, July 2009.

[3] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-André
Wacrenier. StarPU: A Unified Platform for Task Scheduling on Heteroge-
neous Multicore Architectures. In Proceedings of the 15th Euro-Par Con-
ference, Delft, The Netherlands, August 2009.

[4] Eduard Ayguade, Rosa M. Badia, Daniel Cabrera, Alejandro Duran, Marc
Gonzalez, Francisco Igual, Daniel Jimenez, Jesus Labarta, Xavier Mar-
torell, Rafael Mayo, Josep M. Perez, and Enrique S. Quintana-Ort́ı. A
proposal to extend the openmp tasking model for heterogeneous architec-
tures. In IWOMP ’09: Proceedings of the 5th International Workshop on
OpenMP, pages 154–167, Berlin, Heidelberg, 2009. Springer-Verlag.

[5] Eduard Ayguadé, Rosa M. Badia, Francisco D. Igual, Jesús Labarta, Rafael
Mayo, and Enrique S. Quintana-Ort́ı. An Extension of the StarSs Program-
ming Model for Platforms with Multiple GPUs. In Proceedings of the 15th
Euro-Par Conference, Delft, The Netherlands, August 2009.

[6] Pieter Bellens, Josep M. Pérez, Rosa M. Badia, and Jesús Labarta. Ex-
ploiting Locality on the Cell/B.E. through Bypassing. In SAMOS, pages
318–328, 2009.

[7] Pieter Bellens, Josep M. Pérez, Felipe Cabarcas, Alex Ramı́rez, Rosa M.
Badia, and Jesús Labarta. Cellss: Scheduling techniques to better exploit
memory hierarchy. Scientific Programming, 17(1-2):77–95, 2009.

[8] Catherine H. Crawford, Paul Henning, Michael Kistler, and Cornell Wright.
Accelerating computing with the cell broadband engine processor. In CF
’08: Proceedings of the 5th conference on Computing frontiers, pages 3–12,
New York, NY, USA, 2008. ACM.

[9] Gregory F. Diamos and Sudhakar Yalamanchili. Harmony: an execution
model and runtime for heterogeneous many core systems. In HPDC ’08:
Proceedings of the 17th international symposium on High performance dis-
tributed computing, pages 197–200, New York, NY, USA, 2008. ACM.

[10] R. Dolbeau, S. Bihan, and F. Bodin. HMPP: A hybrid multi-core parallel
programming environment, 2007.

[11] Kayvon Fatahalian, Timothy J. Knight, Mike Houston, Mattan Erez,
Daniel Reiter Horn, Larkhoon Leem, Ji Young Park, Manman Ren, Alex

RR n➦ 7240

StarPU: a runtime system for accelerator-based multicore machines 29

Aiken, William J. Dally, and Pat Hanrahan. Sequoia: Programming the
memory hierarchy. In Proceedings of the 2006 ACM/IEEE Conference on
Supercomputing, 2006.

[12] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The implemen-
tation of the cilk-5 multithreaded language. SIGPLAN Not., 33(5):212–223,
1998.

[13] Naga K. Govindaraju, Brandon Lloyd, Yuri Dotsenko, Burton Smith, and
John Manferdelli. High performance discrete fourier transforms on graphics
processors. In SC ’08: Proceedings of the 2008 ACM/IEEE conference on
Supercomputing, pages 1–12, Piscataway, NJ, USA, 2008. IEEE Press.

[14] Vı́ctor J. Jiménez, Llúıs Vilanova, Isaac Gelado, Marisa Gil, Grigori Fursin,
and Nacho Navarro. Predictive Runtime Code Scheduling for Heteroge-
neous Architectures. In HiPEAC, pages 19–33, 2009.

[15] D. Kunzman, G. Zheng, E. Bohm, and L. V. Kalé. Charm++, Offload API,
and the Cell Processor. In Proceedings of the PMUP Workshop, Seattle,
WA, USA, September 2006.

[16] Y. Li, J. Dongarra, and S. Tomov. A Note on Auto-tuning GEMM for
GPUs. In ICCS (1), pages 884–892, 2009.

[17] Stéphanie Moreaud and Brice Goglin. Impact of NUMA Effects on High-
Speed Networking with Multi-Opteron Machines. In The 19th IASTED
International Conference on Parallel and Distributed Computing and Sys-
tems (PDCS 2007), Cambridge, Massachussetts, November 2007.

[18] Maik Nijhuis, Herbert Bos, Henri E. Bal, and Cédric Augonnet. Mapping
and synchronizing streaming applications on cell processors. In HiPEAC,
pages 216–230, 2009.

[19] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. E.
Lefohn, and T. J. Purcell. A survey of general-purpose computation on
graphics hardware. Computer Graphics Forum, 26(1):80–113, 03 2007.

[20] Judit Planas, Rosa M. Badia, Eduard Ayguadé, and Jesus Labarta. Hier-
chical task based programming with StarSs. International Journal of High
Performance Computing Application, 23:284, 2009.

[21] George Teodoro, Rafael Sachetto, Olcay Sertel, Metin Gurcan, Wag-
ner Meira Jr., Umit Catalyurek, and Renato Ferreira. Coordinating the Use
of GPU and CPU for Improving Performance of Compute Intensive Appli-
cations. In Proceedings of the IEEE International Conference on Cluster
Computing, New Orleans, LA, September 2009. IEEE Computer Society
Press.

[22] S. Tomov, J. Dongarra, and M. Baboulin. Towards Dense Linear Algebra
for Hybrid GPU Accelerated Manycore Systems. Technical report, January
2009.

[23] H. Topcuoglu, S. Hariri, and Min-You Wu. Performance-effective and low-
complexity task scheduling for heterogeneous computing. Parallel and Dis-
tributed Systems, IEEE Transactions on, 13(3):260–274, Mar 2002.

RR n➦ 7240

StarPU: a runtime system for accelerator-based multicore machines 30

[24] Vasily Volkov and James W. Demmel. Benchmarking gpus to tune dense
linear algebra. In SC ’08: Proceedings of the 2008 ACM/IEEE conference
on Supercomputing, pages 1–11, Piscataway, NJ, USA, 2008. IEEE Press.

[25] Lukasz Wesolowski. An application programming interface for general
purpose graphics processing units in an asynchronous runtime system.
Master’s thesis, Dept. of Computer Science, University of Illinois, 2008.
http://charm.cs.uiuc.edu/papers/LukaszMSThesis08.shtml.

[26] R. Clint Whaley and Jack Dongarra. Automatically Tuned Linear Algebra
Software. In Ninth SIAM Conference on Parallel Processing for Scientific
Computing, 1999.

RR n➦ 7240

Centre de recherche INRIA Bordeaux – Sud Ouest
Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex (France)

Centre de recherche INRIA Grenoble – Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier
Centre de recherche INRIA Lille – Nord Europe : Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d’Ascq

Centre de recherche INRIA Nancy – Grand Est : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex

Centre de recherche INRIA Paris – Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex
Centre de recherche INRIA Rennes – Bretagne Atlantique : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex

Centre de recherche INRIA Saclay – Île-de-France : Parc Orsay Université - ZAC des Vignes : 4, rue Jacques Monod - 91893 Orsay Cedex
Centre de recherche INRIA Sophia Antipolis – Méditerranée : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

❤tt♣✿✴✴✇✇✇✳✐♥r✐❛✳❢r

ISSN 0249-6399

