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Abstract

With the proliferation of general purpose GPUs, workload parallelization and data-
transfer optimization became an increasing concern. The natural evolution from using
a single GPU, is multiplying the amount of available processors, presenting new chal-
lenges, as tuning the workload decompositions and load balancing, when dealing with
heterogeneous systems.

Higher-level programming is a very important asset in a multi-GPU environment,
due to the complexity inherent to the currently used GPGPU APIs (OpenCL and CUDA),
because of their low-level and code overhead. This can be obtained by introducing an
abstraction layer, which has the advantage of enabling implicit optimizations and or-
chestrations such as transparent load balancing mechanism and reduced explicit code
overhead.

Algorithmic Skeletons, previously used in cluster environments, have recently been
adapted to the GPGPU context. Skeletons abstract most sources of code overhead, by
defining computation patterns of commonly used algorithms. The Marrow algorithmic
skeleton library is one of these, taking advantage of the abstractions to automate the
orchestration needed for an efficient GPU execution.

This thesis proposes the extension of Marrow to leverage the use of algorithmic skele-
tons in the modular and efficient programming of multiple heterogeneous GPUs, within
a single machine.

We were able to achieve a good balance between simplicity of the programming
model and performance, obtaining good scalability when using multiple GPUs, with an
efficient load distribution, although at the price of some overhead when using a single-
GPU.

Keywords: Algorithmic Skeletons, Multiple GPUs, Auto-Tuning
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Resumo

Com a proliferação de placas gráficas (GPUs), tornou-se fulcral a paralelização de
trabalho e a otimização da transferência de dados. A evolução natural de um GPU é
a sua replicação, criando novos desafios, como por exemplo, a afinação automática das
partições de trabalho e o seu balanceamento quando se lida com sistemas heterogéneos.

Programação de alto nível é um ativo muito importante em programação com vários
GPUs, devido à complexidade inerente às APIs de GPGPU correntes (OpenCL e CUDA),
pois estes são de baixo nível e têm alta verbosidade no código necessário para iniciali-
zação do sistema, tal como a comunicação entre CPU e GPUs. Pode-se obter este nível
de programação introduzindo uma nova camada de abstração, que tem a vantagem de
abstrair otimizações e orquestrações implícitas, tais como balanceamento de carga trans-
parente e menos verbosidade no código necessário para inicialização.

Os esqueletos algorítmicos, originalmente utilizados em clusters, foram recentemente
adaptados para GPGPU. Estes abstraem código fonte factorizável, definindo padrões de
computação amplamente utilizados. A biblioteca de esqueletos algorítmicos Marrow, por
exemplo, utiliza abstrações para automatizar a orquestração necessária para a execução
eficiente em GPU.

Esta tese propõe a extensão do Marrow para aplicar o uso de esqueletos algorítmicos
para uma programação modular e eficiente sobre múltiplos GPUs heterogéneos, numa
única máquina.

Conseguimos um bom equilíbrio entre simplicidade do modelo de programação e
performance, obtendo uma escalabilidade boa com múltiplos GPUs, com uma distribui-
ção de trabalho eficiente e uma reduzida penalização no desempenho quando só se usa
um GPU.

Palavras-chave: Esqueletos Algorítmicos, Multiplas GPUs, Afinação Automática
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1
Introduction

1.1 Motivation

Graphic Processing Units (GPUs) have become an ubiquitous component in computer
systems, being responsible for all graphical-related operations. These specialized units
were adopted because the limitations of common CPU architectural design do not scale
well with graphics, as graphical operations are commonly parallel pixel-wise compu-
tations, entailing long iterations between frames, due to the low number of concurrent
threads available. The GPU overcomes the need for long iterations by adopting an ar-
chitecture which is comprised of many streaming processors. These are relatively weak,
currently with frequencies close to 1GHz, in comparison to their CPU counterpart, which
boasts of frequencies above 2-3GHz. The AMD 7970 GPU1, for example, contains 2048
stream processors, each at a frequency of 925MHz, 128 texture units and 128 stencil units
as well as 3GB GDDR5 on-board RAM memory.

The GPGPU (General Purpose Computation on Graphics Processing Units) concept
was first formally proposed by Harris et al. as an approach to general computations using
GPUs. The untapped potential of the GPUs was initially recognized by the graphics pro-
cessing community, the audience of GPGPU’s initial presentation [Lue+05], in 2005, and
later the supercomputer community, where the first work regarding GPGPU was pub-
lished [Lue+06], in 2006. Consequently, the hardware evolved to support these needs,
and is considered an important asset for the resolution of computationally-heavy prob-
lems.

More recently, with the proliferation of GPGPU, the need for additional computation

1Taken from www.amd.com/us/products/desktop/graphics/7000/7970/Pages/radeon-7970.aspx
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1. INTRODUCTION 1.2. Problem

power evolved the system architectures, enabling the concurrent operation of several
GPU devices within a single system, as well as clustered solutions where nodes can be
GPU-accelerated with one or more GPU devices. In this work, we are interested in the
first of these two architectures, as there has been recent work [Hua+06; Pot+12; LBB11]
being developed in this hardware infrastructure, with good performance results. Addi-
tionally, this type of architecture has been increasingly popular as a base platform for
GPU-accelerated clusters. An evidence of such claim is the growing use of the GPU po-
tential in supercomputers, as the 17 from the 100 fastest supercomputer clusters [Meu+st]
(including the fastest), such as the Titan and the TH-1A, are GPU-accelerated, some of
which also present exceptional power-efficiency [Comst]. From these, two already adopt
the latest architecture development, boasting of multiple GPUs per node, such as the
Tsubame 2.0 (three per node) and Ha-Pacs (four per node).

1.2 Problem

The most popular GPGPU API developed with native GPU support was CUDA [NVI08],
where GPU computations are defined using a C-like programming language, subse-
quently compile to generate a binary for the GPU’s architecture. As the GPU compu-
tations (kernels) are defined through a subset of the C language (with some extra key-
words), and the main program can be written in C++ or other languages (such as Fortran
and Python) using bindings, the learning curve associated with GPGPU is lessened, sim-
plifying the creation of GPU-accelerated applications. As CUDA is a proprietary technol-
ogy, locked to NVIDIA GPUs, the need for an open standard emerged and a conglom-
erate of hardware developers such as Intel, AMD and NVIDIA, collaborated to create
OpenCL [Khr12]. Inspired by CUDA, OpenCL also uses a subset of the C language to
define kernels. A unified architecture is exposed to the programmer, hiding heteroge-
neous details of OpenCL-enabled devices, such as CPUs and GPUs. The main usage of
GPGPU APIs is scientific simulation, as these commonly require a high-degree of par-
allelism to process large volumes of data, which GPUs excel at, by taking advantage of
their on-board memory and high number of streaming processors.

The challenges entailing the usage of these APIs arise from the large responsibility
delegated to the programmer, as well as from their low-level nature. All computations
must be explicitly launched and managed (a particularly complex task when the compu-
tation requires the execution of multiple kernels), and there is no automated GPU mem-
ory management, delegating all allocations and deallocations, as well as its optimizations
(by picking the most suited memory type and appropriate transfer timing) to the pro-
grammer. This not only requires an in-depth knowledge of the architecture exposed by
the API, but also of the underlying GPU hardware, as each architecture’s performance
differs. This is shown by Spafford et al. [SMV10] where the best execution configuration
(work-group size and buffer chunk size) widely varies from GPU to GPU.

When taking advantage of multiple GPUs several concerns arise, such as workload

2



1. INTRODUCTION 1.2. Problem

scheduling and auto-tuning, akin to the more mature distributed CPU architecture, which
also requires communication for a cooperative execution. Even though the currently
available GPGPU APIs enable the multi-GPU execution, they do not address these is-
sues [SK09]. These components tend to become more complex to develop in multi-GPU
systems, due to the limited nature of the APIs, such as the lack of profiling tools and the
limited feedback provided by the GPU executions. To address these issues several lan-
guages have been incrementally adapted, to interface with the GPGPU APIs implicitly,
such as, StreamIt [TKA02], Lime [Dub+12] and Chapel [Sid+12]. These are not main-
stream programming languages, and therefore their impact is somehow limited, as it is
a known fact that library based approaches are usually more effective to convey a given
feature to a wider audience. In this context, algorithmic skeleton frameworks are playing
an important role.

Algorithmic skeletons [Col91] are common-pattern abstractions, whose initial focus
was on clusters (from which T4P [Dar+93] and P3L [Bac+95] are examples). This concept
created a shift in the programming paradigm at the time, enabling a higher-level pro-
gramming, as most of the synchronization and communications are predefined, reducing
the number possible errors as well as reducing amount of knowledge required from the
programmer. Skeletons are an important asset in the multi-GPU context, as CUDA and
OpenCL do not support an efficient multi-GPU execution natively. As skeletons abstract
well-known patterns, these can be also used to reduce the code overhead present in the
GPGPU APIs regarding computation initialization and communication. This layer also
allows transparent optimizations such as load balancing mechanisms.

Applications using multi-GPU architectures are dominated by data-parallelism, as it
is the simplest approach to take advantage of the degree of parallel threads available in
GPU devices, at the expense of computation flexibility as these can only have very lim-
ited dependencies. Current skeleton frameworks only offer premature support for this
type of execution, by limiting the computation type as well as limited auto-tuning and
scheduling techniques, as these frameworks are still under active development. Frame-
works, such as SkelCL [SKG11], SkePU [EK10] and Muesli [CK10] (detailed in Subsec-
tion 2.4.1), provide support for multi-GPU execution, by providing parameterizable al-
gorithms, such as the Map and Scan, requiring only the data-set in a predefined structure
as well as the functions that will be applied at each stage (for example a split and merge
function in the Map model).

There are, however, other classes of applications that, although still data-parallel,
commonly using Map pattern [SO11; CA12] models, start to incorporate some task-parallelism.
These hybrids commonly combine coarse-grained task-parallelism with fine-grained data-
parallelism, which present other programming models such as data-flow processing (as
presented by Boulos et al. [Bou+12]) and stream processing (as presented by Repplinger
et al. [RS11] and Dubach et al. [Dub+12]). These applications can normally be factorized
into basic constructs, such as pipelines, loops and stencils.

Recently, the Marrow [Mar12] algorithmic skeleton library was proposed, addressing

3



1. INTRODUCTION 1.3. Proposal

these concerns using a single GPU architecture. The goal of this thesis is to adapt Marrow
into an architecture with a single machine containing multiple, and possibly, heteroge-
neous GPUs.

1.3 Proposal

Marrow is a framework for the construction and execution of complex computations
in GPUs (OpenCL enabled devices) while addressing modularity and performance con-
cerns. Modularity is achieved by using skeleton nesting, a novel approach in the GPGPU
skeletons context, which allows the composition of basic constructs to create complex
and structured computations. This feature enables a higher degree of control from Mar-
row, by abstracting individual skeleton execution from the programmer and enabling the
library to integrate optimizations transparently.

The computations in Marrow are represented in a tree structure, where the intermedi-
ary nodes are skeletons, and leaves are computational kernels. This structure is obtained
using skeleton nesting, which gives the programmer an opaque vision of the compu-
tation, only exposing the result. This allows Marrow to take complete control of the
communication as well as computation orchestrations.

The currently supported skeletons are: Loop (and its specialization For), Pipeline,
Stream and MapReduce. The Loop and Pipeline skeletons are specially useful for com-
monly used for GPU-accelerated applications, such as, simulations and image process-
ing algorithms, as they give the programmer easy access to iterative and sequential stage
constructs. The Stream skeleton introduces the communication and computation over-
lap, by using a task-parallel model internally. This feature, allows two-way data-transfers
while there is ongoing computation on the GPU device. Tasks are internally submitted
over time to the GPU device, enabling the orchestration of the overlap. The MapReduce

skeleton gives Marrow support for the Map-Reduce data-parallel programming model.
Marrow is detailed in Chapter 3.

This thesis intends to adapt the Marrow framework to address the aforementioned
problems regarding multiple, possibly heterogeneous, GPUs, computations as well as
the complexity these entail. Additionally, this adaptation introduces new constructs to
the multi-GPU context such as the Loop and Pipeline, as well as new techniques to this
context such as skeleton computation trees for complex and structured computations.
Our multi-GPU execution entails a new challenge, which is the efficient mapping of com-
putations into a set of variable-performance GPUs. Following the algorithmic skeleton
paradigm, this mapping should be as seamless as possible, as to abstract the underlying
platform from the programmer, being another goal of this thesis. The multi-GPU support
is detailed Chapter 4.

As such, the ultimate goal of this thesis is to use task- and data-parallel algorithmic
skeletons for a modular and efficient usage of multi-GPU systems.
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1.4 Contributions

The contributions of this thesis are:

• The exhaustive performance evaluation of the original, single-GPU Marrow to ob-
tain a baseline for comparison. This contribution helped in the creation of a pa-
per [Mar+13] published at EuroPar 2013;

• Adaptation of the Marrow algorithmic skeleton library to an architecture containing
a single node with multiple GPUs, with a particular focus in task-parallel skeletons.
Given that Marrow is the first to feature these skeletons, their systematic orchestra-
tion in a multi-GPU context is a contribution to the community. This contribution
has been published [AMP13] at INForum 2013;

• The adaptation of skeleton computation trees for the multi-GPU context, for the
creation of complex and structured computations. Given that Marrow is the first
to introduce this feature in the GPGPU context, the efficient distribution of these
computation trees to multiple GPUs is also a contribution to the community.

• The evaluation of the previously presented contributions, by measuring: 1) over-
head versus OpenCL implementations and the original, single-GPU Marrow, 2) our
work’s multi-GPU scalability, 3) work distribution efficiency and 4) an attempt to
evaluate the productivity gains associated with Marrow’s usage in the multi-GPU
context.

1.5 Document Structure

This document has the following structure:

Chapter 2 In this chapter the state of the art is presented, relating to GPU and OpenCL
architectures, multi-GPU execution frameworks (with special focus on algorithmic skele-
tons), approaches to auto-tuning and workload scheduling in heterogeneous multi-GPU
environments.

Chapter 3 The original Marrow algorithmic skeleton framework is detailed, before the
integration of our contributions.

Chapter 4 This chapter details the implementation of Marrow’s multi-GPU support.

Chapter 5 Our contributions are validated in this chapter, using several metrics, such
as: 1) comparison with case-studies in OpenCL, 2) in the original, single-GPU, Marrow,
3) multi-GPU scalability as well as 4) a decomposition quality evaluation.

Chapter 6 In this chapter this thesis’ conclusions are presented.
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2
State of the Art

As the work we propose involves algorithmic skeleton programming in a multi-GPU
execution environment, we overview in detail the state of the art regarding algorithmic
skeleton libraries and languages which take advantage of multi-GPU architectures. See-
ing that we are handling heterogeneous GPU devices, an overview is presented, detailing
the current approaches to auto-tuning and workload scheduling (which is further catego-
rized to static and dynamic), specifically in the multi-GPU context, as these already take
into account the limitations present in the GPGPU environment. Finally, the last section
of this chapter presents the final remarks relating to the state of the art, highlighting the
tendencies of the studied topics.

Before diving into these more advance topics, however, it is necessary to present a
base platform of knowledge to allow the reader to comprehend the technical terms and
implications more easily. This platform comprises of a general overview of the GPU
architecture, a detailed presentation of OpenCL’s architecture and programming model,
as it will be used for this work’s implementation, as well as a taxonomy definition, where
several categories of GPU-accelerated systems are defined, with a brief overview of the
state of the art in each one, to simplify the categorization of systems in the remainder of
this document.

2.1 GPU Architecture

The GPU architecture is generally analogous to Figure 2.1, boasting of several streaming
multiprocessors (SMs), which are autonomous, independent of other SMs. In this section
we present the Fermi architecture. Each SM is comprised of two groups of 16 streaming
processors (SPs), registers, a SM-wide private cache (unaccessible by other SMs), special

7



2. STATE OF THE ART 2.1. GPU Architecture

Figure 2.1: The Fermi architecture, showing a detailed streaming multiprocessor (edited
from [NVI09]).

function units (SFUs) as well as load-store units. The SPs are responsible for integer and
floating-pointer operations. The SFUs are responsible for transcendental functions such
as sin, cosine and square root. The load-store units allows the implicit translation of
memory addresses (cache or DRAM) for each thread within each SP group. All memory
(cache and DRAM) is manually allocable and controllable by the programmer, enabling
better optimized applications, in exchange of programming complexity.

The SMs operate using a SIMT (Single Instruction Multiple Threads) model, contain-
ing two warp schedulers within each SM. Each warp scheduler is in charge of a group
of 16 SPs. A warp (or wavefront in AMD’s documentation) is the indivisible schedul-
ing unit (where each warp can contain multiple instructions), executed in groups of 32
threads in the Fermi architecture. Each single-precision float and integer operations are
issued twice over one group of 16 SPs (to create the illusion of a 32-thread warp), double-
precision operations are issued over two groups of 16 stream processors, occupying a full
SM, temporarily suspending the execution of the other warp scheduler. The four shared
SFUs, imply an 1

8 throughput as the 32 operations (size of the warp) must be issued us-
ing only four units per cycle. Some considerations should be taken into close account
regarding warps, when programming with GPU devices, as it is possible for these to di-
verge. This commonly happens due to conditionals present in the computation which
implies that some threads are executing different operations of varying complexity. This
incurs longer execution times as not all streaming processors might be used at each cycle,
lowering the throughput.

To reduce DRAM access overhead (significantly higher than cache’s), the Fermi archi-
tecture attempts to coalesce them. DRAM access is done using various fixed-size memory
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transactions (32-, 64-, or 128-bytes), that must have their first address aligned to a multi-
ple of its size. This entails that useless information is transfered if memory accesses that
are not a multiple of these transaction sizes. Ideally, each warp should use all the data
acquired by the implicit memory transactions in an ordered way (for example, thread one
uses the first element, thread two the second element, and so on) to avoid unnecessary
transfer overheads. Thus the programmer is responsible for parallelizing the computa-
tions in a way that takes advantage of coalesced accesses.

2.2 OpenCL

There are two main APIs for general programming on GPUs, the NVIDIA’s CUDA [NVI08]
and OpenCL [Khr12]. Brook [BH03] was the first framework of its kind to be created in
2003, demonstrating the potential of GPGPU in GPUs, using Cg [Mar+03], a C-like pro-
gramming language which compiles to OpenGL shaders for GPU execution. CUDA was
released in 2007, after the widespread of the GPGPU concept from Brook’s creators and
others. CUDA is limited to NVIDIA GPUs which created a need for an open standard.
OpenCL was developed in 2008 by the Khronos Group to be a general computation stan-
dard for many heterogeneous devices, such as CPUs, GPUs and DSPs (Digital Signal Pro-
cessors). A significant portion of hardware developers dedicated to computation adhere
to the OpenCL standard as a unified access to processing resources. These developers
include NVIDIA (where OpenCL is translated into CUDA), AMD and Intel.

2.2.1 Architecture

OpenCL serves as an abstraction to heterogeneous devices, thus exposing a similar ar-
chitecture for any computing device. As seen in Figure 2.2 each computational device is
comprised of an arbitrary number of work-groups (shown as compute units). Each work-
group contains a set of work-items (shown as processing elements), and each is translated
into single core with fast private memory. Each work-group has local memory, an internal
memory shared by all elements within the group. Several work-groups can be used to
for the computation of a single kernel which makes the management of the memory an
important concern. OpenCL does not enforce any type of behavior in regards to global
and constant memory cache, as well as does not provide a API to modify the underlying
device’s behavior (due to varying cache policies).

Table 2.1: Memory allocation and accessibility by Host and Kernel (adapted
from [Khr12])

Global Constant Local Private
Host Dynamic

(Read/Write)
Dynamic
(Read/Write)

Dynamic
(No Access)

No Allocation
(No Access)

Kernel No Allocation
(Read/Write)

Static
(Read/Write)

Static
(Read/Write)

Static
(Read/Write)
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Figure 2.2: OpenCL device architecture, Host is not shown (taken from [Khr12]).

There are two categories of globally-accessible memory within OpenCL devices: global
and constant. Constant memory cannot be changed, within a kernel execution, once set.
The amount of available memory in any of these categories vary depending on the un-
derlying hardware. All memory types can be explicitly managed by either the Host or
the Kernel as shown in Table 2.1. To create efficient implementations in OpenCL, the
programmer should manage these different memory types to optimize the locality of the
data. The devices cannot access host memory (cache nor RAM) directly due to hardware
limitations (although when using the CPU as a OpenCL device, it technically has access
to host memory), which influenced OpenCL’s design to treat each device as autonomous.

OpenCL has a relaxed memory model where the state of memory is not guaranteed
to always be consistent over all the work-items. Private memory within a work-item has
load and store consistency as it is the only one reaching it. Local memory is consistent
across work-groups (and their work-items) when there is work-group barrier. Global
memory is only consistent across the work-items of a single work-group at a work-group
barrier, but there are no guarantees among different work-groups while executing a ker-
nel.

2.2.2 Programming

A OpenCL program has two components: kernels that are executed in one or more OpenCL-
enabled devices and a host program which triggers and manages the execution of the ker-
nels. The kernels are written in a subset of the C language with some new primitives
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(such as __kernel for the definition of a kernel function) and some limitations, such as be-
ing unable to allocate an array whose a size cannot be determined in compilation-time. As
presented in the previous subsection in the architecture, each work-group is comprised
of a variable amount of work-items. These are assigned an index space (which can have
multiple dimensions), within a single kernel execution, creating a unique identifier by
combining a work-group and work-item identifiers. When a kernel is executed the pro-
grammer can use these to create a disjoint work distribution among all the work-items
with ease.

The host program interacts with the device using a command-queue, which can sched-
ule the asynchronous execution of the kernels. There are three command categories: ker-
nel triggering commands (to start execution), memory commands (which are used for al-
location and transfer of data) and synchronization commands (which define constraints
to the execution order of the enqueued commands). There are two execution orders: in-
order, and out-of-order. In-order execution launches enqueued commands in the order
they are submitted, but only one command can be executing at a time. Out-of-order
execution does not wait for a command to finish execution and the programmer must
enforce any order constraints using explicit synchronization.

OpenCL supports the following programming models: data-parallel, task-parallel and
hybrids of the two. The data-parallel model is the most commonly used, where com-
putation is defined using a sequence of computations over a data-set and there is an
instance of each kernel per work-item. Using the aforementioned identifications, the
work-items apply these computations to their assigned elements in parallel. It is possible
for the programmer to specify the total number of work-items needed for an execution
as well as how many work-items are grouped into a single work-group. Alternatively,
the programmer can only specify the total amount of work-items needed and OpenCL
can automatically infer the amount of work-items per work-group. The task-parallel
model executes a single instance of the kernel independently of an index-space. Paral-
lelism in this model is expressed by either using the vector data types implemented by
the OpenCL device; queuing multiple tasks or by queuing native OpenCL kernels. This
programming model is logically equivalent to executing a kernel using a single compute
unit with a work-group containing one work-item.

GPUs support bi-directional communication while there is computations being exe-
cuted in the device. This feature is commonly referred as computation and communica-
tion overlap. Programmers can take advantage of this feature by manually orchestrating
the communication to and from the device, using carefully planned kernel execution
commands with a technique known as double-buffering. Komoda et al. [KMN12] detail a
OpenCL communication library which takes advantage of this feature to ease the efficient
usage of OpenCL. They use a stream graph abstraction to describe pipelined parallelism,
to know the precedences needed for the correct transfer scheduling. This library shows
an improved speedup between ×1.1 and ×1.6 versus a non-orchestrated execution.
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2.3 Taxonomy of GPU-Accelerated Computer Systems

The unending need for scalability evolved the initial architecture, containing a single
computer with one GPU, into clustered solutions as well as more recently the integration
of multiple GPUs in a single computer. Several architectures emerged from this evolu-
tion, which motivates the creation of this taxonomy, for their categorizations while taking
into account common features. The architectures of GPU-accelerated systems can be cat-
egorized according to two dimensions: 1) the number of physical nodes composing the
system and 2) the number of GPUs within a node. The Table 2.2 defines the taxonomy of
GPU-accelerated architectures, including clustered solutions.

Table 2.2: Categories of GPU system architectures.
One GPU Multiple GPUs

One Node SNSG SNMG
Multiple Nodes MNSG MNMG

The SNSG architecture is the initial GPU accelerated architecture, containing a single
machine and a single GPU device. It is the simplest GPU-accelerated architecture, being
commonly the first framework development step, before its generalization to a clustered
and/or multi-GPU solution. Stone et al. [Sto+07] use a SNSG architecture to accelerate
the simulation of molecules by partitioning the simulation space among all the streaming
processors in the GPU, obtaining a ×40 better speedup than the best CPU implementa-
tion. Elsen et al. [Els+07] present a GPU-accelerated N-Body simulation which simulates
the effects of a force law to a set of mass particles in a space. This implementation had a
×25 improved speedup over a SSE-optimized CPU implementation. A dense linear alge-
bra solver was implemented by Tomov et al. [Tom+10] using the MAGMA math library
which enables several factorizations such as Choleski, LU and QR in a SNSG environ-
ment. An auto-tuning component is used to create a static schedule of the tasks between
the CPU and the GPU. Mousazadeh et al. [Mou+11] presents a CUDA implementation of
a deformed image registration algorithm, which uses a reference image and a deformed
image to calculate the forces involved, which caused the deforming. This algorithm re-
quires a significant amount of sparse matrix operations, thus making it a good candidate
for GPU execution. This work can be applied to medical resonance images (MRI), to help
the diagnose of illnesses.

SNMG architectures have simpler implementations in comparison to multi-node ar-
chitectures, as there are no concerns relating to communication failure, while still pro-
viding a solution to increase scalability, albeit limited by the number of supported GPUs
in a single machine. The usage of multiple GPUs is a recent development, being an ac-
tive subject of academic research, to develop efficient and load balanced solutions to take
full advantage of the locality of the resources, as well as optimization of the PCIe bus
usage. Potluri et al. [Pot+12] use a novel feature in CUDA 4.1, which enable direct GPU-
to-GPU communication interface, only using the I/O hub, without CPU interaction, for
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inter-process communication, in a SNMG architecture. This work is integrated into MVA-
PICH2 [Hua+06] (an implementation of MPI for InfiniBand and other high-performance
networks). Two types of communication are defined: Two- and One-way. Two-way com-
munication entails synchronization between messages akin to send/receive primitives
in distributed communication, while one-way communication is asynchronous and re-
quires explicit synchronization. The work is compared to MPI using CPU interaction
and results show a 79% latency improvement in two-way communication, and a 74% im-
provement in one-way communication. This paper is presented as a SNMG architecture
instead of MNMG (as it uses MPI, commonly used in distributed computation) as the
whole paper, as well as the evaluation presented was done using a single node. Lalami et
al. [LBB11] developed a SNMG implementation of the Simplex method, commonly used
in linear programming. The simplex method is represented using the matrix notation,
which is partitioned equally among the GPUs. Test results using two GPUs show an 85%

better performance versus single GPU execution.

Multi-node architectures presented below, rely on communication APIs, such as Mes-
sage Passing Interface (MPI) and Java-based Remote Method Invocation (RMI) as a founda-
tion for distributed computation. The main advantage of these architectures, is the higher
scalability potential due to unbound number of nodes. However, there are some concerns
inherent to this approach, mainly related to reliability, since latency, error detection and
correction are not a trivial issue in a networked environment.

MNSG architectures are commonly used as trade-off between scalability and imple-
mentation simplicity, while maintaining unbound potential for scalability (at the expense
of budget), as new nodes can always be added. Fan et al. [Fan+04] present an overview
of the MNSG architecture and its advantages, such as cost-efficiency, in comparison to
pure CPU clusters, as well as possible applications, for example, an airflow simulation
in Times Square. When using 32 nodes, each equipped with a GeForce FX 5800 Ul-
tra, presents an improved speedup of about ×5 versus a CPU cluster, translating into
about 80% of the (best) linear scalability. It should be noted that at the time of this
paper, multi-GPU execution was not yet being studied and was still very premature
at a hardware level (as SLI and CrossFire technologies were announced at the end of
2004). Several supercomputers have adopted the MNSG, some of which show excep-
tional power efficiency, as three of the top five most power-efficient supercomputers are
GPU-enabled [Comst]. Sanam sits in the fourth place, with 2,351 MFLOPs/W, comprised
of 420 nodes in a MNSG architecture with a AMD FirePro S10000 per node and is the 52nd
fastest supercomputer [Meu+st]. The 29th most power-efficient supercomputer is the Ti-
tan, with 2,142 MFLOPs/W, made up of 18.688 nodes where each node has an NVIDIA
Tesla K20 and is on the second place of the ladder as of the writing of this document.

The MNMG architecture represents the most generalized model. It has unbound scal-
ability while maintaining a best price/FLOPs ratio, as it is possible to add additional
nodes when the current ones cannot add more GPUs. The drawback of this architec-
ture is the increased responsibility of the developer, as there are two different layers
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of optimization required, one at the network layer and another intra-node, for the load
balanced distribution among GPU devices. This complexity entail that most works us-
ing this architecture use straight-forward data partitioning on both layers. Danner et
al. [Dan+12] present MNMG architecture with 32 nodes connected using MPI, equipped
with six NVIDIA Fermi M2070 GPUs each. They use this architecture to accelerate the
creation of a digital elevation model using a model similar to Map-Reduce. This work
resulted in a ×25 speedup over the pure CPU cluster. Babich et al. [BCJ10] adapt a li-
brary with several sparse matrix linear solvers for MNNG architecture by using data-
parallelism over the whole cluster. The cluster contains 16 nodes containing two GPUs
(NVIDIA GTX 285) each, connected by InfiniBand. The results show a strong scaling,
improving about ×10 sustained GFLOPs using 32 GPUs versus two. Additionally there
two highly regarded supercomputers (aforementioned in the motivation), which take ad-
vantage of this architecture, namely the Tsubame 2.0 and the Ha-Pacs. The Tsubame 2.0
is 21st fastest supercomputer, as well as the 91st most power-efficient, comprised of 1408
nodes, where each node has three NVIDIA M2050s. The Ha-Pacs is the 62st fastest super-
computer, 48th most power-efficient, comprised of 1300 nodes, containing four NVIDIA
M2090s per node.

2.4 Algorithmic Skeletons

Parallel execution is commonly obtained by explicitly coordinating threads and synchro-
nizing access to shared resources. The Parallel paradigm is naturally more complex than
the sequential counterpart and tends to be notoriously error-prone [Yan+12] due to un-
predicted interactions among processing entities over shared resources.

To this extent, the identification of patterns that embed known structures and behav-
iors in this area provide an effective added value. Recurrent steps common to many
algorithms can be optimized unitedly.

Algorithmic Skeletons are algorithm patterns for parallel executions which abstract the
underlying structure of the execution environment [Col91], providing predefined mem-
ory synchronization and communication. The higher-level capabilities of skeletons en-
able the programmer to focus on the algorithmic problem instead of the concerns intrinsic
to its parallel decomposition.

Skeletons can be combined in two ways: sequential (of which SkelCL [SKG11] is an
example) and nested (of which Calcium [CL07], Skandium [LP10], Muesli [CK10] and
Marrow [Mar12] are examples).

Combining sequentially exposes the explicit execution of one skeleton at a time. The
algorithms code explicitly defines the sequence of steps and has access to all intermediate
results. This approach gives high control to the programmer in exchange to the lack of
execution orchestration from the frameworks. Thus, the programmer is responsible for
inter-skeleton execution optimization, making efficient programming complex.

Nesting allows the combination of elementary skeletons to create complex execution
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structures [Col04], creating the illusion that all skeletons are running concurrently, much
like processes in an operating system. This illusion allows higher level orchestration of
the independent skeletons, because the runtime execution is defined early and delegated
to the library.

The systematic usage of skeletons is important as it separates program behavior from
intrinsic parallel details [GVL10]. The separation enables performance gains, by taking
advantage of the available infrastructure from pattern optimization present on the Skele-
tons.

Skeleton libraries were initially developed for cluster environments [CL07; ADT03].
In this context there was a need for communication technologies over a network between
computation nodes. Among these technologies the most used are RMI (Remote Method
Invocation) in the Java context and MPI (Message Passing Interface) standard in sev-
eral other languages. These technologies provide communication support for distributed
computing over a network.

With the development and proliferation of multi-core architectures, new Skeleton
frameworks were specially tailored or adapted for these environments, such as Skandium [LP10]
and Muesli [CK10]. These typically take advantage of intra-node parallelism by resorting
to OpenMP for example.

More recently with the growing popularity of GPGPU, several Skeleton frameworks
were proposed to exploit this untapped resource such as SkelCL [SKG11] and SkePU [EK10]
which take advantage of parallelism within multiple GPUs. Since our work revolves
around this research, we will provide a more in-depth description of such libraries, as
well as other approaches, in the remainder of this section.

2.4.1 Algorithmic Skeletons for GPGPU

SkelCL

SkelCL [SKG11] is a C++ library for GPGPU built on top of OpenCL. Its main objective
is to provide performance gains in highly parallel tasks using GPU devices.

The main concept of this library is the Vector. This data-structure was created to by-
pass a significant portion of code-overhead present on GPGPU APIs.

All data transfer between host (CPU accessible) memory and device (GPU accessible)
memory are optimized by the Vector. This feature includes lazy copying which delays
memory transfer to host memory until explicitly invoked, or all computation depending
on it ends, enabling a Skeleton to use results from a previous one without redundant
transfers to host memory.

The instantiation of the skeletons with computation is performed by supplying C++
functions as plain strings.

SkelCL supports four skeletons: Map, Zip, Reduce and Scan. All these consume in-
put Vectors and produce output Vectors making them compatible with each other. This
compatibility is not nesting as multiple skeletons cannot execute concurrently. It simply
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enables the sequential composition of skeletons, in the sense that the output of one may
be passed directly as the input vector of another.

Map applies a programmer-defined function to all elements of a given Vector. For
type-preservations sake, the map function must take an element of a certain type T and
produce an element of the same type.

Zip takes a programmer-defined binary operator, which is applied index-wise to a pair
of input Vectors of the same length, and returns a single output Vector with the results of
the combination.

Reduce applies a binary operation to every pair of input elements recursively until it
obtains a single scalar value. For parallel execution of this Skeleton, the binary operation
must be associative so it can be applied to arbitrarily sized subranges in parallel. It is the
programmer’s responsibility to provide an associative operator as SkelCL does not test
this property. Intermediate reduce results are saved in fast, local device memory (cache).

Scan applies a binary operation recursively to all previous elements of the element
being calculated. It is similar to a reduce with the input Vector containing all the previous
elements, including the one being calculated. This Skeleton is optimized to make use of
local memory and avoid memory access conflicts.

Some algorithms might require a variable number of arguments on the customizing
function (such as Map). In SkelCL, the Arguments object allows an arbitrary number
of input arguments, by wrapping them like a container which enables implicit memory
management between host and device memories.

One premise of OpenCL is portability across several device types, such as CPUs and
GPUs. To that extent, it is necessary to compile the kernels at runtime by the device at
least once. To avoid unnecessary compilation overhead, SkelCL provides the option of
saving the compiled kernels in persistent memory for posterior use.

Multi-GPU Support

More recent work on SkelCL [SKG12] added multi-GPU support by defining the distribu-
tion of input Vector over several devices. The distribution and access to each data section
is automatically managed by the library.

The Vector concept remains the same. Internally however, it was adapted to sup-
port distributions among different devices while maintaining the memory operations in
a transparent fashion.

Figure 2.3: Vector distributions supported by SkelCL (taken from [SKG12]).
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Currently there are three possible ways to distribute work amongst multiple GPUs:
Single, Block and Copy (Figure 2.3). Single transfers the whole vector to a single device.
Block splits the input vector equally among all target devices. Copy duplicates the entire
input to the all devices, being the output merged at the end of the skeleton execution by a
programmer-defined function. If such function is not specified, then the first result from
a copy received will be accepted and all others will be discarded.

A Vector’s distribution can be modified at runtime either by the system or by the
programmer explicitly. This operation is, however, constrained to the execution states,
when there is no computation taking place in the GPU devices. All necessary memory
transfers will be done by SkelCL implicitly. These are done lazily, only transferring if they
are actually needed for the next computation. This reduces communication overhead but
forces computations to block until the data-set partition is completely transferred.

The default Vector distribution depends on its role in the Skeleton computation. When
it is a main input, the skeleton defines the defaults. On the other hand, if it is an additional
input, the default distribution must be defined by the programmer using a customization
function.

The developed Multi-GPU support imposed unavoidable adaptations to the imple-
mentation of the previously available Skeletons.

Map and Zip suffered similar modifications to take advantage of data-parallelization
in a GPU device level. Zip, in particular, has an extra requirements: both input vectors
must have the same distribution and if the distribution is set to single both vectors must
be in the same device. Otherwise, the system will automatically change the distribution
to block.

The Reduce Skeleton implicitly performs all orchestration required to perform a re-
duction on multiple GPUs. Each device performs a partial reduction locally. Afterwards
the intermediate results are transferred to the CPU where they are further reduced to a
single scalar.

Scan requires a more complex approach to be able to execute in multiple GPUs. Con-
trary to all the other supported skeletons, there is a prefix dependency on previous el-
ements. When the vector is distributed, a local scan is executed on all partitions. From
these intermediate results, only the first partition is correct as it has all the elements it
depends on. To obtain the correct values on the subsequent partitions, the last element of
the previous partition is transferred to the host memory where a Map skeleton is implic-
itly created. This map applies the value to the current partition the depends on it. This
procedure is applied iteratively until the last partition is reached and all dependencies re-
solved. A common example of this Skeleton is the prefix-sum where each vector element
is the sum of all its precedents in the Vector.
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SkePU

SkePU [EK10] is a C++ Skeleton template library that supports the compilation to multi-
ple back-ends such as OpenMP, CUDA and OpenCL.

To hide the verbose memory operations required by both CUDA and OpenCL pro-
gramming, SkePU uses the Vector concept. The Vector is similar in all aspects to the one
presented in SkelCL. This mechanism does not take explicit advantage of communication
and computation overlap that CUDA streams support as the communication is delayed
until it is needed by the host.

Skeleton parametrization is expressed through C++ macros which delimit the types of
supported behaviors. These are translated to a structure with all the information needed
for skeleton execution. The macro list offers: overlap, array and the elementary macros
unary, binary and ternary, all with a constant variant that does not allow data reassign-
ment.

The skeletons supported by SkePU are: Map, Reduce, MapReduce, MapOverlap and
MapArray. These are accessible as a C++ function and use the cited macros as arguments.

Map and Reduce are similar their SkelCL counterpart. The particular case of Map
allows the use of a ternary function, enabling the use of three input vectors.

MapReduce is a conjunction of both Map and Reduce Skeletons that are used to sim-
plify code considering it is a very common programming pattern. It takes both Map and
Reduce function structures as arguments on initialization.

MapOverlap is a variant of Map where the computation of each position of the result
Vector depends on a range of elements of the input vector. An useful example of this
Skeleton is the convolution algorithm, commonly used for image filters.

MapArray applies a binary function with two input vectors. Each element of the re-
sulting Vector depends on the element of the second input vector at the same position,
and an arbitrary number of elements of the first input vector.

Multi-GPU Support

Multi-GPU support in SkePU was developed by dividing the work load among the exist-
ing devices as well as auto-tuning of the distribution dimension parameters to take full
advantage of heterogeneous environments with acceptable performance.

To implement these new features the execution plan [EDK10; DEK11] feature was
created. It enables the dynamic specification of which back-end to use considering the
actual problem size, as well as provide the default parameters for each back-end. All
skeletons include this feature and support their manual parametrization.

A prediction framework is used to supply default auto-tuning values for the execu-
tion plans. The mechanisms applied by the framework is twofold: first, at installation
time, a set of micro-benchmarks are executed on the devices and secondly a heuristic
algorithm based on genetic programing to calculate the best execution plan for a single
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back-end. The estimation of different devices capabilities available that are mainly ob-
tained on installation using micro-benchmarking. The data gathered by both these stages
are combined to create an execution plan prepared to run the Skeletons in any back-end
with default values to each.

The heuristic algorithm attempts to find the best parameter values for a certain back-
end. These vary from each back-end, such as “Number of threads” in OpenMP, “Block
Size” as well as “Grid Size” for OpenCL or CUDA. Initially there is a predefined set
of initial configurations from which the algorithm will benchmark, to try to deduce the
best configuration. At each configuration entry, the benchmarking kernels are executed
to evaluate the configuration’s quality. This algorithm ends when all the configurations
have been exhausted. To reduce the overhead this approach entails, there is a threshold
parameter which stops the algorithm when it reaches a certain degree of optimality.

The Micro-Benchmarking is twofold: measurements are taken during installation and
the same measurements are taken after an interesting real-world kernel execution to im-
prove future estimates. Depending on the back-end, different parameters are saved. The
values of interest for GPUs are: data transfer time from host to GPU and vice-versa; ker-
nel execution time, and total execution time (which should be about the sum of the previ-
ous, excluding possible architectural overhead). A formula is used to identify repetitive
and fixed time. Repetitive time is measured by executing a skeleton over vectors present
in host memory, as to include the data transfer overhead. Fixed time is measured by ex-
ecuting a skeleton over the same vector, present in GPU device memory, avoiding data
transfer overhead.

Recent work over the SkePU [Kes+12] built an integration with StarPU [Aug+09], a
library that simplifies parallel execution by automating the runtime load balancing. This
library is presented in detail in Section 2.6.

Muesli

Muesli [CK10] is a C++ template library that takes advantage of distributed and multi-
core environments. Message Passing Interface (MPI) is used for inter-node paralleliza-
tion, OpenMP and CUDA take advantage of intra-node parallelization.

Muesli handles all distributed data-structures implicitly. These structures synchro-
nize automatically (using MPI) when non-local data is needed, enabling a higher-level
programming experience. These structures are built akin to Sparse Matrices and can be
distributed in diverse ways (for example Block and Round-Robin [CPK09]).

The skeletons supported by the library are: Pipeline, Farm, DivideAndConquer, Bran-

dAndBound, Fold, Map, Scan and Zip. From this set, only Fold, Map, Scan and Zip support
GPU execution.

The usage of Multi-Core CPUs is tackled using OpenMP. A OpenMP Abstraction
Layer was built to wrap all the functions from OpenMP over Muesli library functions
with safe-guards in the event OpenMP is not available (using the _OPENMP macro test).

19



2. STATE OF THE ART 2.4. Algorithmic Skeletons

The OAL provides cleaner code in regards to the reduced macro usage and management.

To take advantage of the GPGPU environment Muesli uses CUDA. A data-structure
akin to SkelCL’s Vector, the Device Vector (DevVector) abstracts the memory operations
between the host (CPU) and the device (GPUs) that CUDA entails. DevVector handles
all memory transfers as well as their optimization transparently using lazy copying. The
Device Vector inherits the communication and computation overlap optimizations pro-
vided by CUDA streams but there is no explicit mechanism to enable the programmer to
control such feature.

To provide multi-GPU [EK12], each device vector contains a set of execution plans
structure, which contains all the pointers to the data-set of each skeleton instance. Data
partitioning is done manually by the programmer and assigned to each execution plan
entry on the skeleton. It is impossible to obtain additional information, due to the lack
of architecture and implementation information in either the published papers or the
source-code available (which lacks GPU execution altogether).

Source-To-Source Compilers

Source-to-source compilers in the GPGPU context are used to translate programmer-
annotated, single-threaded code into a multi-threaded environment. In this context, the
PGI compiler [The10] of the OpenACC [CAP] is the most noticeable work. Our discus-
sion, however, focuses on the use of algorithmic skeletons to convert single-threaded
algorithms to known multi-threaded structures. Even though the programmer has to an-
notate the code while taking into account the desired parallelism, he does not have to be
aware of the parallelizing library (such as OpenCL or CUDA).

MultiSkel [Le+12] compiles annotated C++ code into a CUDA-compliant source code
(containing both host and device sources) for multi-GPU execution. The workload is split
evenly by all GPUs, as the supported skeletons are mainly data-parallel. The supported
elementary skeletons are: Map, Reduce, Scan and ZipWith. MapReduce and ZipWithRe-

duce are also implemented as a Skeleton even though they are combinations of the el-
ementary skeletons. Map, Reduce, Scan and ZipWith are analogous with the skeletons
presented in SkelCL previously, where ZipWith is equal to SkelCL’s Zip. Skeleton nesting
is not supported.

Bones [NC11; NC12] translates annotated C source-code to CUDA or OpenCL. Di-
verse classes of mathematical operations are skeletons, with a mathematical-like syntax,
using an abstract syntax tree (AST) grammar. These operations are commonly applied
in a wide array of image operations and filters such as pixelization, convolution, erode
and color histogram. Multi-GPU is not yet supported, however, Bones is an interesting
framework as most supported operations are stencils, where a single element requires
the bordering elements for its computation, which entails shared-data management. The
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border’s width is defined by the programmer, considerably increasing the system’s flex-
ibility. To uphold an appropriate distribution of work, the compiler resorts to a perfor-
mance prediction model associated to each operation class, to decide which architecture
should be used for the computation. The system is statically defined, as the analysis of
each operation is done manually by the creators of the framework, taking into account
the data-access patterns to predict the complexity. Skeleton nesting is not supported.

2.4.2 Other Approaches

There are other approaches to the abstraction of multi-GPU computation apart from al-
gorithmic skeletons, such as codelets, dataflow processing and stream processing.

Codelets are abstractions which break the code functionality into smaller fragments [Zuc+11].
There are some restrictions that should be followed when implementing an execution
model using codelets: these should not block or run indefinitely; they should be indivis-
ible and atomic; they must explicitly define the data that will be accessed and modified
and should have low-overhead when hiding long-latency operations (passing results di-
rectly to another codelet). StarPU [Aug+09] takes advantage of this abstraction to create
functions that might contain several different versions targeting different architectures
while maintaining the same functionality. This library is presented in detail in Section 2.6
due to its load balancing capabilities on multi-GPU systems.

Dataflow Processing [LM87] is based on a computational graph abstraction, where
the nodes are computation kernels called filters and the directed edges are a pipelined de-
scription of the data path. Transforming the graph for parallel execution can be twofold:
1) partitioning the graph into relevant groups to minimize the memory transfer overhead
and 2) data parallelization within a single filter. Boulos et al. [Bou+12] present a dataflow
programming model which allows the specification of the architecture graph where the
program will be executed. The programmer can then specify a data flow program by
defining the filters and the computational graph in a textual form. Each filter can be
manually assigned to each device described in the architecture graph without concerns
for the underlying architecture.

Stream processing [Kha+03] is an enhancement of dataflow processing, where each
edge becomes a FIFO queue and the execution becomes demand-driven, where the data-
set is not predefined to the system. This programming model is very suited for multime-
dia processing, as shown by Repplinger et al. [RS11], who present a distributed system
on top of a multimedia middleware which uses GPU resources implicitly to apply filters
to a stream. StreamIt [TKA02] is a stream processing language that was initially created
for multi-core architectures and more recently adapted to multi-GPU execution using
CUDA [Huy+12; Hag+11]. This adaptation partitions the graph for a coarse-grained par-
allelism while satisfying the memory constraints of the devices and minimizing the inter-
device communication. Dubach et al. [Dub+12] present Lime, a programming language
compatible with Java, which targets general purpose processors, FGPAs and GPUs. The
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connect operator (=>) enables stream processing of an arbitrary number of filters. Fil-
ters are automatically optimized, where the compiler attempts to find kernel-level data-
parallelism. As GPU has several types of memory, the memory assignments in Java suffer
a transformation where the compiler identifies several types of memory and maps them
to the GPU memory hierarchy (e.g. private arrays will be assigned to fast, private mem-
ory). Lime does not support multi-GPU execution, however, it is a cornerstone of stream
processing, as such, we felt that it should be present in this overview.

2.4.3 Critical Analysis of Algorithmic Skeletons for GPGPU

Skeleton libraries are relevant for the multi-GPU context as they enable the programmer
to acquire predefined, parameterizable structures using a familiar language. These struc-
tures have the same degree as expressiveness as Lime’s connect (=>) operator, without the
need to learn a new language and its quirks, by enabling the submission of user-defined
operations and data-sets.

Although the benefits of algorithmic skeleton libraries are evident, the multi-GPU li-
braries available are all still under active development, as it is a novel research topic. The
computations offered to the programmers are severely limited in all systems, only offer-
ing data-parallel skeletons. SkelCL enables a very accessible approach for GPGPU, due to
its Vector concept and well-defined Skeletons, at the expense of very limited programmer
adaptability of the underlying system. The multi-GPU support is not suitable for hetero-
geneous devices, as the data-set partitions are blindly set, lacking an auto-tuning com-
ponent. SkePU defines a programmer interface using a strict number of macros, which
limit the number of arguments the programmer can pass to a skeleton. Multi-GPU exe-
cution, is able to support heterogeneous devices efficiently as it takes advantage StarPU
(detailed in Section 2.6.2), which uses several variations of work-stealing techniques.

2.5 Auto-Tuning

Auto-tuning [EAH77] is the automated optimization of parameters which influence per-
formance. In the multi-GPU context, auto-tuning is an important component because of
the wide variety of GPU architectures and the compatibility between them. Multi-GPU
systems can easily integrate heterogeneous devices on the same system, which inherently
brings imbalanced work distributions when no tuning is taken into account. There are
two main approaches for GPU tuning: 1) benchmarking, relying heavily on empirical
data and 2) mathematical performance models, that rely on describing the architecture
using equations and use minimal empirical data.

Benchmarking is the most common procedure to obtain empirical performance in-
formation of the target devices. If the target architecture is known, the assessment of
the GPU hardware specifications narrows the sensible parameter range to benchmark.
As multiple factors can affect performance and due to a degree of uncertainty on how
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each hardware architecture will behave, auto-tuning systems using benchmarks, typi-
cally have two development stages.

Initially the manual tuning of a specific algorithm is used to survey the possible per-
formance gains. The survey involves running a relevant set of execution configurations
and manually identifying the best. Volkov and Demmel [VD08] present the optimiza-
tion of several dense linear algebra factorizations such as LU, QR and Cholesky using
this methodology. The GPU computations, implemented in CUDA, were developed
taking into very close account the specifications of the target NVIDIA GPU hardware.
This approach reports a 80–90% improvement of the peak FLOPs in large data-sets. Gu
et al. [GLS10] present a CUDA multi-GPU 2D/3D FFT implementation using empirical
tuning. The development, like in the previous example, very close attention to the target
hardware’s specifications, such as shared memory size within a work-group and coa-
lesced memory access. Additionally, fine-tuning the amount of concurrent kernels is an
important exercise, to avoid too many accesses to slow, global memory, while attempting
to fit all the relevant work-set inside the shared work-group memory. The work is com-
pared with NVIDIA’s FFT implementation, CUFFT. The reported results show a ×2.8
speedup in 2D FFT calculations and a ×22.7 in 3D calculations relative to CUFFT.

The second development stage is the generalization to an automated system, which
adapts the workloads while taking into account the devices capabilities. The Rodinia [Che+09;
Che+10] benchmark suite targets multi-core CPUs and GPUs alike, using a wide range
of algorithms with distinct data access patterns. This suite focuses in evaluating the im-
pact of subtle architectural decisions made on hardware development by allowing each
benchmark to have multiple implementations. Danalis et al. [Dan+10] created the SHOC
Benchmark suite that provides predefined benchmarks to evaluate raw device capabili-
ties and quantify the performance of real-world applications, using several popular al-
gorithms such as Fast Fourier Transformation, Reduction and Scan. SkePU, presented in
Section 2.4, uses a component that runs micro-benchmarks at installation-time, to deter-
mine a set of default values posteriorly used to create workload configurations for later
executions.

Another approach to auto-tuning is the prediction of the device’s performance, using
mathematical models. It uses a minimal amount of benchmark information, to predict an
approximate performance value of a device with a certain data-set size. The aforemen-
tioned works do not use this approach as they do not try to create a mathematical model
which describes the relations between components and their impact, instead, they tend
to focus mainly on the GPU’s raw performance. Schaa and Kaeli [SK09] present a math-
ematical model which takes into account several variables such as: transfers speeds be-
tween CPU and GPU, RAM access speed, disk throughput and times spend on CPU and
GPU executions. CPU and GPU execution times are inducted by extrapolating the time
spent on a single item to the size of the data-set. The presented prediction framework
shows an 11% average deviation from real performance values. Zhong et al. [ZRL12] de-
veloped a hybrid performance model for both CPUs and multi-GPU systems integrated
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with data-set partitioning. This formulation is more relaxed as the functions do take into
account more empirical information to modulate the performance functions. The perfor-
mance model is used to assign adequate workloads to both CPU and GPUs by taking
into account their performance, the problem size and communication overhead (while
taking into account communication and computation overlap). The overlap results show
a 30% improvement in operation speed (measured in GFLOPs) using a single NVIDIA
GTX 680.

Auto-tuning is closely coupled to static scheduling, detailed in the next section, by
providing a device-aware work distribution. It can also be used with dynamic schedule, by
helping the runtime algorithm to decide how much work can a device handle and thus
enable it to distribute adequate amounts of work to each processor, lowering the overall
execution time.

2.6 Work-load Distribution for Multi-GPUs

2.6.1 Static Scheduling

Static scheduling [CK88] deterministically schedules tasks over a completely known ar-
chitecture. This scheduling type is mainly applied on purely data-parallel programming
models where the framework has complete knowledge of the data-set and the compu-
tations that will be executed. SNMG frameworks tend to take advantage of this type of
scheduling as the architecture is known. Together with auto-tuning, static scheduling
becomes capable of assigning tasks to the devices with the most adequate capabilities. If
the auto-tuning adapts the scheduling over time with empirical data, the scheduling is
called adaptive static scheduling. Maestro [SMV10] uses this adaptive scheduling and will
be presented in detail below.

SkelCL [SKG12], detailed in Section 2.4, applies a static partitioning strategy without
any kind of tuning, offering only predetermined distributions such as transferring the
whole data-set to a single device, partitioning the data-set equally to all devices and
replicating the data-set to all devices. This is a very simple implementation for strictly
data-parallel executions, though not appropriate for heterogeneous systems.

StreamIt, presented in Subsection 2.4.2 is a streaming language with support for SNMG
architectures. Multi-GPU support resorts to static scheduling with auto-tuning, using
benchmarks in the compiler. The auto-tuning defines a heuristic based on the capabili-
ties of the GPU devices, specifying the number of parallel stream executions, the number
of computing threads within each stream and the number of memory threads used to
prefetch global memory, minimizing the access overhead. The stream graph, represent-
ing a StreamIt computation, is partitioned for coarse-grained parallel execution and each
partition mapped to each GPU with a coarsening-uncoarsening algorithm which mini-
mizes communication among devices.

Qilin [LHK09] is a programming system which allows the programmer to build CPU
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and GPU hybrid applications using a single, architecture independent source-code. It
uses a compiler to convert this code into TBB (Thread Building Blocks) and CUDA, and
automatically map it over the processors. This mapping uses a database which keeps
track of the empirical performance values of every run. When a program is ran for the
first time, a training run is triggered and the data-set is partitioned evenly between the
CPU and the GPU. It is then partitioned further within both to create enough elementary
computation runs to create an average of the duration. Using these averages, Qilin uses a
mathematical model to infer a performance curve which will be used to predict the best
mapping given a different data-set size on the next run.

Maestro

Maestro [SMV10] is a library that eases OpenCL usage and specializes in the automatic
fine-tuning of application. For that purpose, it resorts to static scheduling and auto-
tuning to obtain the best data-set partition for a given environment.

To auto-tune the OpenCL kernel execution, Maestro uses two components: measure-
ments taken during the installation process and runtime profiling information.

The measurements taken during installation, attempt to define the best initial group
size, buffering chunk size and workload partitioning for the current environment. The
SHOC Benchmark Suite [Dan+10] is used to obtain initial performance values of the de-
vices such as peak FLOPs as well as device memory bandwidth and then translate these
values to an initial configuration.

Every time a kernel is run, whether at install-time or at normal runtime, there is a
weighted average associated to each combination of device and kernel which measures the
rate at work is done. This weighted average is used to adapt the workload partitioning
over time with the aim of improving the framework’s overall performance.

Maestro takes advantage of the overlap of communication and computation to opti-
mize the usage of the bus and minimize the data-transfer overhead. The results from the
overlap tend to depend heavily on the algorithm used as well as on the hardware. In the
vector outer product test, it improved the execution time 40% to 60% less time to execute
when using large chunks.

The multi-GPU execution on Maestro shows a load balanced work distribution which
shows an improved speedup between ×1.6 and ×1.8 against its imbalanced counterpart.

2.6.2 Dynamic Scheduling

Dynamic scheduling [CK88] is useful when the system architecture and processor as-
signed to a certain data block is not known before-hand. Scheduling is usually dis-
tributed by the multiple participating processors, which coordinate to acquire actively
work from one another, instead of work being delegated to them by the framework.
Load-balancing is closely related to dynamic scheduling, creating evener workload among
the participating threads, so that their execution finish at the same time. In multi-GPU
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frameworks, dynamic scheduling is adequate for task farms where tasks are dynamically
submitted for computation (i.e. the framework cannot predict when a computation will
be submitted).

The most common policy of load balancing is work-stealing. It is commonly imple-
mented by associating to each processor a task queue of tasks waiting to be executed.
When a processor ends all the work on the respective queue, it will steal work from
another processor’s queue. Cilk [Blu+95] was the first system to incorporate a work-
stealing technique in a runtime scheduler. A task dynamically generated by the applica-
tion, through the spawn construct, is encapsulated in a closure that defines all the infor-
mation needed for a thread to execute the computation. Data dependencies are identi-
fied in a tiered acyclic graph where the lower tier cannot be computed until the relevant
higher-tiered closures have been executed. StarPU (which will be presented in the next
section) shows the several variations of work-stealing for runtime load balancing. Cuda-
Zero [CCZ12] is a compiler which adapts CUDA source-code designed for SNSG into
SNMG architectures. Work-load distribution is performed by a mix of static scheduling
and dynamic scheduling among the multiple GPUs. Then each partition is further de-
composed into work-tasks and added to a task pool where a work-stealing mechanism
is used for the dynamic scheduling of the workloads. This compiler can only be applied
to the most common usages of kernels, where the data-set is explicitly defined, because
automated work distribution is not a trivial problem for all kernels.

Cudasa [Str+08] is a programming language that supports MNMG architectures us-
ing CUDA and MPI. It uses a variation of the work-stealing technique to maintain a
global pending-work queue, instead of one per processor. Thus there is no actual work
stealing from other processors, just acquiring new work-sets from the queue concurrently
against others.

Binotto et al. [Bin+11] present a CPU-GPU hybrid framework to solve systems of
equations. This framework provides a load balanced execution using a first-assignment
scheduler and a runtime scheduler which adapts over time using empirical information.
The first-assignment scheduler assigns a task without any empirical performance infor-
mation. It uses a predefined cost function, which is dependent on task costs, as well as a
performance value associated with each processor. The runtime scheduler uses empirical
performance values in a database, collected by a profiling component, which keeps track
of all the execution times. It is possible for the scheduler to reassess all the processor
assignments of tasks waiting to be executed.

Acosta et al. [Aco+10] present a MNMG framework that focuses on a single prob-
lem entitled “Resource Allocation Problem”. The definition of this problem is the load
balanced allocation of an arbitrary number of indivisible data elements to an arbitrary
number of predetermined heterogeneous processors for execution. It uses adaptive auto-
tuning over time to achieve an approximately load balanced solution, starting by divid-
ing the work equally to all processors and on the successive iterations adapt the amount
of work proportional to the previous execution performance.
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StarPU

StarPU [Aug+09] is a library that offers a unified interface with implicit parallel execu-
tion in several architectures such as multi-core processors, OpenCL devices and NVIDIA
GPUs (using CUDA) as well as clusters of these (using MPI) by abstracting heteroge-
neous details. It offers primitives to define task dependencies, priorities and weights
using a task graph. Dynamic scheduling with heterogeneous devices are also supported
as well as automated data transfers in the cluster context for implicit data availability.

The primary data structure is the codelet. This structure describes the computational
kernel that can possibly be implemented in one or more architectures.

A task is a wrapper for the codelet which describes the data-set it uses and how it is
reached during computation (read and/or write). Priorities and weights are also option-
ally defined in the task data structure.

A performance model in StarPU is a structure which contains values that describe the
potential performance of the current computational environment [ATN09]. It is possible
to define a performance model in StarPU in several ways: providing performance values
manually, running benchmarks present in StarPU before-hand, using runtime execution
values or by adapting the scheduling dynamically during the execution. It is also possible
to use a combination of the previous methods, for example, defining initial performance
values using benchmark values, and then use runtime execution values as a feedback-
loop to provide fine-tuning to the performance model.

The performance models are used by the scheduling algorithms to determine the
workloads by determining dynamically the workloads of each device hence load balance
the system. These scheduling algorithms can be implemented using push/pop constructs.
The predefined schedulers provided by StarPU are:

• eager: uses a single task queue from where each worker takes tasks;

• prio: uses also a single task queue but orders the tasks by priority;

• random: each device/processor is assigned an acceleration factor that describes the
respective computational potential. Every time a task is submitted for execution, a
worker is picked with a probability proportional to its factor;

• ws (work-stealing): schedules tasks to workers. When a worker finishes its work, it
steals tasks from the worker with most tasks left;

• dm (dequeue model): uses tasks performance models to supply an estimated task
duration, and schedules tasks to processors by minimizing the total estimated du-
ration;

• dmda: dequeue model which takes into account data transfer duration;
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• heft (heterogeneous earliest finish time): uses work volume estimations supplied
by the user in the task graph, as well as task duration estimations from the perfor-
mance models to minimize the estimated execution time.

Heft and dmda allow the prefetching of the data-set associated with each task to its
processor (i.e. uploading the data-set to GPU before computation is triggered), as the task
scheduling is defined early in the execution, and there is not a work-stealing mechanism.

The StarPU architecture decouples the scheduling algorithms and tasks from the types
of workers. This decoupling enables the support of new architectures by simply imple-
menting a new device driver. Adhering to this driver interface guarantees the interoper-
ability with StarPU.

2.7 Final Remarks

Clearly, the multi-GPU support in a SNMG architecture is still premature from libraries,
specially algorithmic skeleton ones. These present significant limitations, whether in the
possible computations available, which are mainly data-parallel, or in their usage of auto-
tuning and workload scheduling techniques.

As our work requires auto-tuning and workload scheduling in a multi-GPU context,
an overview of their state of the art was presented, illustrating their tendencies. The
auto-tuning techniques are dominated by benchmark-based performance profiling, while
static scheduling tends to take advantage of the auto-tuning component to adapt the sizes
of each data partition assigned to each GPU, and dynamic scheduling tends to use auto-
tuning to improve the performance of work-stealing techniques, by defining priorities
assigned to each GPU based on their computational capability.
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Marrow

Marrow [Mar12] is a C++ Skeleton library tailored for the construction of complex GPU
computations by orchestrating the structure and execution of OpenCL kernels. Skeleton
nesting is used to achieve complex GPU computations, by structuring multiple algorith-
mic skeletons, while abstracting their execution from the programmer. Current algorith-
mic skeleton frameworks for GPGPU, focus on data partitioning and distribution, while
Marrow focuses in communication and computation orchestration. This focus shift en-
ables the introduction of completely new skeletons, such as Stream, Loop and Pipeline,
besides the more common Map (and variants). These new skeletons are important as
they enable transparent GPU optimizations to commonly used structures.

3.1 Architecture

Marrow’s architecture, shown in Figure 3.1, comprises four main layers: User C++ Appli-
cations, Skeleton Library, Runtime and OpenCL-Enabled Device. The layers has a downward
dependency, being that each layer only has vision of itself and the one beneath. The User

Application layer represents the programs which take advantage of Marrow and only the
Skeleton library is exposed to it, for the creation of computation trees as well as triggering
their execution. The OpenCL-enabled Devices represents the GPU device which Marrow
uses.

Skeleton Library This layer provides the applications the constructions required to cre-
ate a complex, skeleton-based, computations, such as the Skeleton implementations. It
comprises the skeleton implementations that will be detailed in Section 3.4, the Kernel-

Wrapper as well as the Kernel Data-Types. The KernelWrapper is used to wrap an OpenCL
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Figure 3.1: Marrow’s architecture (taken from [Mar12]).

computation (kernel), providing a usable interface by all the skeletons, as it is the com-
putation unit to which these apply their execution behaviors to. The kernel data-types
are components used by Marrow to define the OpenCL kernel arguments within the Ker-

nelWrapper, by detailing their order, type and size, as well as enabling the transparent
allocation of the memory required by the computation.

Buffer represents a contiguous memory region.

Image2D offers two dimensional space indexing, commonly representing an image, which
instead of being stored in global GPU memory, is stored in texture memory.

Singleton is a single-element data-type whose value is defined when an execution is
requested.

FinalData is constant single-element data-type, defined when the KernelWrapper is being
defined.

LocalData preallocates a memory region in local GPU memory, which is guaranteed to
be available when a computation is requested.

Runtime This layer is used to obtain the resources required for execution on the GPU
devices, such as GPU memory and command queues, using the ExecutionPlatform for
example.

This layer’s purpose is to simplify many complex and verbose operations which
OpenCL entails. It provides the upper layer the resources required for OpenCL com-
putation using the aforementioned ExecutionPlatform, the OpenCL kernel compilation
(using the KernelBuilder), as well as error detection and handling, by translating them to
C++ exceptions (OpenCLErrorParser and Exceptions).
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3.2 Execution Model
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Figure 3.2: Marrow’s execution model (taken from [Mar12]).

The execution model used by Marrow, shown in Figure 3.2, is similar to the one pre-
sented in Skandium [LP10] where the Future concept is used to represent the compu-
tations that might not have yet finished. When a skeleton execution is requested (with
the input data defined, shown in step 1), a Future object is created (step 2) and data is
sent to the GPU device for execution (omitted). The reference to the Future is returned
to the application thread (step 3). Its interface offers the programmer the possibility to
block the execution of the invoking thread until the result is ready (step 4), or just use a
non-blocking query of its state to attest the latter’s availability (omitted). The execution
is then triggered on the OpenCL device (step 5), and when all the enqueued transfers
and computations finish, the output data is read to host memory (step 6) and the Future

object is subsequently notified (step 7). As a result, any application thread blocked on the
Future object will be woken up (step 8).

3.3 Skeleton Nesting

Skeleton nesting enables the combination of multiple skeletons as well as computation
kernels by defining a computation tree, depicted in Figure 3.3 and Figure 3.4, where the
Kernel is actually an instance of a KernelWrapper. The delegation of such tree to the library
greatly empowers it to orchestrate the graph execution, as each skeleton introduces new
behaviors to its sub-tree. As such degree of responsibility is assigned to the library, the
programmer is given the illusion that all skeletons within the computation tree are being
executed at the same time, although this is normally not true, due to data-set dependen-
cies and hardware limitations.

3.4 Supported Skeletons

The skeletons currently provided by the Marrow framework are: Pipeline, Loop, For,
Stream and MapReduce.
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Stream

Pipeline

Loop

Kernel Kernel

Figure 3.3: A computation in Marrow.
Rectangle skeletons can be nested while
others cannot.

Stream

Kernel

Kernel

Pipeline

Loop

Figure 3.4: An example of a computa-
tion tree in Marrow.

Pipeline This skeleton, represented in Figure 3.5, defines a sequence of data-dependent
stages of computation. Each stage can be executed in parallel in resemblance to an assem-
bly line. Memory is retained in the device between execution stages in the pipeline, thus
eliminating the transfers to host memory on intermediate results. Although only sup-
porting two steps per skeleton instance, for simplicity sake, the Pipeline can be nested,
thus enabling the creation of N-staged pipelines.
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Figure 3.5: N-staged pipeline (taken from [Mar12]).

Loop The loop skeleton, depicted in Figure 3.6, applies the same computation tree iter-
atively according to a condition affected by predetermined information, such as a for loop
statement, or from intermediate results (computed by the preceding iteration), akin to a
while loop statement. This dependency is expressed by the step function, which updates
the condition’s value for each iteration, using the previous iteration’s output, or not. It is
possible to execute several loops in parallel within a device using distinct data-sets (using
a Stream skeleton detailed ahead). The For skeleton is a specific case of Loop. The same
computation is applied over the data-set a specified number of times, by predefining the
condition and step function. Nesting is supported in both Loop and For skeletons.

Stream This skeleton, shown in Figure 3.7, gives the illusion of computation persistence
over distinct work submissions, by introducing computation parallelism among them.
This parallelism is obtained by taking advantage of the communication and computation
overlap optimization. Stream is the only skeleton to introduce these optimizations, as
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Figure 3.6: The Loop skeleton (taken from [Mar12]).

the use of skeleton nesting allows such behavior to be inherited by the nested computa-
tion subtree. Although these optimizations are transparent to the programmer, Marrow’s
API allows its configuration, to control the degree of parallelism possible by defining the
number of instances of the computational tree that may execute in parallel. This configu-
ration affects the effectiveness of the communication and computation overlap as well as
the amount of device memory required as more data-sets are stored simultaneously on
the device. As it requires full control over the input and output, this skeleton can only be
used a root node of the computation tree.
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Figure 3.7: The Stream skeleton (taken from [Mar12]).

MapReduce The map-reduce skeleton, depicted in Figure 3.8, has similar semantics to
SkePU’s. Using user-defined functions for the split and merge operations, the data-set
is decomposed and computed over several executions of the computation tree. The re-
duction step can be defined in two ways: with an OpenCL kernels and a CPU function,
where the OpenCL kernel reduces the result partially within its assigned decomposi-
tion, and the CPU function further reduces to a final value, or simply define a single
CPU function which reduces the whole data-set. In Marrow, its implementation is some-
what standalone, as it requires full control over the data-sets, thus not nestable. Differing
from SkePU, Marrow’s MapReduce decomposes the input data-set in partitions which
are submitted over time to an internal Stream skeleton, enabling the communication and
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computation overlap transparently.
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Figure 3.8: MapReduce skeleton (taken from [Mar12]).

3.5 Programming Example

This section showcases the use of the Marrow library, applying it in the programming
of the simple Saxpy example, presented in Listing 3.1. Saxpy is a BLAS routine that
multiplies a scalar to a Matrix and then sums the result with another matrix (y[i] = αx[i]+

y[i]). This routine is completely data-parallel as none of the operations requires more than
the value to be calculated in both matrices (at the same index) as well as the scalar value
itself.

Creating Marrow computations is split in two main stages: creation of the compu-
tation tree (lines 2–14) and execution requests (lines 16–28). In the first stage we start
by describing the OpenCL kernel arguments (lines 15–14), followed by the creation of
the KernelWrapper, to prepares the OpenCL computation for execution (line 11) and its
nesting on the Stream (line 14). The use of the Stream enables the communication and
computation overlap of a number of partitions (divisions) using a number of concurrent
buffers (numBuffers). The second stage comprises two loops, one to decompose the data-
set, creating the desired number of partitions, and the emission of the subsequent execu-
tion requests (lines 16–24). A second loop is used to wait for the results of all partitions
to be available (shown in lines 26–28).

34



3. MARROW 3.5. Programming Example

Listing 3.1: Saxpy in Marrow
1 // Stage 1: Computation tree initialization
2 // Define the work -size
3 unsigned int workSize = numberElems/divisions;
4 std::vector <unsigned int > globalWorkSize (1);
5 globalWorkSize [0] = workSize;
6 // Define the input arguments of the computation
7 std::vector <std::shared_ptr <IWorkData >> inDataInfo (3);
8 inDataInfo [0] = std::shared_ptr <IWorkData > (new BufferData <float >( workSize ));
9 inDataInfo [1] = std::shared_ptr <IWorkData > (new BufferData <float >( workSize ));

10 inDataInfo [2] = std::shared_ptr <IWorkData > (new FinalData <float >(alpha ));
11 // Define the output arguments of the computation
12 std::vector <std::shared_ptr <IWorkData >> outDataInfo (1);
13 outDataInfo [0] = std::shared_ptr <IWorkData > (new BufferData <float >( workSize ));
14 // Create the computation wrapper (leaf of the tree)
15 std::unique_ptr <IExecutable > kernel (new KernelWrapper(kernelFile , "saxpy",
16 inDataInfo , outDataInfo ,
17 globalWorkSize ));
18 // Create the root of the tree
19 Stream *s = new Stream(kernel , divisions , numBuffers );
20 // Stage 2: Execution Requests
21 IFuture ** futures = (IFuture **) new Future *[ divisions ];
22 // Create and submit each decomposition for execution
23 for(unsigned int i = 0; i < divisions; i++) {
24 std::vector <void *> inputValues (2);
25 std::vector <void *> outputValues (1);
26 inputValues [0] = &inValues1[i*numberElems/divisions ];
27 inputValues [1] = &inValues2[i*numberElems/divisions ];
28 outputValues [0] = &outValues[i*numberElems/divisions ];
29

30 futures[i] = s->write(inputValues , outputValues );
31 }
32 // Wait for all decomposition to finish computation
33 for(unsigned int i = 0; i < divisions; i++) {
34 futures[i]->wait ();
35 }
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4
Multi-GPU Support

This work’s main focus is the multi-GPU extension of Marrow, within a single system to
provide an increased scalability and performance potential. Additionally, the heterogene-
ity of the GPUs is also considered for an adaptive decomposition of the computations.
Reaching this goal uncovered several challenges in Marrow’s execution platform, such
as performance-aware domain decomposition as well as in the operations offered to the
programmer, where a trade-off between simplicity and expressiveness must be consid-
ered, to maintain usability. The former stems from the need to decompose and distribute
the computation tree among the multiple devices with differing capabilities, while the
latter stems from the need to provide a usable programming model to the programmer,
while enabling the parametrization the platform’s behavior for multi-GPU execution.

In the next section a general overview of the multi-GPU support is presented, as well
as its overall architecture.

4.1 General Overview

The Marrow usage has evolved from the previous single-GPU version, by further ab-
stracting steps which parallel execution entails, such as the data-set decomposition and
their explicit submission for execution. This abstraction shifts the focus of the program-
mer slightly, becoming more centered on the configuration of the computation tree for
implicit parallel execution, by defining data-set decomposition (and distribution) restric-
tions within each OpenCL computation.

The data-set decomposition within Marrow transparently creates static partitions of
the data-set, taking into account the individual performance of the GPU(s) it is being
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created for. These take advantage of benchmark values of each device, gathered at in-
stallation time. As the decompositions are hand-tailored for each device, there is no
dynamic scheduling such as work-stealing, as each decomposition should be executed
by its designated GPU for efficient execution. To take advantage of the decompositions,
the computation tree is replicated, enabling their parallel computation, as depicted in
Figure 4.1.

Figure 4.1: Computation tree replication for decompositions.

To increase the platform’s flexibility, several new features where added to the defini-
tion of kernel arguments to express restrictions over the decompositions, such as defin-
ing whether a memory region can be decomposed (and how it must be decomposed), or
must be replicated to all devices. Additionally, several argument parameters were added
associate distribution-aware semantics to a computation, such as the decomposition’s be-
ginning element, size, its position (whether it is the first, middle or last partition), among
others. For example, an N-Body simulation, using a direct-sum algorithm (one of our
case-studies), requires that the whole data-set be replicated to all GPUs, as all elements
are compared to all others. Additionally, for this case-study to work correctly, each de-
composition execution has to know where is the beginning of its assigned computation,
as well as its size. This allows the programmer to create more complex OpenCL com-
putations, somewhat bypassing the limitations introduced by the opaque nature of the
data-set decomposition.

Marrow’s execution model remains request-driven, where the execution requests are
submitted to the root of the computation tree, although, in multi-GPU Marrow, all skele-
tons support parallel requests over-time, akin to the Stream skeleton present in the single-
GPU Marrow, with the help of the improved runtime platform. This platform contains
the main components which enable the multi-GPU execution, such as the Scheduler, Auto-

Tuner and the TaskLauncher. The cooperation between the Scheduler and TaskLauncher

now enables the communication and computation overlap optimization previously of-
fered by the Stream skeleton. This overlap’s performance depends on the number of
decompositions within each GPU, as these are submitted in parallel for transfer. When
orchestrated correctly, this increases the usage rate of the PCIe bus, while enabling the
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4. MULTI-GPU SUPPORT 4.1. General Overview

parallel execution of computations when their (smaller) decompositions become avail-
able on the device. Therefore we define overlap degree as the number of decompositions
that are computed within each GPU device.

The set of supported skeletons has changed slightly, as the Stream skeleton has been
currently swapped by a Map skeleton, because of the aforementioned universal support
for data-set submissions over-time. Skeleton nesting remains a cornerstone in Marrow,
enabling the creation of complex computation structures. Multi-GPU support for nesting
is, however, non-trivial as the computation tree needs to be configured, in regards to
several parameters, such as the desired number of GPU devices to use, as well as the
number of overlapping decompositions within each. The programmer can opt to omit
these values, which allows the platform to use all the GPU devices present within the
system, and use a default value for the overlap partitions.

4.1.1 Architecture

ExecutionPlatform

KernelBuilder Scheduler

Task Launcher

User Applications

Auto-Tuner

MapReduce

PartitionInfo

Task

Map

Loop Pipeline

KernelWrapper

Kernel Data-Types

Exceptions

VectorFor

Skeleton Library

Runtime

OpenCL Devices

Containers

Figure 4.2: Architecture of Multi-GPU Marrow.

The multi-GPU Marrow architecture, depicted in Figure 4.2, follows an overall struc-
ture similar to its single-GPU predecessor, with a Library layer, containing the only com-
ponents directly accessible by the programmer (detailed in Section 4.3). These enable
the creation of computation trees, for complex computations using skeleton nesting. The
Runtime layer (detailed in Section 4.4) contains the components which are used to inter-
act with the OpenCL platform. Additionally, this layer manages the executions of com-
putation trees, providing transparent communication and computation overlap, domain
decomposition as well as resource management (i.e. command queues, memory locations
among others). The highlighted components in the figure are introduced by this work,
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although all components have suffered changes for multi-GPU support. Among these,
the Scheduler, TaskLauncher and Auto-tuner comprise the persistent runtime platform.
This platform is initialized statically when a multi-GPU Marrow program is executed,
and persists until all algorithmic skeletons are de-allocated. Exceptionally, these compo-
nents require access to the Skeleton Library, as these work under a paradigm similar to
client-server, where the computation trees require the persistent platform for configura-
tion (e.g. acquiring data-set decompositions), while the platform requires access to the
computation tree, to orchestrate transfers and executions.

An example is presented in the next section, to enlighten the most significant changes
from a programmer’s point-of-view when using multi-GPU Marrow.

4.2 Programming Example of Multi-GPU Marrow

Using multi-GPU Marrow, the Saxpy example is revisited (in Listing 4.2), which applies
a matrix-wise operation y[i] = αx[i] + y[i] with α as a scalar value. This is a data-parallel
case study, given that each element only requires values in the same index of the input
matrices. The programming model remains largely the same with two main stages: com-
putation tree initialization and execution request.

Listing 4.1: Buffer default decomposition.

1 inDataInfo [0] = std::shared_ptr <IWorkData > (new BufferData <float >( numberElems

2 IWorkData :: PARTITIONABLE , 1));

The type of decomposition required by Saxpy (element-wise data-parallel) is expressed
by the default Buffer constructor, not requiring explicit definition of decomposition re-
strictions Buffer objects of Listing 4.2 (lines 4–9). The default constructor is equivalent to
the one shown in Listing 4.1, where it becomes explicitly defines that it can be decom-
posed, and that each OpenCL work-item (processing core) only requires a single element
of this Buffer argument. The definition of decomposition restrictions are further detailed
in Subsection 4.3.4. A KernelWrapper is then initialized, wrapping the actual computa-
tion with the same syntax as the single-GPU Marrow (line 10–12). Subsequently, a Map

is used (line 13), which simply applies the nested computation to the multi-GPU plat-
form, as Saxpy does not require additional behaviors. The computation tree is now ready
to start receiving execution requests, starting the second stage of a Marrow computation.
This stage has been simplified by taking advantage of the implicit data decomposition, as
well as the abstraction of memory operations over the data-sets, using a Vector concept
(lines 15–22). Once these are created, they are submitted for execution to the skeleton
(line 23), akin to single-GPU Marrow, subsequently waiting for the results (line 24).
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Listing 4.2: Saxpy in multi-GPU Marrow.
1 // Stage 1: Computation tree configuration
2 // Define the work size
3 std::vector <unsigned int > globalWorkSize (1);
4 globalWorkSize [0] = numberElems;
5 // Define the input arguments of the computation
6 std::vector <std::shared_ptr <IWorkData >> inputDataInfo (3);
7 inDataInfo [0] = std::shared_ptr <IWorkData > (new BufferData <float >( numberElems ));
8 inDataInfo [1] = std::shared_ptr <IWorkData > (new BufferData <float >( numberElems ));
9 inDataInfo [2] = std::shared_ptr <IWorkData > (new FinalData <float >(alpha ));

10 std::vector <std::shared_ptr <IWorkData >> outputDataInfo (1);
11 // Define the output arguments of the computation
12 outDataInfo [0] = std::shared_ptr <IWorkData >(new BufferData <float >( numberElems ));
13 // Create the computation wrapper (leaf of the tree)
14 std::unique_ptr <IExecutable > kernel (new KernelWrapper(kernelFile , "saxpy",
15 inDataInfo , outDataInfo ,
16 globalWorkSize ));
17 // Create the root skeleton fo the computation tree
18 map = new Map(kernel , numDevices , numBuffers );
19 // Stage 2: Execution request
20 // Create the containers with the input data -set
21 std::vector <std::shared_ptr <Vector >> inputData (2);
22 inputData [0] = std::shared_ptr <Vector > (new Vector(inputValues1 , sizeof(float),
23 numberElems ));
24 inputData [1] = std::shared_ptr <Vector > (new Vector(inputValues2 , sizeof(float),
25 numberElems ));
26 // Create the containers with the output data -set
27 std::vector <std::shared_ptr <Vector >> outputData (1);
28 outputData [0] = std::shared_ptr <Vector > (new Vector(outputValues , sizeof(float),
29 numberElems ));
30 // Submit an execution request to the root of the computation tree
31 future = map ->write(inputData , outputData );
32 // Wait for the results
33 future ->wait ();

4.3 Skeleton Library

The main changes to the Skeleton Library layer are closely related to domain decomposi-
tion. In single-GPU Marrow, this had to be explicitly defined, whereas now, it is mostly
transparent to the programmer, with the exception of the definition of decomposition
restrictions, if the computation so requires.

The automated decomposition introduced a need to simplify memory access within
Marrow, and for the skeleton interfaces that can be extended by the programmer, such
as the Loop skeleton’s termination condition. To satisfy this need, a Vector concept was
introduced to define a contiguous region of memory, which is submitted for computation.
It abstracts memory operations over the data-sets, such as decomposition, as well as keep
track of the synchronization needs with their counterparts in the GPU devices.

The multi-GPU adaptation not only required the adaptation of each skeleton’s behav-
ior to support data decomposition, but also had an impact on the actual definitions of the
skeletons’ usage and skeleton nesting have been modified.
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4.3.1 Skeleton Interface

The ISkeleton interface, presented in Listing 4.3, is definition of an algorithmic skele-
ton. Its functions are used when the computation is launched at the root of the com-
putation tree, assuming full control over the computation. Previously, in single-GPU
Marrow, launching a skeleton computation was done by simply calling a single function
executeSkel, which was in charge of data-transfers as well as launching the actual skele-
ton - operation that requires full control over the data-sets. Accordingly, each skeleton
by itself could only execute sequentially, and was normally nested within a Stream skele-
ton. By becoming a nested skeleton instead of a root skeleton, the interface becomes the
IExecutable, therefore delegating control to the Stream skeleton.

The development of multi-GPU marrow has entailed some modifications of the ISkele-

ton interface, with the purpose of handing more control to the execution platform. To
the preexisting executeSkel function (line 2), several new functions were introduced:
uploadInputData (line 12), downloadOutputData (line 20) and finishExecution (line 28).
The executeSkel function triggers the execution of the computation tree over the sub-
trees (instances of IExecutables as detailed in the next Subsection). This function assumes
that all the input data is available at the target GPU devices, an operation performed by
uploadInputData function. The downloadOutputData function is called download the out-
put data from the GPUs to make it available to the host. The finishExecution function is
used to apply an additional computation step, before the Future is notified of the compu-
tation’s conclusion. The most obvious example of the usage of this feature is the reduce
step in MapReduce.

4.3.2 Executable Interface

The IExecutable interface, depicted in Listing 4.4, provides an uniform interface for nestable
entities, both nestable skeletons and KernelWrappers. The first three functions, initExecutable
(line 2), reconfigureExecutable (line 4), and clearConfiguration (line 6) are related to
the way Marrow operates when preparing the resources required for execution, being
the last two are new to multi-GPU Marrow. The runtime platform is initialized statically,
using the available number of devices, and a default number of overlapping partitions
per device. Upon initialization skeletons make use of this information to preallocate nec-
essary memory on the GPU devices. When the programmer initializes the root of the
computation tree, he can define the number of devices and overlapping partitions. When
this configuration differs from the default, it requires a computation tree reconfigura-
tion, to adhere to the new configuration. This implies the destruction of the previously
reserved GPU memory and the re-allocation according to the new configuration.

Lastly, the execute function (line 8), applies the behavior of the current computation
node (which can be a skeleton or not) to the GPU memory locations passed as arguments,
while taking into account which partitions these belong to.
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Listing 4.3: The ISkeleton interface.
1 class ISkeleton {
2 virtual void executeSkel(const cl_command_queue &executionQueue ,
3 const unsigned int deviceIndex ,
4 const unsigned int uniqueId ,
5 const unsigned int partitionIndex ,
6 const unsigned int overlapPartition ,
7 std::vector <std::shared_ptr <Vector >> &inputData ,
8 std::vector <std::shared_ptr <Vector >> &outputData ,
9 std::vector <cl_mem > &inputMem ,

10 std::vector <cl_mem > &outputMem) = 0;
11

12 virtual void uploadInputData(const cl_command_queue &executionQueue ,
13 const unsigned int deviceIndex ,
14 const unsigned int uniqueId ,
15 const unsigned int partitionIndex ,
16 const unsigned int overlapPartition ,
17 std::vector <std::shared_ptr <Vector >> &inputData ,
18 std::vector <cl_mem > &inputMem) = 0;
19

20 virtual void downloadOutputData(const cl_command_queue &executionQueue ,
21 const unsigned int deviceIndex ,
22 const unsigned int uniqueId ,
23 const unsigned int partitionIndex ,
24 const unsigned int overlapPartition ,
25 std::vector <std::shared_ptr <Vector >> &outputData ,
26 std::vector <cl_mem > &outputMem) = 0;
27

28 virtual void finishExecution(const unsigned int uniqueId ,
29 std::vector <std::shared_ptr <Vector >> &outputData) = 0;
30 };

4.3.3 Skeletons

The list of supported skeletons remains mostly the same except with the removal of the
Stream skeleton and the inclusion of the Map skeleton. Nonetheless, the remainder had
to be modified in regards to their support to multiple GPUs. The overlap of communi-
cation and computation was previously provided using execution requests over-time to
the Stream skeleton, yet the new runtime platform already subsumes this overlap trans-
parently. As a result, the Stream was excluded from multi-GPU Marrow. The upgraded
runtime platform is detailed in Section 4.4.

Map enables the programmer to use multi-GPU Marrow, simply applying a computa-
tion tree without introducing new behavior. This is useful when the programmer only
requires the execution of single OpenCL computation (KernelWrapper), as it is not con-
sidered a skeleton and may not be submitted for computation in a standalone fashion.
This skeleton cannot be nested because it requires control over the data-set for device
transfers.
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Listing 4.4: The IExecutable interface.
1 class IExecutable {
2 virtual void initExecutable () = 0;
3

4 virtual void clearConfiguration () = 0;
5

6 virtual void reconfigureExecutable () = 0;
7

8 virtual cl_event execute(cl_command_queue executionQueue ,
9 unsigned int deviceIndex ,

10 unsigned int uniqueId ,
11 unsigned int partitionIndex ,
12 unsigned int overlapPartition ,
13 std::vector <cl_mem > &inputData ,
14 std::vector <void*> &singletonInputValues ,
15 std::vector <cl_mem > &outputData ,
16 cl_event waitEvent ,
17 std::vector <std::shared_ptr <Vector >> &resultMem) = 0;
18 };

GPU #1

Map

Input Output

ExecuteUpload Download

GPU #N

ExecuteUpload Download

...

Figure 4.3: The Map skeleton with implicit decomposition.

MapReduce maintains its functionality, as shown in Figure 4.4. Its internal adaptation
now takes advantage of the new Map skeleton, instead of a Stream. Additionally the data-
set partitioning is now done implicitly instead of using a programmer-defined function.

Pipeline is now adapted to the new platform, supporting data-set partitions, depicted
in Figure 4.5. This support entails the internal allocation of the intermediary GPU mem-
ory used between stage one and two, thus avoiding the redundant allocation of GPU
memory in both stages. This feature entails that each subtree (and thus each computa-
tion) knows if the allocation of the input/output data-sets is required on the GPUs. As
such, redundant communication between stages is avoided, and the memory is already
in-place to be used by the second stage, after the first stage finishes.

Loop with multiple GPUs has introduced issues relating to its flexibility. Within its
single-GPU execution there are already cases where the step function depends on the
previous iteration’s data-set or not (Figure 4.6).
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Figure 4.4: The MapReduce skeleton.
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Figure 4.5: The Pipeline skeleton.

With its multi-GPU generalization, it is necessary to add a new semantic that only
allows the step function to be computed when all other partitions have finished compu-
tation of the current iteration (Figure 4.7). Additionally this synchronization requirement
normally originates from the dependency on the whole data-set for a correct step com-
putation. Therefore, when using this behavior, the step function is only computed once
per iteration by a single-thread which has access to the whole data-set.

Although this behavior could be always applied to all computations, it occurs in a
performance penalty due to its synchronized behavior when it is not needed. Thus it is
also possible to execute these decompositions independently, where each computes its
own step function over their data-set.

Accordingly the step function can be computed according to one of the following
dependencies:

• Requires the full data-set available (only one thread calculates the step);

• Requires only the current decomposition’s data-set. Several parallel step computa-
tion per iteration;

• Does not require any data-set. As the previous mode, several parallel step compu-
tations.

This behavior can either be the default (completely data-parallel without using the
previous iteration’s data-set), or must be defined by the programmer, as it depends inti-
mately on the computation.
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Figure 4.6: The Loop skeleton, with parallel step computation.
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Figure 4.7: The Loop skeleton, with a globally synchronized step computation and condi-
tion.
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KernelWrapper now supports multiple GPU execution, by embedding the information
concerning the decomposition of its domain, as well as their required OpenCL memory
resources.

4.3.4 Definition of Computational Arguments

Marrow uses a set of C++ data-types which translate into various OpenCL data-type
counterparts, that are used to define the computation’s arguments. Currently the follow-
ing data-types are supported:

• Buffer represents a contiguous memory region, with single dimension, defined by
the programmer when creating an execution request;

• Singleton represents a single element, which is defined by the programmer when
creating an execution request;

• Final represents a single element like the Singleton, however, it is defined when the
actual data-type is created, even before the assignment to a KernelWrapper;

• Local reserves a local memory location which is ready when the execution starts.

The Image2D data-type present in single-GPU Marrow, has not been included in
multi-GPU version, as it introduces new challenges and significant complexity when
dealing with data-set decomposition, due to its multi-dimensional access to data. Al-
though none of our case-studies previously used this data-type, it remains an interesting
exercise for future work.

Marrow’s implicit decomposition somewhat limits the freedom the programmer has
when designing a computation tree and its data-set dependencies, in exchange of simplic-
ity. To help overcome this limitation, the Buffer and Final data-types have been improved
with new features.

Final data-type now supports a Trait. This feature informs the execution platform that
it should replace the value of the argument by a certain value regarding the current de-
composition. The supported traits are:

• Default - maintains the default behavior, submitting the original value;

• Offset - replaces the value with index of the decomposition’s start. This value is use-
ful for computations which need to know the global position of the decomposition,
such as a N-Body simulation where the whole data-set is replicated, and each de-
vice only computes a region, partially defined by the offset. This value is obtained
from the first partitioned input argument;
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Figure 4.8: Buffer transfer with Copy mode.
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Figure 4.9: Buffer transfer with Partitionable
mode.

• Size - replaces the value with the size of the decomposition. This value is important
when the computation requires the number of elements of the decomposition, in-
stead of the work-group sizes. Akin to Offset, this value is harvested from the first
partitioned input;

• PartLocation - replaces the value with the location of the decomposition: Top (first),
Middle and Bottom (last). This value is useful for computations which depend on
vertical borders. These are defined using predefined integers within an enumera-
tion.

Buffer data-type has also been improved with two decomposition options: Copy and
Partitionable.

The Partitionable mode, depicted in Figure 4.9 allows the auto-tuner to decompose the
Buffer, accordingly to the computation’s restrictions. The creation of decompositions is
detailed in Section 4.4.

The Copy mode, shown in Figure 4.8 transfers the whole buffer to the GPU devices
without any decomposition at all. Internally, the decompositions are computed, how-
ever these are not used for data-transfer. In conjunction with the previously presented
offset and size options of the Final data-type, it is possible to direct a computation to a
region of the data-set. This decomposition mode is useful for computation which have
a dependency on the whole data-set, but can decompose the region of the data-set to be
computed, such as a n-body simulation. Furthermore there are five variants of the Copy

mode, which can only be used for output arguments. These allow the programmer to
merge each copy (assigned to different decompositions) by either predefined functions
(sum, subtraction, multiplication and division) or a user-defined function. These func-
tions are currently computed sequentially and hence these should be used with care as
they easily bottleneck when used for large data-sets.

The implementation of the predefined functions was a challenge, as many of the data-
types available in OpenCL are composite (e.g. cl_uchar4), and do not support arithmetic
operations by default. Overcoming this implied the usage of C++ templates using a
technique called Substitution failure is not an error [VJ02] (SFINAE), which enables the
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detection of a data-type’s operation support, as shown in Listing 4.5. The base operation-
support detection structure is defined, providing the boolean value with the support of
the data-type for a certain operation (line 17–18). This value is ascertained by defining
two functions with the same name sum_test. The first function (line 11) is only called
if the decltype is valid, in this case the application of the sum operation, returning a
char data-type (one byte). If the first function fails to be called, the second function (line
13) simply returns a data-type with a different size (in this case two bytes), allowing the
support detection using the return data-type size.

Once this is implemented, two template functions are defined for each operation, one
when the value is true for example SumImpl<Type, true>, which applies the arithmetic
operation over the data-set, and the other, SumImpl<Type, false>, which throws an ex-
ception, as there is no support for the operation. The function can simply be called using
the boolean value (shown in Listing 4.6). Ideally, when an operation is not supported,
there should be compilation error, which does happen by default, however, the error
message itself is cryptic, as there are templates involved, and no alternatives were found
to customize this error message. When the programmer defines a custom merging func-
tion, there is no compatibility detection, being his full responsibility.

Listing 4.5: SFINAE example using the sum operator.
1 // Defines two types which differ in size so they can be identified.
2 struct sfinae_base {
3 typedef char no[2];
4 typedef char yes;
5 };
6

7 struct supports_sum : sfinae_base {
8 template <class U>
9 // Define a function which is execution of the type U supports the

10 // sum operation.
11 static auto sum_test(const U* u) -> decltype (*u + *u, char (0));
12 // The function which is executed if the first is not.
13 static typename sfinae_base ::no& sum_test (...);
14 // This value contains the boolean value which informs if the data -type Z
15 // supports the sum operation or not , by comparing the sizes of the
16 // returned data -type.
17 static const bool value = (sizeof(sum_test( (Z *)0) ) !=
18 sizeof(typename sfinae_base ::no));
19 };

Listing 4.6: SFINAE usage.
1 SumImpl <Z, supports_sum ::value >:: merge(v1, v2, numberElements );

4.3.5 Example

To showcase the usefulness of these features, we present the N-Body case-study, which
without these features would be impossible to implement in Marrow.
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The N-Body is a well-known simulation, where there is a set of bodies, and these
affect each other according to a force that varies their velocity. As each body depends
on all others for the velocity evolution, there is a full data-set dependency in-place. To
deal with this dependency the Copy decomposition mode is used, replicating the whole
data-sets to all GPUs that are used.

The introduction of the Copy replication, introduces another challenge, as each GPU
now has to know which region of the whole data-set the computation must be applied
to. To overcome this, we use the Offset final data-type option, which allows us to define
the initial element of the computation. While the OpenCL work-size informs us of the
decomposition’s size, as each work-item is in charge of a single body.

4.4 Runtime

Marrow’s runtime layer is the main target of improvement for the support of multiple
GPU devices. As with the previous iteration of Marrow, communication and computa-
tion overlap is still used to achieve higher performance, although at a higher degree of
overlap, as it is not only used within a single GPU, but among all, which in some cases en-
tails overhead, as it tends to bottleneck the PCIe bus when computations are data-bound,
with a low degree of computation (detailed in Chapter 5). Computations in multi-GPU
Marrow, akin to the single-GPU counterpart, follows two main stages: skeleton initial-
ization and skeleton execution request.

Application Skeleton Scheduler

Auto-Tuner

Init Skeleton (1)

Request Partitions (2)

Set Partitions (5)

Get Partitions (3)

Query Performance Info (4)

Kernel

Kernel

Kernel

Figure 4.10: Initialization of a Marrow skeleton.

Skeleton Initialization Before any computation may take place on the multi-GPU Mar-
row, the programmer must first create the computation tree, and define the execution
configuration (number of GPUs and decompositions) so the platform can configure it-
self, although these can be omitted (using all the available GPUs and a default number
of decompositions). In Figure 4.10, the steps that the skeleton initialization entails are

50



4. MULTI-GPU SUPPORT 4.4. Runtime

presented. When a skeleton is initialized (step 1), in addition to the usual allocation of in-
ternal resources, a request is sent to the Scheduler, containing the list of the nested kernels
(step 2). A data-set decomposition request is then forwarded, per kernel, to the Auto-Tuner

(step 3). The Auto-Tuner then decomposes each kernel’s input and output arguments, tak-
ing into account performance information obtained at installation-time (step 4). There are
two types of decompositions, normal partitions, and overlapping partitions. The former
are created by decomposing the data-sets taking into account the performance of each
GPU device, while the latter are created by further decomposing partitions as to increase
the degree of communication and computation overlap, in an attempt to improve the
PCIe bus’ usage rate. The decomposition information is then saved within each kernel
object (KernelWrapper, step 5).

Figure 4.11: Execution request in Multi-GPU Marrow.

Skeleton Execution Request Once the skeleton initialization finishes, the computation
tree is able to start handling execution requests, as shown in Figure 4.11. This stage starts
when the application requests and execution from the skeleton (step 1), containing the
data-sets used for the computation. A Future object is created (step 2) and its reference is
returned to the application (step 3), granting the application access to the computation’s
state as well as access the output data. The application may then wait for the computation
to finish, or continue progressing until it actually requires the output information.

Meanwhile, the execution request is forwarded to the Scheduler using a Task object
containing the input and output data-sets (step 4). As the decompositions are static, and
assigned to each GPU device, this component submits multiple Task instances (number
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of devices × the number of the overlapping partitions). Each entry is in fact an instance
of a TaskEntry, which contains a pointer to the original Task as well as the index of the
partition as well as the overlapping partition index within the former. Currently the
partition index is the same as the device index, however, when using different scheduling
algorithm this assumption might not hold.

These objects are then submitted to each device’s task queues (step 5), which are
shared with the TaskLauncher. This component contains a pool of threads waiting for
new TaskEntry objects to arrive to the GPU queues, concurrently pulling them from the
queues (step 6). Given a TaskEntry object, its extra information is stripped, and used to
obtain the correct data-set pointers (taking into account the decomposition) and the Task

object is recovered, containing the reference to the root skeleton, which is accessed to
trigger the steps necessary for the computation (step 7), such as the data-set transfers
(uploadInputData/downloadOutputData) and the actual skeleton execution orchestration
(using the executeSkel function). The execution then follows the computation tree struc-
ture, applying the nested skeletons behaviors until reaching the KernelWrapper objects
located at the leaves, which launch the actual OpenCL kernel computations to the GPUs.
The output data is finally downloaded to the host when the whole computation tree has
executed (step 8).

When all decompositions have been computed, the task is considered finished and
the Future is notified (step 9) as well as the application (step 10), awakening it as the
output data is available.

4.4.1 Scheduler

The Scheduler, is the entry point to Marrow’s runtime platform, as execution requests
(Tasks) are initially submitted to this component. Furthermore, it has exclusive access to
the Auto-tuner as the domain decomposition is closely related to the scheduler’s configu-
ration (i.e. number of GPUs to use and number of overlap partitions within each GPU).
A Task is created when a execution request is made to a skeleton, and it contains the state
of the computation (finished or not), as well as a pointer to the root node of the compu-
tation tree. Task submission to the GPU queues is composed by the creation of several
TaskEntry objects, each representing the execution request of a single overlapping parti-
tion of the wrapped Task. The latter is only finished when all the TaskEntry have finished
they computations as well as data transfers.

As Marrow uses static decompositions, hand-crafted for each GPU, the Scheduler fol-
lows static scheduling, submitting the TaskEntries for computation to their predefined
GPU queues, without requiring migration as the static decompositions ensure an effi-
cient execution, on the GPUs they were created for. The queues are organized within an
array, where each queue is assigned to a GPU by its correspondence to the GPU’s position
in the OpenCL platform configuration.

Alternatively, the Scheduler could be implemented using dynamic scheduling, with

52



4. MULTI-GPU SUPPORT 4.4. Runtime

work-stealing with the assistance of the Auto-tuner, to help define when a Task should
be stolen. This option, however, was not explored due to a limitation currently imposed
by the Loop skeleton. When computing with a fully synchronized condition and step
function, each new iteration can only begin when all decompositions of the previous one
finish their computation. With work-stealing, it is necessary to either stash the interme-
diary results from each decomposition and sequentially steal additional ones, until all
the work related to a single iteration is completed, or to use a thread per decomposition
using seamless synchronization (i.e. barrier). The latter tends to be unfeasible as work-
stealing commonly creates a very large number of decompositions for a fine-grained per-
formance adaptation. Additionally there are data-migration concerns which should be
addressed with this approach, as PCIe bus communication is expensive. The Auto-tuner,
would have a different purpose, such as assisting the Scheduler on the decision whether a
decomposition should be stolen, while taking into account migration, instead of the cre-
ation of hand-tuned partitions. This option is interesting as its dynamic nature enables a
runtime-adaptation to performance discrepancies within heterogeneous GPUs, although
requiring a completely different approach to auto-tuning. Therefore this exercise is left
as future work.

4.4.2 Task Launcher

The TaskLauncher is responsible for the launch of data-transfers and computations. To
achieve this goal, the component consumes TaskEntry objects from the GPU queues shared
with the Scheduler using a pool of threads, with its size depending on the configurations
of the number of devices and degree of overlap. The degree of overlap is the number
of threads used for parallel data-transfers and computation within a single GPU device.
Each thread is assigned to monitor a single GPU queue, greedily acquiring new work.
Each GPU, however, can have multiple threads assigned to it, depending on the config-
ured overlap degree. Therefore are numberOverlapPartitions × numberGPUs threads,
ensuring that the there is a thread per overlap partition, achieving the usage of the bar-
rier when using the Loop skeleton when using synchronized execution, avoiding stashing
partial results within each iteration. Furthermore, this number of threads allows the max-
imum degree of parallelism within a Task, as all partitions are processed in parallel.

As this component provides such a high degree of parallelism, the overlap of commu-
nication and computation is achieved transparently, as the requests are submitted to the
OpenCL platform (by the skeletons/KernelWrapper) as soon as possible, and henceforth
delegated to the OpenCL platform, for scheduling over the GPU devices internally.

4.4.3 Auto-Tuner

The creation of the Auto-tuner component for multi-GPU Marrow was a challenge, due
to the fact that contrary to other algorithmic skeleton frameworks that use predefined
computation kernels for each skeleton, Marrow mainly introduces behaviors, while the
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programmer provides the OpenCL kernels, enabling higher computation flexibility than
in other algorithmic skeleton frameworks. To maintain this flexibility, the data-set de-
composition must be able to effectively handle an arbitrary number of arguments, as
well as their arbitrary type and finally their mapping to the computation itself (restric-
tions). Handling these requirements required some planning, as a common feature is
fundamental for a possible mapping within all these variable configurations.

The answer is the OpenCL kernel’s work-size definition, which defines the number
of GPU cores (work-items) required for the kernel computation. As this configuration
is tied intimately by the GPU’s architecture, it is possible to use this information for de-
composition, by using a relation between the work-size and the kernel arguments’ size,
specifically, multi-element memory regions.

As each kernel within a computation tree can have differing number of arguments
(with the exception of the stages of a pipeline), as well as work-sizes, when a skeleton re-
quests partitions, it actually gathers and submits all nested KernelWrappers to the Sched-

uler, so this component can then submit them to the Auto-tuner sequentially. Therefore
Marrow’s decomposition, is completely kernel-centric and is heavily reliant on the ker-
nel’s work-size to define compatible decompositions among all the arguments.

Currently the multi-GPU Marrow, focuses solely on the Buffer data-type, which rep-
resents a contiguous region of memory, that has single-dimensional access. Although the
Buffer is a single-dimensional data-type, the work-size configuration can actually have
multiple dimensions (e.g. an image can be represented with a buffer, and be configured
with a two-dimensional work-group in terms of width and height, as the image can be
represented contiguously line-by-line). As such, Marrow only decomposes the work-size
using the last dimension, obtaining decompositions with contiguous memory regions.
The correct translation between the work-size configuration and the array arguments is
however, impossible in general without the assistance of the programmer. For this de-
composition to work, the programmer must define how many elements each work-size
element requires, multiplied by the sizes of all the dimensions except the last one (that
is decomposed automatically). We name this value indivisible size, generally calculated
using the formula:

indivSize = arrayElementsPerItem ∗
numDim−2∏

n=0

workSize[n]

Where arrayElementsPerItem defines how many array elements are computed by
each work-item (e.g. a 2D image filter which processes two pixels per work item in a line
should have indivSize = 2 ∗ workSize[0], with workSize[0] half the width of an actual
line in the buffer, and workSize[1] being the decomposed height).

Given the previously presented challenges, data-set decomposition in multi-GPU Mar-
row is done with two main stages, applied when an algorithmic skeleton is initialized:
work-size and argument decompositions.
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Work-size Decomposition This stage decomposes the last dimension of the work-size.
As one of Marrow’s goal is to provide an efficient execution on possibly heterogeneous
GPU devices, this decomposition must take into account each GPU’s performance. Cur-
rently two main performance values are evaluated: single- and double-precision perfor-
mance. These values are collected at installation time using FLOPs benchmark from the
Shoc benchmark suite. Two ratios are then calculated among the GPU devices, for both
single and double precision. Identifying double precision computations is not perfect in
Marrow as no OpenCL code is analyzed. The ratio to use is chosen with the size of the
arguments data-type. This is not ideal as there are structured data-types (e.g. cl_uchar4)
in OpenCL which are not trivially identified and will mis-classify.

Once the ratio is decided, the work-space is decomposed proportionally to each GPUs
ratio. This distribution is memory-aware as the partition sizes adapt according to the
available memory in each GPU. This feature is based on a static/dynamic memory re-
quirement analysis within the computation tree which calculates the maximum work-
items each GPU can handle. Static memory does not vary with the size of a partition,
such as a Buffer with the Copy decomposition mode (and variants). The dynamic mem-
ory varies with the size of partition, such as the Buffers with the Partitionable decom-
posing mode, represented as the amount of memory a single work-item requires. Fur-
thermore, when the configuration implies several partitions within a GPU (overlapping
partitions), the proportional partitions created are further decomposed to the desired
number of same-sized partitions within a each GPU, as shown in Figure 4.12.

Although only the kernel’s work-size has been mentioned, there is also the possibil-
ity of defining a work-group size. This configuration allows the programmer to define
the amount of work-items each group has, sharing among them cache memory. Nor-
mally if none is defined, the OpenCL platform picks one transparently, although these
may not give the best results. As such, the programmer may define a work-group size,
which has to be a multiple of the work-size. In multi-GPU Marrow, this parameter can
also be defined, adding a new restriction to the decompositions, making the work-size
decompositions a multiple of this configuration.

Argument Decomposition The second stage, analyses the input and output data-sets
from a KernelWrapper, and while taking into account the previously calculated work-
space partitions as well as the indivisible size defined within each Buffer data-type, the
decompositions are created, by defining the beginning element for computation, the be-
ginning element for data-transfer (which differs for Copy decomposition mode) and the
number of elements. Additionally a new argument object is created with the same data-
type, but containing the new decomposition size. All this information is then saved in a
PartitionedInfo object, which contains all the decompositions of a single argument. This
set of argument partitions are saved within the KernelWrapper they belong to.
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Figure 4.12: Auto-tuner work-space partitioning and overlap partitions.

4.4.4 Execution Platform

The execution platform has been improved to support the multiple GPUs, as well as the
tracking of the available memory within each device. There is a limitation to OpenCL
however, as it cannot query the amount of currently used memory. Consequently, mem-
ory tracking is only local to the Marrow platform, and might not work correctly as the
assumption that only our platform uses the GPUs may be broken by other applications.

Communication and Computation Overlap is a feature which is, closely related on the
underlying implementation of OpenCL, possibly wielding varying results depending on
the hardware used. There are three possible configurations to implement this feature:

1. use a single context (shown in Figure 4.13) for all GPUs, containing several com-
mand queues;

2. using a single OpenCL context per GPU (shown in Figure 4.14, containing several
command queues (depending on the degree of overlap);

3. using several OpenCL contexts per GPU, each containing a single command queue,
creating an arbitrary number of contexts depending on the degree of overlap (shown
in Figure 4.15).

An OpenCL Context provides a scope for allocated GPU memory, command queues
as well as computations themselves. As this scope has to handle concurrent implemen-
tations, there has to be synchronized access at some level within the OpenCL platform.

Two systems were used for the development of Marrow (detailed in Chapter 5), one
NVIDIA platform and one AMD platform. On our development process we have ob-
served that both platforms have the same behavior:

• Configuration 1 does not enable any speed-up with any degree of overlap or num-
ber of devices, implying a global synchronization within a context;
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Figure 4.15: Multiple contexts per GPU, each with a command queue.
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• Configuration 2 produced scalability with the usage of multiple devices, although
there was no performance gains when using multiple command queues within the
same GPU (and context), which is consistent with the suspicion of synchronization
within a context;

• Configuration 3 finally produced performance improvements with the usage of
multiple devices, as well as with the usage of multiple queues for each device.

Consequently we have organized the execution platform using the third configura-
tion, with a context per overlap partition (with a single command queue within). How-
ever, this choice does have drawbacks, as it introduces redundant memory allocation on
the GPUs when using the Copy decomposition option and multiple overlapping partition
within a GPU, as the memory location cannot be shared among different contexts. An
option to overcome this would be to use configuration 2, at the expense of performance
when using overlap with each GPU.

4.4.5 KernelBuilder

The KernelBuilder is responsible for the compilation of the OpenCL kernels. Naturally
it has been adapted for multi-GPU support by enabling the choice between which de-
vices it should compile for, depending on the OpenCL context, as well as saving these to
persistent memory to avoid redundant re-compilations.

4.5 Final Remarks

In this chapter, we have presented the multi-GPU support for the Marrow algorithmic
skeleton framework.

Differing from all the other algorithmic skeleton frameworks, the programmer de-
fines the actual OpenCL kernels, enabling a broader support, as well as the combination
of these using skeleton nesting. Although the programmer has some extra burden to sup-
ply the OpenCL computation, Marrow focuses on abstracting the host-side orchestration
and allocation required for GPU computations as well as to support different behaviors
in regards to decomposition, to bypass the limitations of an automated decomposition
system.

A statically available execution platform is used, which receives execution requests
from algorithmic skeletons, akin to StarPU’s interaction with SkePU, although Marrow’s
focus is on task-parallelism instead of data-parallelism. The platform also provides static
domain decomposition, which takes into account the relative performance of the avail-
able devices, thus supporting heterogeneity. The inclusion of automated decomposition
warranted new ways to increase flexibility, as many problems require decomposition re-
strictions because of the way the computations function. The answer to this requirement
is to allow different distributions for the multi-element data-sets, akin to the ones present
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in SkelCL, by either copying the whole data-set to all devices or to decompose them. Mar-
row’s usage has evolved, by including the Vector, for the definition of data-sets, which
abstracts data-set decomposition as well as data-access, while providing a vision of data
persistence internally.

59



4. MULTI-GPU SUPPORT 4.5. Final Remarks

60



5
Evaluation

In this chapter we evaluate the performance of our prototype implementation from the
performance, efficiency and productivity perspectives. For that purpose we have imple-
mented several case-studies and conducted our measurements in two distinct systems
with multi-GPU acceleration.

5.1 Case-Studies

To this goal, six case-studies are used: a Filter Pipeline, FFT, a N-body simulation, Saxpy,
Segmentation and Hysteresis.

Filter Pipeline This case-study comprises several image filters pipelined, namely Gaus-
sian Noise, Solarize and Mirror. All these filters have an horizontal line dependency, thus
only allowing decomposition of its height, as each work-item affects two non-contiguous
pixels within the same line. This restriction is expressed by defining an indivisible size
equal to the size of a line. These kernels have been taken from AMD’s OpenCL Samples1.

The computation tree is composed of two nested pipelines, thus obtaining three stages
configured to pipeline the execution of the filters in the following order: Gaussian Noise
⇒ Solarize⇒Mirror.

FFT This case-study comprises a set of single-precision, Fast-Fourier transformations
(with 512kB each). The computational kernel has been adapted from a benchmark from

1http://developer.amd.com/tools-and-sdks/heterogeneous-computing/amd-accelerated-parallel-
processing-app-sdk
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the Shoc Benchmark Suite. The computation is structured using a pipeline, where the
first is the FFT and the second is its inverse.

The input set of FFTs is decomposed in smaller sets, which are parallelized among the
various GPUs. The work-size is defined as the number of FFTs to be computed, therefore,
the input arguments have a indivisible size of numFFTs× numElementsPerFFT .

N-Body This case-study performs the very well-known N-Body simulation, where the
position and velocity of a set of elements (bodies), are calculated based on the force inter-
actions amongst them.

The kernel follows the classical direct-sum algorithm, of complexity O(N2), where a
single body is affected by all the other bodies in the set. Therefore, a dependency on the
whole data-set is imposed, requiring full replication to all GPUs in our implementation.
Although the access to the whole data-set is required, it is possible to assign computa-
tion regions to each decomposition, entailing a synchronization step after each iteration
amongst all decomposition.

This functionality is achieved with a specialized Loop skeleton. While it is similar to a
For, as the step function simply increments a counter until a certain value is reached, be-
fore each step computation, the decompositions are read from the GPUs, and afterwards
written to all devices so they obtain a unified vision of the current iteration’s input.

Akin to the image filters, the N-Body computation kernel was taken and adapted
from AMD’s OpenCL Samples.

Saxpy This case-study is a matrix operation which is part of BLAS (Basic Linear Algebra
Subroutines), which has already been extensively presented within the previous chapters.
It performs the multiplication of a matrix with a scalar value, and sums the result with
a second matrix (y[i] = αx[i] + y[i]). Both these operations are data-parallel as they only
require the elements at the current position in both matrices in its computation. This
computation is single Map skeleton with the Saxpy computation kernel nested within,
without any decomposition restrictions.

Segmentation The segmentation is a tomography image enhancing algorithm. A to-
mography image is a set of pixel within a three dimensional space, where each pixels’
value is a gray-scale that represents the amount of absorbed radiation at that position.
This image is affected by the algorithm, changing its gray-scale value into either white,
gray or black, depending on a value threshold.

A single Map skeleton is used with the nested computation kernel. Although this
computation presents pixel-wise parallelism, it presents a three-dimensional workload,
thus the Auto-Tuner decomposes only within the last dimension (coarse-grained decom-
position).
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Table 5.1: Systems used for the evaluation of Multi-GPU Marrow.
CPU Motherboard Drivers GPU #1 GPU #2 GPU #3

S1
Xeon(R) E5506

@ 2.13GHz
ASUS P6T7 319.21 C1060 FX 3800 C1060

S2
i7-3930K

@ 3.20GHz
ASUS P9X79

PRO
1113.2 HD7950 HD7950 N/A

Hysteresis This is another tomography image enhancing algorithm [Cad+10]. Akin to
segmentation, its input is a three dimensional image and hysteresis affects it by attempt-
ing to eliminate redundant gray values, classifying each pixel as either black or white.

This algorithm consists of three iterative stages (Loop skeletons), where each of their
stop conditions depend on the previous iteration’s output. These would be commonly
structured using two Pipeline skeletons, yet these have incompatible arguments among
the several loops, impeding this option. Therefore, the implementation sequentially ap-
plies three Loop skeletons.

Akin to segmentation, there is a three-dimensional workload, thus, only the last di-
mension is decomposed by the Auto-Tuner. This algorithm is commonly used after seg-
mentation is applied, to further reduce the number of redundant gray values.

5.2 Systems

Two systems are used to evaluate multi-GPU Marrow, described in Table 5.1. The first
system, S1, equipped with a NVIDIA platform containing three heterogeneous GPUs
configured in the OpenCL platform as depicted in the table. The ratios calculated for
data-set distribution within each GPU are: 0.36 :: 0.27 :: 0.37. The second system, S2, has
a AMD platform containing two homogeneous GPUs, where the distribution is simply
split in half to each GPU. Both systems use Ubuntu 12.04.3 with a 3.8.0-32 kernel.

There is also an important feature in system S2 as its motherboard is equipped with
dual PCIe x16 lanes (dedicated to each GPU), enabling near-linear speedup when trans-
ferring data to one GPU versus transferring the same amount of data but partitioned
equally between the two GPUs. This behavior has been confirmed with our data-transfer
benchmark. When applying this benchmark to S1, it becomes evident that there is a sin-
gle PCIe x16 lane shared amongst the three GPUs, exhibiting a 24% improvement when
using two GPUs and a 36% when using three GPUs versus a single GPU, meaning there
is an improvement of the PCIe usage rate, but no dedicated lanes.

5.3 Metrics

The evaluation begins by measuring the library’s overhead, in Section 5.5, versus its pure
OpenCL counterpart, in both single- and multi-GPU executions.
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In Section 5.6, Marrow’s performance is compared against the original, single-GPU
version, evaluating execution performance, when both are using a single GPU, at which
the latter excelled.

Having evaluated the single-GPU performance, the multi-GPU scalability is studied
in Section 5.7, by presenting the possible multi-GPU configurations, and their perfor-
mance results versus the single-GPU performance. Additionally, in this section it is also
studied the impact of the overlap of communication and computation when using mul-
tiple GPUs.

The domain composition is then evaluated in Section 5.8, by comparing the execution
times within each GPU, observing the degree of work imbalance amongst them, using
the discrepancy on their execution times.

Finally, we attempt to measure Marrow’s productivity gain when programming on it
versus pure, multi-GPU, OpenCL in Section 5.9, using both case-studies’ code-sizes.

5.4 Methodology

The case-studies presented in this chapter are the result of 500 runs, where these are
ordered, and two thirds of the edge cases are ignored, thus only taking into account the
middle third of the values (167 runs). The standard deviation is calculated solely from the
middle third of the values, by applying the using an sample standard deviation (using
an unbiased estimator of the variance).

The execution times presented in this chapter only take into account the actual ex-
ecution times of the computation tree, excluding platform initialization. Although the
decomposition is not included within this execution time, it is relevant to mention that
its overhead is negligible, being < 0.5ms, as these are simply arithmetic operations and
the creation of the decomposition structures.

The usage of the communication and computation overlap optimization varies ac-
cording to the metric to evaluate. It is switched off when measuring overhead versus
pure OpenCL implementations and distribution quality. However, when studying scala-
bility, against the original, single-GPU Marrow, as well as among multi-GPU configura-
tions, we pick the best result among the overlap configurations. This configuration was
varied for each measured GPU configuration using ×2/×4 decompositions per GPU de-
vice. The overall impact of this optimization is presented, in Subsection 5.7.1.

Hysteresis This case-study consists of three Loop skeletons where each computation
depends on the borders of the decomposition, yielding different results with different
decompositions. Additionally each Loop has a stop condition which depends on the out-
put of the previous iteration, thus introducing overhead on the CPU side of the execution,
which varies with the number of iterations.

The OpenCL and original Marrow versions can be compared because they both ex-
plicitly assume the decomposition duties. This is, however, not true in the multi-GPU
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version of Marrow as these are created automatically yielding very different results. In
both OpenCL and single-GPU Marrow versions, five predefined decompositions are cre-
ated (four in the second Loop), and these are submitted for execution, sequentially in the
former, and in parallel in the latter (as well as in multi-GPU Marrow).

Although multi-GPU Marrow features automated decompositions, we have tried to
force the creation of five overlapping decomposition, however, we are unable to achieve
the same decomposition within the second Loop, as well as, the single-GPU Marrow case-
study currently does not support five concurrent execution, and due to time constraints,
was not possible to fix for this document, rendering the comparison invalid. As such, this
case-study has been omitted from comparisons with OpenCL and original Marrow.

5.5 Overhead against OpenCL

The library’s overhead is evaluated versus a pure OpenCL implementation, using the
aforementioned case-studies and systems.

5.5.1 Single-GPU Overhead

We begin by measuring the overhead of the framework in a single GPU environment,
having as baseline the execution time of the OpenCL case-studies presented in Appendix A,
Table A.1. The charts presented in this subsection show the speedups relative to these val-
ues. The evaluation of this overhead does not take into account overlapping executions
as the OpenCL case-studies do not have this capability. The graphical representation of
the speedup values for Filter Pipeline, FFT and N-Body can be found in Figure 5.1 while
the values Saxpy and Segmentation can be found in Figure 5.2.

Filter Pipeline This case-study, shows a very low overhead in S1, with a maximum
of 3% on the smallest data-set. However, in S2, there is a significant overhead, varying
from 11% for the smallest data-set, and peaking at 38% on the medium sized one, while
having a 22% in the largest data-set. It is currently unknown why this high overhead
occurs solely in S2, although it hints to some internal nuance within AMD’s OpenCL
platform.

FFT Within both systems the FFT shows very low overhead with a maximum of 1%, as
there is a bottleneck in the data-transfers, due to its very large data-set sizes, overshad-
owing library-related overheads.

N-Body Due to the high-computation nature of the N-Body case-study, the overhead
of tends to be low, as its main bottleneck is within the computation itself. However,
the overhead is indeed noticeable due to the fact that Marrow has extra orchestration
(within the Loop) for the multi-GPU support, while a single-GPU implementation does
not required it.
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In S1 this overhead is not very noticeable, peaking at 2% due to the fact that the GPUs
performance is bottlenecking the whole case-study.

In S2 however, the GPU is more powerful, lowering the bottleneck shadow, thus pre-
senting a higher overhead peaking at 11% at the smallest data-set but reverting once
again to 2%, akin to S1 in the largest, as the computation bottleneck becomes once again
noticeable.

Saxpy In the smallest data-set of the Saxpy case-study, there is a 5% overhead, while
in S2 there is an actual speedup, instead of overhead. The cause for this is currently un-
known, due to time constraints and OpenCL’s opaque nature. Additionally, there were
no anomalies detected when analyzing with AMD’s CodeXL Profiler. In S1, the remain-
ing data-sets have 16 − 17% overhead. In S2 there is a very small overhead of approxi-
mately 1%.

Segmentation This case-study has speedup in S1 of 2−11%, instead of overhead. Once
again the reason for this behavior is unknown, as these are not consistent to the results
in S2, hinting once again to the OpenCL platform. In S2 there is a 44% overhead on
the smallest data-set, although this value is inflated as the case-study takes less than a
millisecond to execute per run. On the medium-sized data-set there is a 17% overhead
and no overhead at all in the largest.

Remarks Overall, Marrow presents a relatively low overhead, although with some in-
consistent results between, and within both systems, among each case-study. On the
contrary to results in S1, our AMD platform S2, presents considerable overhead in some
of the case-studies. In S1 there was an overhead between 0−17% while in S2, where there
are the most inconsistent results, between 0− 44% overhead. These values are acceptable
within S1, however in S2 these are occasionally unexpectedly high, and further study of
its OpenCL platform is warranted.

5.5.2 Multi-GPU Overhead

To measure the overhead related to multi-GPU execution, a OpenCL Saxpy case-study
was implemented with multi-GPU support. Additionally it is important to note that this
implementation is completely different from the previously presented one. As multi-
GPU support entails a whole new execution platform, we avoided using this version
when comparing in other single-GPU sections. As OpenCL has a low-level programming
model, and due to time constraints, Saxpy was the only case-study adapted to have multi-
GPU execution. However, this case-study does not implement any auto-tuning, as the
data-set is split evenly among all decompositions (in both systems).

The execution values referring to the multi-GPU OpenCL case-study are presented
in Appendix A, Table A.2, and the overhead representation of Multi-GPU Marrow is
depicted in Figure 5.3.
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Figure 5.1: Single-GPU Overhead of Filter Pipeline, FFT and N-body in S1 (top) and S2
(bottom).
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Figure 5.2: Single-GPU Overhead of Saxpy and Segmentation in S1 (top) and S2 (bottom).
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Figure 5.3: Multi-GPU Saxpy overhead in S1 (left) and S2 (right).

System 1 We can observe that in S1 there is considerable overhead. However, this over-
head is a static value across all data-set sizes, independently of the number of GPUs used:
≈ 0.3ms for smallest, ≈ 5ms for medium and ≈ 20ms for the large data-set. These static
overheads imply that Marrow does introduce some overhead in its runtime platform,
albeit it is independent of the number of GPUs that are used. Although the OpenCL im-
plementation does not feature auto-tuning, as it splits evenly, this only incurs on a 6%

discrepancy in the workload adaptation, which is not significant enough in this case to
avoid the system’s overhead.

System 2 In S2, it is possible to observe very little overhead across all configurations
and sizes. The differing overhead behavior from the previous system can be attributed to
the CPU, as the superior performance of S2’s CPU shadows this overhead. In comparison
with S1’s CPU, this system boast of a much newer architecture (almost three years apart)
as well as supports a higher number of threads (6 cores with 12 threads versus S1’s 4
cores with 4 threads).

5.6 Comparison against Original Marrow

In this section, the performance of Marrow is evaluated in comparison to the original
Marrow, using the best overlap results with a single GPU in both platforms. The original
Marrow’s was evaluation was performed by myself, and has contributed to a published
paper in Euro-Par 2013.

The graphical representation of the speedups in relation to the execution times in
original Marrow for Filter Pipeline, FFT and N-Body can be found in Figure 5.4 while the
speedups for Saxpy and Segmentation are presented in Figure 5.5. The execution times
of the original Marrow can be found in Appendix A, Table A.3.

Filter Pipeline This case-study presents differing behavior depending on the platform,
presenting mainly slight overhead in S1 and slight speedup in S2, although we consider
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these to be platform differences as they do not present a major impact in performance.

FFT In both S1 and S2, FFT shows a speedup, varying in the former between ×1.12 −
1.14 and in the latter ×1.03 − 1.10. This speedup is most likely connected to the already
discussed organization of the execution platform in Subsection 4.4.4, where we use a
single OpenCL context per command queue, whereas the original Marrow used a single,
global context, which in these systems imply lesser performance.

N-Body There is a consistent overhead in this case-study in both systems, although
decreasing with data-set sizes as it has a bottleneck in its computation, as previously
mentioned. In S1 this overhead is negligible, peaking at ×1.02, while in S2 it is more
significant, having a peak of ×1.11. This overhead is partially due to the fact that the
original marrow uses a single For skeleton which does not contain as much orchestration
as the multi-GPU version.

Saxpy This case-study shows a very good speedup over the original Marrow in both
systems, where in S1 this varies from ×1.28 − 1.76 while in S2, this maintains a lower
degree of speedup varying from ×1.56− 1.79. We believe this speedup is due once again
to the re-implemented execution platform which allows better overlap, using the new
context configuration.

Segmentation There is a very low overhead in general in both systems, varying from
×1.01 − 1.04 in S1 and ×1.03 in S2, with the exception of the smallest data-set which
consistently with the previously presented overhead study with pure OpenCL, a high
overhead of ×1.44 is observed. As the execution time is very low (lower than one mil-
lisecond), this overhead comes from our execution platform, as the original Marrow did
not have such a complex platform, thus avoiding most of the overhead with very small
data-sets.

Remarks This evaluation presented consistent results within each case-study, however,
there are differing results among them, presenting overhead in some case-studies (Seg-
mentation, N-Body), and sometimes consistent speedup (FFT). Saxpy presents some very
high speedup which we suspect has to do with the new OpenCL context organization
within our execution platform, adopted for better overlapping performance, but we are
unable to confirm in useful time-frame for this document.

5.7 Multi-GPU Performance

While the previous evaluations focused in single-GPU performance (with or without
overlap), this section is centered on multi-GPU scalability, to evaluate Marrow’s viability
as a multi-GPU platform.
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Figure 5.4: Single-GPU Speedup versus original Marrow of Filter Pipeline, FFT and N-
body in S1 (top) and S2 (bottom).
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Figure 5.5: Single-GPU Speedup versus original Marrow of Saxpy and Segmentation in
S1 (top) and S2 (bottom).
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In Figure 5.6 the results versus Single-GPU for Filter Pipeline, FFT and N-Body are
represented, while the results from Saxpy and Segmentation can be found in Figure 5.7.
The values of single-GPU execution are (picking the best overlap result) are presented in
Appendix A, Table A.4.

Filter Pipeline In both systems, this case-study presents scalability as expected. How-
ever in S1 this scalability is very low considering there are 3 GPUs due to the PCIe bus
bottleneck, with a speedup of ×1.37 on the smallest data-set and ×1.55 − 1.57 on the re-
maining data-sets. In S2 there is a more considerable, as two GPUs present a speedup of
×1.27 in the smallest data-set and ×1.56 to ×1.67 in the remaining data-sets respectively,
due to the dedicated PCIe buses.

FFT As previously mentioned, this case-study has the largest data-sets. As such, it is
not surprising to observe the lack of scalability in S1 because of the shared PCIe bus
among all three GPUs, which is acting as a bottleneck to the whole computation. In S2,
however, as there is a dedicated PCIe bus to each GPUs, speedup is achieved, varying
from ×1.51 in the smallest data-set, to ×1.88 in the largest, as the computation is heavily
focused in data-set size.

N-Body This case-study shows decent scalability in S2 when dealing with larger num-
ber of bodies, peaking at ×1.76. In S1, however, we can observe super-scalability with
a performance peak at ×5.68 when using three GPUs. This behavior is attributed to the
overlap, as without it, the speedup is ×1.65 and ×2.19 using two and three GPUs respec-
tively, for the biggest data-set (65536 elements). It is however very important to note that
the actual execution times in S1 are considerably higher than S2’s, as the latter is equipped
with GPUs with a much higher throughput. Specifically the high speedup in S1 trans-
lates to 158.28ms with three GPUs, while in S2, although there is a lower speedup, the
execution time is still relatively close, with 205.97ms. The high standard deviation shown
in this case-study when using three-GPUs in S1 has to do with the fact that there are a
high number of threads working concurrently, and synchronizing after each iteration,
with a high number of transfers between the host/GPU, inherent to the Copy replication
per overlapping decomposition, which is used to its full effect in these configurations (×4
per GPU).

Saxpy When testing Saxpy within S1 with two GPUs we have observed that this there
was a lack of scalability when dealing with larger data-sets. We believe this is due to
the fact that the actual Saxpy computation kernel, as it is naïvely implemented, without
taking advantage of caching. Thus global memory is accessed every time an element
is required. In S1, as previously mentioned the middle GPU is a FX 3800, which on
the contrary to C1060’s 512-bit memory bus, only has 256-bit. The 256-bit bandwidth
is bottlenecking the computation with the high number of accesses to global memory,
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slowing down the whole computation. When using three GPUs we can observe that we
do get some speedup, peaking at ×1.31, although still limited by the FX 3800, as it does
not vary from two to three GPUs.

In S2 it is possible to observe consistent scalability, which becomes close to linear with
a large data-set, with a value of ×1.89.

Segmentation In both systems we can observe and inflated speedup in the smallest
data-set, as its execution time is very low. On the other data-sets both systems show
consistent scalability, having a maximum of ×1.55 in S1 and ×1.71 in S2

Hysteresis This case-study takes advantage of the implicit parallelization of the com-
putation of the loop’s condition, when using multi-GPU as well as overlapping compu-
tations, as such it is not surprising to observe scalability in both systems consistently, as
more CPU threads are used. In S1, this scalability maxes at ×2.0, while in S2 it has a
maximum value of ×1.90

Remarks Overall, Marrow presents an expected scalability, specially in S2, with the
help of its dual PCIe buses. In S1 the shared PCIe bus entails reduced scalability in
filter pipeline or even the complete lack of scalability in FFT, due to its large data-sets.
Additionally its heterogeneity might be the origin of some unexpected behaviors, such
as in Saxpy, which is slowed down when using the FX 3800, which features a reduced
memory access bandwidth, as this computation accesses global memory multiple times
for each element directly.

5.7.1 Impact of Communication and Computation Overlap

Having observed the results of multi-GPU scalability, using the best communication and
computation overlap results, it is necessary to also study the actual behavior this opti-
mization has within the case-studies.

The charts representing the impact of this optimization can be found in Figure 5.8 for
Filter Pipeline, FFT and N-Body while for Saxpy and Segmentation these are depicted
in Figures 5.9. In Appendix A, Table A.5, there are the execution values of the non-
overlapped execution using the maximum number of GPU devices in both systems, as
the remaining results would be cumbersome to present and discuss within this chapter.
As previously mentioned, there are two main configurations used: ×2 and ×4 overlap-
ping decompositions per GPU.

In both systems, there is a common category of systems, where the overlap behavior
is similar: Filter Pipeline, Saxpy and Segmentation. It is possible to observe a consistent
overhead introduced by overlap when the data-sets are too small, being that in segmen-
tation this is more obvious as it has the smallest data-set of all three. When a certain
data-set size is achieved, the overlap begins to show significant speedups consistently on
all three case-studies.
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Figure 5.6: Multi-GPU scalability versus Single-GPU of Filter Pipe, FFT and N-Body in
S1 (top) and S2 (bottom).
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Figure 5.7: Multi-GPU scalability versus Single-GPU of Saxpy, Segmentation and Hys-
teresis in S1 (top) and S2 (bottom).
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FFT Within S1 there is a predictable lack of scalability due to the shared PCIe. In S2

there is indeed scalability, although, when more than two overlap decompositions are
used, the performance degrades, due to its large data-sets. Although not obvious at first,
this case-study is the extreme of the previously presented behavior, where all the system
overheads are hidden, and the bottlenecks in the transfers become obvious.

N-Body This case-study presents differing behaviors in both systems. This is mainly
due to the differing performance between the GPUs present in both systems, where in
S2 there is no gain from overlap, as a single kernel execution is able to perform faster
than an overlapped execution in S1, for example, S2 obtains 205.96ms in its with 65536
bodies using two GPUs, while S1 takes 290.09ms using two GPUs with its best overlap
configuration. When using three GPUs, however, S1 becomes indeed faster versus S2’s
two as expected.

Hysteresis As previously mentioned, this case-study takes advantage of multiple CPU
threads, which in our system varies with the number of GPUs as well as overlapping
decompositions. As such there is a consistent speedup when dealing with more overlap,
as more CPU threads are introduced implicitly.

Remarks In regards to overlap, it is possible to identify a common behavior within
some of the case-studies (Filter Pipeline, Saxpy and Segmentation), where in both sys-
tems, these have some overhead when dealing with small data-sets (< 50MB), but gain
performance when above this threshold. Although this behavior is common between the
systems, there is a much lower degree of speedup in S1 due to its shared PCIe bus. The
FFT is the extreme of this behavior, where the data-sets are so big, that all overhead is hid-
den, and the bottleneck within S1’s shared PCIe becomes embarrassingly obvious, while
S2, is still capable of speedup (although not as high as some of the other case-studies).
Hysteresis shows a predictable scalability due to the usage of more CPU threads for the
computation of the iteration’s evolution condition.

Adopting an automated choice of overlap degree, requires several parameters which
have to be taken into account, namely the aforementioned data-set size, the PCIe bus
configuration (whether there is a linear speedup when transferring to multiple GPUs or
not), and finally, computation’s weight, to get an overview of its impact in relation to
its data-set size. The first two features can be easily harvested, from the computation’s
configuration and using a benchmark at installation-time respectively. The last parameter
however, is harder to obtain/estimate, as it either requires code analysis, empiric data
(which is not always available) or user-submitted information. Although it is possible to
automate this choice, implementing it correctly requires a great deal of effort.
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Figure 5.8: Overlap behavior with Filter Pipeline, FFT and N-Body in S1 (top) and S2
(bottom).

0.0	  

0.5	  

1.0	  

1.5	  

2.0	  

10^5	   10^6	   5*10^6	   1	  MB	   8	  MB	   60	  MB	   1	  MB	   8	  MB	   60	  MB	  

Saxpy	  (number	  elements)	   Segmenta>on	  (data-‐set	  size)	   Hysteresis	  (data-‐set	  size)	  

Sp
ee
du

p	  

2x	  Overlap	   4x	  Overlap	  

0.0	  

0.5	  

1.0	  

1.5	  

2.0	  

2.5	  

3.0	  

10^5	   10^6	   5*10^6	   1	  MB	   8	  MB	   60	  MB	   1	  MB	   8	  MB	   60	  MB	  

Saxpy	  (number	  elements)	   Segmenta?on	  (data-‐set	  size)	   Hysteresis	  (data-‐set	  size)	  

Sp
ee
du

p	  

2x	  Overlap	   4x	  Overlap	  

Figure 5.9: Overlap behavior with Saxpy, Segmentation and Hysteresis in S1 (top) and S2
(bottom).
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5.8 Work Distribution

To evaluate the quality of the decompositions, we measured the execution times within
each GPU, using the profiling option present in OpenCL’s command queues. The system
S2 is omitted from this evaluation as it presents a homogeneous GPU configuration. From
the six case-studies presented throughout this chapter, only three of them are presented
in this evaluation: Filter Pipeline, Hysteresis and Segmentation. The remaining presented
inconsistent/corrupt results and those are detailed in the end of this section.

The results are depicted in Figure 5.10, with the percentage of the total computation
time each GPU took. Considering there are three GPUs, the optimal result is the one in
which each takes 33.(3)% to execute, implying a perfect adaptation to each GPU’s per-
formance, which can be seen in Filter Pipeline. Some work imbalance can be observed in
both Hysteresis and Segmentation. As segmentation presents a lighter workload in com-
parison to Hysteresis, its imbalance only shows at the largest data-set with a 4% discrep-
ancy from the optimal. In the latter, this imbalance becomes evident right away varying
from 3% in the smallest data-set to 8% in the largest. This imbalance is due to the fact that
both Hysteresis and Segmentation work on a three-dimensional workload. Recalling the
Auto-Tuner’s implementation, only the last dimension is decomposed, implying a coarse-
grained adaptation of the decompositions, although it presents good results when using
only two dimensions, as the Filter Pipeline shown.
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Table 5.2: Multi-GPU Saxpy code size in OpenCL and Marrow.

Implementation Init/Finish Orchestration Total

OpenCL 104 94 467

Marrow 18 38 188

Inconsistent Results As already mentioned, the remaining three case-studies, presented
inconsistent/corrupt results, within the values obtained from the OpenCL profiling plat-
form, therefore these were ignored from this evaluation. While execution times of the
case-studies remained consistent, the actual timestamps obtained from the platform oc-
casionally presented impossible results (beginT imestamp > endT imestamp), which we
have explicitly ignored when obtaining the GPU execution times. This explicit measure
was not enough, however, as there were still inconsistent results, as occasionally very
high duration values continued to appear, throwing off the execution time within each
GPU as well as the standard deviation to values higher than the average execution time.
Furthermore, this timestamp corruption became more apparent when attempting to eval-
uate overlapping executions, hinting to a problem within the OpenCL profiling platform
when dealing with concurrent kernel executions in both overlapping executions within
each GPU, as well as to a lesser degree, in non-overlapping, multi-GPU executions.

5.9 Productivity

To attempt to measure productivity, we look at the code size of Marrow and the previ-
ously used multi-GPU Saxpy implementation using pure OpenCL. This case-study rep-
resents the simplest computation, in both OpenCL and Marrow, entailing a application
of a computation, without any composed computations. Using skeleton nesting, com-
posed computations favor Marrow even more than the values presented in this sections,
as shown by Marques [Mar12] for single-GPU implementations.

In this section we consider productivity as the degree of detail a programmer is re-
quired to know as well as the degree of abstraction provided within the framework’s
constructs.

Although code-size does not translate directly into productivity, having presented
the Marrow’s implementation of this case-study and its semantics, this metric should
provide a good indicator nonetheless.

The number of lines of code in initialization/finalization and execution orchestration
stages, as well as the total number in each case-study (in each C++ source file) can be
found in Table 5.2. It is possible to observe the significant gains inherent to the abstrac-
tions the algorithmic skeletons provide in all stages.

Init/Finish In the initialization and finalization stages, the algorithmic skeletons ab-
stract all the verbose resource allocation/deallocation, management and error checking,
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enabling a ×5.7 less code written, in relation to its OpenCL counterpart, while providing
an higher-level programming model which allows the creation of structured computa-
tions.

Orchestration In the orchestration stage of the execution, the algorithmic skeletons ab-
stract over the underlying platform, while introducing implicit features and optimiza-
tions, such as multi-GPU support and communication and computation overlap, although
the OpenCL example does not include the latter. It is possible to see a ×2.4 less code, as
there is no need to orchestrate concurrent execution for multi-GPU (and overlap), as well
as data-decomposition which is explicitly defined in OpenCL implementation due to its
low-level programming model.

Total Size In regards to total lines of code within the source file, Marrow does require
more header inclusions to access the skeletons, although, still containing ×2.4 reduction
in overall code size, providing a higher-level abstraction to the cumbersome OpenCL
programming model, while offering implicit scalability.

5.10 Final Remarks

Marrow’s performance has been evaluated in this chapter, considering single-GPU over-
head, multi-GPU scalability, workload distribution as well as programming productivity.
Overall, Marrow presents good results, although at the expense of some expected, albeit
occasionally heavy overhead.

Overhead There is an expected amount of overhead when using a library which pro-
vides such a high-level abstraction as Marrow. Within our study we have found some
case-studies which do not present much overhead, due to their focus in either data-
transfers, or heavy computation, such as FFT and N-Body. Additionally there are some
issues with inconsistent results between both platforms, which we were not able to dis-
cern their origin in a useful time-frame for this document.

Scalability Depending on the architecture, all case-studies present consistent scalabil-
ity, except for the FFT when using a shared PCIe bus (S1). The absolute performance of
the GPUs within each system influences the scalability results, as well as their overlap
behavior, such as the N-Body case-study in S2, which does not take advantage of over-
lap due to the powerful GPUs in its platform, while in S1, this overlap makes all the
difference.

Work Distribution This study has shown that the current Auto-tuner performs correctly
when dealing with two dimensional workloads, although it does introduce some work
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imbalance when dealing with three, or more dimensional workloads, as the decomposi-
tion only deals with the last dimension. This coarse-grained distribution introduces in
our case-studies a maximum imbalance of 8%, which we consider acceptable.

Productivity Marrow enables excellent abstraction to the OpenCL’s programming model,
by handling most allocation/deallocation and management of resources implicitly (×5.4
less code) while enabling the creation of complex computations. Additionally, the exe-
cution of computations within Marrow is simpler, by introducing an implicit execution
platform which further reduces code within this stage by ×2.4. To this extent there is an
overall reduction in approximately ×2.4 of the code required for the creation of a multi-
GPU Saxpy computation.

79



5. EVALUATION 5.10. Final Remarks

80



6
Conclusion

This chapter presents a summarized overview of this thesis, highlighting its goals in
comparison with other algorithmic skeleton frameworks. The performance results are
then presented briefly, as to enrich the this overview, from its effectiveness perspective.
Finally we provide some guidelines for prospective future work.

6.1 Goals and Results

As a result of this thesis we have a functional prototype of Marrow enabled for multi-
GPU execution, fulfilling our main goal. It enables the creation of skeleton computation
trees which can be computed among multiple, and possibly heterogeneous, GPUs.

To this extent the computation trees are replicated to the GPUs, implying a data-
centric parallelism with the usage of data decompositions within each of the replicated
trees. This entails a new auto-tuning process, introduced in this prototype that adapts
the size of the data decompositions accordingly to the GPUs’ relative performance. An
advantage of this process is that the programmer now enjoys a (mostly) automated de-
composition while obtaining a performance-aware execution. This model also enabled
the seamless transition of the previously data-parallel and task-parallel skeletons to the
multi-GPU context, as most of the skeleton semantics remain the same.

The study of SkelCL and SkePU was essential on the adaptation of Marrow to a multi-
GPU execution, as some of their concepts have been adopted by Marrow, such as the
Vector, present in SkelCL. A runtime model akin to SkePU’s runtime model has also been
adopted, where the skeletons submit tasks, and these are delegated to a runtime platform
for execution (in SkePU’s case, StarPU).
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The evaluation of our prototype showed a potential for scalability, although depen-
dent on the underlying architecture. When faced with a shared PCIe bus, the speed of
data-transfer among the GPUs falls considerably. This introduces a bottleneck within
the whole performance, specially obvious in when applying overlap with large data-
sets. As expected we can observe a high scalability in most case-studies when there is
a dedicated PCIe bus, not only among the multiple GPUs, as well as when using over-
lap. In both cases the overlap should not be applied when applying computation smaller
data-sets due to the overhead it entails. The only exception to this is the N-Body simula-
tion which contains an exceptionally high computation requirements although having a
smaller data-set.

Our static approach to auto-tuning presented good results, although degrading its
quality slightly depending on the number of dimensions a computation uses, as it only
takes into account the last dimension, entailing a coarser-grained adaptation.

This multi-GPU platform does entail some of overhead, in comparison with OpenCL
and original Marrow, as we present a higher-level abstraction to the underlying platform,
with implicit decomposition, and a new execution platform.

Overall we have accomplished all the goals set for this thesis, with generally good
results.

6.2 Future Work

The distinguishable features of Marrow open several interesting research and implemen-
tation topics, such as cluster support, higher-level expressiveness of the kernel computa-
tions, dynamic scheduling strategies and new skeletons.

Generalizing Marrow to a cluster environment is a necessary step for additional scal-
ability although, requires very careful planning and engineering, as introducing network
communication entails a very high overhead when not used correctly (i.e small-sized
problems, scheduling).

Currently the programmer has to supply Marrow with the OpenCL computation and
configure it for a compatible execution. To boost productivity, ideally the programmer
should express both computation and composition in C++, delegated on the framework
the subsequent generation of the OpenCL code to run on the GPU side.

Finally the addition of new skeletons is important to improve Marrow’s flexibility. In
this context the Stencil skeleton is probably on of the most interesting constructs, which
deals with the well-known challenges of dealing with shared borders within a data-set.
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A. EVALUATION TABLES

Table A.1: Single-GPU OpenCL execution times in milliseconds.
Case-study Input Size S1 − ExecT ime(ms) S2 − ExecT ime(ms)

10242 3.66 3.02

Filter Pipeline (pixels) 40962 56.14 22.60

81922 209.50 116.34

128 74.37 61.25

FFT (MB) 256 148.02 123.18

512 294.84 251.44

16384 73.07 33.72

N-Body (particles) 32768 242.64 99.09

65536 871.13 353.89

105 3.79 3.87

Saxpy (elements) 106 29.14 34.66

5 ∗ 106 145.74 143.31

1 1.50 0.66

Segmentation (MB) 8 7.64 3.98

60 43.85 31.59

1 66.57 103.27

Hysteresis (MB) 8 532.04 581.89

60 4661.55 2604.73

Table A.2: Multi-GPU Saxpy OpenCL execution times in milliseconds.
Case-study Input Size S1 − ExecT ime(ms) S2 − ExecT ime(ms)

1 GPU 105 3.79 3.87

Saxpy (elements) 106 30.20 34.66

5 ∗ 106 145.74 143.31

2 GPUs 105 3.25 2.48

Saxpy (elements) 106 24.42 14.10

5 ∗ 106 119.88 75.56

3 GPUs 105 3.05 N/A

Saxpy (elements) 106 21.94 N/A

5 ∗ 106 140.91 N/A

94



A. EVALUATION TABLES

Table A.3: Original Marrow execution times in milliseconds.
Case-study Input Size S1 − ExecT ime(ms) S2 − ExecT ime(ms)

10242 3.85 2.63

Filter Pipeline (pixels) 40962 40.72 21.52

81922 167.70 75.58

128 70.83 48.10

FFT (MB) 256 138.63 96.73

512 275.65 193.96

16384 73.15 33.84

N-Body (particles) 32768 242.77 99.20

65536 871.25 353.99

105 5.12 5.28

Saxpy (elements) 106 52.99 21.77

5 ∗ 106 254.07 108.92

1 1.44 0.67

Segmentation (MB) 8 6.51 4.77

60 41.21 27.934

1 45.25 73.64

Hysteresis (MB) 8 330.45 314.66

60 2796.17 1762.06
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Table A.4: Multi-GPU Marrow execution times in milliseconds using a single GPU (best
overlap results).

Case-study Input Size S1 − ExecT ime(ms) S2 − ExecT ime(ms)

10242 3.79 2.75

Filter Pipeline (pixels) 40962 44.33 19.65

81922 178.04 70.30

128 63.00 46.86

FFT (MB) 256 123.06 90.42

512 241.51 176.54

16384 74.65 37.83

N-Body (particles) 32768 245.75 104.36

65536 875.45 361.95

105 3.99 2.94

Saxpy (elements) 106 30.49 13.97

5 ∗ 106 142.35 60.79

1 1.45 1.18

Segmentation (MB) 8 6.88 4.77

60 42.88 28.68

1 34.11 33.68

Hysteresis (MB) 8 172.42 67.12

60 1609.07 577.95
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Table A.5: Multi-GPU Marrow execution times in milliseconds using a single GPU (no
overlap).

Case-study Input Size S1 − ExecT ime(ms) S2 − ExecT ime(ms)

10242 3.79 3.40

Filter Pipeline (pixels) 40962 56.46 36.29

81922 210.47 148.88

128 74.56 61.67

FFT (MB) 256 149.45 123.43

512 298.98 250.66

16384 74.65 37.83

N-Body (particles) 32768 245.75 104.36

65536 875.45 361.95

105 3.99 4.01

Saxpy (elements) 106 35.15 34.52

5 ∗ 106 172.69 145.28

1 1.45 1.18

Segmentation (MB) 8 6.88 4.77

60 42.88 31.74

1 49.91 47.39

Hysteresis (MB) 8 350.84 195.86

60 3304.87 1697.65
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