759 research outputs found

    Eternally dominating large grids

    Get PDF
    © 2018 Elsevier B.V. In the m-Eternal Domination game, a team of guard tokens initially occupies a dominating set on a graph G. An attacker then picks a vertex without a guard on it and attacks it. The guards defend against the attack: one of them has to move to the attacked vertex, while each remaining one can choose to move to one of his neighboring vertices. The new guards’ placement must again be dominating. This attack-defend procedure continues eternally. The guards win if they can eternally maintain a dominating set against any sequence of attacks, otherwise the attacker wins. The m-eternal domination number for a graph G is the minimum amount of guards such that they win against any attacker strategy in G (all guards move model). We study rectangular grids and provide the first known general upper bound on the m-eternal domination number for these graphs. Our novel strategy implements a square rotation principle and eternally dominates m×n grids by using approximately [Formula presented] guards, which is asymptotically optimal even for ordinary domination

    Perpetually Dominating Large Grids

    Get PDF
    In the m-\emph{Eternal Domination} game, a team of guard tokens initially occupies a dominating set on a graph GG. An attacker then picks a vertex without a guard on it and attacks it. The guards defend against the attack: one of them has to move to the attacked vertex, while each remaining one can choose to move to one of his neighboring vertices. The new guards' placement must again be dominating. This attack-defend procedure continues eternally. The guards win if they can eternally maintain a dominating set against any sequence of attacks, otherwise, the attacker wins. The m-\emph{eternal domination number} for a graph GG is the minimum amount of guards such that they win against any attacker strategy in GG (all guards move model). We study rectangular grids and provide the first known general upper bound on the m-eternal domination number for these graphs. Our novel strategy implements a square rotation principle and eternally dominates m×nm \times n grids by using approximately mn5\frac{mn}{5} guards, which is asymptotically optimal even for ordinary domination.Comment: latest full draft versio

    A method for eternally dominating strong grids

    Get PDF
    International audienceIn the eternal domination game, an attacker attacks a vertex at each turn and a team of guards must move a guard to the attacked vertex to defend it. The guards may only move to adjacent vertices and no more than one guard may occupy a vertex. The goal is to determine the eternal domination number of a graph which is the minimum number of guards required to defend the graph against an infinite sequence of attacks. In this paper, we continue the study of the eternal domination game on strong grids. Cartesian grids have been vastly studied with tight bounds for small grids such as 2×n, 3×n, 4×n, and 5×n grids, and recently it was proven in [Lamprou et al., CIAC 2017, 393-404] that the eternal domination number of these grids in general is within O(m + n) of their domination number which lower bounds the eternal domination number. Recently, Finbow et al. proved that the eternal domination number of strong grids is upper bounded by mn 6 + O(m + n). We adapt the techniques of [Lamprou et al., CIAC 2017, 393-404] to prove that the eternal domination number of strong grids is upper bounded by mn 7 + O(m + n). While this does not improve upon a recently announced bound of ⎡m/3⎤ x⎡n/3⎤ + O(m √ n) [Mc Inerney, Nisse, Pérennes, HAL archives, 2018; Mc Inerney, Nisse, Pérennes, CIAC 2019] in the general case, we show that our bound is an improvement in the case where the smaller of the two dimensions is at most 6179

    Protecting a Graph with Mobile Guards

    Full text link
    Mobile guards on the vertices of a graph are used to defend it against attacks on either its vertices or its edges. Various models for this problem have been proposed. In this survey we describe a number of these models with particular attention to the case when the attack sequence is infinitely long and the guards must induce some particular configuration before each attack, such as a dominating set or a vertex cover. Results from the literature concerning the number of guards needed to successfully defend a graph in each of these problems are surveyed.Comment: 29 pages, two figures, surve

    A method for eternally dominating strong grids

    Get PDF
    International audienceIn the eternal domination game, an attacker attacks a vertex at each turn and a team of guards must move a guard to the attacked vertex to defend it. The guards may only move to adjacent vertices and no more than one guard may occupy a vertex. The goal is to determine the eternal domination number of a graph which is the minimum number of guards required to defend the graph against an infinite sequence of attacks. In this paper, we continue the study of the eternal domination game on strong grids. Cartesian grids have been vastly studied with tight bounds for small grids such as 2×n, 3×n, 4×n, and 5×n grids, and recently it was proven in [Lamprou et al., CIAC 2017, 393-404] that the eternal domination number of these grids in general is within O(m + n) of their domination number which lower bounds the eternal domination number. Recently, Finbow et al. proved that the eternal domination number of strong grids is upper bounded by mn 6 + O(m + n). We adapt the techniques of [Lamprou et al., CIAC 2017, 393-404] to prove that the eternal domination number of strong grids is upper bounded by mn 7 + O(m + n). While this does not improve upon a recently announced bound of ⎡m/3⎤ x⎡n/3⎤ + O(m √ n) [Mc Inerney, Nisse, Pérennes, HAL archives, 2018; Mc Inerney, Nisse, Pérennes, CIAC 2019] in the general case, we show that our bound is an improvement in the case where the smaller of the two dimensions is at most 6179

    Perpetually Dominating Large Grids

    Get PDF
    In the Eternal Domination game, a team of guard tokens initially occupies a dominating set on a graph G. A rioter then picks a node without a guard on it and attacks it. The guards defend against the attack: one of them has to move to the attacked node, while each remaining one can choose to move to one of his neighboring nodes. The new guards' placement must again be dominating. This attack-defend procedure continues perpetually. The guards win if they can eternally maintain a dominating set against any sequence of attacks, otherwise the rioter wins. We study rectangular grids and provide the first known general upper bound for these graphs. Our novel strategy implements a square rotation principle and eternally dominates m x n grids by using approximately (mn)/5 guards, which is asymptotically optimal even for ordinary domination

    Bounds for the mm-Eternal Domination Number of a Graph

    Get PDF
    Mobile guards on the vertices of a graph are used to defend the graph against an infinite sequence of attacks on vertices. A guard must move from a neighboring vertex to an attacked vertex (we assume attacks happen only at vertices containing no guard and that each vertex contains at most one guard). More than one guard is allowed to move in response to an attack. The mm-eternaldomination number, \edom(G), of a graph GG is the minimum number of guards needed to defend GG against any such sequence. We show that if GG is a connected graph with minimum degree at least~22 and of order~n5n \ge 5, then \edom(G) \le \left\lfloor \frac{n-1}{2} \right\rfloor, and this bound is tight. We also prove that if GG is a cubic bipartite graph of order~nn, then \edom(G) \le \frac{7n}{16}

    Mobility Problems in Distributed Search and Combinatorial Games

    Get PDF
    This thesis examines a collection of topics under the general notion of mobility of agents. We examine problems where a set of entities, perceived as robots or tokens, navigate in some given (discrete or continuous) environment to accomplish a goal. The problems we consider fall under two main research fields. First, Distributed Search where the agents cooperate to explore their environment or search for a specific target location within it. Second, Combinatorial Games, in the spirit of Pursuit-Evasion, where the agents are now divided into two groups with complementary objectives competing against each other. More specifically, we consider three distinct problems: disk evacuation, exploration of dynamic graphs and eternal domination. In Disk Evacuation, two robots with different speeds aim to discover an unknown exit lying on the boundary of a unit disk. For a wide range of speeds, we provide matching upper and lower bounds. In Dynamic Graph Exploration, we analyze the exploration time for a randomly-walking agent wishing to visit all the vertices of a stochastically-evolving graph. In Eternal Domination, we consider rectangular grid graphs and upper bound the amount of guard agents needed to perpetually defend the vertices against an attacker

    Um problema de dominação eterna : classes de grafos, métodos de resolução e perspectiva prática

    Get PDF
    Orientadores: Cid Carvalho de Souza, Orlando LeeTese (doutorado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: O problema do conjunto dominante m-eterno é um problema de otimização em grafos que tem sido muito estudado nos últimos anos e para o qual se têm listado aplicações em vários domínios. O objetivo é determinar o número mínimo de guardas que consigam defender eternamente ataques nos vértices de um grafo; denominamos este número o índice de dominação m-eterna do grafo. Nesta tese, estudamos o problema do conjunto dominante m-eterno: lidamos com aspectos de natureza teórica e prática e abordamos o problema restrito a classes especícas de grafos e no caso geral. Examinamos o problema do conjunto dominante m-eterno com respeito a duas classes de grafos: os grafos de Cayley e os conhecidos grafos de intervalo próprios. Primeiramente, mostramos ser inválido um resultado sobre os grafos de Cayley presente na literatura, provamos que o resultado é válido para uma subclasse destes grafos e apresentamos outros achados. Em segundo lugar, fazemos descobertas em relação aos grafos de intervalo próprios, incluindo que, para estes grafos, o índice de dominação m-eterna é igual à cardinalidade máxima de um conjunto independente e, por consequência, o índice de dominação m-eterna pode ser computado em tempo linear. Tratamos de uma questão que é fundamental para aplicações práticas do problema do conjunto dominante m-eterno, mas que tem recebido relativamente pouca atenção. Para tanto, introduzimos dois métodos heurísticos, nos quais formulamos e resolvemos modelos de programação inteira e por restrições para computar limitantes ao índice de dominação m-eterna. Realizamos um vasto experimento para analisar o desempenho destes métodos. Neste processo, geramos um benchmark contendo 750 instâncias e efetuamos uma avaliação prática de limitantes ao índice de dominação m-eterna disponíveis na literatura. Por m, propomos e implementamos um algoritmo exato para o problema do conjunto dominante m-eterno e contribuímos para o entendimento da sua complexidade: provamos que a versão de decisão do problema é NP-difícil. Pelo que temos conhecimento, o algoritmo proposto foi o primeiro método exato a ser desenvolvido e implementado para o problema do conjunto dominante m-eternoAbstract: The m-eternal dominating set problem is a graph-protection optimization problem that has been an active research topic in the recent years and reported to have applications in various domains. It asks for the minimum number of guards that can eternally defend attacks on the vertices of a graph; this number is called the m-eternal domination number of the graph. In this thesis, we study the m-eternal dominating set problem by dealing with aspects of theoretical and practical nature and tackling the problem restricted to specic classes of graphs and in the general case. We examine the m-eternal dominating set problem for two classes of graphs: Cayley graphs and the well-known proper interval graphs. First, we disprove a published result on the m-eternal domination number of Cayley graphs, show that the result is valid for a subclass of these graphs, and report further ndings. Secondly, we present several discoveries regarding proper interval graphs, including that, for these graphs, the m- eternal domination number equals the maximum size of an independent set and, as a consequence, the m-eternal domination number can be computed in linear time. We address an issue that is fundamental to practical applications of the m-eternal dominating set problem but that has received relatively little attention. To this end, we introduce two heuristic methods, in which we propose and solve integer and constraint programming models to compute bounds on the m-eternal domination number. By performing an extensive experiment to validate the features of these methods, we generate a 750-instance benchmark and carry out a practical evaluation of bounds for the m-eternal domination number available in the literature. Finally, we propose and implement an exact algorithm for the m-eternal dominating set problem and contribute to the knowledge on its complexity: we prove that the decision version of the problem is NP-hard. As far as we know, the proposed algorithm was the first developed and implemented exact method for the m-eternal dominating set problemDoutoradoCiência da ComputaçãoDoutor em Ciência da Computação141964/2013-8CAPESCNP
    corecore