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Abstract

Mobility Problems in Distributed Search and Combinatorial Games

by Ioannis Lamprou

This thesis examines a collection of topics under the general notion of mobility of agents.
We examine problems where a set of entities, perceived as robots or tokens, navigate in
some given (discrete or continuous) environment to accomplish a goal. The problems we
consider fall under two main research fields. First, Distributed Search where the agents
cooperate to explore their environment or search for a specific target location within it.
Second, Combinatorial Games, in the spirit of Pursuit-Evasion, where the agents are now
divided into two groups with complementary objectives competing against each other. More
specifically, we consider three distinct problems: disk evacuation, exploration of dynamic
graphs and eternal domination.

In Disk Evacuation, two robots with different speeds aim to discover an unknown exit
lying on the boundary of a unit disk. For a wide range of speeds, we provide matching
upper and lower bounds. In Dynamic Graph Exploration, we analyze the exploration time
for a randomly-walking agent wishing to visit all the vertices of a stochastically-evolving
graph. In Eternal Domination, we consider rectangular grid graphs and upper bound the
amount of guard agents needed to perpetually defend the vertices against an attacker.
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Chapter 1

Introduction

Mobility is a pivotal notion in today’s world: The technological advancements in the last
century have provided the framework for human and, most importantly, non-human entities,
also called (mobile) agents (e.g., software or robots), to engage in a plethora of scenarios.
The agents have a certain set of capabilities and they move over time and through space
in order to accomplish a designated goal. Mobility problems are ubiquitous: Nowadays,
easy to obtain low-cost machines, each with very limited functionality, can nonetheless
be powerful enough to perform complex tasks when put together. Applications arise in
areas as diverse as network security [20] and cave exploration [24], web caching [59] and
search-and-rescue [77], and, distributed networking [92] and disaster mitigation [57].

However, computing such moving schemes of good quality, in terms of time, space or
other resources used, may be a mission of significant difficulty due to various (and possibly
conflicting) requirements. It is this problem that Theoretical Computer Science aims to
resolve. That is, we seek to provide optimal and well-designed strategies in order for
the agents to perform efficiently their respective goal. To do so, we employ techniques
from the fields of Algorithm Design and Distributed Computing. Depending on the task
in question, a rigorous analysis of such strategies may be based on several mathematical
tools like Discrete/Continuous Optimization, Graph Theory, Geometry, and others. Other
features, like the environment or the entities’ capabilities, may also have crucial impact
on the proposed strategies. Overall, the design and analysis of such routines is proven to
be a multifaceted research direction of ever-growing importance due to advancements in
technology and networking leaning toward more and more distributed settings.

In the context of this thesis, the research interest lies in optimization settings where
agents navigate within a certain environment and either cooperate or fight against each
other to perform a certain task. The research aspect for such problems is twofold. That
is, we wish to devise strategies enabling the agents to perform their task efficiently and,
at the same time, we seek to produce results correlating task efficacy to properties of the
environment. The focus of this thesis is on problems arising in two main areas, namely
Distributed Search and Combinatorial Games.

1



2 Ioannis Lamprou

1.1 Distributed Search

Imagine a scenario where a set of agents is initially placed in a specific spatial environment.
The latter could be either discrete, e.g., a graph in the sense that it represents a network
topology or continuous, e.g., a subspace of Euclidean space, in the sense that it depicts an
actual geographical setting. The agents need to perform a certain search task within their
environment. Examples of such tasks include searching for a specific target, discovering
some part of or the whole environment, meeting at a specific place, that is, arranging a
rendezvous, and agreeing on a property of the environment.

The topology itself is merely one obstacle toward the efficient completion of a task.
The way the agents communicate with each other is another. Communication settings
include wireless communication, where the agents can contact each other at any time, face-
to-face communication, where the agents can only interact when they physically meet in
the environment, and finally settings where an agent can leave a note (sometimes called
pebble [16]) for another agent to read when it arrives there. Different communication
protocols may, indeed, significantly affect the complexity of resolving a task.

Further crucial attributes for the performance of a task comprise the (possibly limited)
memory of the agents, their speed, e.g., it might not be the same for every agent, and
dynamic changes to the environment in which the task takes place, e.g., a task taking place
in a temporal network [96].

The aforementioned set of problems is mostly met in literature under the (Distributed)
Search Problems theme. The research objective is to design efficient, optimal, (distributed)
algorithms, which formally define the actions followed by each agent to perform the task in
question. A seminal paper on a search problem for the continuous case can be found in [8];
see [94] for a seminal example on the discrete case. In books [4,5], various search problems
are surveyed in a game theoretic perspective.

In this thesis, we examine two problems in the above context. In Chapter 2, we study a
disk evacuation setting [86], where two robots with different speeds search for an unknown
exit on the boundary of a disk. In Chapter 3, we consider an exploration situation [90],
where a single randomly-moving robot traverses a stochastically-evolving dynamic graph.

1.2 Combinatorial Games

Let us now consider another setting where the set of agents is partitioned into two opposing
teams playing against each other in rounds. A team of k agents and another of a sole agent.
The former seek to capture the latter, while the latter strives to perpetually evade this
outcome. The just sketched Cops & Robber game [19] is a classic combinatorial game of
which many variants have been surveyed. A first result was the characterization of 1-cop
winning graphs, independently made by Nowakowski and Winkler [99], and Quillot [102].
Aigner and Fromme [1] proved that three cops suffice to capture the robber in any planar
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graph. Meyniel conjectured that roughly
√
n guards suffice to capture the robber in any

given graph with n vertices. The conjecture remains widely open for almost forty years,
despite some relatively recent progress [93,105].

In general, Combinatorial Game Theory [2] is interested in games where two players
play alternately and both enjoy perfect information over the game. At each turn, each
player is familiar with the current and all previous game configurations and picks an action
out of a set of publicly known predefined actions. Nevertheless, visibility-less versions have
also been studied: for an example see [75]. Furthermore, the games are deterministic in the
sense that no action performed is dependent on any source of randomness. By the end of
the game, one player wins and the other loses; there may be no tie. Our main interest lies
in the area of Pursuit-Evasion Games [100], where token mobility is a cornerstone for the
analysis. Similarly to distributed search, the environment of the game is critical toward
determining its key features: there is a great amount of literature in the continuous, e.g.,
starting from Littlewood’s lion and man problem [18], as well as in the discrete case [60].
Further, for applications in the area of mobile robotics, see [35].

In Chapter 4, we examine such a game on the topic of graph protection [87]. The
motivation for studying such a game goes back to the Roman Empire and the defence
strategies of Emperor Constantine I [103,108] and is applicable to similar military policies
nowadays. In the Eternal Domination Game [28], a set of tokens, the guards, lie on a graph,
while an invisible rioter attacks a single vertex in each turn. Guards win if at least one of
them can always immediately visit a just attacked vertex. The rioter wins, otherwise.

1.3 Preliminaries

1.3.1 Graph Theory

We now provide some preliminary graph theory notions that we later use in Chapters 3,4.
Let G = (V (G), E(G)) be a simple connected undirected graph. We denote an edge

between two connected vertices, namely v and u, as (u, v) ∈ E(G), or equivalently (v, u).
The open neighborhood of a subset of vertices S ⊆ V (G) is defined as N(S) = {v ∈

V (G) \ S : ∃u ∈ S such that (u, v) ∈ E(G)} and the closed neighborhood as N [S] =

S ∪ N(S). For a single vertex v ∈ V (G), we simplify the notation N({v}) to N(v) and,
similarly, N [{v}] to N [v]. By d(v), we denote the degree, i.e., the number of neighbors, of
a vertex v ∈ V . In other words, d(v) = |N(v)|.

A path of length n−1 ∈ N, namely Pn, is a graph where V (Pn) = {v0, v1, . . . , vn−1} and
E(Pn) = {(v0, v1), (v1, v2), . . . , (vn−2, vn−1)}. The Cartesian product of two graphs G and
H is another graph denoted G2H where V (G2H) = V (G)×V (H) and two vertices (v, v′)

and (u, u′) are adjacent if either v = u and (v′, u′) ∈ E(H) or v′ = u′ and (v, u) ∈ E(G).
A grid, namely Pm2Pn, is the Cartesian product of two paths of lengths m− 1, n− 1 ∈ N.

A subset of vertices for which all possible edges are present is called a clique.
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A set of vertices S ⊆ V (G) is called a dominating set of G if N [S] = V (G). That is, for
each v ∈ V (G), either v ∈ S or there exists a vertex u ∈ S (u 6= v) such that (u, v) ∈ E(G).
A minimum-size such set, say S∗, is called a minimum dominating set of G and γ(G) = |S∗|
is defined as the domination number of G. For grids, we simplify γ(Pm2Pn) to γm,n.

A lollipop graph Lkn consists of a clique on k vertices and a path on n − k vertices
connected with a cut-edge, i.e., an edge whose deletion makes the graph disconnected.

For any disambiguation or further information on basic graph-theoretic notions, the
reader is referred to a graph theory textbook, e.g., [21, 112].

1.3.2 Random Walks

Let us hereby define a few standard notions related to a simple random walk performed by
a single agent on a simple connected graph G = (V,E) (for use in Chapter 3).

A simple random walk is a Markov chain where, for v, u ∈ V , we set pvu = 1/d(v), if
(v, u) ∈ E, and pvu = 0, otherwise. That is, an agent performing the walk chooses the
next vertex to visit uniformly at random amongst the set of neighbors of its current vertex.
Given two vertices v, u, the expected time for a random walk starting from v to arrive at u
is called the hitting time from v to u and is denoted by Hvu. The cover time of a random
walk is the expected time until the agent has visited each vertex of the graph at least once.

Let P stand for the stochastic matrix describing the transition probabilities for a random
walk (or, in general, a discrete-time Markov chain) where pij denotes the probability of
transition from vertex i to vertex j, pij ≥ 0 for all i, j and

∑
j pij = 1 for all i. Then, the

matrix P t consists of the transition probabilities to move from one vertex to another after
t time steps and we denote the corresponding entries as p(t)

ij . Asymptotically, limt→∞ P
t is

referred to as the limiting distribution of P .
For a general introduction to Markov chains, we cite textbooks [68,98].

1.4 Summary of Results

In the paragraphs below, we provide a short summary for each topic examined in this thesis.

Disk Evacuation. In the fast evacuation problem, we study the path planning problem
for two robots who want to minimize the worst-case evacuation time on the unit disk, that
is, the time till both of them evacuate. The robots are initially placed at the center of the
disk. In order to evacuate, they need to reach an unknown point, the exit, on the boundary
of the disk. Once one of the robots finds the exit, it will instantaneously, i.e., using wireless
communication, notify the other agent who will then follow a straight line to it.

The problem has been studied for robots with the same speed [42]. We study a more
general case where one robot has speed 1 and the other has speed s ≥ 1. We provide
optimal evacuation strategies in the case that s ≥ c2.75 ≈ 2.75 by showing matching upper
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and lower bounds on the worst-case evacuation time. For 1 ≤ s < c2.75, we show (non-
matching) upper and lower bounds on the evacuation time with a ratio less than 1.22.
Moreover, we demonstrate that a different-speeds generalization of the two-robot search
strategy from [42] is outperformed by our proposed strategies for any s ≥ c1.71 ≈ 1.71.

The above work is presented in Chapter 2. An extended abstract appeared at the
30th International Symposium on Distributed Computing (DISC 2016) [86] coauthored with
Russell Martin and Sven Schewe. A full version has been submitted to Theoretical Computer
Science.

Dynamic Graph Exploration. We define a general model of stochastically-evolving
graphs, namely the Edge-Uniform Stochastically-Evolving Graphs. In this model, each
possible edge of an underlying general static graph evolves independently being either alive
or dead at each discrete time step of evolution following a (Markovian) stochastic rule.
The stochastic rule is identical for each possible edge and may depend on the past k ≥ 0

observations of the edge’s state.
We examine two kinds of random walks for a single agent taking place in such a dynamic

graph: (i) The Random Walk with a Delay (RWD), where at each step the agent chooses
(uniformly at random) an incident possible edge, i.e., an incident edge in the underlying
static graph, and then it waits till the edge becomes alive to traverse it. (ii) The more
natural Random Walk on what is Available (RWA) where the agent only looks at alive
incident edges at each time step and traverses one of them uniformly at random. Our
study is on bounding the cover time, i.e., the expected time until each vertex is visited at
least once by the agent.

For RWD, we provide a first upper bound for the cases k = 0, 1 by correlating RWD
with a simple random walk on a static graph. Moreover, we present a modified electrical
network theory capturing the k = 0 case.

For RWA, we derive some first bounds for the case k = 0, by reducing RWA to an
RWD-equivalent walk with a modified delay. Further, we also provide a framework shown
to compute the exact value of the cover time for a general family of stochastically-evolving
graphs in exponential time.

The above work appears in Chapter 3. An extended abstract was presented at the
19th International Symposium on Stabilization, Safety, and Security of Distributed Systems
(SSS 2017) [90] coauthored with Russell Martin and Paul Spirakis. A journal version was
published at Algorithms [91].

Eternal Domination. In the m-Eternal Domination game, a team of guard tokens at
first occupies a dominating set on a graph G. An attacker then picks a vertex without
a guard on it and attacks it. The guards defend against the attack: one of them has to
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move to the attacked vertex, while each remaining one can choose to move to one of his
neighboring vertices. The new guards’ placement must again be dominating. This attack-
defend procedure continues eternally. The guards win if they can eternally maintain a
dominating set against any sequence of attacks, otherwise the attacker wins.

The m-eternal domination number for a graph G is the minimum amount of guards
such that they win against any attacker strategy in G in the above described all guards
move model. We study rectangular grids and provide the first known general upper bound
on the m-eternal domination number for such graphs. Our novel strategy implements a
square rotation principle and eternally dominates m× n grids by using approximately mn

5

guards, which is asymptotically optimal even for ordinary domination.

The above work appears in Chapter 4. An extended abstract appeared at the 10th
International Conference on Algorithms and Complexity (CIAC 2017) [87] coauthored with
Russell Martin and Sven Schewe. A full version is now in press at Theoretical Computer
Science [88].

Ultimately, in Chapter 5, we discuss some concluding remarks on the notion of mobility
of tokens. Also, we converse about potentially new lines of research within the context of
Distributed Search and Combinatorial Games.

On a side note, in [89], we study an optimization problem, whose motivation also stems
from mobility concepts in combinatorial games. This last work is not included in this thesis
for cohesion of the subject matter purposes.



Chapter 2

Disk Evacuation

2.1 Introduction

Consider a pair of mobile robots in an environment represented by a circular disk of unit
radius. The goal of the robots is to find an exit, i.e., a point at an unknown location on the
boundary of the disk, and both move to this exit. The exit is only recognized when a robot
visits it. The robots’ aim is to accomplish this task as quickly as possible. This problem is
referred to as the evacuation problem. The robots start at the center of the disk and can
move with a speed not exceeding their maximum velocity, which may be different from one
another. They can coordinate their actions in any manner they like, and can communicate
wirelessly (instantaneously).

2.1.1 Related work

Evacuation belongs to the realm of distributed search problems, which have a long history
in mathematics, computer science, and operations research, see, e.g., [13–15].

Salient features in search problems include the environment (a geometric one or graph-
based), mobility of the robots (how they are allowed to move), perception of and interac-
tion with the environment, and their computational and communication abilities. Model
tasks include exploring and mapping an unknown environment or finding a (mobile or
immobile) target. Examples include cops and robbers games [19] and pursuit-evasion
games [100], the “lost at sea” problem [64], the cow-path problem and the plane-searching
problem [8, 22, 76, 78]. Other tasks are rendezvous or gathering of mobile agents [84, 85]
and evacuation [33, 42, 47]. (Note that we distinguish between the distributed version of
evacuation problems involving a search for an unknown exit, and centralized versions typi-
cally modeled as (dynamic) capacitated flow problems on graphs, where the exit is known.)
A general survey of search and rendezvous problems can be found in [5]. Another related
problem is the task of patrolling or monitoring, i.e., the periodic (re)visitation of (part of)
the environment [32,43,114].

7
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In most of these settings, the typical cost is the time required to finish the task (in a
synchronous environment), or the total distance moved by the robots to finish it (in an
asynchronous setting). Patrolling has a different “cost”, the time between consecutive visits
to any point in the region, the so-called “idle time”.

A little explored feature of the robots is their speed. Most past work has focused on
the case where all robots share the same (maximal) speed. Notable exceptions of which
the authors are aware include [33], which considers the evacuation problem on the infinite
line with robots with distinct maximal speeds, [43], which introduces a non-intuitive ring
patrolling strategy using three robots with distinct maximal speeds, and [53,74], where the
rendezvous problem with different speeds in a cycle is studied. It is this feature, robots
with different maximal speeds, that we explore in this paper. Such a feature makes our
model more general and applicable to real-life scenarios.

The most relevant line of work explores the evacuation problem in the unit disk with
two robots with identical speeds. The wireless communication model is studied in [42],
where they provide an optimal evacuation strategy. The face-to-face communication model
is examined in [23,42,47]. In this case, the strategies provided are nearly optimal, yet exact
optimality seems to be very difficult to obtain. Hence, a more recent work [34] turns the
attention to average-case analysis and discusses its trade-offs with respect to worst-case.

In recent years, many other variations of the problem have appeared in the literature
such as first locating a treasure and then evacuating it via the exit [61, 62], evacuating
a designated robot first due to security priorities [45, 46], evacuating via two unknown
exits [101], and evacuating in the presence of a faulty robot [44].

2.1.2 Our results

We consider the evacuation problem in the unit disk using two robots with distinct maximal
speeds: one with speed 1, the second with speed s ≥ 1. The robots share a common clock
and can communicate instantaneously when they have found the exit (wireless communica-
tion) and so can synchronize their behavior in the evacuation procedure. We assume that
the robots can measure distances to an arbitrary precision (equivalently, they can measure
time to an arbitrary precision), and can vary their speeds as they desire, up to their maxi-
mum speed. A necessity for robots to travel with less than optimal speed could emerge if
further constraints are added to the model, e.g., communication radius restrictions where a
faster robot might need to slow down to remain near a slower robot in order to be able to
maintain an open communication channel. Note that, in our bounds to follow, the robots
always travel at maximum speed.

We show that, even in the case of two robots, the analysis involved in finding (time)
optimal evacuation strategies can become intricate with strategies that depend on the ratio
of the fast robot’s to the slow robot’s maximal speed. For large s, we introduce an efficient
and non-obvious search strategy, called the Half-Chord Strategy, see Figure 2.1. For small
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s, we generalize a strategy from [42], namely the Both-to-the-Same-Point Strategy (BSP),
where the two robots move to the same point on the boundary and then separately explore
the boundary in clockwise and counterclockwise directions to find the exit (Figure 2.4a). For
values of s ≥ c1.86 (with c1.86 ≈ 1.856), we show that BSP is not optimal by demonstrating
that the Half-Chord Strategy is superior to it. Moreover, we improve on this with the
Fast-Chord Strategy (Figure 2.5), which outperforms Half-Chord for 1.71 ≈ c1.71 < s <

c2.07 ≈ 2.07. We obtain optimality for all s ≥ c2.75 ≈ 2.75, in the wireless setting, as we
demonstrate matching upper and lower bounds on the evacuation time. For s ∈ (1, c2.75), we
provide lower bounds on the evacuation time that do not match the upper bounds provided
by the respective search strategies (BSP for s < c1.71, Fast-Chord for s ∈ [c1.71, c2.07), and
Half-Chord for s ≥ c2.07). The worst ratio between our upper and lower bound, 1.22, is
realized for s = c1.71.

Section 2.2 contains a more formal definition of the problem we consider. Section 2.3
contains our upper bounds on the evacuation time, while Section 2.4 has our lower bounds.
Finally, Section 2.5 contains a comparison of all obtained bounds and Section 2.6 concludes
with some further work suggestions.

2.2 Problem Definition and Strategy Space

In this section, we define the problem in question and discuss the robots’ capabilities.
Furthermore, we provide a partition of the strategy space and some observations which will
be useful in the bounds to follow.

Definition 1. An “evacuation strategy” is an algorithm which describes how each robot
moves such that both robots have evacuated the disk at the end of its execution. A “main
evacuation strategy” is an algorithm which describes each robot moves up and until the point
where one of the robots has discovered the exit.

A main evacuation strategy is simply a description of the movement of both robots
that respects their speed limits, such that every point on the boundary is eventually visited
by at least one robot. A (full) evacuation strategy includes, for each possible exit point,
a description of the movement of the agents after the discovery of the exit point. While
this second part makes (full) evacuation strategies an uncountable family of movement
descriptions, parameterized by the exit point, the optimal movement in this second part is
obviously a straight line to the exit, cf. Remark 1, such that we focus on finding a good
main evacuation strategy.

Definition 2 (The Fast Evacuation Problem). Given a unit disk and two robots starting
at its center (the former with maximum speed s ≥ 1 and the latter with maximum speed
1), provide an evacuation strategy such that both robots reach an unknown exit lying on a
boundary point of the disk.
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The two robots, called Fast and Slow, occupy the size of a single point, are allowed to
move within the entire unit disk with a speed up to their maximal one, can only identify
the exit when they stand on it, and can communicate wirelessly at any time. Notice that a
robot is aware whether it assumes the role of Fast or Slow and executes the corresponding
part of the evacuation strategy. The robots can recognize whether their current location is
an interior or a boundary point, can measure distances and time to an arbitrary precision,
and have a common perception of time.

The following remark is a direct consequence of the disk environment and the wireless
communication used by the robots.

Remark 1. In any evacuation strategy, when either robot discovers the exit, the optimal
strategy of the other one immediately reduces to following a straight line to the exit.

We now proceed with identifying key aspects of potential strategies.

Definition 3. A “both-explore” strategy is a strategy for both robots to evacuate the disk,
where (in the worst-case) each of them explores at least two distinct points on the boundary.
We define the set of all both-explore strategies as BES.

Definition 4. A “fast-explores” strategy is a strategy where only Fast explores the boundary
searching for the exit. At no time during the execution of the algorithm does Slow visit a
point on the boundary other than the exit point. We define the set of all fast-explores
strategies as FES.

Definition 5. A “slow-explores” strategy is a strategy where only Slow explores the boundary
searching for the exit. At no time during the execution of the algorithm does Fast visit a
point on the boundary other than the exit point. We define the set of all slow-explores
strategies as SES.

Notice that, for s = 1, if only one robot explores the boundary, we randomly assign such
a strategy to FES or SES. Below, let ALL stand for the set of all evacuating strategies.

Proposition 1. (BES,FES, SES) forms a partition of ALL.

Proof. BES,FES and SES are pairwise disjoint, since if only Fast or Slow explores, then
both do not explore, and if only Fast explores, then Slow does not, and vice versa.

ALL = BES ∪ FES ∪ SES, since for any possible strategy at least one robot explores
the boundary.

We remark that, when considering SES and FES strategies, it can become a burden
to forcefully keep the non-exploring robot away from the boundary. For example, if we only
want Slow to explore in an SES strategy, the optimal behavior of Fast would be to mimic
the behavior of Slow. For FES strategies with s ≤ 2, it also proves to be most natural to
allow Slow to move on the boundary, but to ignore it when Slow finds the exit first. For
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this reason we use FES and SES strategies in this sense. Alternatively, one could also let
the non-exploring robot move ε-close to the boundary.

We do not consider SES strategies in our analysis. An optimal SES strategy is to have
Slow go to the boundary and explore it (counter) clockwise. Fast follows Slow up to an
infinitesimally small distance ε > 0 always staying within the disk interior. The worst case
time is limε→0(1 + 2π + ε) = 1 + 2π.

2.3 Upper Bounds

As a warm-up, consider a "mimic" strategy as a first fast-explores strategy. Both robots set
out from the disk center toward the boundary on the same direction each with maximum
speed. When Fast reaches the boundary, Slow stops as well. From now on, as Fast explores
the boundary in (counter) clockwise fashion, Slow "mimics" Fast’s movement by moving
on the boundary of a smaller disk with the same center, but with radius 1/s instead of
1. When Fast discovers the exit, Slow lies on the corresponding point on the smaller disk
and takes a direct line segment of length 1− 1/s = (s− 1)/s to it, i.e., Slow traverses the
remaining part of a unit disk radius. Overall, in the worst-case, Fast just misses the exit
and has to traverse the whole boundary. It takes 1/s time for Fast to initially reach the
boundary, 2π/s for Fast to traverse the boundary and another (s− 1)/s for Slow to reach
the exit. Altogether, we get a 1 + 2π/s evacuation time.

In the next subsection, we present a more convoluted strategy which outperforms the
just described one. Intuitively, the improvement is derived by modifying the behavior of
Slow. Instead of mimicking Fast throughout the whole boundary exploration, Slow now
tries to be near enough Fast only during the final stages of exploration, that is, when the
worst case scenario emerges.

2.3.1 The Half-Chord Strategy for s ∈ [2,∞)

We now present an FES strategy which we later prove optimal for big enough values of
s. The idea for this strategy stems from the proof of the FES lower bound to follow
(Lemma 7). When there exists a long chord between two yet unexplored endpoints, an
adaptive adversary might place the exit in either endpoint for Fast to discover. In this
case, the optimal play for Slow is to be on the midpoint of this chord in order to minimize
the time needed till it also reaches the exit.

In the Half-Chord strategy, Fast explores the boundary counter clockwise. On the other
hand, Slow follows a trajectory with nice properties and reaches the midpoint of a carefully
chosen chord whose endpoints capture worst-case evacuation scenarios. Slow reaches the
chord midpoint exactly when Fast reaches one of the endpoints (Proposition 2). Then, in
the worst-case, Slow has to traverse half the length of this chord to reach the exit (after
the exit location is communicated by Fast).
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•

•

•
•

•O

C
B

A

M

Figure 2.1: The Half-Chord Strategy

The worst-case analysis is performed for s ∈ [2,∞). For the strategy details below,
please refer to Figure 2.1. The center of the disk is denoted by O. Fast’s trajectory is given
with double arrows, while Slow’s is given with single arrows. Unless otherwise stated, all
angles and arcs are considered in counterclockwise order.

The Strategy. Initially, both robots move in straight lines with an angle φ := ]BOC =

π + 1/2 between them until Fast reaches the boundary, that is, for 1
s time. Let B be the

first boundary point reached by Fast. From now on, Fast’s strategy reduces to exploring
the boundary. On the other hand, Slow continues on its straight line for another 1

s time
until it reaches point C, where |OC|= 2

s . Afterward, for another 2 arccos(−2/s)−1
s time, it

takes an arc from C to M on the disk with radius 2
s centered at O (from now on referred

to as disk (O, 2
s )). Finally, Slow traverses MB. Note that, in Figure 2.1, A is the point

with arc distance 2 arccos
Ä
−2
s

ä
from B.

In Algorithm 2.1, respectively Algorithm 2.2, we provide a more structured and formal
main evacuation strategy for Fast, respectively Slow. Bear in mind that if at any time Fast
locates the exit, it instantly terminates and informs Slow of the exit location. Then, due
to Remark 1, Slow’s strategy reduces to following a straight line to the exit.

Algorithm 2.1: Half-Chord for Fast robot
1: Fast lies on point O at time t = 0
2: for t ∈

î
0, 1

s

ó
do

3: Fast traverses line segment OB
4: end for
5: Fast lies on point B at time t = 1

s

6: for t ∈
Ä

1
s ,

1+2π
s

ó
do

7: Fast traverses the disk boundary counterclockwise
8: end for
9: After exploring the whole boundary, Fast reaches B again at time t = 1+2π

s

Proposition 2. Fast reaches A exactly when Slow reaches M .
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Algorithm 2.2: Half-Chord for Slow robot
1: Slow lies on point O at time t = 0

2: for t ∈
î
0, 2

s

ó
do

3: Slow traverses line segment OC // Phase I
4: end for
5: Slow lies on point C at time t = 2

s

6: for t ∈
(

2
s ,

1+2 arccos(−2/s)
s

]
do

7: Slow traverses arc C̄M on disk
Ä
O, 2

s

ä
// Phase II

8: end for
9: Slow lies on point M at time t = 1+2 arccos(−2/s)

s

10: for t ∈
(

1+2 arccos(−2/s)
s , 1+2π

s

]
do

11: Slow traverses line segment MB // Phase III
12: end for

Proof. Fast reaches A after 1+2 arccos(−2/s)
s time, since it takes 1

s time for it to traverse OB
and 2 arccos(−2/s)

s time to traverse B̄A. Slow reaches C after time 2
s . Then, by Algorithm 2.2,

it traverses C̄M for another 1
s (2 arccos(−2/s)− 1) time for a total of 1+2 arccos(−2/s)

s .

Proposition 3. M is the midpoint of chord AB.

Proof. By the strategy, we get |C̄M |= 1
s (2 arccos(−2/s)−1). Since we work on disk (O, 2

s ),
the corresponding angle is ]COM = s

2 |C̄M |= arccos(−2/s) − 1/2. Let us now consider
a parametric representation of the two disks (O, 1) and (O, 2

s ). In such a representation,
based on our strategy, we get the following coordinates for point C:

C =

Å
2

s
cos(π + 1/2),

2

s
sin(π + 1/2)

ã
.

Given our knowledge of ]COM , we can extract the coordinates for M as:

M =
Ä

2
s cos(π + 1/2 + arccos(−2/s)− 1/2), 2

s sin(π + 1/2 + arccos(−2/s)− 1/2)
ä

=
Ä
−2
s cos(arccos(−2/s)), −2

s sin(arccos(−2/s))
ä

=
(

4
s2
, −2

s

»
1− 4

s2

)
where cos(π + x) = − cos(x), sin(π + x) = − sin(x), and sin(arccos(x)) =

√
1− x2 for

any x. Now, let us consider points A, B. By the parametric representation, we get the



14 Ioannis Lamprou

coordinates:

A = (cos(2 arccos(−2/s)), sin(2 arccos(−2/s))) =
(

8
s2
− 1,−4

s

»
1− 4

s2

)
,

B = (cos(0), sin(0)) = (1, 0)

by the facts that cos(2 arccos(x)) = 2x2 − 1 and sin(2 arccos(x)) = 2x
√

1− x2 for any x.
Let us now consider the midpoint of chord AB, namely some pointM ′ = (xM ′ , yM ′). We get
xM ′ = (xA+xB)/2 = (8/s2−1+1)/2 = 4/s2 and yM ′ = (yA+yB)/2 = (−4

s

»
1− 4

s2
+0)/2 =

−2
s

»
1− 4

s2
. Noticing that xM = xM ′ and yM = yM ′ completes the proof.

Proposition 4. Fast explores the whole boundary before Slow reaches B.

Proof. Slow reaches M after 1+2 arccos(−2/s)
s time and then has to traverse the line segment

MB for another
»

1− 4
s2

time since, by Proposition 3, |MB|= |BA|/2 = 2 sin(B̄A/2)/2 =

sin(2 arccos(−2/s)/2) =
»

1− 4
s2
. Meanwhile, after 1+2 arccos(−2/s)

s time, Fast lies on A and
then has to traverse ĀB for another 2π−2 arccos(−2/s)

s . It’s adequate to see that
»

1− 4
s2
≥

2π−2 arccos(−2/s)
s for any s ≥ 2.

The aforementioned proposition, together with the fact that it takes 1+2π
s time for

Fast to explore the whole boundary, provides us with the end time for Phase III (see
Algorithm 2.2) and the strategy in general.

The main result of this section follows by the combination of the upper bounds later
proved for Phases I (Lemma 1), II (Lemma 2), and III (Lemma 3) given in Algorithm 2.2.

Theorem 1. For any s ≥ 2, the worst-case evacuation time of the Half-Chord strategy is
at most 1+2 arccos(− 2

s )
s +

»
1− 4

s2
.

Phase I

Lemma 1. The Half-Chord evacuation strategy takes at most (1+2 arccos(−2/s))
s +

»
1− 4

s2

evacuation time, if the exit is found during Phase I.

Proof. We need only care about the time t ∈ [1/s, 2/s], since for less time Fast has not
yet reached the boundary. Imagine that the exit is discovered after (1 + a)/s time (for
a ∈ [0, 1]). For a visualization, the reader can refer to Figure 2.2a. Slow has covered
(1 + a)/s distance on the OC segment, while Fast has explored an a part of B̄A. Slow now
takes a segment from its current position (namely D) to the exit E. To compute |DE| we
use the law of cosines in 4DOE. Let ω = ]DOE. Also, by definition, a = B̄E = ]BOE

since this is a unit disk and as presented in the strategy description ]BOD = ]BOC =

φ = π + 1/2. Therefore, it follows ω = φ − a = π + 1/2 − a, and further on, it holds
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(a) Exit during Phase I (a = 0.75)

•

•

•

•

•

•

•
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M

S

E

D

(b) Exit during Phase II (τ = 0.3)

Figure 2.2: Exit during Phases I & II

cos(ω) = cos(π + 1/2− a) = − cos(1/2− a). We now compute,

|DE|=
»
|OE|2+|OD|2−2|OE||OD|cos(ω) =

 
1 +

(1 + a)2

s2
+ 2

1 + a

s
cos(1/2− a).

Overall, the worst-case evacuation time is given by

max
a∈[0,1]

{
1 + a

s
+

 
1 +

(1 + a)2

s2
+ 2

1 + a

s
cos(1/2− a)

}
.

To conclude the proof, it suffices to observe that 2
s +

√
1 + 22

s2
+ 22

s = s+4
s is an upper

bound to the above quantity, since a ≤ 1 and cos(·) ≤ 1. Finally, one can verify s+4
s ≤

1+2 arccos(− 2
s )

s +
»

1− 4
s2

for any s ≥ 2. Let f(s) =
1+2 arccos(− 2

s )
s +

»
1− 4

s2
− s+4

s =
2 arccos(− 2

s )+
√
s2−4−s−3

s . In the interval [2,∞), we get: f(2) = π − 5
2 > 0, for all s ≥ 2,

d
dsf(s) = 3−2 arccos(−2/s)

s2
< 0 and lims→∞ f(s) = 0.

Phase II

Lemma 2. The Half-Chord evacuation strategy takes at most 1+2 arccos(− 2
s )

s +
»

1− 4
s2

evacuation time, if the exit is found during Phase II.

Proof. We prove that the worst-case placement for the exit is point A. For the details
below, refer to Figure 2.2b. Suppose the exit E is found at the time when Slow lies on
point S and has not yet covered a τ part of C̄M . The corresponding central angle is sτ

2 ,
since C̄M is an arc on (O, 2

s ). At the same time, Fast has not yet explored an sτ part of
B̄A with a corresponding central angle of size sτ . Then, Slow can move backwards on the
boundary of (O, 2

s ) for another τ distance to point D. Now, the central angle from D to M
is sτ

2 + sτ
2 = sτ and matches the central angle between E and A. Thence, due to shifting by

the same central angle, we get ]EOD = ]EOA+]AOD = ]DOM +]AOD = ]AOM .
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(a) First case (τ = 1
5 )
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(b) Second case (τ = 1
2 )

Figure 2.3: Exit during Phase III (example for s = 4; exit E lies at the end of Fast’s arrow)

Moreover, since |OD|= |OM |= 2
s and |OE|= |OA|= 1, triangles 4EOD and 4AOM are

congruent meaning that |ED|= |AM |. To sum up, if the exit is discovered τ time before
Slow reaches M , it takes at most another τ +

»
1− 4

s2
time for it to reach it. At the same

time, it would take τ+
»

1− 4
s2

for it to reach A. Hence, exiting through A is the worst-case

scenario and yields a total time of 1+2 arccos(− 2
s )

s +
»

1− 4
s2
.

Phase III

Lemma 3. The Half-Chord evacuation strategy takes at most 1+2 arccos(− 2
s )

s +
»

1− 4
s2

evacuation time, if the exit is found during Phase III.

Proof. Since 1+2 arccos(− 2
s )

s time has passed at the beginning of Phase III, it suffices to show
that at most

»
1− 4

s2
time goes by when the exit is discovered within ĀB.

Suppose that the exit is discovered τ time units after the beginning of Phase III. Then,
Slow lies at C (Figure 2.3), τ distance away from M on the MB segment. On the other
hand, Fast lies on E, an sτ distance away from A on ĀB.

Consider a disk with center C and radius r =
»

1− 4
s2
− τ . One can notice that (C, r)

intersects (O, 1) at two points: one of them is B and the other one is D, where D is included
in ĀB, since |AC|≥ r for any choice of τ ≥ 0. Moreover, we draw the chord DB and its
middle point, say M ′. Now, notice that OM ′ is perpendicular to DB, since DB is a chord
of (O, 1) and also that OM ′ passes through C, since DB is also a chord of (C, r). To
conclude, we exhibit that E is included in D̄B. Equivalently, that |ĀE|≥ |ĀD|. We look
into two cases.
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First (Figure 2.3a), that ]AOD ≤ ]AOM . In this case, we compute

]AOD = ]AOM − ]DOM

= ]MOB − ]DOM

= ]MOM ′ + ]M ′OB − ]DOM

= ]MOM ′ + ]DOM ′ − ]DOM

= 2 · ]MOM ′

since ]AOM = ]MOB and ]M ′OB = ]DOM ′ from the fact that OM (OM ′) bisects AB
(DB). Moreover, ]DOM ′ − ]DOM = ]MOM ′. We compute ]MOM ′ = arctan(sτ/2)

by the right triangle 4MOC. Finally, ]AOD = 2 arctan(sτ/2) ≤ sτ = ]AOE, since
arctan(x) ≤ x for x ≥ 0.

For the second case (Figure 2.3b), let ]AOD > ]AOM . Then, ]AOD = ]AOM +

]MOD = ]MOB + ]MOD = ]MOM ′ + ]M ′OB + ]MOD = ]MOM ′ + ]DOM ′ +

]MOD = 2 · ]MOM ′, again by using the equalities deriving from bisecting the chords.
The rest of the proof follows as before.

2.3.2 The Half-Chord Strategy for 1 ≤ s ≤ 2

We first observe that, for s = 2, the name “Half-Chord” is slightly misleading, as the points
A, B, and M coincide. The time needed for s = 2 is, as shown in Theorem 1, 1+2π

s . Note
also that the Half-Chord strategy is a BES strategy for s = 2.

For s < 2, Slow can simply move even slower, namely with speed s
2 . Using the same

paths as for s = 2, this provides the same upper bound of 1+2π
s .

Theorem 2. For 1 ≤ s ≤ 2, the (generalized) Half-Chord strategy leads to a 1+2π
s evacua-

tion time.

Proof. The two robots follow the exact same trajectories as in the s = 2 Half-Chord strategy
with a time delay factor of 2

s . The worst-case evacuation time becomes 2
s · 1+2π

2 = 1+2π
s .

2.3.3 The Both-to-the-Same-Point Strategy

This BES strategy follows the same key idea as the technique presented in [42] where it is
proven optimal for the case s = 1.

The Strategy

In the Both-to-the-Same-Point Strategy (shortly BSP strategy), initially both robots set
out toward the same boundary point, moving in a straight line. Once they arrive there,
they move in opposite directions along the boundary. Without loss of generality, Fast moves
counterclockwise along the boundary, while Slow moves clockwise. This goes on, until the
exit has been found by either robot or the robots meet each other on the boundary. For
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•

(a) The BSP Strategy

• ••

•
O

B
A

C

(b) Exit before Slow explores
(Example for s = 1.8 and a = 0.35)

Figure 2.4: The BSP Strategy and an Evacuation Example

a visualization of the strategy, see Figure 2.4a. Fast’s trajectory is given in blue (double
arrows), while Slow’s in red (single arrows). We restrict the analysis of BSP for s ∈ [1, 2],
since for s > c1.71 we later show that this strategy is outperformed.

Exit Before Slow Explores

Lemma 4. It takes at most 1 +
»

2− 2 cos(s− 1) time (where s ∈ [1, 2]) for both robots to
evacuate in the BSP strategy, when the exit is found before Slow has reached the boundary.

Proof. Let a stand for the distance Fast has explored on the boundary before finding the
exit. Notice that a ≤ s−1 ≤ 1, since a stands for some covered distance before Slow reaches
the boundary. The total evacuation time is the time needed for Fast to find the exit and
then for Slow to reach it. Let b stand for the latter. Then, the worst-case evacuation time
is max0≤a≤s−1

¶
a+1
s + b

©
, where b =

√
1 +
Ä
a+1
s

ä2 − 2 · a+1
s cos(a) by the cosine law in the

formed triangle (4OAC in Figure 2.4b with |OC|= 1, |OA|= 1+a
s and ]AOC = a). Let

f(a, s) = a+1
s + b. Then,

∂

∂a
f(a, s) =

1

s
+

2(a+1)
s2

+ 2(a+1) sin(a)
s − 2 cos(a)

s

2
√

1 +
Ä
a+1
s

ä2 − 2a+1
s cos(a)

≥ 0

for any a ≤ s − 1. Consequently, f(a, s) is a non-decreasing function of a in this interval
meaning that the maximum is attained on a = s− 1. This results to a worst-case time of

f(s− 1, s) = s−1+1
s +

√
1 +
Ä
s−1+1
s

ä2 − 2 s−1+1
s cos(s− 1) = 1 +

»
2− 2 cos(s− 1).
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Exit After Slow Explores

Lemma 5. In the BSP strategy (where s ∈ [1, 2]), when the exit is found after Slow has
explored some part of the boundary, the evacuation time is at most

• 2s+π+4
s+1 , when the angle between the two robots is less or equal to π and

• 1 + 2
√

1− 1
(s+1)2

+
2 arccos( 1

−s−1
)−s+1

s+1 when the angle is between π and 2π.

Proof. Let d stand for the distance Slow has covered on the boundary in order to find the
exit. Using this notation, the explored part of the boundary is a function of d, s, namely
angle(d, s) = s− 1 + d+ s · d = s− 1 + d(s+ 1), since Slow explores distance d, while Fast
explores distance s · d, and an s− 1 part has already been covered by Fast till Slow reaches
the boundary. The name angle(·, ·) is chosen, since the quantity also represents the angle
between the robots from the center of the unit disk. We break the analysis into two cases:

• angle(d, s) ≤ π:
In this case, s− 1 + d(s+ 1) ≤ π, which results to d ≤ π−s+1

s+1 . Notice that the bound
is ≥ 0 for s ∈ [1, π + 1]. The worst-case evacuation time is given by computing

max
0≤d≤π−s+1

s+1

®
1 + d+ 2 sin

Ç
d(s+ 1) + s− 1

2

å´
where the last addend accounts for the chord length needed to be covered by Slow.
We denote g(d, s) the function to be maximized. Similarly to before, we see that

∂

∂d
g(d, s) = 1 + (s+ 1) cos

Ç
(s+ 1)d+ s− 1

2

å
≥ 0

for any choice of s ∈ [1, 2] and any d ∈ [0, π−s+1
s+1 ], due to the fact that s+ 1 ≥ 0 and

cos
(

(s+1)d+s−1
2

)
≥ cos(π/2) = 0, since (s + 1)d + s − 1 ≤ π and cos(·) is decreasing

in [0, π/2]. Hence, the maximum is attained at d = π−s+1
s+1 for a worst-case time of

g
Ä
π−s+1
s+1 , s

ä
= 1 + π−s+1

s+1 + 2 sin

Å
(s+1)π−s+1

s+1
+s−1

2

ã
= 1 + π−s+1

s+1 + 2 sin(π/2)

= 3 + π−s+1
s+1

= 2s+π+4
s+1 .

• π < angle(d, s) < 2π:
In this case, d ∈ (dmin, dmax) = (π−s+1

s+1 , 2π−s+1
s+1 ). The function to be maximized is

again g(d, s). The family of roots for ∂g(d,s)
∂d = 0 is d = 4πn±2·arccos(−1/(s+1))−s+1

s+1 . A
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local maximum is attained for

d′ =
2 · arccos(−1/(s+ 1))− s+ 1

s+ 1

since d′ is the only root lying within (dmin, dmax) and

∂2g(d,s)
∂d |d=d′ −1

2(s+ 1)2 sin

Ñ
s+(s+1)

2 arccos(− 1
s+1)−s+1

s+1
−1

2

é
= −1

2(s+ 1)2 sin
Ä
arccos

Ä
− 1
s+1

ää
= −1

2(s+ 1)2
√

1−
Ä
− 1
s+1

ä2
< 0

since sin(arccos(x)) =
√

1− x2 for any x. Finally,

g(d′, s) = 1 + 2·arccos(−1/(s+1))−s+1
s+1 + 2 sin

Ñ
s+(s+1)

2 arccos(− 1
s+1)−s+1

s+1
−1

2

é
= 1 + 2·arccos(−1/(s+1))−s+1

s+1 + 2 sin
Ä
arccos

Ä
− 1
s+1

ää
= 1 + 2·arccos(−1/(s+1))−s+1

s+1 + 2
√

1−
Ä
− 1
s+1

ä2
is a globally optimal value, since g(d′, s) > g(dmin, s) = 2s+π+4

s+1 and g(d′, s) >

g(dmax, s) = 2π+2
s+1 for any s ∈ [1, 2].

Finally, we need not care about the case where Slow finds the exit, since the time taken for
Fast to traverse the same chord will be less than the worst-case scenario examined.

Comparison

For any s ∈ [1, 2], the maximum (worst-case) upper bound comes from the second case of
Lemma 5 and yields the result in Theorem 3.

Theorem 3. For any s ∈ [1, 2], BSP requires evacuation time at most

1 + 2

 
1− 1

(s+ 1)2
+

2 arccos(− 1
s+1)− s+ 1

s+ 1
.

2.3.4 The Fast-Chord Strategy

In the Half-Chord strategy for s = 2, we observe that the final point reached after Phase I,
i.e., point C, lies on the disk boundary. Thence, after that, Slow explores C̄B, but so does
Fast, since by its strategy it explores the whole boundary. This seems like an unnecessary
double exploration of this part of the boundary. Thus, we propose a new strategy, where
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y

s− 1

x1

x2

x3
•

•
•
•

•

O

C

B

D

A

Figure 2.5: The Fast-Chord Family of Strategies

Fast reaches C as usual, but then traverses the CB chord, instead of C̄B. Furthermore, we
could vary the position of C, in order for Fast to reach B (for the second time) exactly when
Slow reaches D (a point before B) and so get Fast to explore some part of the boundary
in clockwise fashion as well. In this case, Slow does not traverse the whole C̄B. Let us
now describe more formally this Fast-Chord family of strategies. All arcs are considered
in counterclockwise fashion unless otherwise stated. Below, let |B̄A|= s − 1, x1 = |ĀC|,
x2 = |CB|, x3 = |D̄B| and y = |C̄B|; see Figure 2.5.

In Algorithms 2.3, 2.4, we define the trajectories followed by Fast and Slow for the
Fast-Chord strategy.

The following system of equations describes the relationship between the variable dis-
tances: 

x1 + y + x3 + s− 1 = 2π (I)
x2 = 2 sin

Ä
x3+y

2

ä
(II)

x1 + x2 = s · y (III)

Equation (I) suggests how the disk boundary is partitioned. Equation (II) suggests that
x2 is the chord of an arc with length x3 + y. Equation (III) suggests that Fast traverses
x1 and x2 at the same time as slow traverses y. That is, since Fast lies on A exactly when
Slow lies on C, then Fast arrives at B (for the second time) exactly when Slow arrives at D.
The latter happens at time 1 + y = 1 + x1+x2

s . The remaining x3 part of the boundary can
be explored in time x3

s+1 , since both robots explore it concurrently until they meet. Hence,
within x3

s+1 time, they can explore a distance equal to s · x3
s+1 + x3

s+1 = (s + 1) · x3
s+1 = x3.

All variables are non-negative representing distance.
The idea behind this paradigm is to try different values for x3 and then solve the above

system to extract x1, x2 and y. Nonetheless, due to the sin(·) function in equation (II),
we could not obtain a symbolic solution. Thence, we hereby provide bounds computed
numerically1. For any value of s, we iterate over all possible x3 values and then solve the

1The related source code is available at https://github.com/yiannislamprou/FastDiskEvacuation

https://github.com/yiannislamprou/FastDiskEvacuation
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Algorithm 2.3: Fast-Chord for Fast robot
1: Fast lies on point O at time t = 0
2: for t ∈

î
0, 1

s

ó
do

3: Fast traverses line segment OB
4: end for
5: Fast lies on point B at time t = 1

s

6: for t ∈
Ä

1
s , 1
ó
do

7: Fast traverses arc B̄A // Phase I
8: end for
9: Fast lies on point A at time t = 1

10: for t ∈ (1, 1 + x1
s

]
do

11: Fast traverses arc ĀC // Phase IIa
12: end for
13: Fast lies on point C at time t = 1 + x1

s

14: for t ∈
Ä
1 + x1

s , 1 + x1+x2
s

ó
do

15: Fast traverses line segment CB // Phase IIb
16: end for
17: Fast lies on point B at time t = 1 + x1+x2

s

18: for t ∈
Ä
1 + x1+x2

s , 1 + x1+x2
s + x3

s+1

ó
do

19: Fast traverses (clockwise) arc B̄D till it meets Slow // Phase IIc
20: end for

above system numerically. For each x3 value and for each exploration phase, we use a
small time step and compute the worst-case evacuation time. We select the x3 value that
minimizes this worst-case time. All this numerical work is implemented in Matlab. We
iterate over x3 in the interval [0, 2π − s+ 1]. The upper bound for x3 stems from the case
x1 = y = 0. Indeed, notice that, for s = 1, Fast-Chord is exactlyBSP when we set x1 = y =

0. For the time parameter, namely t, we iterate in the interval
î
0, 1 + x1+x2

s + x3
s+1

ó
. Finally,

we use a parametric representation of the disk, where the center O lies on coordinates (0, 0),
to calculate the distance between the two robots.

By studying the numerical bounds we obtain via the Fast-Chord method, we state the
following result, in comparison to the other two strategies studied in this paper.

Theorem 4. Fast-Chord outperforms (Generalized) Half-Chord for s ∈ (c1.71, c2.07). It also
outperforms Both-to-the-Same-Point for s ≥ c1.71.

We hereby provide the details of the parametric distance calculations we use to validate
(up to a certain extent of numerical accuracy) the result in Theorem 4. Below, let Fastx
and Fasty stand for the (x, y) coordinates of Fast’s position and similarly Slowx and Slowy
for Slow. The distances between the two robots at any given time are as follows (using the
phases given in Algorithm 2.3):

Phase I. At time t ∈
Ä

1
s , 1
ó
, Fast has covered an st−1 part of B̄A (until point A′), while
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Algorithm 2.4: Fast-Chord for Slow robot
1: Slow lies on point O at time t = 0

2: for t ∈ [0, 1] do
3: Slow traverses line segment OC
4: end for
5: Slow lies on point C at time t = 1

6: for t ∈ (1, 1 + y] do
7: Slow traverses arc C̄D
8: end for
9: Slow lies on point D at time t = 1 + y

10: for t ∈
Ä
1 + y, 1 + y + x3

s+1

ó
do

11: Slow traverses arc D̄B till it meets Fast
12: end for

t

•

•
•

•

•
•

O

C

B

A

C ′

A′

(a) Case (i)

t •

•
•

•

•

•
O

C

B

A

C ′

A′

(b) Case (ii)

Figure 2.6: Fast-Chord: Exit During Phase I

Slow has covered a t part of OC (until point C ′); see Figure 2.6. Their distance is given by
applying the cosine law in 4A′OC ′. We compute the in-triangle angle ]A′OC ′. In case
that Ă′C ′ ≤ π (case i), then ]A′OC ′ = B̄C − B̄A′ = s− 1 + x1 − (st− 1) = s(1− t) + x1.
Otherwise, if Ă′C ′ > π (case ii), then ]A′OC ′ = 2π−Ā′A−ĀC = 2π−(s−1−(st−1))−x1 =

2π − s(1 − t) − x1. In either case, |A′C ′|=
»
|OA′|2+|OC ′|2−2|OA′||OC ′|cos(]A′OC ′) =»

1 + t2 − 2t cos(s(1− t) + x1), since cos(2π − x) = cos(x) for any x.

Phase IIa. At time t ∈ (1, 1 + x1
s

]
, both robots are traversing their respective arcs in

counterclockwise fashion. Their positions are the following:

(Fastx, Fasty) =

Å
cos

Å
s

Å
t− 1

s

ãã
, sin

Å
s

Å
t− 1

s

ããã
,

(Slowx, Slowy) = (cos(s− 1 + x1 + t− 1), sin(s− 1 + x1 + t− 1))
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where we take into account the initial timestep when they begin traversing their corre-
sponding arcs and the starting position of Slow’s arc. Their distance is calculated in the
Euclidean norm with the formula

»
(Fastx − Slowx)2 + (Fasty − Slowy)2.

Phase IIb. While Slow continues on the same arc and so its coordinates remain the same
as in Phase IIa, Fast is now traversing the CB chord. Its corresponding position isÇ

xC + s
t− 1− x1

s

x2
(xB − xC), yC + s

t− 1− x1
s

x2
(yB − yC)

å
where we take into account the direction from C to B, the starting point C, the speed
and the initial time step. The normalization factor x2 provides us with an actual distance
instead of a percentage. The above results to (Fastx, Fasty) beingÅ

cos(s− 1 + x1) + s
t−1−x1

s
x2

(1− cos(s− 1 + x1)), sin(s− 1 + x1) + s
t−1−x1

s
x2

(− sin(s− 1 + x1))

ã
Phase IIc. Again, Slow is always on the same motion and its corresponding parametric
equations do not need to change. Fast, on the other hand, commences a clockwise traversal
on B̄D from position 2π with speed s after time step 1 + x1+x2

s .

(Fastx, Fasty) =

Å
cos

Å
2π − s

Å
t− 1− x1 + x2

s

ãã
, sin

Å
2π − s

Å
t− 1− x1 + x2

s

ããã
2.4 Lower Bounds

The main tool behind our lower bounds is the following lemma from [42].

Lemma 6 (Lemma 5 [42]). Consider a boundary of a disk whose subset of total length
u + ε > 0 has not been explored for some ε > 0 and π ≥ u > 0. Then there exist two
unexplored boundary points between which the distance along the boundary is at least u.

2.4.1 Fast Explores

Lemma 7. Any FES-strategy takes at least

• 1+2π
s time for any s ∈ [1, 2] and

• 1+2 arccos(− 2
s )

s +
»

1− 4
s2

time for any s ≥ 2.

Proof. For any s, Fast needs at least 1+2π
s time to explore the whole boundary. We now

show a better bound for s ≥ 2. At time 1+a
s (where a ≥ 0), Fast has explored at most an a
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part of the boundary. Then, if we consider the time 1+a−ε
s (where ε > 0), a 2π − (a− ε) =

2π − a + ε subset of the boundary has not yet been explored. We bound a ∈ [π, 2π) such
that 0 < 2π − a ≤ π holds. We now apply Lemma 6 with u = 2π − a and ε. Thence, there
exist two unexplored boundary points between which the distance along the boundary is
at least u. Let us now consider the perpendicular bisector of the chord connecting these
two points. Depending on which side of the bisector Slow lies, an adversary may place
the exit on the boundary point lying at the opposite side. The best case for Slow is to lie
exactly on the point of the bisection. That is, Slow will have to cover a distance of at least
2 sin(u2 )

2 = sin
(a

2

)
, where 2 sin

(u
2

)
is the chord length. In this case, the overall evacuation

time is equal to 1+a
s + sin

(a
2

)
and for the best lower bound we compute

max
π≤a<2π

ß
1 + a

s
+ sin

Å
a

2

ã™
.

The rest of the proof reduces to computing the maximum of this function, namely f(s, a) =
1+a
s + sin(a/2), with respect to a. The first partial derivative is equal to

∂f(s, a)

∂a
=

1

s
+

1

2
cos

Å
a

2

ã
and the family of solutions to ∂f(s,a)

∂a = 0 is of the form:ß
4πn± 2 arccos

Å
−2

s

ã
: n ∈ Z

™
.

The only solution which is included in the interval [π, 2π) is

a′ = 2 arccos

Å
−2

s

ã
and it is defined only for s ≥ 2. Moreover, a′ is a local maximum, since

∂2f(s, a)

∂a
|a=a′= −

1

4
sin

Ñ
2 arccos

Ä
−2
s

ä
2

é
= −1

4

 
1− 4

s2
< 0

for any s ≥ 2. It then suffices to compare f(s, a′) to f(s, π) = 1 + 1+π
s and f(s, 2π) = 1+2π

s

to prove global optimality. The lower bound is

f(s, a′) =
1 + 2 arccos

Ä
−2
s

ä
s

+ sin

Ñ
2 arccos

Ä
−2
s

ä
2

é
=

1 + 2 arccos
Ä
−2
s

ä
s

+

 
1− 4

s2
.

Finally, notice that the latter bound is equal to 1+2π
s for s = 2 and greater than 1+2π

s for
s > 2.
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2.4.2 Both Explore

The following lower bound is a result of applying Lemma 6 to obtain a generalization of
the lower bound proved in [42]. The proof considers a timestep when both robots have
explored some part of the boundary and lie on the opposite ends of a long chord. Then, an
adversary acts according to his best interests. He either places the exit on the end opposite
Fast or in the end being farthest to Slow; the latter leading to a chord bisection argument
similar to the one used in Lemma 7.

Lemma 8. Any BES-strategy takes at least

• 1 + 2
s

√
1− s2

(s+1)2
+
−s+2 arccos(− s

s+1)+1

s+1 time for s ∈ [1, 2),

• 1 +
√

1− 4
(s+1)2

+
−s+2 arccos(− 2

s+1)+1

s+1 for s ∈ [2, c4.84] (where c4.84 ≈ 4.8406) and

• 1 + sin
Ä
s−1

2

ä
time for s ∈ (c4.84, 2π + 1).

Proof. At time 1, Fast has explored at most s− 1 distance on the boundary, since it needs
1
s time to reach the boundary and in the remaining s−1

s time it can traverse s s−1
s = s− 1

distance. At time 1 + y, where y ≥ 0 is a variable, Fast has explored at most an s− 1 + sy

part of the boundary and Slow has explored at most a y part of the boundary. We derive an
upper bound for the variable y by noticing that the whole explored part can be strictly less
than 2π (otherwise the exit has already been found): s− 1 + (s+ 1)y < 2π ⇒ y < 2π−s+1

s+1 .
Then, the unexplored part is strictly greater than 2π − s + 1 − (s + 1)y. Notice that we
need s < 2π + 1, otherwise we get y < 0 which contradicts the y ≥ 0 initial statement.
We let u = 2π − s + 1 − (s + 1)y, where u is the quantity from Lemma 6. We apply the
restriction that u = 2π − s + 1 − (s + 1)y ≤ π, which holds for y ≥ π−s+1

s+1 . Moreover,
u = 2π − s+ 1− (s+ 1)y > 0 holds for any s ≥ 1 given that y < 2π−s+1

s+1 .
Now, let us apply Lemma 6: There exist two unexplored points with arc distance

≥ 2π − s + 1 − (s + 1)y, which implies that the chord between them has length at least
2 sin

(
2π−s−(s+1)y+1

2

)
= 2 sin

(
s+(s+1)y−1

2

)
. An adversary can put the exit on any of the

two endpoints. If Slow reaches an endpoint first (case I), then the exit is placed on the
other side, such that Slow has to traverse the chord. If Fast reaches an endpoint first,
then the exit is placed either on the other side (case II), meaning that Fast has to traverse
the chord, or on the endpoint that lies the farthest from Slow’s current position (case III),
meaning that Slow has to traverse at least half the chord. We assume that both the robots
and the adversary behave optimally. Hence, the robots will always avoid case I. Then, the
adversary will apply case II, for s ∈ [1, 2), and III for s ≥ 2. Let ymin = max{0, π−s+1

s+1 }
and ymax = 2π−s+1

s+1 . Totally, the worst-case evacuation time is given by

• maxy∈[ymin,ymax)

{
1 + y + 2

s sin
(
s+(s+1)y−1

2

)}
, when in case II and

• maxy∈[ymin,ymax)

{
1 + y + sin

(
s+(s+1)y−1

2

)}
, when in case III.
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The rest of the proof reduces to computing the maximum of these functions, with respect
to y.

Case II Let fII(y, s) = 1 + y + 2
s sin

(
(s+1)y+s−1

2

)
be the function arising from case II.

We only analyze the function for s ∈ [1, 2), since for s ≥ 2 it is easy to see that case III
provides a stronger lower bound. We compute

∂

∂y

Ç
1 + y +

2

s
sin

Ç
(s+ 1)y + s− 1

2

åå
= 1 +

(s+ 1) cos
(

(s+1)y+s−1
2

)
s

which gives the following family of roots

y =
4πn± 2 arccos

Ä
− s
s+1

ä
− s+ 1

s+ 1
(n ∈ Z).

The only root (and so potential maximum of the function) that lies within [ymin, ymax] is

y′ =
2 arccos

Ä
− s
s+1

ä
− s+ 1

s+ 1
.

Moreover, we can see that y′ > 0 for s ∈ [1, 2) as needed, since y′ represents distance. We

demonstrate concavity at y′ by computing

∂2fII(y,s)
∂y |y=y′ = ∂

∂y

(
1 +

(s+1) cos(
Ä

(s+1)y+s−1
2

ä
s

)
|y=y′

= −
(s+1)2 sin

Ä
(s+1)y+s−1

2

ä
2s |y=y′

= −
(s+1)2

√
1− s2

(s+1)2

2s < 0

and we compute the value of fII as

fII(y
′, s) = fII

Å
2 arccos(− s

s+1)−s+1

s+1 , s

ã
= 1 +

2 arccos(− s
s+1)−s+1

s+1 + 2
s sin

Ä
arccos

Ä
− s
s+1

ää
= 1 +

2 arccos(− s
s+1)−s+1

s+1 +
2

√
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Finally, we compute the values at the interval endpoints

fII(ymin, s) = fII

Å
π + 1− s
s+ 1

, s

ã
= 1 +

π + 1− s
s+ 1

+
2

s
sin(π/2) =

πs+ 4s+ 2

s(s+ 1)
,



28 Ioannis Lamprou

fII(ymax, s) = fII
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sin(π) =
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It suffices to verify they are always less to fII(y′, s) for s ∈ [1, 2].

Case III Let fIII(y, s) = 1+y+sin
(

(s+1)y+s−1
2

)
stand for the function to be maximized

arising from Case III. We follow the same steps as before.

∂fIII(y, s)
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)
2

gives the following family of roots
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(n ∈ Z).

The only root (and thus potential maximum of the function) that lies within [ymin, ymax]

is y′ =
2 arccos( 2

s+1)−s+1

s+1 . Moreover, we can see that y′ > 0 holds only for s ∈ [2, c4.84), where
c4.84 ≈ 4.8406. We demonstrate concavity at y′ by

∂2fIII(y,s)
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and compute the value of fIII as

fIII(y
′, s) = fIII
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Finally, we compute fIII(ymin, s), fIII(ymax, s) which are less than fIII(y′, s) for s ∈
[2, c4.84), where c4.84 ≈ 4.84.

fIII(ymin, s) = fIII(0, s) = 1 + sin

Å
s− 1

2

ã
fIII(ymax, s) = fIII

Å
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, s
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2π + 2

s+ 1

For the case s ≥ c4.84, we need only consider the endpoints of the [ymin, ymax] interval
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as potential maxima: fIII(ymin) ≥ fIII(ymax) for s ∈ [c4.84, 2π + 1).

The above lower bound loses its value as s grows. This happens due to the fact that in
the proof we consider only a specific moment of a both-explore strategy, where both robots
have already explored some part of the boundary. Hence, there is a need to capture a lower
bound for the case where Slow has not explored any part of the boundary yet. This is
possible, since we can apply an FES lower bound idea when s is big enough.

Lemma 9. Any BES-strategy takes at least

• 1 + sin
Ä
s−1

2

ä
time for s ∈ (π + 1, c4.97), where c4.97 ≈ 4.9699, and

• 1+2 arccos(− 2
s )
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s2

time for s ≥ c4.97.

Proof. One need only notice that, for a = s − 1 > π, at time 1+a−ε
s , a 2π − a + ε part of

the boundary is yet unexplored, where 2π − a ≤ π. Moreover, Slow has not reached the
boundary yet. Hence, we can view this as a fast-explores subcase. Then, we can compute
maxa∈[π,min{s−1,2π}]

¶
1+a
s + sin
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2

)©
.

Let f(a, s) = 1+a
s + sin

(a
2

)
be the emerging function that needs to be maximized

for a ∈ [π,min{s − 1, 2π}]. This function is already analyzed in the proof of Lemma 7.
Nevertheless, we now need to reconsider it, since the underlying domain depends on s.
For s ≥ 2π + 1, min{s − 1, 2π} = 2π and so the analysis proceeds as before yielding a
lower bound of

»
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s2
+ 1+2 arccos(−2/s)

s . Let us now consider s ∈ [π + 1, 2π + 1). The
selected derivative root is again a′ = 2 arccos
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≤ s− 1 only for s ≥ c4.97, where c4.97 ' 4.9699. Now, let us compare f(a′, s)

to f(π, s) and f(s−1, s) (i.e. the values at the endpoints of the interval). We get f(a′, s) =»
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s as before, f(π + 1, s) = 1 + 1+π
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Ä
s−1

2

ä
.

One can notice that f(a′, s) prevails for s ≥ c4.97, while f(s− 1, s) is greater to f(π, s)

for s ∈ [c4.97,∞). On the other hand, for s ∈ (π + 1, c4.97), f(s− 1, s) ≥ f(π, s).

The following lemma encompasses the above BES lower bounds in Lemmata 8 and 9
by taking the maximum for each value of s.

Lemma 10. Any BES-strategy takes at least
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Figure 2.7: An Improved BES Lower Bound

2.4.3 An Improvement for BES

We now obtain numerical values for a stronger BES lower bound by performing a more
complex analysis on the Original BES lower bound proof given in Lemma 8. The main idea
behind the improvement is to provide a better bound for the subcase when the adversary
places the exit on the farthest endpoint from Slow’s current position. Apparently, the best
play for Slow is to lie exactly on the midpoint of the chord with the unexplored endpoints.
Nevertheless, in order for Slow to be there, it needs to spend some of its time, originally
destined for exploration, within the disk interior. We hereby examine the best possible
scenario for Slow in terms of its distance from the midpoint following the above reasoning.
Let us refer to this lower bound as Improved BES.

Lemma 11. Improved BES is greater or equal to Original BES for any s ≥ 1.

Proof. At time 1+y, where y ≥ 0 is a variable, Fast has explored at most an s−1+sy part
of the boundary and Slow has explored at most a y part of the boundary. Now suppose that
Slow has spent k time, where k ∈ [0, y], not exploring the boundary, i.e. moving within the
disk interior.

Notice that it takes 1 + 2π−s+1
s+1 time for the whole perimeter to be explored, when

both robots are only exploring after timestep 1. Thence, we upper-bound y ≤ 2π−s+1
s+1 . To

lower-bound y, we restrict the unexplored part u = 2π− s+ 1− (s+ 1)y+ k ≤ π. That is,
we get y ≥ max{π−s+1+k

s+1 , 0}. Moreover, u > 0 is already covered by the aforementioned
upper bound.

Now, we are ready to apply Lemma 6: There exist two unexplored points (say A,B)
with arc distance ≥ 2π−s+1−(s+1)y+k, which implies that the chord between them has
length at least 2 sin

(
2π−s+1−(s+1)y+k

2

)
= 2 sin

(
s−1+(s+1)y−k

2

)
. An adversary could place

the exit on any of the two endpoints. If Slow reaches an endpoint first (case I), then the
exit is placed on the other side, such that Slow has to traverse the chord. If Fast reaches
an endpoint first, then the exit is placed either on the other side (case II), meaning that
Fast has to traverse the chord, or on the endpoint that lies the farthest from Slow’s current
position (case III), meaning that Slow has to traverse at least half the chord. We assume
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that both the robots and the adversary behave optimally. Hence, the robots will always
avoid case I.

Let us now examine more carefully what happens in case III. For a depiction of the
proof, see Figure 2.7. The ideal location for Slow is to lie exactly on the chord midpoint,
sayM . Nevertheless, this may not be possible due to it only spending k time within the disk
interior. Let us consider the minimum distance from the chord midpoint to the boundary.
This is exactly 1 − λ, where λ = |OM | is the distance from the midpoint to the center of
the disk. Notice that OM intesects AB perpendicularly, since M is the midpoint of chord

AB. Using the Pythagorean theorem in 4AMO, we get λ =

…
1− sin2

(
s−1+(s+1)y−k

2

)
. If

we consider the case when 1 − λ > k, then the ideal position for Slow is to lie k distance
away from the boundary and on the extension of OM (i.e. on point K). From there, Slow

can take a straight line to the exit, yielding a
…

sin2
(
s−1+(s+1)y−k

2

)
+ (1− λ− k)2 distance

again by the Pythagorean theorem, now in 4AMK.

To conclude, Slow will try to minimize this straight line distance over k, while the
adversary will select a case between II and III that maximizes the total distance. Overall,
the optimization problem reduces to computing:

max
y∈[ymin,ymax)

1 + y + max


min
k∈[0,y]

2
s sin

(
s−1+(s+1)y−k

2

)
,

min
k∈[0,y]

…
sin2

(
s−1+(s+1)y−k

2

)
+ max {1− λ− k, 0}2


 . (2.1)

Note that the above bound matches the original one for 1− λ < k.

Last but not least, we need also consider the case where the adversary chooses to place
the exit on the last boundary point to be explored. In the current setting, it takes at least
u
s+1 = 2π−s+1−(s+1)y+k

s+1 extra time for both robots to explore the rest of the boundary,
since Fast explores s u

s+1 while Slow explores u
s+1 for a total distance of u. Overall, we are

looking to compute max
y∈[ymin,ymax)

{
1 + y + 2π−s+1−(s+1)y

s+1

}
, since Slow wishes to minimize k.

Due to the inherent complexity of the optimization problem (2.1), we compute numerical
bounds2. The two min expressions are computed and the maximum of them is chosen as
the best-play scenario for an adversary. The computational work is done in Matlab, where
we iterate over feasible values of y and k with a step of 10−3. For Fast’s speed s, we iterate
with a step of 10−1. The resulting bounds show that, for all s ∈ [1, 2π + 1), this lower
bound is greater or equal to the lower bound given in Lemma 8 with k = 0 always selected
as the minimizer.

2The related source code is available at https://github.com/yiannislamprou/FastDiskEvacuation

https://github.com/yiannislamprou/FastDiskEvacuation
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2.5 Comparison of Bounds

Regarding the lower bounds, for each value of s we select the minimum (weakest) lower
bound between the (maximum) BES and FES ones as our overall lower bound. We
see (Fig. 2.8) that Improved BES (Lemma 11) is strictly stronger than Original BES
(Lemma 10) for any s ≥ c1.71 ≈ 1.71. Moreover, Improved BES is stronger than the FES
lower bound (Lemma 7) for s ≥ c2.75 ≈ 2.75.

As far as the upper bounds are concerned, we notice (Fig. 2.9) that Half-Chord (The-
orem 1) outperforms BSP (Theorem 3) for any s ≥ c1.86 ≈ 1.856. Besides, Fast-Chord
(Theorem 4) outperforms BSP for any s ≥ c1.71 ≈ 1.71. Finally, Fast-Chord outperforms
Half-Chord for any s ≤ c2.07 ≈ 2.072. That is, the introduction of Fast-Chord yields a
better upper bound for any s ∈ [c1.71, c2.07].
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Figure 2.8: Comparison of lower bounds
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Figure 2.10: Dominant Lower vs Upper Bounds

By comparing upper and lower bounds, we see (Fig. 2.10) that Half-Chord is optimal
for s ≥ c2.75, since the matching FES lower bound is the weakest in this interval. On the
other hand, for s < c2.75 the ratio between the bounds is at most 1.22 (maximized when
s = c1.71), where the strategy changes from BSP to Fast-Chord. The best strategy to use
is BSP when s < c1.71, Fast-Chord when c1.71 < s < c2.07 and Half-Chord for s ≥ c2.07.

2.6 Open Problems

Optimality for the case 1 < s < c2.75 remains open. In this gray area, the main difficulty
is understanding when it becomes necessary to make the transition from a BES to an
FES strategy. As indicated by our introduction of Fast-Chord, which outperforms BSP
and Half-Chord in the interval (c1.71, c2.07), the potential strategies might need to get even
more convoluted to capture the diminishing speed ratio.

Regarding future work on this topic, one could consider extending these results to a
more-than-two-robots evacuation scenario. Moreover, the non-wireless case for two-robots
fast evacuation seems to be an even more challenging open problem given that exact opti-
mality is complex to obtain even for s = 1 ( [23,47]). Finally, other environments could be
examined, e.g. polygonal ones [41], or more realistic robotic settings where the environment
becomes more perplexing, e.g., including spatial obstacles or communication restrictions.
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Chapter 3

Dynamic Graph Exploration

3.1 Introduction

In the modern era of the Internet, modifications in a network topology can occur extremely
frequently and in a disorderly way. Communication links may fail from time to time, while
connections amongst terminals may appear or disappear intermittently. Thus, classical
(static) network theory fails to capture such ever-changing processes. In an attempt to fill
this void, different research communities have given rise to a variety of theories on dynamic
networks. In the context of algorithms and distributed computing, such networks are usually
referred to as temporal graphs [96]. A temporal graph is represented by a (possibly infinite)
sequence of subgraphs of the same static graph. That is, the graph is evolving over a series
of (discrete) time steps under a set of deterministic or stochastic rules of evolution. Such
a rule can be edge- or graph-specific and may take as input graph instances observed in
previous time steps.

In this chapter, we focus on stochastically-evolving temporal graphs. We define a model
of evolution, where there exists a single stochastic rule, which is applied independently
to each edge. Intuitively, such an independence assumption models latency/noise issues
referring to each specific network link. Our model is general in the sense that the underlying
static graph is allowed to be a general connected graph, i.e., with no further constraints on
its topology, and the stochastic rule can include any finite number of past observations.

Assume now that a single mobile agent is placed on an arbitrary vertex of a temporal
graph evolving under the aforementioned model. Next, the agent performs a simple random
walk; at each time step, after the graph instance is fixed according to the model, the agent
chooses uniformly at random a vertex amongst the neighbors of its current vertex and visits
it. The cover time of such a walk is defined as the expected number of time steps until the
agent has visited each vertex at least once. Herein, we prove some first bounds on the cover
time for a simple random walk as defined above, mostly via the use of Markovian theory.

Random walks constitute a very important primitive in terms of distributed comput-
ing. Examples include their use in information dissemination [3] and random network

35
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structure [9]; also, see the short survey in [26]. In this work, we consider a single random
walk as a fundamental building block for other more distributed scenarios to follow.

3.1.1 Related Work

A paper very relevant to our work is the one of Clementi, Macci, Monti, Pasquale and
Silvestri [36], where they consider the flooding time in Edge-Markovian dynamic graphs.
In such graphs, each edge independently follows a Markovian rule and their model appears
as a special case of ours (matches our case k = 1). Further work under this Edge-Markovian
paradigm on flooding and information dissemination includes [11,38].

Another related work is the one of Avin, Koucký and Lotker [7], who define the notion of
aMarkovian Evolving Graph, i.e., a temporal graph evolving over a set of graphs G1, G2, . . . ,

where the process transits from Gi to Gj with probability pij , and consider random walk
cover times. Note that their approach becomes computationally intractable if applied to
our case; each of the possible edges evolves independently, thence causing the state space
to be of size 2m, where m is the number of possible edges in our model.

Clementi, Monti, Pasquale and Silvestri [37] study the broadcast problem, when at each
time step the graph is selected according to the well-known Gn,p model. Also, Yamauchi,
Izumi and Kamei [113] study the rendezvous problem for two agents on a ring, when each
edge of the ring independently appears at every time step with some fixed probability p.

Moving to a more general scope, research in temporal networks is of interdisciplinary
interest, since they are able to capture a wide variety of systems in physics, biology, social
interactions and technology. For a view of the big picture, see the review in [73]. There
exist several papers considering, mostly continuous-time, random walks on different models
of temporal networks: In [107], they consider a walker navigating randomly on some specific
empirical networks. Rocha and Masuda [104] study a lazy version of a random walk, where
the walker remains to its current vertex according to some sojourn probability. In [54], they
study the behavior of a continuous time random walk on a stationary and ergodic time
varying dynamic graph. Lastly, random walks with arbitrary waiting times are studied
in [48], while random walks on stochastic temporal networks are surveyed in [72].

In the analysis to follow, we employ several seminal results around the theory of random
walks and Markov chains. For random walks, we base our analysis on the seminal work
in [3] and the electrical network theory presented in [30,50]. For results on Markov chains,
we cite textbooks [68,98].

3.1.2 Our Results

We define a general model of stochastically-evolving graphs, where each possible edge
evolves independently, but all of them evolve following the same stochastic rule. Fur-
thermore, the stochastic rule may take into account the last k states of a given edge. The
motivation for such a model lies in several practical examples from networking where the
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existence of an edge in the recent past means it is likely to exist in the near future, e.g.,
for telephone or Internet links. In some other cases, existence may mean that an edge
has "served its purpose" and is now unlikely to appear in the near future, e.g., due to a
high maintenance cost. The model is a discrete-time one following previous work in the
computer science literature. Moreover, as a first start and for mathematical convenience,
it is formalized as a synchronous system, where all possible edges evolve concurrently in
distinct rounds (each round corresponding to a discrete time step).

Special cases of our model have appeared in previous literature, e.g., in [37,113] for k = 0

and in the line of work starting from [36] for k = 1, however they only consider special
graph topologies (like ring and clique). On the other hand, the model we define is general
in the sense that no assumptions, aside from connectivity, are made on the topology of the
underlying graph and any amount of history is allowed into the stochastic rule. Thence,
we believe it can be valued as a basis for more general results to follow capturing search or
communication tasks in such dynamic graphs.

We hereby provide the first known bounds relative to the cover time of a simple random
walk taking place in such stochastically evolving graphs for k = 0. To do so, we make use
of a simple, yet fairly useful, modified random walk, namely the Random Walk with a
Delay (RWD), where at each time step the agent is choosing uniformly at random from
the incident edges of the static underlying graph and then waits for the chosen edge to
become alive in order to traverse it. Despite the fact that this strategy may not sound
naturally-motivated enough, it can act as a handy tool when studying other, more natural,
random walk models as in the case of this paper. Indeed, we study the natural random
walk on such graphs, namely the Random Walk on What’s Available (RWA), where at each
time step the agent only considers the currently alive incident edges and chooses to traverse
one out of them uniformly at random.

For the case k = 0, that is, when each edge appears at each round with a fixed probability
p regardless of history, we prove that the cover time for RWD is upper bounded by CG/p,
where CG is the cover time of a simple random walk on the (static) underlying graph G.
The result can be obtained both by a careful mapping of the RWD walk to its corresponding
simple random walk on the static graph and by generalizing the standard electrical network
theory literature in [30, 50]. Later, we proceed to prove that the cover time for RWA is
between CG/(1− (1−p)∆) and CG/(1− (1−p)δ) where δ, respectively ∆, is the minimum,
respectively maximum, degree of the underlying graph. The main idea here is to reduce
RWA to an RWD walk, where at each step the traversal delay is lower, respectively upper,
bounded by (1− (1− p)δ), respectively (1− (1− p)∆).

For k = 1, the stochastic rule takes into account the previous, one time step ago, state
of the edge. If an edge was not present, then it becomes alive with probability p, whereas
if it was alive, then it dies with probability q. For RWD, we show a CG/ξmin upper bound
by considering the minimum probability guarantee of existence at each round, i.e., ξmin =
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min{p, 1− q}. Similarly, we show a CG/ξmax lower bound, where ξmax = max{p, 1− q}.
Consequently, we demonstrate an exact, exponential-time approach to determine the

precise cover time value for a general setting of stochastically-evolving graphs, including
also the edge-independent model considered in this paper.

3.1.3 Outline

In Section 3.2, we define our model of stochastically-evolving graphs in a more rigorous
fashion. Afterwards, in Sections 3.3 and 3.4, we provide the analysis of our cover time
bounds when for determining the current state of an edge we take into account its last 0

and 1 states, respectively. In Section 3.5, we demonstrate an exact approach for determining
the cover time for general stochastically-evolving graphs. Finally, in Section 3.6, we cite
some concluding remarks.

3.2 The Edge-Uniform Evolution Model

Let us define a general model of a dynamically evolving graph. Let G = (V,E) stand for a
simple, connected graph, from now on referred to as the underlying graph of our model. The
number of vertices is given by n = |V |, while the number of edges is denoted by m = |E|.
For a vertex v ∈ V , let N(v) = {u : (v, u) ∈ E} stand for the open neighborhood of v and
d(v) = |N(v)| for the (static) degree of v. Note that we make no assumptions regarding the
topology of G, besides connectedness. We refer to the edges of G as the possible edges of
our model. We consider evolution over a sequence of discrete time steps (namely 0, 1, 2, . . .)
and denote by G = (G0, G1, G2, . . .) the infinite sequence of graphs Gt = (Vt, Et), where
Vt = V and Et ⊆ E. That is, Gt is the graph appearing at time step t and each edge e ∈ E
is either alive (if e ∈ Et) or dead (if e /∈ Et) at time step t.

Let R stand for a stochastic rule dictating the probability that a given possible edge is
alive at any time step. We apply R at each time step and at each edge independently to
determine the set of currently alive edges, i.e., the rule is uniform with regard to the edges.
In other words, let et stand for a random variable where et = 1, if e is alive at time step
t, or et = 0, otherwise. Then, R determines the value of Pr(et = 1|Ht) where Ht is also
determined by R and denotes the history length, i.e., the values of et−1, et−2, . . ., considered
when deciding for the existence of an edge at time step t. For instance, Ht = ∅ means no
history is taken into account, while Ht = {et−1} means the previous state of e is taken into
account when deciding for its current state.

Overall, the aforementioned Edge-Uniform Evolution model (shortly EUE ) is defined
by the parameters G, R and some initial input instance G0. In the following sections, we
consider some special cases for R and provide some first bounds for the cover time of G
under this model. Each time step of evolution consists of two stages: in the first stage, the
graph Gt is fixed for time step t following R, while in the second stage, the agent moves to
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a vertex in Nt[v] = {v}∪ {u ∈ V : (v, u) ∈ Et}. Notice that, since G is connected, then the
cover time under EUE is finite, since R models edge-specific delays.

3.3 Cover Time with Zero-Step History

We hereby analyze the cover time of G under EUE in the special case when no history
is taken into consideration for computing the probability that a given edge is alive at
the current time step. Intuitively, each edge appears with a fixed probability p at every
time step independently of the others. More formally, for all e ∈ E and time steps t,
Pr(et = 1) = p ∈ (0, 1].

3.3.1 Random Walk with a Delay

A first approach toward covering G with a single agent is the following: The agent is
randomly walking G as if all edges were present and, when an edge is not present, it just
waits for it to appear in a following time step. More formally, suppose the agent arrives on
a vertex v ∈ V with (static) degree d(v) at the second stage of time step t. Then, after the
graph is fixed for time step t+ 1, the agent selects a neighbor of v, say u ∈ N(v), uniformly
at random, i.e., with probability 1

d(v) . If (v, u) ∈ Et+1, then the agent moves to u and
repeats the above procedure. Otherwise, it remains on v until the first time step t′ > t+ 1

such that (v, u) ∈ Et′ and then moves to u. This way, p acts as a delay probability, since the
agent follows the same random walk it would on a static graph, but with an expected delay
of 1

p time steps at each vertex. Notice that, in order for such a strategy to be feasible, each
vertex must maintain knowledge about its neighbors in the underlying graph; not just the
currently alive ones. From now on, we refer to this strategy for the agent as the Random
Walk with a Delay (shortly RWD).

Now, let us upper bound the cover time of RWD by exploiting its strong correlation
to a simple random walk on the underlying graph G via Wald’s Equation (Theorem 5).
Below, let CG stand for the cover time of a simple random walk on the static graph G.

Theorem 5 ( [110]). Let X1, X2, . . . , XN be a sequence of real-valued, independent and
identically distributed random variables where N is a nonnegative integer random variable
independent of the sequence (in other words, a stopping time for the sequence). If each Xi

and N have finite expectations, then it holds

E[X1 +X2 + . . .+XN ] = E[N ] · E[X1]

Theorem 6. For any connected underlying graph G evolving under the zero-step history
EUE, the cover time for RWD is expectedly CG/p.

Proof. Consider a simple random walk, shortly SRW, and an RWD (under the EUE model)
taking place on a given connected graph G. Given that RWD decides on the next vertex
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to visit uniformly at random based on the underlying graph, that is, in exactly the same
way SRW does, we use a coupling argument to enforce RWD and SRW to follow the exact
same trajectory, i.e., sequence of visited vertices.

Then, let the trajectory end when each vertex in G has been visited at least once and
denote by T the total number of vertex transitions made by the agent. Such a trajectory
under SRW will cover all vertices in expectedly E[T ] = CG time steps. On the other hand,
in the RWD case, for each transition we have to take into account the delay experienced
until the chosen edge becomes available. Let Di ≥ 1 be a random variable, where 1 ≤ i ≤ T
stands for the actual delay corresponding to vertex transition i in the trajectory. Then,
the expected number of time steps till the trajectory is realized is given by E[D1 + . . . +

DT ]. Since the random variables Di are independent and identically distributed by the
edge-uniformity of our model, T is a stopping time for them and all of them have finite
expectations, then by Theorem 5 we get E[D1 + . . .+DT ] = E[T ] · E[D1] = CG · 1/p.

For an explicit general bound on RWD, it suffices to use CG ≤ 2m(n− 1) proved in [3].

A Modified Electrical Network. Another way to analyze the above procedure is to
make use of a modified version of the standard literature approach of electrical networks
and random walks [30,50]. That is, we hereby (in Lemmata 12, 13 and Theorem 7) provide
a generalization of the results given in [30, 50] thus correlating the hitting and commute
times of RWD to an electrical network analog and reaching a conclusion for the cover time
similar to the one of Theorem 6. This point of view is interesting in its own respect since it
provides a first way to perceive electrical network theory in a more general fashion. Ideally,
in future work, we would like to generalize it in different ways to capture various random
walk models in dynamic environments.

In particular, given the underlying graph G, we design an electrical network, N(G),
with the same edges as G, but where each edge has a resistance of r = 1

p ohms. Let Hu,v

stand for the hitting time from vertex u to vertex v in G, i.e. the expected number of time
steps until the agent reaches v after starting from u and following RWD. Furthermore, let
φu,v declare the electrical potential difference between vertices u and v in N(G) when, for
each w ∈ V , we inject d(w) amperes of current into w and withdraw 2m amperes of current
from a single vertex v. We now upper-bound the cover time of G under RWD by correlating
Hu,v to φu,v.

Lemma 12. For all u, v ∈ V , Hu,v = φu,v holds.

Proof. Let us denote by Cuw the current flowing between two neighboring vertices u and w.
Then, d(u) =

∑
w∈N(u)Cuw since at each vertex the total inward current must match the

total outward current (Kirchhoff’s first law). Moving forward, Cuw = φuw/r = φuw/(1/p) =

p · φuw by Ohm’s law. Finally, φuw = φuv − φwv since the sum of electrical potential
differences forming a path is equal to the total electrical potential difference of the path
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(Kirchhoff’s second law). Overall, we can rewrite d(u) =
∑
w∈N(u) p(φu,v − φw,v) = d(u) ·

p · φu,v − p
∑
w∈N(u) φw,v. Rearranging gives

φu,v =
1

p
+

1

d(u)

∑
w∈N(u)

φw,v.

Regarding the hitting time from u to v, we rewrite it based on the first step:

Hu,v =
1

p
+

1

d(u)

∑
w∈N(u)

Hw,v

since the first addend represents the expected number of steps for the selected edge to
appear due to RWD, and the second addend stands for the expected time for the rest of
the walk.

Wrapping it up, since both formulas above hold for each u ∈ V \{v}, therefore inducing
two identical linear systems of n equations and n variables, it follows that there exists a
unique solution to both of them and Hu,v = φu,v.

In the lemma below, let Ru,v stand for the effective resistance between u and v, i.e., the
electrical potential difference induced when flowing a current of one ampere from u to v.

Lemma 13. For all u, v ∈ V , Hu,v +Hv,u = 2mRu,v holds.

Proof. Similarly to the definition of φu,v above, one can define φv,u as the electrical potential
difference between v and u when d(w) amperes of current are injected into each vertex w
and 2m of them are withdrawn from vertex u. Next, note that changing all currents’
signs leads to a new network where for the electrical potential difference, namely φ′, it
holds φ′u,v = φv,u. We can now apply the Superposition Theorem (see Section 13.3 in [17])
and linearly superpose the two networks implied from φu,v and φ′u,v creating a new one
where 2m amperes are injected into u, 2m amperes are withdrawn from v and no current
is injected or withdrawn at any other vertex. Let φ′′u,v stand for the electrical potential
difference between u and v in this last network. By the superposition argument, we get
φ′′u,v = φu,v + φ′u,v = φu,v + φv,u, while from Ohm’s law we get φ′′u,v = 2m ·Ru,v. The proof
concludes by combining these two observations and applying Lemma 12.

Theorem 7. For any connected underlying graph G evolving under the zero-step history
EUE, the cover time for RWD is at most 2m(n− 1)/p.

Proof. Consider a spanning tree T of G. An agent, starting from any vertex, can visit all
vertices by performing an Eulerian tour on the edges of T (crossing each edge twice). This
is a feasible way to cover G and thus the expected time for an agent to finish the above
task provides an upper bound on the cover time. The expected time to cover each edge
twice is given by

∑
(u,v)∈ET (Hu,v +Hv,u) where ET is the edge-set of T with |ET |= n− 1.

By Lemma 13, this is equal to 2m
∑

(u,v)∈ET Ru,v = 2m
∑

(u,v)∈ET
1
p = 2m(n− 1)/p.
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3.3.2 Random Walk on what’s Available

Random Walk with a Delay does provide a nice connection to electrical network theory.
However, depending on p, there could be long periods of time where the agent is simply
standing still on the same vertex. Since the walk is random anyway, waiting for an edge to
appear may not sound very wise. Hence, we now analyze the strategy of a Random Walk
on what’s Available (shortly RWA). That is, suppose the agent has just arrived at a vertex
v after the second stage at time step t and then Et+1 is fixed after the first stage at time
step t+1. Now, the agent picks uniformly at random only amongst the alive incident edges
at time step t+1. Let dt+1(v) stand for the degree of vertex v in Gt+1. If dt+1(v) = 0, then
the agent does not move at time step t+ 1. Otherwise, if dt+1(v) > 0, the agent selects an
alive incident edge each having probability 1

dt+1(v) . The agent then follows the selected edge
to complete the second stage of time step t+ 1 and repeats the strategy. In a nutshell, the
agent keeps moving randomly on available edges and only remains on the same vertex if no
edge is alive at the current time step. Below, let δ = minv∈V d(v) and ∆ = maxv∈V d(v).

Theorem 8. For any connected underlying graph G with min-degree δ, and max-degree ∆,
evolving under the zero-step history EUE, the cover time for RWA is at least CG/(1− (1−
p)∆) and at most CG/(1− (1− p)δ).

Proof. Suppose the agent follows RWA and has reached vertex u ∈ V after time step t.
Then, Gt+1 becomes fixed and the agent selects uniformly at random a neighboring edge
to move to. Let Muv (where v ∈ {w ∈ V : (u,w) ∈ E}) stand for a random variable taking
value 1 if the agent moves to vertex v and 0 otherwise. For k = 1, 2, . . . , d(u) = d, let Ak
stand for the event that dt+1(u) = k. Therefore, Pr(Ak) =

(d
k

)
pk(1 − p)d−k is exactly the

probability k out of the d edges exist since each edge exists independently with probability
p. Now, let us consider the probability Pr(Muv = 1|Ak): the probability v will be reached
given that k neighbors are present. This is exactly the product of the probability that v is
indeed in the chosen k-tuple (say p1) and the probability that then v is chosen uniformly at
random (say p2) from the k-tuple. p1 =

(d−1
k−1

)
/
(d
k

)
= k

d since the model is edge-uniform and
we can fix v and choose any of the

(d−1
k−1

)
k-tuples with v in them out of the

(d
k

)
total ones.

On the other hand, p2 = 1
k by uniformity. Overall, we get Pr(Muv = 1|Ak) = p1 · p2 = 1

d .
We can now apply the total probability law to calculate

Pr(Muv = 1) =
∑d
k=1 Pr(Muv = 1|Ak) Pr(Ak) = 1

d

∑d
k=1

(d
k

)
pk(1− p)d−k = 1

d(1− (1− p)d)

To conclude, let us reduce RWA to RWD. Indeed, in RWD the equivalent transition prob-
ability is Pr(Muv = 1) = 1

dp, accounting both for the uniform choice and the delay p.
Therefore, the RWA probability can be viewed as 1

dp
′ where p′ = (1− (1− p)d). To achieve

edge-uniformity we set p′ = (1− (1− p)δ) which lower bounds the delay of each edge and
finally we can apply the same RWD analysis by substituting p by p′. Similarly, we can
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set the upper-bound delay p′′ = (1 − (1 − p)∆) to lower-bound the cover time. Applying
Theorem 6 completes the proof.

The value of δ used to lower-bound the transition probability may be a harsh estimate for
general graphs. However, it becomes quite more accurate in the special case of a d-regular
underlying graph where δ = ∆ = d. To conclude this section, we provide a worst-case lower
bound on the cover time based on similar techniques as above.

Lemma 14. There exists an underlying graph G evolving under the zero-step history EUE
such that the RWA cover time is at least Ω(mn/(1− (1− p)∆)).

Proof. We consider the L2n/3
n lollipop graph which is known to attain a cover time of Ω(mn)

for a simple random walk [25, 52]. Applying the lower bound from Theorem 8 completes
the proof.

3.4 Cover Time with One-Step History

We now turn our attention to the case where the current state of an edge affects its next
state. That is, we take into account a history of length one when computing the probability
of existence for each edge independently. A Markovian model for this case was introduced
in [36]; see Table 3.1. The left side of the table accounts for the current state of an edge,
while the top for the next one. The respective table box provides us with the probability
of transition from one state to the other. Intuitively, another way to refer to this model
is as the Birth-Death model: a dead edge becomes alive with probability p, while an alive
edge dies with probability q.

Table 3.1: Birth-Death chain for a single edge [36]

dead alive

dead 1− p p

alive q 1− q

Let us now consider an underlying graph G evolving under the EUE model where each
possible edge independently follows the aforementioned stochastic rule of evolution.

3.4.1 RWD for General (p, q)-Graphs

Let us hereby derive some first bounds for the cover time of RWD via a min-max approach.
The idea here is to make use of the "being alive" probabilities to prove lower and upper
bounds for the cover time parameterized by ξmin = min{p, 1−q} and ξmax = max{p, 1−q}.

Let us consider an RWD walk on a general connected graph G evolving under EUE with
a zero-step history rule dictating Pr(et = 1) = ξmin for any edge e and time step t. We
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refer to this walk as the Upper Walk with a Delay, shortly UWD. Respectively, we consider
an RWD walk when the stochastic rule of evolution is given by Pr(et = 1) = ξmax. We
refer to this specific walk as the Lower Walk with a Delay, shortly LWD. Below, we make
use of UWD and LWD in order to bound the cover time of RWD in general (p, q)-graphs.

Theorem 9. For any connected underlying graph G and the Birth-Death rule, the cover
time of RWD is at least CG/ξmax and at most CG/ξmin.

Proof. Regarding UWD, one can design a corresponding electrical network where each edge
has a resistance of 1/ξmin capturing the expected delay till any possible edge becomes alive.
Applying Theorem 6, gives a CG/ξmin upper bound for the UWD cover time.

Let C ′ stand for the UWD cover time and C stand for the cover time of RWD under
the Birth-Death rule. It now suffices to show C ≤ C ′ to conclude.

In Birth-Death, the expected delay before each edge traversal is either 1/p, in case the
possible edge is dead, or 1/(1 − q), in case the possible edge is alive. In both cases, the
expected delay is upper-bounded by the 1/ξmin delay of UWD and therefore C ≤ C ′ follows
since any trajectory under RWD will take at most as much time as the same trajectory
under UWD.

In a similar manner, the cover time of LWD lower bounds the cover time of RWD and,
by applying Theorem 6, we derive a lower bound of CG/ξmax.

3.5 An Exact Approach

So far, we have established upper and lower bounds for the cover time of edge-uniform
stochastically-evolving graphs, i.e., the expected time until each vertex is visited at least
once by the agent. Our bounds are based on combining extended results from simple
random walk theory and careful delay estimations. In this section, we describe an approach
to determine the exact value of the cover time for temporal graphs evolving under any
stochastic model. Then, we apply this approach to the already seen zero-step history and
one-step history cases of RWA.

The key component of our approach is a Markov chain capturing both phases of evolu-
tion: the graph dynamics and the walk trajectory. In that case, calculating the cover time
reduces to calculating the hitting time to a particular subset of Markov states. Although
computationally intractable for large graphs, such an approach provides the exact cover
time value and is hence practical for smaller graphs.

Suppose we are given an underlying graph G = (V,E) and a set of stochastic rules R
capturing the evolution dynamics ofG. That is, R can be seen as a collection of probabilities
of transition from one graph instance to another. We denote by k the (longest) history
length taken into account by the stochastic rules. Like before, let n = |V | stand for the
number of vertices and m = |E| for the number of possible edges of G. We define a Markov
chain M with states of the form (H, v, Vc), where
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• H = (H1, H2, . . . ,Hk), is a k-tuple of temporal graph instances, that is, for each
i = 1, 2, . . . , k, Hi is the graph instance present i − 1 time steps before the current
one (which is H1)

• v ∈ V (G) is the current position of the agent

• Vc ⊆ V (G) is the set of already covered vertices, i.e., the set of vertices which have
been visited at least once by the agent

As described earlier for our edge-uniform model, we assume evolution happens in two
phases. First, the new graph instance is determined according to the rule-set R. Second,
the new agent position is determined based on a random walk on what’s available. In this
respect, consider a state S = (H, v, Vc) and another state S′ = (H ′, v′, V ′c ) of the described
Markov chain M . Let Pr[S → S′] denote the transition probability from S to S′. We seek
to express this probability as a product of the probabilities for the two phases of evolution.
The latter is possible, since, in our model, the random walk strategy is independent of the
graph evolution.

For the graph dynamics, let Pr[H
R−→ H ′] stand for the probability to move from a

history-tuple H to another history-tuple H ′ under the rules of evolution in R. Note that,
for i = 1, 2, . . . , k − 1, it must hold H ′i+1 = Hi in order to properly maintain history,
otherwise the probability becomes zero. On the other hand, for valid transitions, the
probability reduces to Pr[H ′1|(H1, H2, . . . ,Hk)], which is exactly the probability that H ′1
becomes the new instance given the history H = (H1, H2, . . . ,Hk) of past instances (and
any such probability is either given directly or implied by R).

For the second phase, i.e., the random walk on what’s available, we denote by Pr[v
Hj−→

v′] the probability of moving from v to v′ on some graph instance Hj . Since, the random
walk strategy is only based on the current instance, we can derive a general expression
for this probability, which is independent of the graph dynamics R. Below, let NHj (v)

stand for the set of neighbors of v in graph instance Hj . If {v, v′} 6∈ E(G), that is, if
there is no possible edge between v and v′, then for any temporal graph instance Hj , it

holds Pr[v
Hj−→ v′] = 0. The probability is also zero for all graph instances Hj where

the possible edge is not alive, i.e., {v, v′} 6∈ E(Hj). In contrast, if {v, v′} ∈ E(Hj), then

Pr[v
Hj−→ v′] = |NHj (v)|−1, since the agent chooses a destination uniformly at random out

of the currently alive ones. Finally, if v = v′, then the agent remains still, with probability
1, only if there exist no alive incident edges. We summarize the above facts in the following:

Pr[v
Hj−→ v′] =


1 , if NHj (v) = ∅ and v′ = v

|NHj (v)|−1 , if v′ ∈ NHj (v)

0 , otherwise

(3.1)

Overall, we combine the two phases in M and introduce the following probabilities.
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• If |Vc|< n:

Pr[(H, v, Vc)→ (H ′, v′, V ′c )] =


Pr[H

R−→ H ′] · Pr[v
H′1−−→ v′] , if v′ ∈ V ′c and V ′c = Vc

Pr[H
R−→ H ′] · Pr[v

H′1−−→ v′] , if v′ 6= v, v′ 6∈ V ′c and V ′c = Vc ∪ {v′}
0 , otherwise

• If |Vc|= n:

Pr[(H, v, Vc)→ (H ′, v′, V ′c )] =

 1 , if H = H ′, v = v′, Vc = V ′c

0 , otherwise

For |Vc|< n, notice that only two cases may have a non-zero probability with respect to
the growth of Vc. If the newly visited vertex v′ is already covered, then V ′c must be identical
to Vc since no new vertices are covered during this transition. Further, if a new vertex v′

is not yet covered, then V ′c is updated to include it as well as all the covered vertices in Vc.
For |Vc|= n, the idea is that once such a state has been reached, and so all vertices are

covered, then there is no need for further exploration. Therefore, such a state can be made
absorbing. In this respect, let us denote the set of these states as Γ = {(H, v, Vc) ∈ M :

|Vc|= n}.
Definition 6. Let ECT(G,R) be the problem of determining the exact value of the cover
time for an RWA on a graph G stochastically evolving under rule-set R.

Theorem 10. Assume all probabilities of the form Pr[H
R−→ H ′] used in M are exact reals

and known a priori. Then, for any underlying graph G and stochastic rule-set R, it holds
that ECT(G,R) ∈ EXPTIME.

Proof. For each temporal graph instance, Hi, in the worst case, there exist 2m possibilities,
since each of the m possible edges is either alive or dead at a graph instance. For the
whole history H, the number of possibilities becomes (2m)k = 2k·m by taking the product
of k such terms. There are n possibilities for the walker’s position v. Finally, for each
v ∈ V (G), we only allow states such that v ∈ Vc. Therefore, since we fix v, there are up to
n− 1 vertices to be included or not in Vc leading to a total of O(2n−1) possibilities for Vc.
Taking everything into account, M has a total of O(2k·m+n−1n) states.

Let Hs,Γ stand for the hitting time of Γ when starting from a state s ∈ M . Assuming
exact real arithmetic, we can compute all such hitting times by solving the following system
(Theorem 1.3.5 [98]): Hs,Γ = 0 ,∀s ∈ Γ

Hs,Γ = 1 +
∑
s′ 6∈Γ Pr[s→ s′] ·Hs′,Γ , ∀s 6∈ Γ

Let C stand for the cover time of an RWA on G evolving under R. By definition, the
cover time is the expected time till all vertices are covered, regardless of the position of the
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walker at that time. Consider the set S = {(H, v, {v}) ∈M : v ∈ V (G)} of start positions
for the agent as depicted in M . Then, it follows C = maxs∈S Hs,Γ, where we take the
worst-case hitting time to a state in Γ over any starting position of the agent. In terms
of time complexity, computing C requires computing all values Hs,Γ, for every s ∈ S. To
do so, one must solve the above linear system of size O(2k·m+n−1n), which can be done in
time exponential to input parameters n,m and k.

It’s noteworthy to remark that this approach is general in the sense that there are no
assumptions on the graph evolution rule-set R besides it being stochastic, i.e., describing the
probability of transition from each graph instance to another given some history of length
k. In this regard, Theorem 10 captures both the case of Markovian Evolving Graphs [7]
and the case of Edge-Uniform Graphs considered in this paper. We now proceed and show
how the aforementioned general approach applies to the zero-step and one-step history
cases of Edge-Uniform Graphs. To do so, we calculate the corresponding graph-dynamics
probabilities. The random walk probabilities were already given in Equation 3.1.

RWA on Edge-Uniform Graphs (Zero-Step History). Based on the general model,
we rewrite the transition probabilities for the special case when RWA takes place on an
edge-uniform graph without taking into account any memory, i.e., the same case as in
Section 3.3. Notice that, since past instances are not considered in this case, the history-
tuple reduces to a single graph instance H. We rewrite the transition probabilities, for the
case |Vc|< n, as follows:

Pr[(H, v, Vc)→ (H, v′, V ′c )] =


Pr[H ′|H] · Pr[v

H′−→ v′] , if v′ ∈ V ′c and V ′c = Vc

Pr[H ′|H] · Pr[v
H′−→ v′] , if v′ 6= v, v′ 6∈ V ′c and V ′c = Vc ∪ {v′}

0 , otherwise

Let α stand for the number of edges alive in H ′. Since there is no dependence on history
and each edge appears independently with probability p, we get Pr[H ′|H] = Pr[H ′] =

pα · (1− p)m−α.

RWA on Edge-Uniform Graphs (One-Step History). We hereby rewrite the tran-
sition probabilities for a Markov chain capturing an RWA taking place on an edge-uniform
graph where, at each time step, the current graph instance is taken into account to generate
the next one. This case is related to the results in Section 3.4. Due to the history inclusion,
the transition probabilities become more involved than those seen for the zero-history case.
Again, we consider the non-absorbing states, where |Vc|< n.
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Pr[((H1, H2), v, Vc)→ ((H ′1, H
′
2), v′, V ′c )] =


Pr[(H1, H2)→ (H ′1, H

′
2)] · Pr[v

H′1−−→ v′] , if v′ ∈ V ′c and V ′c = Vc

Pr[(H1, H2)→ (H ′1, H
′
2)] · Pr[v

H′1−−→ v′] , if v′ 6∈ V ′c and V ′c = Vc ∪ {v′}
0 , otherwise

If H ′2 6= H1, i.e., if it does not hold that, for each e ∈ G, e ∈ H ′2 if and only if e ∈ H1,
then Pr[(H1, H2) → (H ′1, H

′
2)] = 0, otherwise the history is not properly maintained. On

the other hand, if H ′2 = H1, then Pr[(H1, H2) → (H ′1, H
′
2)] = Pr[(H1, H2) → (H ′1, H1)] =

Pr[H ′1|H1]. To derive an expression for the latter, we need to consider all edge (mis)matches
between H ′1 and H1, and properly apply the Birth-Death rule (Table 3.1). Below, we
denote by D(H) = E(G) \E(H) the set of possible edges of G, which are dead at instance
H. Let c00 = |D(H1) ∩ D(H ′1)|, c01 = |D(H1) ∩ E(H ′1)|, c10 = |E(H1) ∩ D(H ′1)| and
c11 = |E(H1) ∩ E(H ′1)|. Each of the c00 edges was dead in H1 and remained dead in H ′1,
with probability 1 − p. Similarly, each of the c01 edges was dead in H1 and became alive
in H ′1, with probability p. Also, each of the c10 edges was alive in H1 and died in H ′1,
with probability q. Finally, each of the c11 edges was alive in H1 and remained alive in
H ′1, with probability 1 − q. Overall, due to the edge-independence of the model, we get
Pr[H ′1|H1] = (1− p)c00 · pc01 · qc10 · (1− q)c11 .

3.6 Concluding Remarks

We defined the general Edge-Uniform Evolution model for a stochastically-evolving graph,
where a single stochastic rule is applied, but to each edge independently, and provided
lower and upper bounds for the cover time of two random walks taking place on such a
graph (cases k = 0, 1). Moreover, we provided a general framework to compute the exact
cover time of a broad family of stochastically-evolving graphs in exponential time.

An immediate open problem is to obtain a good bound for the cover time of RWA in
the Birth-Death model. In this case, the problem becomes more complex than the k = 0

case. Depending on the values of p and q, the walk may be heavily biased, positively or
negatively, toward possible edges incident to the walker’s position, which were used in the
recent past. Another idea is to try proving cover time bounds with high probability rather
than focusing on the expected value. A more careful probabilistic analysis together with
useful tools, e.g., Chernoff bounds, might be pertinent in this case.

Our model seems to be on the opposite end of the Markovian evolving graph model [7].
There, the evolution of possible edges directly depends on the family of graphs selected as
possible instances. So, a research direction we suggest is to devise another model of partial
edge-dependency. That is, we wish the edge-specific stochastic rule to depend on a proper
subset of the edge-set; neither on no other edge nor on every other edge. Such a model may
prove interesting in terms of community-partitioned networks or block-defined graphs.
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Eternal Domination

4.1 Introduction

As a natural goal in military deterrence and defence strategies, patrolling a network has
always remained topical throughout history. In the context of graph searching, such a
patrolling task is often modeled as a combinatorial pursuit-evasion game played on a graph.
Herein, we study such a game for a task that requires the eternal domination of a network.

The Roman Domination problem was introduced in [108]: where should Emperor Con-
stantine the Great have located his legions in order to optimally defend against attacks in
unsecured locations without leaving another location unsecured? In graph theoretic terms,
the interest is in producing a dominating set of the graph, i.e., a guard placement where
each vertex must have a guard on it or on at least one of its neighbors, with possibly some
extra problem-specific qualities. Some seminal work on this topic includes [70,103].

The above model caters only for a single attack on an unsecured vertex. A natural
question is to consider special domination strategies against a sequence of attacks on the
same graph [27]. In this setting, (some of) the guards are allowed to move after each attack
to defend against it and modify their placement. The difficulty here lies in establishing a
guards’ placement to retain domination after coping with each attack. Such a sequence of
attacks can be of finite, i.e., a set of k consecutive attacks, or even infinite length.

In this paper, we focus on the latter. We wish to protect a graph against attacks
happening indefinitely on its vertices. Initially, the guards are placed on some vertices of
the graph such that they form a dominating set, with at most one guard per vertex. Then,
an attack occurs on an unoccupied vertex. All the guards (may) now move in order to
counter the attack: One of them moves to the attacked vertex, while each of the others
moves to an adjacent vertex of theirs such that the new guards’ placement again forms a
dominating set. This takes place ad infinitum.

The attacker’s objective is to devise a sequence of attacks, which leads the guards to
a non-dominating placement. On the other hand, the guards wish to maintain a sequence
of dominating sets without any interruption. The m-Eternal Domination problem, studied

49
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in this chapter, deals with determining the minimum number of guards such that they
eternally protect the graph in the above fashion. The focus is on rectangular grids, where,
to the best of our knowledge, we provide a first general upper bound.

4.1.1 Related Work

Infinite order domination was first considered by Burger et al. [28] as an extension to finite
order domination. Later on, Goddard et al. [65] proved some first bounds with respect
to other graph-theoretic notions (like independence and clique cover) for the one-guard-
moves and all-guards-move cases. The relationship between eternal domination and clique
cover is examined more carefully in [6]. There exists a series of other papers with several
combinatorial bounds, e.g., see [66,69,71,82].

Regarding grid graphs, Chang [31] gave many strong upper and lower bounds for the
domination number. Indeed, Gonçalves et al. [67] proved Chang’s construction optimal for
rectangular grids where both dimensions are greater or equal to 16. Moving onward to
eternal domination, bounds for 3 × n [55, 95], 4 × n [12] and 5 × n [109] grids have been
examined, where the bounds are almost tight for 3× n and exactly tight for 4× n.

Due to the mobility of the guards and the breakdown into alternate turns, one can
view eternal domination as a pursuit-evasion combinatorial game in the same context as
Cops & Robber [19] (k cops try to arrest a single robber), the Surveillance Game [59, 63]
(a marker deposits marks on vertices such that a surfer cannot ever reach an unmarked
vertex), and the Spy Game [39, 40], where a spy (faster than the guards) has to always
maintain some predefined distance from each guard. In all such games, there are two
players who alternately take turns, with one of them pursuing the other possibly indefinitely.
An analogous Eternal Vertex Cover problem has been considered [58, 80, 81] with attacks
occurring on the edges of the graph. In that setting, the guards defend against an attack
by traversing the attacked edge, while they move to preserve a vertex cover after each turn.
The m-eviction number is studied in [79], where attacks occur on the vertices occupied by
guards and they have to move to survive, whilst always maintaining a dominating set.

A good overview of the topic can be found in a recent survey on graph protection [83].

4.1.2 Our Result

We make a first step towards answering an open question raised by Klostermeyer and
Mynhardt [83]: We show that, in order to ensure m-eternal domination in rectangular
grids, only a linear number of extra guards is needed compared to domination.

To obtain this result, we devise an unravelling strategy of successive (counter) clockwise
rotations for the guards to eternally dominate an infinite grid. This strategy is referred
to as the Rotate-Square strategy. Then, we apply the same strategy to finite grids with
some extra guards to ensure the boundary remains always guarded. Overall, we show that
dmn5 e+O(m+ n) guards suffice to eternally dominate an m× n grid, for m,n ≥ 16.
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4.1.3 Outline

In Section 4.2, we define the m-Eternal Domination game. Later, in Section 4.3, we describe
the basic components of the Rotate-Square strategy and prove that it can be used to
dominate an infinite grid forever. Later, in Section 4.4 we show how the strategy can
be adjusted to eternally dominate finite grids by efficiently handling movements near the
boundary and the corners. Finally, in Section 4.5, we cite some concluding remarks.

4.2 Preliminaries

Eternal Domination can be regarded as a combinatorial pursuit-evasion game played on a
graph G. There exist two players: one of them controls the guards, while the other controls
the attacker. The game takes place in rounds. Each round consists of two turns: one for
the guards and one for the attacker.

Initially (round 0), the guard tokens are placed such that they form a dominating set
on G. Then, without loss of generality, the attacker attacks a vertex without a guard on
it. A guard, dominating the attacked vertex, must now move on it to counter the attack.
Notice that at least one such guard exists because their initial placement is dominating.
Moreover, the rest of the guards may move; a guard on vertex v can move to any vertex in
N [v]. The guards must ensure their modified placement is still a dominating set for G. The
game proceeds in similar fashion in any subsequent round. Guards win if they can counter
any attack of the attacker and eternally maintain a dominating set; that is, for an infinite
number of attacks. Otherwise, the attacker wins, as he manages to force the guards to
reach a placement that is no longer dominating; then, an attack on an undominated vertex
suffices to win. From now on, we say that a vertex is unoccupied when no guard lies on it.

Definition 7. γ∞m (G) stands for the m-eternal domination number of a graph G, i.e., the
minimum size of a guards’ team needed to eternally dominate G (when all guards can move
at each turn).

Similarly to notation for standard domination, we simplify γ∞m (Pm2Pn) to γ∞m,n. Since
the initial guards’ placement is dominating, we get γ∞m (G) ≥ γ(G) for any graph G. By
a simple rotation, we get γm,n = γn,m and γ∞m,n = γ∞n,m. Finally, multiple guards are not
allowed to lie on a single vertex, since this could provide an advantage for the guards [56].

4.3 Eternally Dominating an Infinite Grid

In this section, we describe a strategy to eternally dominate an infinite grid. We denote
an infinite grid as G∞ and define it as a pair (V (G∞), E(G∞)), where V (G∞) = {(x, y) :

x, y ∈ Z} and any vertex (x, y) ∈ V (G∞) is adjacent to (x, y− 1), (x, y+ 1), (x− 1, y) and
(x+ 1, y). In all figures to follow, we view the grid as a mesh, i.e., similar to a chessboard,
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where each cell of the mesh corresponds to a vertex of V (G∞) and neighbors four other
cells: the one above, below, left and right of it. We assume row x is above row x + 1 and
column y is left of column y + 1. Each guard occupies a single cell and has the capability
to move to an adjacent cell (left, right, up or down) during the guards’ turn. For a visual
explanation of the grid-mesh correspondence, see Figure 4.1.

G

U

L R

D O

O

O

O

GL R

U

D

(a) Some local view of a grid graph consisting
of vertices and edges

(b) The local view of the corresponding mesh
configuration consisting of cells

Figure 4.1: From a grid graph (a) to a mesh configuration (b): a guard lying on vertex/cell
G can move to any of its neighboring vertices/cells L, R, U , D during the guards’ turn

Initially, let us consider a family of dominating sets for G∞. In the following, let
Z2 := Z× Z and let Z5 := {0, 1, 2, 3, 4} stand for the group of integers modulo 5. We then
define the function f : Z2 → Z5 as f(x, y) = x + 2y (mod 5) for any (x, y) ∈ Z2. This
function appears in [31] and is central to providing an optimal dominating set for sufficiently
large finite grids. Intuitively, such an optimal dominating set can be interpreted pictorially
as a set of carefully placed "diagonal lines" which perfectly dominate grid neighbors around
them (see Figure 4.2a). We therefore try to exploit this function’s usefulness in our setting
by eternally switching from one such "diagonal lines" dominating set to another. With
respect to this goal, let Dt = {(x, y) ∈ V (G∞) : f(x, y) = t} for t ∈ Z5 and D(G∞) =

{Dt : t ∈ Z5}. For purposes of symmetry, let us define f ′(x, y) = f(y, x) and then let
D′t = {(x, y) ∈ V (G∞) : f ′(x, y) = t} and D′(G∞) = {D′t : t ∈ Z5}.

Proposition 5. Any Dt, D
′
t ∈ D(G∞) ∪ D′(G∞) is a dominating set for G∞.

Proof. Let (x, y) ∈ V (G∞) and f(x, y) = t ∈ {0, 1, 2, 3, 4}. We consider all possible cases
for another vertex (w, z) ∈ V (G∞):

• If f(w, z) = t, then (w, z) ∈ Dt.

• If f(w, z) = t+ 1 (mod 5), then f(w− 1, z) = t and (w− 1, z) ∈ Dt dominates (w, z).

• If f(w, z) = t− 1 (mod 5), then f(w + 1, z) = t and (w + 1, z) ∈ Dt dominates (w, z).

• If f(w, z) = t+ 2 (mod 5), then f(w, z − 1) = t and (w, z − 1) ∈ Dt dominates (w, z).

• If f(w, z) = t− 2 (mod 5), then f(w, z + 1) = t and (w, z + 1) ∈ Dt dominates (w, z).
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Similarly, let (x, y) ∈ V (G∞) and f ′(x, y) = t ∈ Z5. Again, we consider all possible cases
for another vertex (w, z) ∈ V (G∞):

• If f ′(w, z) = t, then (w, z) ∈ D′t.

• If f ′(w, z) = t+1 ( mod 5), then f ′(w, z−1) = t and (w, z−1) ∈ D′t dominates (w, z).

• If f ′(w, z) = t−1 ( mod 5), then f ′(w, z+1) = t and (w, z+1) ∈ D′t dominates (w, z).

• If f ′(w, z) = t+2 ( mod 5), then f ′(w−1, z) = t and (w−1, z) ∈ D′t dominates (w, z).

• If f ′(w, z) = t−2 ( mod 5), then f ′(w+1, z) = t and (w+1, z) ∈ D′t dominates (w, z).

Notice that the above constructions form perfect dominating sets, i.e., dominating sets
where each vertex is dominated by exactly one vertex (possibly itself), since, for each vertex
v ∈ V (G∞), exactly one vertex from N [v] lies in Dt (respectively D′t) by the definition of
Dt (respectively D′t).

4.3.1 A First Eternal Domination Strategy

Let us consider a shifting-style strategy as a first simple strategy to eternally dominate G∞.
The guards initially pick a placement Dt for some t ∈ Z5. Next, an attack occurs on some
unoccupied vertex. Since the Dt placement perfectly dominates G∞, there exists exactly
one guard adjacent to the attacked vertex. Therefore, it is mandatory for him to move onto
the attacked vertex. His move defines a direction in the grid: left, right, up or down. The
rest of the strategy reduces to each guard moving according to the defined direction.

The aforementioned strategy works fine for the infinite grid. Nonetheless, applying it
(directly or modified) to a finite grid encounters many obstacles. Shifting the guards toward
one course leaves some vertices in the very end of the opposite course (near the boundary)
undominated, since there is no longer an unlimited supply of guards to ensure protection.
To overcome this problem, we propose a different strategy whose main aim is to redistribute
the guards without creating any bias to a specific direction.

4.3.2 Unoccupied Squares

Another m-eternal domination strategy is to rotate the guards’ placement around subgrids
of size 2 × 2, in which all four cells are unoccupied. We refer to such a subgrid as an
unoccupied square. Intuitively, by using such an approach, the overall movement is zero
and the guards always occupy a placement in D(G∞)∪D′(G∞) after an attack is defended.

Consider some vertex (x, y) ∈ V (G∞), where (x, y) ∈ Dt for some value t ∈ Z5. Now,
assume that the guards lie on the vertices specified in Dt and hence form a dominating set.
In Figure 4.2a, we partially view G∞ where the black cell represents a guard on some cell
(x, y) ∈ Dt and the gray cells represent guards elsewhere in Dt. By looking around (x, y),
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we identify the existence of four unoccupied squares. For i = 0, 1, 2, 3, let SQi(x, y) denote
the i-th unoccupied square with respect to (x, y).

• SQ0(x, y) = {(x− 1, y + 1), (x− 1, y + 2), (x, y + 1), (x, y + 2)}

• SQ1(x, y) = {(x+ 1, y), (x+ 1, y + 1), (x+ 2, y), (x+ 2, y + 1)}

• SQ2(x, y) = {(x, y − 2), (x, y − 1), (x+ 1, y − 2), (x+ 1, y − 1)}

• SQ3(x, y) = {(x− 2, y − 1), (x− 2, y), (x− 1, y − 1), (x− 1, y)}

In Figure 4.2a, a cell in an unoccupied square SQi(x, y) has a label SQi.
One can verify that, for every (w, z) ∈ ⋃3

i=0 SQi(x, y), we get f(w, z) 6= f(x, y) and thus
(w, z) /∈ Dt. Notice that (x, y) has exactly one adjacent cell in each of these unoccupied
squares and is the only guard that dominates these four cells, since domination is perfect.
We say that a guard on (x, y) slides along the side of an unoccupied square SQi(x, y)

when he moves to cell (w, z) adjacent to (x, y), where (w, z) is also adjacent to a cell in
SQi(x, y). In other words, the (x, y)-guard’s current and previous cells are both adjacent
to a cell in SQi(x, y). In the case of a Dt placement, see Figure 4.2a, an attack on a cell
(w, z) ∈ SQi(x, y) ∩ N((x, y)) would mean the guard on (x, y) moves to (w, z) and slides
along the side of unoccupied square SQ(i+1) mod 4(x, y). For example, an attack on the
bottom-right cell of SQ3 would mean the (x, y)-guard slides along SQ0: Figures 4.2b, 4.2c.

The aforementioned observations also extend to some vertex (x, y) in a dominating set
D′t. We now define the four unoccupied squares as follows (see Figure 4.3a):

• SQ′0(x, y) = {(x, y + 1), (x, y + 2), (x+ 1, y + 1), (x+ 1, y + 2)}

• SQ′1(x, y) = {(x+ 1, y − 1), (x+ 1, y), (x+ 2, y − 1), (x+ 2, y)}

• SQ′2(x, y) = {(x− 1, y − 2), (x− 1, y − 1), (x, y − 2), (x, y − 1)}

• SQ′3(x, y) = {(x− 2, y), (x− 2, y + 1), (x− 1, y), (x− 1, y + 1)}

Similarly to before, the squares are unoccupied, since for every (w, z) ∈ ⋃3
i=0 SQ

′
i we

get f ′(w, z) 6= f ′(x, y) and thus (w, z) /∈ D′t. The (x, y)-guard has exactly one adjacent cell
in each of these unoccupied squares and protecting an attack on SQ′i now means sliding
along the side of SQ′(i−1) mod 4. For example, an attack on the bottom-right cell of SQ′2
means the (x, y)-guard slides along SQ′1 (Figures 4.3b, 4.3c).

4.3.3 The Rotate-Square Strategy

We hereby describe the Rotate-Square strategy and prove it eternally dominates G∞. The
strategy makes use of the unoccupied squares idea. Once an attack occurs on some unoc-
cupied vertex, since any Dt or D′t dominating set the guards form is perfect, there exists
a single guard who is able to defend against it. We refer to this guard as the defence-
responsible guard. Without loss of generality, let the defence-responsible guard lie on some
cell (x, y) ∈ Dt for some t. For D′t placements, the arguments are similar. We identify the
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SQ2SQ2
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SQ1SQ1
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SQ0 SQ0
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(a) Unoccupied squares around (x, y) ∈ Dt; (x, y) in black

SQ2SQ2
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SQ0 SQ0
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SQ3

(b) Attack on bottom-right cell of SQ3(x, y): we identify the defence-responsible guard (x, y) (in
black) and the corresponding unoccupied squares

SQ0 SQ0

SQ0 SQ0

(c) The defence-responsible guard slides along a side of SQ0(x, y) (dotted line): its current and
next cell are both adjacent to SQ0(x, y) cells

Figure 4.2: Examples of defence-responsible guard, unoccupied squares and sliding along
for the Dt case
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(a) Unoccupied squares around (x, y) ∈ D′t; (x, y) in black
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(b) Attack on bottom-right cell of SQ′2(x, y): we identify the defence-responsible guard (x, y) (in
black) and the corresponding unoccupied squares
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(c) The defence-responsible guard slides along a side of SQ′1(x, y) (dotted line): its current and
next cell are both adjacent to SQ′1(x, y) cells

Figure 4.3: Examples of defence-responsible guard, unoccupied squares and sliding along
for the D′t case
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four unoccupied squares around the defence-responsible guard as in Figure 4.2a. Assume
the attack happened on a vertex (w, z) ∈ SQi(x, y). Then, as discussed earlier, the defence-
responsible guard moves to (w, z) to defend against the attack and such a move means he
is sliding along the side of square SQ(i+1) mod 4(x, y). We refer to SQ(i+1) mod 4(x, y) as the
pattern square, i.e., the unoccupied square along whose side the defence-responsible guard
slides to defend the attack.

Notice that, due to the grid topology and the fact that a Dt placement is a perfect
dominating set, there are exactly four guards adjacent to cells of the pattern square: exactly
one guard per cell of the pattern square (one of them being the defence-responsible guard).
We refer to these four guards as the pattern guards. In Figures 4.4 and 4.5, we identify the
pattern guards for each potential pattern square out of the four unoccupied squares related
to a Dt or D′t placement. Besides the defence-responsible guard, the other three guards
dominating the pattern square also slide along a side of the pattern square, such that the
four guards’ overall movement looks as a rotation step around the pattern square.

To facilitate a more formal explanation, let us break down the guards’ turn into a
few distinct components. Of course, the guards are always assumed to move concurrently
during their turn.

Initially, the guards occupy a dominating set Dt in D(G∞). Then, an attack occurs on
a vertex in V (G∞) \Dt. To defend against it, the guards apply Rotate-Square:

(1) Identify the defence-responsible guard.

(2) Identify the pattern square and the pattern guards.

(3) The pattern guards slide along the sides of the pattern square.

(4) Repeat the rotation pattern in horizontal and vertical lanes in hops of distance five.

Let us examine each of these strategy components more carefully.
Step (1) requires looking at the grid and spotting the guard, which lies on a cell adjacent

to the attacked cell. The four unoccupied squares around the defence-responsible guard are
identified as in Figure 4.2a.

In step (2), the pattern square is identified as the unoccupied square along whose side
the defence-responsible guard has to slide to defend the attack. The four guards adjacent
to cells of the pattern square are identified as the pattern guards.

In step (3), each of the pattern guards (including the defence-responsible guard) slides
along a side of the pattern square. For an example, see Figure 4.6: the defence-responsible
guard in cell (x, y) (in black) defends against an attack on the bottom-right cell of SQ3(x, y)

by sliding along SQ0(x, y). Then, the other three guards around SQ0(x, y) (in gray) slide
along a side of SQ0(x, y) as well. The latter happens in order to preserve that the pattern
square SQ0(x, y) remains unoccupied.
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(c) Pattern guards for SQ2
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(d) Pattern guards for SQ3

Figure 4.4: Pattern guards for Dt unoccupied squares (circled)
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(c) Pattern guards for SQ′2
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(d) Pattern guards for SQ′3

Figure 4.5: Pattern guards for D′t unoccupied squares (circled)
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(a) Unoccupied squares around (x, y) ∈ Dt; (x, y) in black
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(b) Attack on bottom-right cell of SQ3(x, y): the defence-responsible guard in black cell (x, y) must
slide along a side of SQ0(x, y), which is identified as the pattern square for the next guards’ turn

SQ0 SQ0

SQ0 SQ0

(c) Pattern guards slide along sides of pattern square SQ0(x, y); arrows indicate the directions

Figure 4.6: An example for Step (3) of Rotate-Square
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Figure 4.7: Example execution for Step (4) of Rotate-Square: pattern guards in black

Eventually, in step (4), the pattern square is used as a guide for the move of the rest of
the guards in Dt. Consider a pattern guard initially lying on vertex (w, z). By construction
of Dt, guards lie on all vertices (w± 5α, z± 5β) for α, β ∈ N, since adding multiples of 5 in
both dimensions does not affect membership in Dt by definition of f(·). We refer to the set
{(w±5α, z±5β) : α, β ∈ N} as the cousins of (w, z). Each pattern guard, in step (3), slides
along a side of the pattern square. His move defines a direction on the grid: up, down, left,
right. For each pattern guard (w, z), the strategy of his cousins reduces to taking a step in
the same direction. The rest of the guards, i.e., guards who are not cousins to any pattern
guard, do not move during this turn, i.e., will remain in their pre-attack location after the
attack. From now on, we refer to these guards as stationary guards. We provide an example
execution of step (4) in Figure 4.7. The original pattern guards are given in black. The
circles enclose the repetitions of the pattern guards’ move by their cousins, in gray. Guards
outside a circle do not move during this turn, i.e., they remain in their pre-attack location.

Lemma 15. Assume the guards occupy a dominating placement D in D(G∞) ∪ D′(G∞)

and an attack occurs on a vertex in V (G∞) \D. After applying Rotate-Square, the guards
successfully defend against the attack and again form a dominating set in D(G∞)∪D′(G∞).
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Proof. In this proof, we are going to demonstrate that any of the four possible attacks
(one per unoccupied square) around a vertex in a Dt (or D′t) placement can be defended
by Rotate-Square and, most importantly, the guards still occupy a placement in D(G∞) ∪
D′(G∞) after their turn. Below, in Figure 4.8, we provide pictorial details for one out of
eight cases, four for Dt and four for D′t. We need not care about the value of t, since all Dt,
respectively D′t, placements are mere shifts of each other. The defence-responsible guard
is shown in black, while the rest is depicted in gray. Also, notice that the pattern guards’
cousins occupy positions (w±5α, z±5β) for α, β ∈ N, where (w, z) is the new position of a
pattern square guard. Then, f(w, z) = f(w±5α, z±5β) and f ′(w, z) = f ′(w±5β, z±5α),
since the modulo 5 operation cancels out the addition (subtraction) of 5α and 5β. A similar
observation holds for stationary guards: we identify a model guard, say on position (a, b),
and then the rest of such guards are given by (a± 5α, b± 5β). Again, the f(·), respectively
f ′(·), values of all these vertices remain equal. For this reason, we focus below only on the
pattern guards and one stationary guard and demonstrate that they share the same value of
f(·), respectively f ′(·). We hereby consider a potential attack around a vertex (x, y) ∈ Dt.

Attack on (x − 1, y) (i.e., on SQ3(x, y)). We apply Rotate-Square around SQ0(x, y).
The four pattern guards and the model stationary guard move as follows (Figure 4.8):

Let P stand for the set of new positions given in Table 4.1. The guards now occupy
cells (w, z) ∈ P where f ′(w, z) = 2x + y − 2 (mod 5) = 2x + y + 3 (mod 5) = t′. By this
fact, we get P ⊆ D′t′ . Now, assume there exists a cell (w, z) /∈ P , but (w, z) ∈ D′t′ . Without
loss of generality, we assume w ∈ [x−3, x+ 1] and z ∈ [y−1, y+ 3], since the configuration
of the guards in this window is copied all over the grid by the symmetry of Dt or D′t
placements. Since (w, z) /∈ P , this is a cell with no guard on it. However, by construction,
any such cell is dominated by an adjacent vertex (w1, z1) with f ′(w1, z1) = t′. Then, by
assumption, f ′(w, z) = f ′(w1, z1) = t′, which is a contradiction because, by definition of
f ′(·), two adjacent cells never have equal values.

All other cases are proved in a similar fashion; for the details, see Tables 4.2–4.8. Note
that an attack on a Dt placement leads to a D′t′ placement for some t′ and vice versa.

Theorem 11. The guards eternally dominate G∞ by following the Rotate-Square strategy
starting from an initial dominating set in D(G∞) ∪ D′(G∞).

Proof. We prove by induction that the guards defend against any number of attacks and
always maintain a placement in D(G∞) ∪ D′(G∞) after their turn.

In the first step, the guards apply Rotate-Square and by Lemma 15 they successfully
defend against the first attack and now form another dominating set in D(G∞) ∪D′(G∞).

Assume that i attacks have occurred and the guards have successfully defended against
all of them by following Rotate-Square. That is, they occupy a configuration in D(G∞) ∪
D′(G∞). The (i+ 1)-st attack now occurs: the guards again follow Rotate-Square, defend
against the attack and form another dominating set in D(G∞)∪D′(G∞) (Lemma 15).
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Table 4.1: Attack on (x− 1, y) (rotate around SQ0(x, y)); Figure 4.8

Guard Old Position (w, z) New Position (w′, z′) f ′(w′, z′) (mod 5)

defence-responsible (x, y) (x− 1, y) 2x+ y − 2

pattern (x− 2, y + 1) (x− 2, y + 2) 2x+ y − 2

pattern (x− 1, y + 3) (x, y + 3) 2x+ y + 3

pattern (x+ 1, y + 2) (x+ 1, y + 1) 2x+ y + 3

stationary (x− 3, y − 1) (x− 3, y − 1) 2x+ y − 2

SQ2SQ2

SQ2 SQ2

SQ1 SQ1

SQ1SQ1

SQ0 SQ0

SQ0 SQ0

SQ3

SQ3

SQ3

SQ3

(a) Attack on bottom-right cell of SQ3(x, y)

SQ0 SQ0

SQ0 SQ0

(b) Rotate-Square: SQ0(x, y) pattern square

Figure 4.8: Defending against an attack on SQ3(x, y)

Table 4.2: Attack on (x, y − 1) (rotate around SQ3(x, y)); Figure 4.9

Guard Old Position (w, z) New Position (w′, z′) f ′(w′, z′) (mod 5)

defence-responsible (x, y) (x, y − 1) 2x+ y − 1

pattern (x− 1, y − 2) (x− 2, y − 2) 2x+ y − 1

pattern (x− 3, y − 1) (x− 3, y) 2x+ y − 1

pattern (x− 2, y + 1) (x− 1, y + 1) 2x+ y − 1

stationary (x+ 1, y + 2) (x+ 1, y + 2) 2x+ y + 4

SQ2SQ2

SQ2 SQ2

SQ1 SQ1

SQ1SQ1

SQ0 SQ0

SQ0 SQ0

SQ3

SQ3

SQ3

SQ3

(a) Attack on top-right cell of SQ2(x, y)

SQ3

SQ3

SQ3

SQ3

(b) Rotate-Square: SQ3(x, y) pattern square

Figure 4.9: Defending against an attack on SQ2(x, y)
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Table 4.3: Attack on (x+ 1, y) (rotate around SQ2(x, y)); Figure 4.10

Guard Old Position (w, z) New Position (w′, z′) f ′(w′, z′) (mod 5)

defence-responsible (x, y) (x+ 1, y) 2x+ y + 2

pattern (x+ 2, y − 1) (x+ 2, y − 2) 2x+ y + 2

pattern (x+ 1, y − 3) (x, y − 3) 2x+ y − 3

pattern (x− 1, y − 2) (x− 1, y − 1) 2x+ y − 3

stationary (x− 2, y + 1) (x− 2, y + 1) 2x+ y − 3

SQ2SQ2

SQ2 SQ2

SQ1 SQ1

SQ1SQ1

SQ0 SQ0

SQ0 SQ0

SQ3

SQ3

SQ3

SQ3

(a) Attack on top-left cell of SQ1(x, y)

SQ2SQ2

SQ2 SQ2

(b) Rotate-Square: SQ2(x, y) pattern square

Figure 4.10: Defending against an attack on SQ1(x, y)

Table 4.4: Attack on (x, y + 1) (rotate around SQ1(x, y)); Figure 4.11

Guard Old Position (w, z) New Position (w′, z′) f ′(w′, z′) (mod 5)

defence-responsible (x, y) (x, y + 1) 2x+ y + 1

pattern (x+ 1, y + 2) (x+ 2, y + 2) 2x+ y + 1

pattern (x+ 3, y + 1) (x+ 3, y) 2x+ y + 1

pattern (x+ 2, y − 1) (x+ 1, y − 1) 2x+ y + 1

stationary (x− 1, y + 3) (x− 1, y + 3) 2x+ y + 1

SQ2SQ2

SQ2 SQ2

SQ1 SQ1

SQ1SQ1

SQ0 SQ0

SQ0 SQ0

SQ3

SQ3

SQ3

SQ3

(a) Attack on bottom-left cell of SQ0(x, y)

SQ1 SQ1

SQ1SQ1

(b) Rotate-Square: SQ1(x, y) pattern square

Figure 4.11: Defending against an attack on SQ0(x, y)
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Table 4.5: Attack on (x− 1, y) (rotate around SQ′2(x, y)); Figure 4.12

Guard Old Position (w, z) New Position (w′, z′) f(w′, z′) (mod 5)

defence-responsible (x, y) (x− 1, y) x+ 2y − 1

pattern (x− 2, y − 1) (x− 2, y − 2) x+ 2y − 1

pattern (x− 1, y − 3) (x, y − 3) x+ 2y − 1

pattern (x+ 1, y − 2) (x+ 1, y − 1) x+ 2y − 1

stationary (x− 3, y + 1) (x− 3, y + 1) x+ 2y − 1

SQ′
2SQ′

2

SQ′
2 SQ′

2

SQ′
1 SQ′

1

SQ′
1SQ′

1

SQ′
0 SQ′

0

SQ′
0 SQ′

0

SQ′
3

SQ′
3

SQ′
3

SQ′
3

(a) Attack on bottom-left cell of SQ′3(x, y)

SQ′
2SQ′

2

SQ′
2 SQ′

2

(b) Rotate-Square: SQ′2(x, y) pattern square

Figure 4.12: Defending against an attack on SQ′3(x, y)

Table 4.6: Attack on (x, y − 1) (rotate around SQ′1(x, y)); Figure 4.13

Guard Old Position (w, z) New Position (w′, z′) f(w′, z′) (mod 5)

defence-responsible (x, y) (x, y − 1) x+ 2y − 2

pattern (x+ 2, y + 1) (x+ 1, y + 1) x+ 2y + 3

pattern (x+ 3, y − 1) (x+ 3, y) x+ 2y + 3

pattern (x+ 1, y − 2) (x+ 2, y − 2) x+ 2y − 2

stationary (x− 1, y + 2) (x− 1, y + 2) x+ 2y + 3

SQ′
2SQ′

2

SQ′
2 SQ′

2

SQ′
1 SQ′

1

SQ′
1SQ′

1

SQ′
0 SQ′

0

SQ′
0 SQ′

0

SQ′
3

SQ′
3

SQ′
3

SQ′
3

(a) Attack on bottom-right cell of SQ′2(x, y)

SQ′
1 SQ′

1

SQ′
1SQ′

1

(b) Rotate-Square: SQ′1(x, y) pattern square

Figure 4.13: Defending against an attack on SQ′2(x, y)
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Table 4.7: Attack on (x+ 1, y) (rotate around SQ′0(x, y)); Figure 4.14

Guard Old Position (w, z) New Position (w′, z′) f(w′, z′) (mod 5)

defence-responsible (x, y) (x+ 1, y) x+ 2y + 1

pattern (x+ 2, y + 1) (x+ 2, y + 2) x+ 2y + 1

pattern (x+ 1, y + 3) (x, y + 3) x+ y + 1

pattern (x− 1, y + 2) (x− 1, y + 1) x+ 2y + 1

stationary (x− 2, y − 1) (x− 2, y − 1) x+ 2y − 4

SQ′
2SQ′

2

SQ′
2 SQ′

2

SQ′
1 SQ′

1

SQ′
1SQ′

1

SQ′
0 SQ′

0

SQ′
0 SQ′

0

SQ′
3

SQ′
3

SQ′
3

SQ′
3

(a) Attack on top-right cell of SQ′1(x, y)

SQ′
0 SQ′

0

SQ′
0 SQ′

0

(b) Rotate-Square: SQ′0(x, y) pattern square

Figure 4.14: Defending against an attack on SQ′1(x, y)

Table 4.8: Attack on (x, y + 1) (rotate around SQ′3(x, y)); Figure 4.15

Guard Old Position (w, z) New Position (w′, z′) f(w′, z′) (mod 5)

defence-responsible (x, y) (x, y + 1) x+ 2y + 2

pattern (x− 1, y + 2) (x− 2, y + 2) x+ 2y + 2

pattern (x− 3, y + 1) (x− 3, y) x+ 2y − 3

pattern (x− 2, y − 1) (x− 1, y − 1) x+ 2y +−3

stationary (x+ 1, y + 3) (x+ 1, y + 3) x+ 2y + 2

SQ′
2SQ′

2

SQ′
2 SQ′

2

SQ′
1 SQ′

1

SQ′
1SQ′

1

SQ′
0 SQ′

0

SQ′
0 SQ′

0

SQ′
3

SQ′
3

SQ′
3

SQ′
3

(a) Attack on top-left cell of SQ′0(x, y)

SQ′
3

SQ′
3

SQ′
3

SQ′
3

(b) Rotate-Square: SQ′3(x, y) pattern square

Figure 4.15: Defending against an attack on SQ′0(x, y)
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4.4 Eternally Dominating Finite Grids

We now apply the Rotate-Square strategy to finite grids, i.e., graphs of the form Pm2Pn.
The initial idea is to follow the rules of the strategy, but to never leave any boundary
or corner vertex unoccupied. A finite m × n grid consists of vertices (i, j) where i ∈
{0, 1, 2, . . . ,m − 1} and j ∈ {0, 1, 2, . . . , n − 1}. Vertices (0, x), (m − 1, x), (y, 0), (y, n − 1)

for x ∈ {1, 2, . . . , n−2} and y ∈ {1, 2, . . . ,m−2} are called boundary vertices, while vertices
(0, 0), (0, n−1), (m−1, 0), (m−1, n−1) are called corner vertices. Adjacencies are similar to
the infinite grid case. However, boundary vertices only have three neighbors, while corner
vertices only have two. Let us consider V (t) = Dt ∩ (Pm2Pn) and V ′(t) = D′t ∩ (Pm2Pn),
respectively. We cite the following counting lemma from [31].

Lemma 16 (Lemma 2.2 [31]). For all t, it holds bmn5 c ≤ |V (t)|≤ dmn5 e, and there exist
t0, t1, such that |V (t0)|= bmn5 c and |V (t1)|= dmn5 e.

The main observation in the proof of the above lemma is that there exist either bm5 c
or bm5 c + 1 Dt-vertices in one column of a Pm2Pn grid. Then, a case-analysis counting
provides the above bounds. The same observation holds for D′t, since f ′(·) is defined based
on the same function f : Z2 → Z5. Thence, we can extend the above lemma for D′t cases
with a similar proof.

Lemma 17. For all t, it holds bmn5 c ≤ |V ′(t)|≤ dmn5 e, and there exist t0, t1, such that
|V ′(t0)|= bmn5 c and |V ′(t1)|= dmn5 e.

In order to study the domination of Pm2Pn, the analysis is based on examining V (t),
but for an extended Pm+22Pn+2 mesh. Indeed, Chang [31] showed the following.

Lemma 18 (Theorem 2.2 [31]). For any m,n ≥ 8, γm,n ≤ b (m+2)(n+2)
5 c − 4.

The result follows by picking an appropriateDt placement and forcing into the boundary
of Pm2Pn the guards on the boundary of Pm+22Pn+2. Moreover, Chang showed how to
eliminate another four guards; one near each corner.

Below, to facilitate the readability of our analysis, we focus on a specific subcase of
finite grids. We demonstrate an m-eternal dominating strategy for m×n finite grids where
m mod 5 = n mod 5 = 2 and then we improve upon it and extend to the general case.

4.4.1 A First Upper Bound: Full Boundary Cover

Initially, we place our guards on vertices belonging to V (t) = Dt∩ (Pm2Pn) for some value
t ∈ Z5. Unlike the approach in [31], we do not force inside any guards lying outside the
boundary of Pm2Pn. Since a sequence of attacks may force the guards to any V (t) or V ′(t)
placement, i.e., for any value of t, we pick an initial guard placement, say V (t1), for which
|V (t1)|= dmn5 e holds, to make sure that there are enough guards to maintain domination
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while transitioning from one placement to the next. By Lemma 16, such a placement exists.
Moreover, we cover the whole boundary by placing a guard on each unoccupied boundary
or corner vertex. For an example, see Figure 4.16: black cells stand for guards which are
members of a Dt placement, whereas shaded cells denote the places where the extra guards
are put. We refer to each of these added guards as a boundary guard. This concludes the
initial placement of the guards.

The guards now follow Rotate-Square limited within the grid boundaries. For grid
regions lying far from the boundary, Rotate-Square is applied in the same way as in the
infinite grid case. For guard moves happening near the boundary or the corners, Rotate-
Square’s new placement demands can be satisfied by performing shifts of boundary guards.
In other words, a guard may need to step out of the boundary, because he is (a cousin
of) a pattern guard. Then, another guard steps into the boundary to replace him, while
the boundary guards between the into and out-of cells shift one step on the boundary. An
example can be found in Figure 4.17a, where we partially view the area near the bottom-left
corner of a finite grid. The circles enclose repetitions of the pattern square movement. We
focus our attention in the following two cases.

• Guard transitions within the boundary: As indicated in the leftmost column in Fig-
ure 4.17a, to follow the pattern move, the two black guards have to move downward.
However, since their movement does not force them outside the boundary and the
boundary is fully occupied, there is no need to move in this case. We demonstrate
this by removing the arrows in Figure 4.17b.

• Guard transitions into and out of the boundary: As indicated in the enclosed rectangle
at the bottom-center in Figure 4.17b, following the pattern means a guard has to leave
the boundary, whereas another has to enter it. To perform the pattern move, while
maintaining a full boundary, we perform a shift of boundary guards as depicted in
Figure 4.18. Essentially, the three boundary guards between the two pattern guards
shift one step to the left to both cover the unoccupied cell left by the pattern guard
leaving the boundary and free a cell for the new position of the pattern guard entering
the boundary.

We refer to this slightly modified version of Rotate-Square as Finite Rotate-Square.

Lemma 19. Assume m mod 5 = n mod 5 = 2 and that the guards follow Finite Rotate-
Square, for an m-Eternal Domination game in Pm2Pn. Then, after every turn, their new
placement P is dominating, all boundary and corner vertices have a guard on them and,
for some t ∈ Z5, there exists a set V (t) (or V ′(t)) such that V (t) ⊆ P (or V ′(t) ⊆ P ).

Proof. Consider the (m− 2)× (n− 2) subgrid that remains when we remove the boundary
rows and columns. Since m mod 5 = n mod 5 = 2, (m − 2) and (n − 2) perfectly divide
5. The latter means that each row, respectively column, of the subgrid has exactly n−2

5 ,
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Figure 4.16: An example of an initial Dt placement for the guards in a 12× 12 grid: black
cells stand for Dt guards, whereas shaded cells stand for extra boundary guards

(a) Circles enclosing pattern square repeti-
tions near a corner of a finite grid

(b) Guard transitions within and into/ out
of the boundary (within dashed rectangles)

Figure 4.17: Example of Finite Rotate-Square near the bottom-left corner of a finite grid

(a) (b) (c)

(d) (e) (f)

Figure 4.18: An example of boundary guards’ shifting for the case of Figure 4.17b
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(a) n−2
5 = 3 pairs: guards of adjacent squares

(b) n−2
5 = 3 pairs: guards of same square

Figure 4.19: Examples of boundary-shifting pairs on the upper boundary of a grid (n = 17)

respectively m−2
5 , guards on it. Without loss of generality, consider row one neighboring the

upper boundary row, which is row zero. Let us assume that a pattern square propagation
forces a row-one guard to move into the boundary. Then, by symmetry of the pattern
guards’ move, there exists another guard on the boundary row zero that needs to move
downward to row one. Notice that the same holds for each of the n−2

5 guards lying on row
one, since the pattern guards’ move propagates in hops of distance five. Movements in and
out of the boundary alternate due to the shape of the pattern square. Moreover, we do not
need to care about where the pattern square repetition is "cut" by the left/right boundary
since, due to n−2 perfectly dividing 5, there are exactly n−2

5 full pattern squares occurring
subject to shifting. Consequently, we can apply the shifting procedure demonstrated in
Figure 4.18 to apply the moves and maintain a full boundary, while preserving the number
of guards on row one. In Figure 4.19, we demonstrate examples of the above remarks: n−2

5

guards move from row one into row zero, whereas n−2
5 move vice versa. By the discussion

above, it is always possible to form pairs of leaving/entering boundary guards and apply
the shifting procedure demonstrated in Figure 4.18 either leftward or rightward.

The new placement P is dominating, since the (m− 2)× (n− 2) subgrid is dominated
by any V (t) or V ′(t) placement and the boundary is always full of guards. Moreover, since
we follow a modified Rotate-Square, P contains as a subset a vertex set V (t) or V ′(t) after
each guards’ turn.

Lemma 20. For m,n ≥ 7 such that m mod 5 = n mod 5 = 2, γ∞m,n ≤ mn
5 + 8

5(m+n)− 16
5

holds.

Proof. By inductive application of Lemma 19, Finite Rotate-Square eternally dominates
Pm2Pn.

From the initial V (t) placement, we get exactly (m−2)(n−2)
5 guards within Pm−22Pn−2,

since (m− 2) and (n− 2) perfectly divide 5. Then, we need another 2(m+ n)− 4 guards
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to cover the whole boundary. Overall, the guards sum to (m−2)(n−2)
5 + 2(m + n) − 4 =

mn
5 + 8

5(m+ n)− 16
5 .

4.4.2 An Improved Upper Bound: Partial Boundary Cover

In the version of Finite Rotate-Square just presented above, the entirety of the boundary
always remains covered. More specifically, five guards are placed for every sequence of five
non-corner boundary vertices. Optimistically, we would like to lower the number of guards
to two guards per every five boundary vertices. Then, compared to the standard domination
number, this would provide only a constant-factor additive term. In this subsection, we
prove an improved upper bound for Finite Rotate-Square by using three guards for each
sequence of five non-corner boundary vertices. Furthermore, we discuss why having two
guards would instead most likely fail for Finite Rotate-Square (or simple variations of it).

Lemma 21. For m,n ≥ 7 such that m mod 5 = n mod 5 = 2, γ∞m,n ≤ mn
5 + 4

5(m + n)

holds.

Proof. First, let us take advantage of the condition m mod 5 = n mod 5 = 2 in order to
reduce this family of grids to the 7×7 grid case. Imagine a general m×n grid where m mod

5 = n mod 5 = 2 holds. The non-boundary vertices can be partitioned into (m−2)(n−2)
5

subgrids of size 5 × 5, e.g., see Figure 4.20. Moreover, we add four guards, one in each
corner, which never move throughout the execution of the strategy, since they can never
leave the boundary. Then, we can partition each boundary row/column of the grid into
sequences of length five.

Now, notice that the far-from-the-boundary guards implement Rotate-Square and, due
to the modulo 5 use in the emergent Dt and D′t placements, all 5× 5 subgrids are copies of
each other. Moreover, for the same reason, all segments of length five on the same boundary
row/column look identical at all times. Thence, we can contract all 5× 5 subgrids and side
segments until a 7 × 7 grid is left. Below, we provide a strategy for this special case. For
m,n > 7, the strategy can be extracted by copying the 7× 7 strategy in each subgrid and
boundary row/column segment.

Hence, to prove the bound, it suffices to provide an m-eternal domination strategy for
the 7× 7 grid with each corner always occupied by an immovable guard and three guards
guarding each boundary row/column of length five. In Figure 4.21, we demonstrate such
placements for the 7×7 grid: in column A on the left, we depict all possible Dt placements
with the corresponding boundary cover, whereas, in column B on the right, we depict all
possible D′t placements. Moreover, in column A, we provide all the guard transitions for
an attack to an unoccupied vertex. Transitions in column B are omitted since all guard
movements are reversible.

By inductively applying the strategy of Figure 4.21, this improved version of Finite
Rotate-Square eternally dominates Pm2Pn, since the guards always form an A or B
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Figure 4.20: An example of partitioning a 17× 12 grid into 5× 5 subgrids

placement. From the initial V (t) placement, we get exactly (m−2)(n−2)
5 guards within

Pm−22Pn−2, since (m − 2) and (n − 2) perfectly divide 5. Then, we require four guards
for the corners and another 3

5(m − 2), respectively 3
5(n − 2), to cover a side of the grid.

Overall, we get (m−2)(n−2)
5 + 2 · 3

5(m− 2 + n− 2) + 4 = mn
5 + 4

5(m + n) guards suffice for
m-eternal domination.

The above proof is crucially based on the fact that γ∞m (P5) = 3. Indeed, it is easy to
verify that two guards cannot m-eternally dominate a path of length five. Therefore, a
uniform approach as the one taken in the proof of Lemma 21 is bound to fail. Furthermore,
for non-uniform boundary guarding approaches, the problem seems to persist. In such ap-
proaches, boundary guards are not dedicated to a single P5 segment of the side. Intuitively,
the latter can easily lead to the creation of bias, meaning that eventually the extra corner
guard (or any constant number of extra corner guards) has to move in order to assist with
the protection of the boundary and leave the corner unoccupied.

4.4.3 A General Upper Bound

So far, we have focused on the special case m mod 5 = n mod 5 = 2 for which we pro-
vided an upper bound for the m-eternal domination number. We generalize this bound for
arbitrary m, n values.

Lemma 22. For m,n ≥ 7, γ∞m,n ≤ mn
5 +O(m+ n) holds.

Proof. The idea behind this general bound is to "thicken" the boundary in the cases when
m mod 5 = n mod 5 = 2 does not hold and then apply Finite Rotate-Square as above.
More formally, one can identify an (m− i)× (n− j) subgrid, in the interior of the m× n
grid, where i, j ≤ 5 such that (m− i) mod 5 = (n− j) mod 5 = 2 and execute the strategy



Chapter 4. Eternal Domination 73

A5

A4

A3

A2

A1

B5

B4

B3

B2

B1

B5 B2
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B2 B1 B5 B4
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B3 B2 B1 B5 B3

B2 B1 B4 B3 B2

B3 B5

Figure 4.21: Improved Finite Rotate-Square (reduced to the 7× 7 grid)
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there. The rest of the rows and columns can be eternally secured by populating them with
O(m+ n) extra guards, e.g, in the worst-case, place one guard at each such cell.

Gonçalves et al. [67] showed γm,n ≥ b (m+2)(n+2)
5 c − 4 for any m,n ≥ 16. By combining

this with Lemma 18, we get the exact domination number γm,n = b (m+2)(n+2)
5 c − 4 for

m,n ≥ 16. Then, by using Lemma 22, our main result follows.

Theorem 12. For any m,n ≥ 16, γ∞m,n ≤ γm,n +O(m+ n) holds.

4.5 Concluding Remarks

We demonstrated a first strategy to m-eternally dominate general rectangular grids based
on the repetition of a rotation pattern. Regarding further work, a more careful case analysis
of the boundary may lead to improvements regarding the coefficient of the linear term. It
is unclear whether this strategy can be used to obtain a constant additive gap between
the domination and the m-eternal domination number in large grids. Furthermore, the
existence of a stronger lower bound than the trivial γ∞m,n ≥ γm,n bound also remains open.

With respect to future research directions, one could consider multiple attacks to address
more realistic intrusion scenarios. Also, being able to protect from a distance k > 1,
i.e., giving more power to the guards, might have strong correlations to the k = 1 case
we consider here. Finally, it would be interesting to consider how the centralized graph-
theoretic approaches could be moved over to a more distributed setting where the guards
only have limited capabilities and must make decisions locally.



Chapter 5

Conclusions

Within this thesis, we researched three different problems with their common characteristic
being that of agent mobility. Looking at search problems through the different lenses of
Distributed Search and Combinatorial Games, we designed and analyzed strategies for a
set of agents to evacuate (Chapter 2), explore (Chapter 3) or defend (Chapter 4) their
environment effectively. The problems we study provide a small, yet indicative, flavor of
the potential applications in token navigation. We expect the evergrowing improvements
in technology to provide novel motivation in this setting. As an example, consider the
recent developments in soft-material robotics [111] which could lead to more adaptive robot
navigation in complex environments.

One general future work direction is to move away from the centralized point of view
and consider the same problems, or other problems of similar nature, in a more distributed
fashion. For example, one could include more robots. Additionally, model robots with
more limited communication or memory capabilities. Some features of significant research
potential are environment dynamics, energy, and robustness.

Interest in dynamic graphs, otherwise called temporal networks [96], has rekindled over
the last decade, as they are able to model several aspects of everyday interactions. Designing
and analyzing the movement of agents in such disorderly-changing environments may prove
to be a task of notable difficulty, e.g., see [51,97] for two exploration examples.

On a different topic, as we are now approaching an era of environmental awareness,
studying mobility problems under energy constraints has already attracted attention among
researchers, e.g., see [10, 29]. The robots are now perceived as having a battery, or being
in need of recharge, and the objective is to minimize the energy consumption besides other
traditional measures like the running time or space.

Another noteworthy aspect is that of robustness (or resilience) in navigation: how do
small perturbations to an agent’s input, or to the environment, affect the performance of the
designed strategies? Lower bounds might either be robust, i.e., capture an inherent difficulty
of the problem in question, or fragile, that is, they only depend on a very specific execution
instance. In this respect, a pertinent example is that of smoothed analysis [49,106].
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Overall, this is an exciting research area with an inherent algorithmic element where
a variety of mathematical tools apply. Mathematical, as well as real-life, motivation is
abundant and therefore we expect the research community around mobility problems to
thrive in the future.
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