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Resumo

O problema do conjunto dominante m-eterno é um problema de otimização em grafos que
tem sido muito estudado nos últimos anos e para o qual se têm listado aplicações em vários
domínios. O objetivo é determinar o número mínimo de guardas que consigam defender
eternamente ataques nos vértices de um grafo; denominamos este número o índice de
dominação m-eterna do grafo. Nesta tese, estudamos o problema do conjunto dominante
m-eterno: lidamos com aspectos de natureza teórica e prática e abordamos o problema
restrito a classes especí�cas de grafos e no caso geral.

Examinamos o problema do conjunto dominante m-eterno com respeito a duas classes
de grafos: os grafos de Cayley e os conhecidos grafos de intervalo próprios. Primeiramente,
mostramos ser inválido um resultado sobre os grafos de Cayley presente na literatura,
provamos que o resultado é válido para uma subclasse destes grafos e apresentamos outros
achados. Em segundo lugar, fazemos descobertas em relação aos grafos de intervalo
próprios, incluindo que, para estes grafos, o índice de dominação m-eterna é igual à
cardinalidade máxima de um conjunto independente e, por consequência, o índice de
dominação m-eterna pode ser computado em tempo linear.

Tratamos de uma questão que é fundamental para aplicações práticas do problema do
conjunto dominante m-eterno, mas que tem recebido relativamente pouca atenção. Para
tanto, introduzimos dois métodos heurísticos, nos quais formulamos e resolvemos modelos
de programação inteira e por restrições para computar limitantes ao índice de dominação
m-eterna. Realizamos um vasto experimento para analisar o desempenho destes méto-
dos. Neste processo, geramos um benchmark contendo 750 instâncias e efetuamos uma
avaliação prática de limitantes ao índice de dominação m-eterna disponíveis na literatura.

Por �m, propomos e implementamos um algoritmo exato para o problema do conjunto
dominante m-eterno e contribuímos para o entendimento da sua complexidade: provamos
que a versão de decisão do problema é NP-difícil. Pelo que temos conhecimento, o al-
goritmo proposto foi o primeiro método exato a ser desenvolvido e implementado para o
problema do conjunto dominante m-eterno.



Abstract

The m-eternal dominating set problem is a graph-protection optimization problem that
has been an active research topic in the recent years and reported to have applications
in various domains. It asks for the minimum number of guards that can eternally defend
attacks on the vertices of a graph; this number is called the m-eternal domination number
of the graph. In this thesis, we study the m-eternal dominating set problem by dealing
with aspects of theoretical and practical nature and tackling the problem restricted to
speci�c classes of graphs and in the general case.

We examine the m-eternal dominating set problem for two classes of graphs: Cayley
graphs and the well-known proper interval graphs. First, we disprove a published result
on the m-eternal domination number of Cayley graphs, show that the result is valid for
a subclass of these graphs, and report further �ndings. Secondly, we present several
discoveries regarding proper interval graphs, including that, for these graphs, the m-
eternal domination number equals the maximum size of an independent set and, as a
consequence, the m-eternal domination number can be computed in linear time.

We address an issue that is fundamental to practical applications of the m-eternal
dominating set problem but that has received relatively little attention. To this end, we
introduce two heuristic methods, in which we propose and solve integer and constraint
programming models to compute bounds on the m-eternal domination number. By per-
forming an extensive experiment to validate the features of these methods, we generate a
750-instance benchmark and carry out a practical evaluation of bounds for the m-eternal
domination number available in the literature.

Finally, we propose and implement an exact algorithm for the m-eternal dominating
set problem and contribute to the knowledge on its complexity: we prove that the decision
version of the problem is NP-hard. As far as we know, the proposed algorithm was the
�rst developed and implemented exact method for the m-eternal dominating set problem.
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Chapter 1

Introduction

The m-eternal dominating set problem is a graph-protection optimization problem in

which one asks for the minimum number of guards that can eternally defend attacks on

the vertices of a graph. Alternatively, it can be viewed as a pursuit-evasion two-player

combinatorial game where, in each turn, a team of pursuers must counter the intrusion

of an evader. The problem has been an active research topic in the recent years (for a

survey on the subject, see the work of Klostermeyer and Mynhardt [28]) and reported to

have applications in various domains, such as military policies [31], network security [1],

and multi-robot patrolling [16].

The m-eternal dominating set problem restricted to speci�c classes of graphs has been

the focus of several studies [12, 20, 21, 23]. However, there is still a lot of progress

to be made in this direction of research. Such studies determined bounds on or even

found the exact value of the optimum of the problem for the considered classes of graphs.

Other works produced bounds on the optimum of the problem in the general case [9,

20, 25, 26]. Nevertheless, relatively little attention was given to an important issue,

which is fundamental to practical applications of the problem: to provide an e�cient

strategy of defense for the guards. To our knowledge, experimental investigations have

not been communicated before for the m-eternal dominating set problem. Finally, the

computational complexity of the problem is largely unknown.

In this thesis, we disprove a published result on the m-eternal dominating set problem

and tackle the problem restricted to two speci�c classes of graphs. Moreover, we address

the issue of providing an e�cient strategy of defense for the guards and perform an ex-

tensive experimental study on the m-eternal dominating set problem. Lastly, we propose

and implement an exact algorithm for the m-eternal dominating set problem and prove a

result on its computational complexity.

Terminology. The non-basic terms used in this text without being speci�ed represent

standard concepts from Graph Theory, Computational Complexity, and Mathematical

Programming. For the de�nitions of these concepts, the unfamiliar reader is pointed to,

respectively, the textbooks of West [35], Garey and Johnson [19], and Wolsey [36].
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1.1 The m-eternal dominating set problem

Consider the following problem of graph protection. Place guards on some vertices of a

graph G. An attack to G occurs at a vertex, and, to defend an attack at v, the guards

must move so that one guard occupies v. In this movement, a guard can stay at the

same vertex or go to an adjacent one. We are asked to determine the minimum number

of guards that can eternally defend G, namely, that can eternally perform the task of

defending any attack to G.

We denote this minimum number of guards by γ∞x,y(G). This notation enables us to

refer to di�erent versions of the problem above, which are characterized by the values of

x and y. If x = �m�, then all guards can move during a defense; if x = p ∈ N, p ≥ 1,

then at most p guards are allowed to move. Similarly, if y = �m�, then a vertex can be

occupied by an arbitrary number of guards; if y = p ∈ N, p ≥ 1, then at most p guards are

allowed to be positioned at a vertex. As simple examples, for the 5-vertex path P5 and the

6-vertex cycle C6, it holds that γ
∞
1,1(P5) = 3 = γ∞m,1(P5) and γ

∞
1,1(C6) = 3 > 2 = γ∞m,1(C6).

The problem of determining γ∞m,1(G) is called the m-eternal dominating set problem

� alternatively, the m-eternal domination problem � and has its origin back in Constan-

tine's approach to defend the Roman Empire, known as Roman domination [28]. Accord-

ingly, γ∞m,1(G) is denominated the m-eternal domination number of G. Consider guards

eternally defending G, that is, eternally performing the task of defending any attack to

G. Note that these guards must occupy, initially and after responding to each attack, a

dominating set of G (a set S of vertices of G such that every vertex of G that is not in S

has a neighbor in S). The problem's name captures the idea of a set of vertices that can

be eternally modi�ed yet remaining a dominating set.

An important result regarding γ∞m,1 distinguished this parameter from γ∞m,m. Allowing

multiple guards to occupy the same vertex can only lessen the minimum number of guards

required to eternally defend a graph. Hence, γ∞1,m ≤ γ∞1,1 and γ∞m,m ≤ γ∞m,1. Burger et al. [8]

showed that γ∞1,m = γ∞1,1, that is, the lessening above does not occur when at most one

guard can move during a defense. Goddard et al. [20] conjectured that, analogously,

γ∞m,m = γ∞m,1, and other authors [9, 23] mentioned the question if this equality was true.

Later, Finbow et al. [13] proved that the di�erence between these last parameters can be

arbitrarily large.

Based on our information, despite being cited earlier [27], the proof by Finbow et

al. had not been published until recently [13]. For not having access to their work, we

independently developed the alternative proof below. Our demonstration was inspired by

a construction presented by Fomin et al. [14].

Theorem 1.1. For a positive integer p, there exists a graph G such that γ∞m,1(G)−
γ∞m,m(G) ≥ p.

Proof. De�ne G to be the graph of Figure 1.1 with q = p+ 3. For i = 1, 2, . . ., q, let the

petal Hi of G be the subgraph of G induced by the vertices vi,1, vi,2, . . ., vi,7. Moreover,

set Si,a = { vi,2, vi,6, vi,7 }, Si,b = { vi,3, vi,5, vi,7 }, Si,c = { vi,4, vi,5, vi,6 }, Si,d = { vi,1,
vi,6, vi,7 }. Below, we prove that γ∞m,1(G) ≥ 2q + 1 and γ∞m,m(G) ≤ q + 4; it follows that

γ∞m,1(G) − γ∞m,m(G) ≥ p.
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Figure 1.1: A graph satisfying γ∞m,1 = 2q + 1 > q + 4 = γ∞m,m for q > 3.

Suppose γ∞m,1(G) ≤ 2q, and consider 2q guards eternally defending G with at most one

guard per vertex. After the defense of an attack at v0, for some petal Hi of G, at most

one guard is placed on the vertices of Hi. If the next attack occurs at vi,2, then, after the

defense of this attack, vi,1, vi,3, and vi,4 are unoccupied and at most one of vi,5, vi,6, and

vi,7 is occupied. As a consequence, for v = vi,3 or v = vi,4, if the next attack happens at

v, then it cannot be defended, which is a contradiction. Thus, γ∞m,1(G) ≥ 2q + 1.

We now show that, if multiple guards can occupy a vertex, then q + 4 guards can

eternally defend G; hence γ∞m,m(G) ≤ q + 4. Place q + 4 guards on G: one guard on vi,1
for i = 1, 2, . . ., q and four guards on v0. Assume that the �rst attack to G occurs at a

vertex v of a petal Hi of G, and let v ∈ S with S ∈ {Si,a, Si,b, Si,c, Si,d }. To defend this

attack, the guard on vi,1 and two guards on v0 move to occupy the vertices of S. While

the next attack happens at a vertex of Hi, the guards on Hi move to occupy the vertices

of an appropriate set S ∈ {Si,a, Si,b, Si,c, Si,d }. When the next attack occurs at a vertex

of a di�erent petal Hj of G, the guards on Hi return to their initial positions on G and

the remaining guards move in a way analogous to the defense of the �rst attack to G.

The movement of the latter guards initiates a new instance of the process above, which is

repeated for every maximal sequence of attacks on vertices of a particular petal of G.

1.2 Related work

Next, we review the literature on the m-eternal dominating set problem � for additional

bibliography, the reader is referred to the thorough survey of Klostermeyer and Mynhardt

[28]. In this section, the following notation is adopted. For a graph G, we denote by V (G)

and Ḡ, respectively, the vertex set of G and the complement of G. Given S ⊆ V (G), we

write G[S] for the subgraph of G induced by S. For simplicity, we employ γ∞m in place of

γ∞m,1 to designate the m-eternal domination number.

The �rst studied instance of γ∞x,y was γ∞1,1. Burger et al. [8] introduced this parameter

and established several initial results. Given a graph G, a clique cover of G is a set

of cliques Q1, Q2, . . ., Qk of G such that
⋃k

i=1Qi = V (G). Let α(G) and θ(G) be,

respectively, the maximum size of an independent set of G and the minimum size of a

clique cover of G. Theorem 1.2 presents a lower and an upper bound on γ∞1,1(G) proved

by the authors.
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Theorem 1.2 ([8]). For a graph G, α(G) ≤ γ∞1,1(G) ≤ θ(G).

Goddard et al. [20] published a seminal paper on γ∞m . De�ne γ(G) to be the minimum

size of a dominating set of a graph G. Theorems 1.3 and 1.4 give bounds on γ∞m (G)

provided in the mentioned paper, with Theorems 1.3 and 1.2 combining nicely.

Theorem 1.3 ([20]). For a graph G, γ(G) ≤ γ∞m (G) ≤ α(G).

Theorem 1.4 ([20]). For a graph G, γ∞m (G) ≤ 2γ(G).

For a connected graph G, consider γc(G) to be the minimum size of a connected

dominating set of G. As de�ned by Goddard et al. [20], a neocolonization of a graph

G is a partition Z of V (G), say Z = {V1, V2, . . ., Vk }, such that, for every Vi ∈ Z,

G[Vi] is connected. The weight of Z is given by
∑

Vi∈Z w(Vi), where w(Vi) = 1 if Vi is a

clique and w(Vi) = γc(G[Vi]) + 1 otherwise. Denote by θC(G) the minimum weight of a

neocolonization of G � one can see that θC(G) ≤ θ(G) by observing that a neocolonization

of G of weight θ(G) can be obtained from a minimum clique cover of G. Theorems 1.5

and 1.6 exhibit upper bounds on γ∞m also proved by Goddard et al. [20].

Theorem 1.5 ([20]). For a graph G, γ∞m (G) ≤ θC(G).

Theorem 1.6 ([20]). For a connected graph G, γ∞m (G) ≤ θC(G) ≤ γc(G) + 1.

As reported by Klostermeyer and Mynhardt [28], the same authors [25] obtained an

upper bound on γ∞m (G) for a connected graph G with at least two vertices. Chambers

et al. [9] achieved bounds on γ∞m somewhat di�erent from the ones listed so far. Let τ(G)

be the minimum size of a vertex cover of a graph G. Theorems 1.7-1.9 put forward the

results just mentioned.

Theorem 1.7 ([25]). For a connected graph G with at least two vertices, γ∞m (G) ≤ 2τ(G).

Theorem 1.8 ([9]). For a connected graph G of order n, γ∞m (G) ≤ dn/2e.

Theorem 1.9 ([9]). For a graph G of order n, γ∞m (G) + γ∞m (Ḡ) ≤ n+ 1.

Above, we state bounds on the m-eternal domination number imposing no restriction

or essentially just connectivity on the input graph � Figure 1.2 displays a Hasse diagram

[4] on a representation of these bounds as a partially ordered set. Klostermeyer and

MacGillivray [23], Klostermeyer and Mynhardt [26], and Chambers et al. [9] investigated

restrictions on the input graph under which equality would hold in such bounds. Kloster-

meyer and MacGillivray showed that, for trees, γ∞m = θC ; Klostermeyer and Mynhardt

characterized connected graphs for which γ∞m = 2τ ; and Chambers et al. speci�ed G such

that, for a graph G of order n, γ∞m (G) + γ∞m (Ḡ) = n+ 1 if and only if G or Ḡ ∈ G.
In a paper published during the work of the present thesis, we proved that, for proper

interval graphs, γ∞m = α (see Chapter 3). This result can be extended as in Theorem 1.10.

The facts that α = θ for perfect graphs [35] and proper interval graphs are perfect [35] im-

ply the third equality below. This equality combined with our initial result, Theorem 1.5,

and θC ≤ θ builds the remainder of the theorem.
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γ

γ∞m

α

γ∞1,1

θ

θC

2γ

2τ

γc + 1

Figure 1.2: (Adaptation of a �gure due to Goddard et al. [20].) A Hasse diagram [4] on a
partially ordered set representation of bounds on the m-eternal domination number.

Theorem 1.10. For a proper interval graph G, γ∞m (G) = θC(G) = α(G) = θ(G).

Recently, Rinemberg and Soulignac [33] revealed that, for interval graphs, γ∞m = θC .

Take the interval graph given by the k-leaf star K1,k with k ≥ 3. Note that γ∞m (K1,k) =

2 < k = α(K1,k) = θ(K1,k). Hence, Rinemberg and Soulignac's result cannot be extended

to generalize Theorem 1.10 for all interval graphs. Nevertheless, their proof can be par-

ticularized to demonstrate Theorem 1.10 [33] and, therefore, to arrive at our result on

proper interval graphs.

Goddard et al. [20] determined the exact value of γ∞m for the classes of graphs indicated

in Theorem 1.11. Henning et al. [22] provided the upper bound 7n/16 on γ∞m for cubic

bipartite graphs of order n. Klostermeyer and Mynhardt showed that, while γ∞m ≤ τ for

connected graphs with minimum degree at least 2 [25], τ ≤ γ∞m for trees with at least

two vertices [26]. Klostermeyer and Mynhardt characterized the trees with at least two

vertices satisfying γ∞m = τ [26], and the same was done for the bounds γ, α, 2γ, γc + 1

[24], and 2τ [26].

Theorem 1.11 ([20]).

(a) For a complete graph G, γ∞m (G) = 1.

(b) For a complete bipartite graph G with at least two edges, γ∞m (G) = 2.

(c) For the path Pn of order n, γ∞m (Pn) = dn/2e.

(d) For the cycle Cn of order n, γ∞m (Cn) = dn/3e.

A grid graph consists of the Cartesian product Pm � Pn [35] of two paths Pm and Pn.

Several authors [3, 12, 21, 34] studied γ∞m for grid graphs. Some of their �ndings are listed

in Theorem 1.12.

Theorem 1.12.

(a) [21] For n ≥ 2, γ∞m (P2 � Pn) = d2n/3e.

(b) [21] For 2 ≤ n ≤ 8, γ∞m (P3 � Pn) = n;

[21] for n ≥ 9, γ∞m (P3 � Pn) ≤ d8n/9e;
[12] for n > 11, 1 + d4n/5e ≤ γ∞m (P3 � Pn) ≤ 2 + d4n/5e.
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(c) [3] For n ≥ 1, n /∈ { 2, 6 }, γ∞m (P4 � Pn) = 2d(n+ 1)/2e;
[3] γ∞m (P4 � P2) = 3 and γ∞m (P4 � P6) = 7.

(d) [34] For 1 ≤ n ≤ 12, n /∈ { 9, 10 }, γ∞m (P5 � Pn) = b(6n+9)/5c and, for n ∈ { 9, 10 },
γ∞m (P5 � Pn) = b(6n+ 11)/5c;
[34] for n > 12, b(6n+ 9)/5c ≤ γ∞m (P5 � Pn) ≤ b(4n+ 4)/3c.

(e) [3] For n ≥ 1, b10(n+ 1)/7c ≤ γ∞m (P6 � Pn) ≤ d8n/5 + 8e;
[3] γ∞m (P6 � P6) = 10.

(f) [3] 13 ≤ γ∞m (P7 � P7) ≤ 14.

Contributions were made on solving the m-eternal dominating set problem for speci�c

classes of graphs. Klostermeyer and MacGillivray [23] explained how to solve the problem

for trees in linear time. In our paper on proper interval graphs mentioned above, we

showed that, for these graphs, γ∞m can be computed in linear time. Rinemberg and

Soulignac [33] extended our result by presenting a linear-time algorithm to determine γ∞m
for interval graphs.

Early in the work of this thesis, we designed and implemented an exact algorithm for the

m-eternal dominating set problem. We were inspired by a con�guration-graph approach

developed by Fomin et al. [15] to a closely related problem, namely, the eternal vertex

cover problem [15]. Finbow et al. [13] and Bard et al. [2] also proposed con�guration-graph

algorithms for the m-eternal dominating set problem, whereas Klostermeyer et al. [29]

proceeded similarly for an eviction variant of the problem. Furthermore, the ideas of

Bard et al. [2] were the basis of an algorithm implemented by K°i²´an [30].

The problem of computing γ∞m,m was shown to be a special case of a spy game [11],

and the decision version of the game in this special case was proved to be NP-hard [10].

The decision version of the eternal vertex cover problem was proved to be NP-hard [15].

The decision versions of other problems similar to the m-eternal dominating set problem,

given by two-player combinatorial games, were proved to be PSPACE-hard [16, 17, 32] or

PSPACE-complete [18]. However, from what we know of works preceding ours, complexity

results regarding the NP and PSPACE classes have not been reported before for the

decision version of the m-eternal dominating set problem.

1.3 Organization of the thesis and main contributions

This thesis is organized as a collection of papers. Chapters 2-4 reproduce papers pub-

lished or submitted for publication during this doctoral work � following the rules of

the University of Campinas, the original texts are reproduced without modi�cations ex-

cept for layout and formatting adjustments. Chapter 5 closes the document with �nal

considerations and directions for future research.

Below, we outline the main contributions of the thesis, which are presented in the

following three chapters. These chapters contain prologues that summarize the contents

of and provide technical information on the corresponding papers. In addition, they have

separate bibliography sections that list the references within the respective manuscripts.
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While reviewing the literature on the m-eternal dominating set problem, we found

an error: a result published by Goddard et al. [20] on Cayley graphs was not valid. We

arrived at this conclusion when investigating a statement by the same authors [20]: that

the result was probably true for any vertex-transitive graph. In Chapter 2, we disprove

the invalid result, show that it holds for a subclass of the Cayley graphs, and report

further �ndings on the m-eternal domination number of these graphs.

In Chapter 3, we tackle the m-eternal dominating set problem for the well-studied

class of proper interval graphs: we show that, for these graphs, the m-eternal domination

number equals the maximum size of an independent set and, as a consequence, the m-

eternal dominating set problem can be solved in linear time. We also prove that, for

proper interval graphs, there is no advantage in allowing multiple guards to occupy the

same vertex and there is a straightforward strategy of defense for the smallest possible

number of guards. To obtain the results above, we establish a lower bound on γ∞m,m that

may be useful to deal with other classes of graphs as well.

In Chapter 4, we address an issue that is fundamental to practical applications of the

m-eternal dominating set problem but that has received relatively little attention. The is-

sue is to obtain not only a good-quality upper bound on them-eternal domination number

but also an associated e�cient strategy of defense. We introduce two heuristic methods,

in which we propose and solve integer and constraint programming models to compute

bounds on the m-eternal domination number. By performing an extensive experiment to

validate the features of these methods, we generate a 750-instance benchmark and carry

out a practical evaluation of bounds for the m-eternal domination number available in

the literature.

Finally, also in Chapter 4, we propose an exact algorithm for them-eternal dominating

set problem (see Section 4.4.4) and contribute to the knowledge on its complexity: we

prove that the decision version of the problem is NP-hard. As far as we know, the

proposed algorithm was the �rst developed and implemented exact method for the m-

eternal dominating set problem. This algorithm was initially used in the aforementioned

study of Cayley graphs. Later, it was executed with a time limit in the heuristic methods

cited above.

1.4 Dissimilarities in terminology and notation

In the three papers presented in Chapters 2-4, we give de�nitions in terms of dominating

sets for the m-eternal dominating set problem. These de�nitions vary from one chapter

to another re�ecting the change on our understanding of how to best put the problem

in dominating-set terms. In Chapters 2-4, we also make use of di�erent terminology and

notation. Below, we comment on these dissimilarities.

In the paper of Chapter 2, we disprove a result published by Goddard et al. [20].

We follow their terminology and notation, where eternal m-security number and σm are

equivalent, respectively, to m-eternal domination number and γ∞m,1. Moreover, we de�ne

the problem of determining σm � i.e., the m-eternal dominating set problem � as the

problem of calculating the minimum size of an eternal m-secure set, namely, a dominating
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set from which, for any sequence of vertices, one can construct a corresponding sequence

of dominating sets satisfying certain conditions. This de�nition is in accordance with the

language used by Goddard et al. [20] and is a simple rewriting of a de�nition given by

Klostermeyer and MacGillivray [23].

The preceding de�nition of them-eternal dominating set problem is somehow problem-

atic because it demands clari�cation on its sequence of vertices, which models a sequence

of attacks. It should be clari�ed that the attacks are chosen and revealed by an attacker

as the guards perform the defenses. The problem is not the same if the sequence of attacks

is revealed in advance [28]. In the paper of Chapter 3, we proceed di�erently: we state

the problem as to compute the minimum size of an eternal dominating set, a recursively

de�ned set that recasts a concept introduced by Chambers et al. [9].

Furthermore, in Chapter 3, we deal simultaneously with the numbers γ∞m,1 and γ∞m,m.

Within this context, one probably associates more easily the problem of determining γ∞m,1

with the term eternal dominating set problem than with the term m-eternal dominating

set problem. Accordingly, we employ the former term in place of the latter although the

eternal dominating set problem more frequently means the problem of �nding γ∞1,1 [28].

Lastly, in the paper of Chapter 4, we aim at explicitly representing in terms of domi-

nating sets a strategy of defense that k guards can follow to eternally defend a graph. To

this end, we de�ne a k,m-eternal dominating set collection, which is an explicit represen-

tation of all placements where the k guards may be initially and after responding to an

attack. As a consequence of Theorem 4.1 (see Chapter 4), the m-eternal dominating set

problem can be put as the problem of calculating the minimum positive integer k such

that the input graph has a k,m-eternal dominating set collection. For convenience, we

write γ∞m instead of γ∞m,1 for the m-eternal domination number.
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Chapter 2

A Note on the Paper �Eternal Security

in Graphs� by Goddard, Hedetniemi,

and Hedetniemi (2005)

Goddard et al. [20] stated that the m-eternal domination number and the minimum size

of a dominating set were equal for Cayley graphs. In addition, they claimed that the same

was probably true for all vertex-transitive graphs. However, while investigating the claim

on the latter graphs, we found that the statement on the former graphs was not valid.

In this chapter, we disprove the invalid statement of Goddard et al. [20] and show that

it holds for a subclass of the Cayley graphs. Moreover, we study the di�erence between

the m-eternal domination number and the minimum size of a dominating set for Cayley

graphs. To this end, we compute these parameters for a large number of instances from

an existing Cayley graph repository. We show that the di�erence between the parameters

can be inde�nitely increased for disconnected Cayley graphs and leave open the question

of whether it can be greater than 1 if connectivity is enforced.

The subsequent text is a reproduction of a paper published in the Journal of Com-

binatorial Mathematics and Combinatorial Computing [7] and co-authored by Cid C. de

Souza1 and Orlando Lee1. In this work, to compute the m-eternal domination number of

Cayley graphs, we use our exact algorithm for the m-eternal dominating set problem (see

Section 1.3). Before proceeding, the reader is invited to recall the notes on the terminology

and notation employed in this chapter's paper (see Section 1.4).

Abstract

In the paper �Eternal security in graphs� by Goddard, Hedetniemi and Hedetniemi

(2005, [4]), the authors claimed that, for any Cayley graph, the eternal m-security number

equals the minimum cardinality of a dominating set. However, the equality is false. In

this note, we present a counterexample and comment on the eternal m-security number

for Cayley graphs.

1Institute of Computing, University of Campinas, Brazil.
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2.1 Introduction

Goddard, Hedetniemi, and Hedetniemi [4] studied the problem of determining the eternal

1-security number of a graph. They de�ned this problem as �nding the minimum car-

dinality of an eternal 1-secure set of the graph. This cardinality was �rst considered by

Burger et al. [2].

The same authors also investigated a related problem: determining the eternal m-

security number of a graph, denoted by σm (some authors denote the eternal m-security

number by γ∞m ). This problem consists in �nding the minimum cardinality of an eternal

m-secure set of the graph. For a better understanding, we state the problem in a formal

way. To this end, given a simple graph G = (V,E), we �rst de�ne the concepts of a shift

and of a dominating set.

Take two sets of vertices A,B ⊆ V . A shift from A to B is a bijective function

f : A→ B such that, if f(u) = v, then u = v or uv ∈ E. Notice that there is a shift from

A to B only if |A| = |B|.
A set D ⊆ V is a dominating set of G if, for each v ∈ (V \D), there is a vertex u ∈ D

such that uv ∈ E. We denote the minimum cardinality of a dominating set of G by γ(G).

A dominating set D0 ⊆ V is an eternal m-secure set of G if, for any sequence of

vertices v1, v2, . . . ∈ V , one can construct a sequence of dominating sets D1, D2, . . . of G

such that, for i = 1, 2, . . .:

1. There is a shift from Di−1 to Di;

2. vi ∈ Di.

The problem of determining σm admits the following interpretation. Consider guards

placed on the vertices of a graph with at most one guard per vertex. Suppose that an

attack occurs at a vertex. To defend the attack, one guard must move from an adjacent

vertex to the attacked one, unless it already had a guard. The other guards may move to

prepare to defend a next attack. The problem is to �nd the minimum number of guards

so that attacks can be defended inde�nitely. The computation of the eternal 1-security

number of a graph corresponds to a version of this problem in which only one guard can

move per defense. We shall use this interpretation in later arguments since it is more

intuitive, although not strictly formal.

In Goddard et al. [4], the authors established the value of σm for graphs from several

classes. They also presented bounds on σm for general graphs. One class studied by the

authors is that of Cayley graphs, for which they stated Theorem 2.1 reproduced below.

However, we found that this result is not valid. Prior to write down the theorem and

exhibit the counterexample, we recall the de�nition of a Cayley graph.

A Cayley graph is a simple graph G = (V,E) de�ned as follows. Consider a group Γ

and a set C of elements of Γ satisfying:

(i) C does not contain the identity of Γ;

(ii) If x ∈ C, then x−1 ∈ C (x−1 is the inverse of element x in Γ).

The Cayley graph G = CG(Γ, C) of Γ with respect to C is such that V = Γ and xy ∈ E
if and only if x = hy, h ∈ C. For connecting the vertices of G, the elements of C and C
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itself are called connectors and connecting set. One can prove that G is connected if and

only if C generates Γ.

The theorem presented in Goddard et al. [4] follows. We disprove it by showing a

Cayley graph for which γ < σm.

Theorem 2.1 (Goddard et al. [4, Theorem 10]). For any Cayley graph G, γ(G) = σm(G).

This paper is organized as follows. In the next section, we brie�y describe the groups

used for constructing the graph that invalidates Theorem 2.1. In Section 2.3, we discuss

the proof given by Goddard et al. [4]. In Section 2.4, we present the counterexample that

we encountered. In Section 2.5, we comment on computational tests we carried out with

Cayley graphs in an attempt to establish the exact relation between γ and σm for this

class. Finally, in Section 2.6, we make some �nal remarks.

2.2 Groups D6, Z3 and D6 × Z3

In this section, we de�ne the groups D6, Z3 and D6 × Z3. For more details on these

groups, see, for example, the textbook by Dummit and Foote [3].

A regular polygon of n sides have 2n symmetries: n rotations and n re�ections. Be-

cause of this number, the set of its symmetries is denoted by D2n. The set D2n under the

operation of composition is a group. This group is called the dihedral group and, with

some abuse of notation, is also denoted only by D2n.

The elements of the dihedral group D2n, in multiplicative notation, are given by

D2n = {1, r, r2, . . . , rn−1, s, sr, sr2, . . . , srn−1},

with 1, r, r2, . . . , rn−1 corresponding to the n rotations and s, sr, sr2, . . . , srn−1 correspond-

ing to the n re�ections of the polygon. This group admits the following presentation:

D2n = 〈r, s | rn = s2 = 1, rs = sr−1〉.

From this presentation, one can obtain the result of operations on elements.

The group D6 is the de�ned by the symmetries of a triangle. To facilitate the argu-

ments made further in this paper, we display the multiplication table of this group in

Figure 2.1.

Now, the set of possible remainders after dividing an integer by 3 is Z3 = {0, 1, 2}.
Under the operation of addition modulo 3, this set is a group. This group is an instance

of the cyclic group and is denoted Z3, like the set itself.

The groups D6 and Z3 can be used to form a new group through their direct product.

The direct product of D6 and Z3 is denoted D6 × Z3 and is de�ned as follows.

The set of elements of the group D6×Z3 is given by the Cartesian product of the sets
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1 r r2 s sr sr2

1 1 r r2 s sr sr2

r r r2 1 sr2 s sr

r2 r2 1 r sr sr2 s

s s sr sr2 1 r r2

sr sr sr2 s r2 1 r

sr2 sr2 s sr r r2 1

Figure 2.1: Compositions of symmetries for D6

D6 and Z3 � also denoted D6 × Z3. We have that

D6 × Z3 = {(1, 0), (1, 1), (1, 2), (r, 0), (r, 1), (r, 2),

(r2, 0), (r2, 1), (r2, 2), (s, 0), (s, 1), (s, 2),

(sr, 0), (sr, 1), (sr, 2), (sr2, 0), (sr2, 1), (sr2, 2)}.

The operation of the group occurs componentwise: the result for the �rst half of the

elements is shown in Figure 2.1 and the result for the second half is given by the addition

modulo 3.

2.3 The proof by Goddard et al. [4]

We use the group D6 to exhibit a �aw in the proof by Goddard et al. [4] to Theorem 2.1.

The group D6 is non-abelian (non-commutative) and it is its non-commutative property

that allows us to reach our goal.

First of all, let us de�ne a Cayley graph G1 = CG(D6, C1) of this group. For that, we

choose the connecting set C1 = {s, sr}. From the table in Figure 2.1, we have that G1 is

the graph depicted in Figure 2.2(a).

sr

r

sr2

r2

s

1

(a) G1

sr

r

sr2

r2

s

1

(b) D1 (black vertices)

sr

r

sr2

r2

s

1

(c) hD1 (black vertices)

Figure 2.2: The Cayley graph G1 and the sets of vertices D1 and hD1

Now, let us follow the proof given by Goddard et al. [4]. Consider the dominating set

D1 = {r2, sr} pictured in Figure 2.2(b). Suppose an attack occurs at r. The only vertex
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in D1 adjacent to r is sr. As they are adjacent, for some h ∈ C1, r = h(sr). By Figure

2.1, h = s.

Let xA and Ax, for an element x ∈ D6 and a set A = {a1, a2, . . . , ak} ⊆ D6, stand for

xA = {xa1, xa2, . . . , xak} and
Ax = {a1x, a2x, . . . , akx} respectively.

Goddard et al. [4] claimed that

hD1 = sD1 = {sr2, s(sr)} = {sr2, r}

is a dominating set. However, as it is clear from Figure 2.2(c), this is not true.

We raise the possibility that the authors mistakenly considered the mapping

f(v) = hv, for each vertex v of G1 (2.1)

an automorphism of G1. Instead, by a known result for Cayley graphs [1], it is the

mapping

f(v) = vh, for each vertex v of G1 (2.2)

which is an automorphism of G1.

We also observe that, in general, a mapping of the form (2.2) does not correspond

to a shift from one dominating set to another. As an example, let us consider applying

a mapping of the form (2.2) to a dominating set of the Cayley graph G2 = CG(D6, C2)

de�ned by the connecting set C2 = {s, sr, r, r2} � see a drawing of G2 in Figure 2.3(a). The

dominating set is D2 = {sr, sr2} � shown in Figure 2.3(b). Let us choose h = sr2. The

outcome is: sr is mapped to the adjacent vertex r, but sr2 is mapped to the non-adjacent

vertex 1 � the resulting dominating set is shown in Figure 2.3(c).
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(a) G2

sr
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(b) D2 (black vertices)
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sr2
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s

1

(c) D2h (black vertices)

Figure 2.3: The Cayley graph G2 and the dominating sets D2 and D2h

At last, we point out that the proof by Goddard et al. [4] and their result are valid

for a subclass of Cayley graphs. This subclass consists of graphs de�ned as follows.

A Cayley graph G is obtainable from an abelian group if there is an abelian group Γ

and a connecting set C such that G = CG(Γ, C). Note there may also be a non-abelian
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group Γ′ and a connecting set C ′ satisfying G = CG(Γ′, C ′). For graphs de�ned in this

way, mappings of the forms (2.1) and (2.2) coincide (because the elements commute). For

this reason, the following theorem holds.

Theorem 2.2. For any Cayley graph G obtainable from an abelian group, γ(G) = σm(G).

2.4 A counterexample

We present a Cayley graph G such that γ(G) < σm(G). The construction of G follows

immediately. In the sequel, we prove our claim.

We construct G = CG(D6 × Z3, C) from the group D6 × Z3. For simplicity, we label

the vertices of G as v1, v2, . . . , v18 according to the correspondence shown in Table 2.1.

We choose the connecting set

C = {(s, 1), (s, 2), (sr, 1), (sr, 2), (r, 1), (r2, 2)}

to provide the edges of G. The graph is pictured in Figure 2.4.

v1 v2 v3 v4 v5 v6

(1, 0) (1, 1) (1, 2) (r, 0) (r, 1) (r, 2)

v7 v8 v9 v10 v11 v12

(r2, 0) (r2, 1) (r2, 2) (s, 0) (s, 1) (s, 2)

v13 v14 v15 v16 v17 v18

(sr, 0) (sr, 1) (sr, 2) (sr2, 0) (sr2, 1) (sr2, 2)

Table 2.1: Labels of vertices of G

We prove our claim in Theorem 2.6. Before doing so, we provide three lemmas. In

the �rst one, we observe that γ(G) = 3. In the second lemma, we show that vertex v1
is contained in only one minimum dominating set. In the last lemma, we argue that no

vertex is contained in more than one minimum dominating set. Finally, after the latter,

we exhibit all minimum dominating sets of G.

Lemma 2.3. It holds that γ(G) = 3.

Proof. As G is 6-regular, two vertices dominate at most 14 vertices. Since G has 18

vertices, we have that γ(G) > 2.

Observing Figure 2.4, we can see the set {v1, v6, v8} is a dominating set. Therefore,

γ(G) = 3.

Lemma 2.4. The vertex v1 is contained in only one minimum dominating set.

Proof. Let us construct a minimum dominating set D that contains v1. By Lemma 2.3,

we have that D has three vertices. So, our task is to choose two more vertices.

Since D contains v1, we can see in Figure 2.4 that 7 vertices are already dominated by

D: the vertices with thick border. Also in Figure 2.4, we can see that every vertex except
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v1

v14

v11

v3

v13

v10

v2

v15

v12

v16

v5

v9

v18

v4

v8

v17

v6

v7

Figure 2.4: A Cayley graph G such that γ(G) = 3 and σm(G) = 4

v6 and v8 is adjacent to at least two already dominated vertices. Thus, two such vertices

dominate at most 10 more vertices (summing up 17 vertices). Therefore, to construct D,

we must choose at least one of v6 and v8.

Suppose we choose v6. By Figure 2.4, we can see the only way of choosing one more

vertex and dominating all vertices not yet dominated, is by selecting v8. Then, suppose

we pick v8. By Figure 2.4, we can see v6 must also be chosen for us to end up with a

minimum dominating set. Hence D = {v1, v6, v8}.

Lemma 2.5. No vertex of G is contained in more than one minimum dominating set.

Proof. Suppose some vertex vi is contained in two di�erent minimum dominating sets

D1 = {vi, vj, vk} and D2 = {vi, vl, vm}. Since G is vertex-transitive (by a known result

for Cayley graphs [1]), there is an automorphism α mapping vi to v1. But, then, D′1 =

{v1, α(vj), α(vk)} andD′2 = {v1, α(vl), α(vm)} are two di�erent dominating sets containing

v1, which contradicts Lemma 2.4.

We can state, from Figure 2.4, that the following 6 sets are dominating sets of G:

{v1, v6, v8}, {v3, v5, v7}, {v2, v4, v9},
{v11, v15, v16}, {v10, v14, v18}, {v12, v13, v17}.

(2.3)

By Lemma 2.5, these are the only minimum dominating sets.

Theorem 2.6. It holds that γ(G) < σm(G).
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Proof. To prove the theorem, we consider three guards defending the vertices of G. First

of all, it is obvious that, to defend the vertices of a graph, guards must always be placed on

vertices that form a dominating set, because an attack at an undominated vertex cannot

be defended. In the case of three guards defending the vertices of G, they must always

be placed on a minimum dominating set of G.

Consider then an attack at vertex v1. By Lemma 2.4, D1 = {v1, v6, v8} is the only

minimum dominating set containing v1. This fact implies that, after defending an attack

at v1, guards must be placed on the vertices of D1.

Consider now an attack at vertex v13. As listed in (2.3), D2 = {v12, v13, v17} is the only
minimum dominating set containing v13. As a consequence, after defending an attack at

v13, guards must be placed on the vertices of D2. However, as we can see from Figure 2.4,

guards cannot move from vertices v1, v6 and v8 to v12, v13 and v17, because v13 and v17
are adjacent to v6 but to neither v1 nor v8.

Hence, there is a sequence of three attacks that cannot be defended by the three

guards. So, at least four guards are needed to defend the vertices of G. Therefore,

σm(G) ≥ 4 > 3 = γ(G) and the theorem is proved.

2.5 Computational testing

The graph presented in the previous section was found through extensive computational

testing. In this section, we describe some elements of this experiment and report relevant

information.

2.5.1 Data

We searched 7871 Cayley graphs of non-abelian groups of order up to 31 and of order 33

catalogued by Royle [5]. These graphs have degree (recall that Cayley graphs are regular)

less than half of the number of vertices. We denote them by set 1.

We also searched 7871 Cayley graphs which are the complements of the graphs of set 1.

These are graphs having degree greater or equal than half of the number of vertices. We

refer to them as set 2.

2.5.2 Results

One interesting outcome of our experiments is that, for almost all graphs, we found that

γ = σm. Just for 61 out of 7871, i.e., 0.77% of them, we obtained a di�erent result.

Another relevant fact is that, in these cases, the result was always that γ + 1 = σm. We

also noted that for all graphs of set 2, γ = σm.

Motivated by the above �ndings, we searched for a graph for which γ + 1 < σm.

However, as determining σm becomes much more time-consuming as the graphs get bigger,

an exhaustive search over a huge number of Cayley graphs of non-abelian groups rapidly

becomes impractical. We then moved to the strategy of generating speci�c graphs to

attain our goal.
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One successful example is the graph G2 consisting of two disconnected copies of the

graph G presented in Section 2.4. This graph is a Cayley graph of the group (D6×Z3)×Z2.

One can see that γ(G2) = 6 < 8 = σm(G2). Moreover, it is possible to generate the graphs

• G4 consisting of four disconnected copies of G;

• G8 consisting of eight disconnected copies of G;

• and so forth.

For Gi, i = 4, 8, . . ., σm(Gi)− γ(Gi) = i.

It is worth emphasizing, however, that Gi is not a connected graph. We could not

discover a connected Cayley graph such that γ + 1 < σm.

2.6 Conclusion

We disproved a result by Goddard et al. [4] on the eternal m-security number of Cayley

graphs. We did this by presenting a Cayley graph for which γ < σm. We remarked,

however, that the result of Goddard et al. is valid for a large subclass of Cayley graphs:

the Cayley graphs obtainable from abelian groups.

We also determined computationally the value of σm for 7871 Cayley graphs of non-

abelian groups. For almost all of them, we got that γ is indeed equal to σm. For the

remaining graphs, we found that γ + 1 = σm. We leave open the question of whether

there exists a connected Cayley graph having γ + 1 < σm.

Acknowledgements

The authors would like to thank the anonymous referee for carefully reading this paper

and making helpful suggestions.

This work was funded by grants 477692/2012-5, 141964/2013-8, 302804/ 2010-2 and

303947/2008-0 from Conselho Nacional de Desenvolvimento Cientí�co e Tecnológico (CNPq).

Bibliography

[1] A. Bondy and U. Murty. Graph Theory. Graduate Texts in Mathematics. Springer,

2008.

[2] A. Burger, E. Cockayne, W. Gründlingh, C. Mynhardt, J. van Vuuren, and W. Win-

terbach. In�nite order domination in graphs. Journal of Combinatorial Mathematics

and Combinatorial Computing, 50:179�194, 2004.

[3] D. Dummit and R. Foote. Abstract Algebra. Wiley, 2003.

[4] W. Goddard, S. Hedetniemi, and S. Hedetniemi. Eternal security in graphs. Journal

of Combinatorial Mathematics and Combinatorial Computing, 52:169�180, 2005.



29

[5] G. Royle. Cayley graphs, 1998. [Online; accessed 30-November-2013]. Available at:

http://school.maths.uwa.edu.au/~gordon/remote/cayley/index.html.

http://school.maths.uwa.edu.au/~gordon/remote/cayley/index.html


30

Chapter 3

The Eternal Dominating Set Problem

for Proper Interval Graphs

In what follows, we consider the m-eternal dominating set problem for the well-studied

class of proper interval graphs. As our main result, we prove that the m-eternal dom-

ination number equals the maximum size of an independent set and, consequently, the

m-eternal dominating set problem can be solved in linear time for proper interval graphs.

In addition, we show that, for these graphs, there is no advantage in allowing multiple

guards to occupy the same vertex and there is a straightforward strategy of defense for the

smallest possible number of guards. Finally, we provide a lower bound on γ∞m,m that may

also be useful for dealing with classes of graphs other than the proper interval graphs.

The subsequent text is a reproduction of a paper published in Information Process-

ing Letters [5] and co-authored by Cid C. de Souza1 and Orlando Lee1. Rinemberg and

Soulignac [33] have recently communicated a closely related work on the m-eternal dom-

inating set problem for interval graphs (see Section 1.2). Before proceeding, the reader

is invited to recall the notes on the terminology and notation employed in this chapter's

paper (see Section 1.4).

Abstract

In this paper, we solve the Eternal Dominating Set problem for proper interval graphs.

We prove that, in this case, the optimal value of the problem equals the largest size of

an independent set. As a consequence, we show that the problem can be solved in linear

time for such graphs. To obtain the result, we �rst consider another problem in which a

vertex can be occupied by an arbitrary number of guards. We then derive a lower bound

on the optimal value of this latter problem, and prove that, for proper interval graphs, it

is the same as the optimum of the �rst problem.

1Institute of Computing, University of Campinas, Brazil.
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3.1 Introduction

In this paper, we deal with the following problem of guards defending attacks at the

vertices of a graph. Initially, the guards are placed on some of the vertices of the graph.

Then, to defend an attack at a vertex v, guards must move so that, after their movement,

one guard occupies v. During a defense, a guard can only move to a neighboring vertex or

stay at the same vertex. Thus, for guards to be able to defend every possible attack, the

set of vertices initially occupied must constitute a dominating set. This also holds when

the defense of any next attack is considered. The problem that we treat is to determine

the smallest number of guards such that the guards can defend any sequence of attacks

at the vertices of the graph. Since this sequence is not known in advance, we can think

of it as in�nite, and say that the guards defend the graph eternally.

Di�erent versions of this problem have been studied. Each such version is characterized

by two parameters: (i) x, the number of guards that can move during a defense, and (ii) y,

the number of guards that can occupy a vertex initially or after a defense. Accordingly, we

denote by γ∞x,y the optimal value of the version in which the following holds. If x = �m�,

then all guards can move during a defense; if x = p ∈ N, p ≥ 1, at most p guards are

allowed to move. Similarly, if y = �m�, then a vertex can be occupied by an arbitrary

number of guards; if y = p ∈ N, p ≥ 1, at most p guards are allowed to be positioned

at a vertex. As a simple example, for the 6-cycle C6, it holds that γ∞1,1(C6) = 3, and

γ∞m,1(C6) = 2.

The �rst-posed version of the problem was the one referred by γ∞1,1. This version

was investigated by Burger et al. [2]. Later, Goddard, Hedetniemi, and Hedetniemi [6],

proposed the γ∞m,1 version. Since then, the values γ∞1,1, γ
∞
m,1, and γ∞m,m were studied in

several papers. We point the reader to the survey by Klostermeyer and Mynhardt [9] for

further references.

In this paper, we consider the problem in γ∞m,1 and γ∞m,m versions. We call the �rst

version the Eternal Dominating Set problem, or the EDSP for short. In this setting, the

placement of the guards can be simply described by a set of vertices (there is at most one

guard per vertex). The term above is an attempt to capture the idea of a set of vertices

that can be eternally modi�ed, yet remaining a dominating set.

One interesting aspect of the versions of the problem is how the respective optimal

values relate. For example, one can see that γ∞1,2(G) ≤ γ∞1,1(G) for any graph G. Fur-

thermore, a stronger result by Burger et al. [2] establishes that γ∞1,2(G) =γ∞1,1(G) for any

graph G. One can also see that γ∞m,m(G) ≤ γ∞m,1(G) for any graph G. In the same vein

of the equality above, Goddard et al. [6] conjectured that γ∞m,m(G) = γ∞m,1(G) for any

graph G. In addition, Chambers, Kinnersley, and Prince [3] published results for γ∞m,m

and reported that they did not know examples which would make these results invalid

for γ∞m,1. Klostermeyer and MacGillivray [8] mentioned the conjecture as well. However,

Finbow et al. [5] refuted it.

It is worth noting that γ∞1,1 was already established for some classes of graphs. For

example, Burger et al. [2] proved that, for any graph G, α(G) ≤ γ∞1,1(G) ≤ θ(G), where

α(G) denotes the largest size of an independent set of G and θ(G) is the smallest size of

a clique cover of G. As a consequence, for any perfect graph G, it holds that α(G) =
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γ∞1,1(G) = θ(G). Also, when G is a circular-arc graph, Regan [10] showed that γ∞1,1(G) =

θ(G).

The main contribution of the present work is solving the EDSP for the well-studied

class of proper interval graphs. In the subsequent sections, we prove that, for any such

graph G,

γ∞m,m(G) = γ∞m,1(G) = α(G).

As a consequence, we show that, in this case, the EDSP can be solved in linear time.

Other contributions of this work are the following. First, for the EDSP in general, to

describe a defense strategy for the guards may be a non-trivial task, because, ultimately,

one has to draw the movements of the guards for any sequence of attacks. We show that,

for proper interval graphs, there is a straightforward strategy for the smallest possible

number of guards. Moreover, to achieve the results above, we �rst derive a lower bound

for γ∞m,m. This bound applies to proper interval graphs, but may be useful for other

interesting classes of graphs as well.

The rest of this paper is structured as follows. In the next section, we de�ne γ∞m,m

and γ∞m,1 more formally, and present other necessary concepts. In Section 3.3, we prove

the lower bound for γ∞m,m cited above. At last, in Section 3.4, we focus on proper interval

graphs.

3.2 De�nitions and terminology

In this section, we accumulate the de�nitions stated in this paper. All concepts that

appear in this text and that are not de�ned below are standard. The graph theoretical

concepts can be found, for instance, in the book by Bondy and Murty [1]. The notions

of a 1-secure dominating multiset and of a k-secure dominating multiset are derived from

de�nitions given by Chambers et al. [3].

The graphs treated throughout this paper are undirected and simple. Below, we

consider a graph G, whose sets of vertices and edges are denoted by V (G) and E(G),

respectively.

Consider two multisets A, B ⊆ V (G). We construct the sets A∗ and B∗, associated to

them, as follows. De�ne Ad as the set of all distinct elements of A. For every a ∈ Ad, let

o(a) be the number of occurrences of a in A. Take P (a) as the set of the o(a) ordered pairs

〈a, 1〉, 〈a, 2〉, . . ., 〈a, o(a)〉. Then, A∗ =
⋃

a∈Ad P (a). Construct B∗ analogously. Notice

that |A| = |A∗|, and |B| = |B∗|.
For the next concept, we consider a function f that relates A to B. Since A and B are

multisets (thus not necessarily sets) and a function is de�ned over sets, A and B cannot

be directly used to de�ne f . We employ the sets A∗ and B∗ to this purpose.

A shift from A to B is a bijective function f : A∗ → B∗ such that, if f(〈u, p〉) = 〈v, q〉,
then u = v or uv ∈ E(G). Observe that there is a shift from A to B only if |A| = |B|.

A multiset D⊆ V (G) is a dominating multiset of G if, for each v ∈ (V (G) \D), there

is a vertex u ∈ D such that uv ∈ E(G). A dominating multiset D ⊆ V (G) is a 1-secure

dominating multiset of G if, for every v ∈ V (G), there is a dominating multiset D′ of G
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such that:

1. There is a shift from D to D′;

2. v ∈ D′.

For k ∈ N, k > 1, a dominating multiset D ⊆ V (G) is a k-secure dominating multiset of

G if, for every v ∈ V (G), there is a (k− 1)-secure dominating multiset D′ of G such that:

1. There is a shift from D to D′;

2. v ∈ D′.

A dominating multiset D ⊆ V (G) is an eternal dominating multiset of G if it is a k-secure

dominating multiset of G for each k ∈ N, k ≥ 1. The value γ∞m,m(G) denotes the smallest

size of an eternal dominating multiset of G.

A dominating set D of G can be de�ned as a dominating multiset of G that is a set.

We denote the smallest size of a dominating set of G by γ(G). A 1-secure dominating

set, a k-secure dominating set for k ∈ N, k > 1, and an eternal dominating set of G

are de�ned in the same way their multiset counterparts are with the restriction that all

multisets involved are sets. The value γ∞m,1(G) denotes the smallest size of an eternal

dominating set of G.

Therefore, the following inequality chain holds:

γ(G) ≤ γ∞m,m(G) ≤ γ∞m,1(G). (3.1)

A set S ⊆ V (G) is a separator of G if there is a partition {A,B} of V (G) \ S such

that, for every a ∈ A, b ∈ B, ab /∈ E(G). As an example, for the graph in Figure 3.1(a),

S = {v4, v5, v6, v7} is a separator, since A = {v1, v2, v3} and B = {v8, v9} satisfy the

requirements above.

v1

v2

v3

v4 v5

v6 v7

v8

v9

(a) G

v1

v2

v3

x2 y2

x3 y3

(b) G+[A,S] for A = {v1, v2, v3}
and S = {v4, v5, v6, v7}

Figure 3.1: A graph G and a graph G+[A, S].

Given a set X ⊆ V (G), we denote by G[X] the subgraph of G induced by X. Given

disjoint sets A, S ⊆ V (G), we construct the set N(A, S) and the graph G+[A, S] as follows.

Set N(A, S) = {v ∈ A : v is adjacent to a vertex in S}. To construct G+[A, S], de�ne it

initially as a copy of G[A]. Then, for every vi ∈ N(A, S), add to G+[A, S] new vertices

xi, yi and new edges vixi, xiyi. For instance, regarding the example of the preceding

paragraph, N(A, S) = {v2, v3} and G+[A, S] is as shown in Figure 3.1(b).
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As already stated in Section 3.1, we denote the smallest size of a clique cover of G by

θ(G), and the largest size of an independent set of G by α(G).

3.3 A lower bound for γ∞m,m

Consider a graph G, and pairwise disjoint sets A, S,B ⊆ V (G) such that: (i) A∪S ∪B =

V (G), (ii) for every a ∈ A, b ∈ B, ab /∈ E(G), and (iii) S is a clique. In this section, we

prove the following lower bound for γ∞m,m(G):

γ∞m,m(G) ≥ γ∞m,m(G[B ∪ S]) + p,

where p is a nonnegative value later introduced in Lemma 3.1.

If A and B above are not empty, then S is a separator that is a clique. In this case,

the bound can be informally described as follows: the value γ∞m,m for the graph induced

by the vertices in one of the separated parts and the vertices of the separator is less or

equal to the value γ∞m,m for the whole graph. We note, however, that, if S is not a clique,

this is not necessarily true. Take, for example, G = C6, A = {v1}, S = {v2, v6}, and
B = {v3, v4, v5}, where V (C6) = {v1, . . . , v6}, and vivj ∈ E(C6) if, and only if, (i+ 1) ≡ j

(mod 6). It holds that G[B ∪S] = P5, the 5-path, and that γ∞m,m(G) = γ∞m,m(C6) = 2 and

γ∞m,m(G[B ∪ S]) = γ∞m,m(P5) = 3.

We begin with a helpful lemma and then arrive at the main theorem. Before stating

the lemma, we notice that, for disjoint sets of vertices A and S of a graphG, γ(G+[A, S]) ≥
|N(A, S)|. This is because, for each vi ∈ N(A, S), there are vertices xi and yi in G

+[A, S]

and, for both xi and yi to be dominated, at least one of them must be in the dominating

set, since yi has degree one and is connected solely to xi (see Figure 3.1).

Lemma 3.1. Consider a graph G, and pairwise disjoint sets A, S,B ⊆ V (G) such that

A∪S ∪B = V (G), and, for every a ∈ A, b ∈ B, ab /∈ E(G). Suppose that D ⊆ V (G) is a

dominating set of G. If γ(G+[A, S]) ≥ |N(A, S)|+ p, for some p ≥ 0, then |D ∩A| ≥ p.

Proof. Suppose that |D ∩A| = q < p, q ≥ 0. De�ne D′ as the set of all vertices in D ∩A
along with all vertices xi as in the construction of G+[A, S]. Below, we argue that D′ is

a dominating set of G+[A, S]. However, since |D′| = q + |N(A, S)| < p + |N(A, S)| ≤
γ(G+[A, S]), this is a contradiction.

Take a vertex vi ∈ A \D′ that is not adjacent to a vertex of D′ ∩A in G+[A, S]. Since

(D ∩ A) = (D′ ∩ A),

1. vi is not in D and

2. vi is not adjacent to a vertex of D ∩ A in G.

Because D is a dominating set of G and, for every a ∈ A, b ∈ B, ab /∈ E(G), vi is adjacent

to a vertex of D ∩ S in G. Thus, vi ∈ N(A, S). By the constructions of G+[A, S] and D′,

vi is adjacent to xi ∈ D′ in G+[A, S]. Moreover, each vertex yi as in the construction of

G+[A, S] is adjacent to xi ∈ D′.

In the following theorem, we use the more intuitive language of guards defending a

graph rather than the formal de�nition of an eternal dominating multiset given in Section
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3.2. We also use, though, the knowledge that the set of the vertices occupied by guards

must always constitute a dominating set.

Theorem 3.2. Consider a graph G, and pairwise disjoint sets A, S,B ⊆ V (G) such

that A ∪ S ∪ B = V (G), and, for every a ∈ A, b ∈ B, ab /∈ E(G). If γ(G+[A, S]) ≥
|N(A, S)|+ p, for some p ≥ 0, and S is a clique, then γ∞m,m(G) ≥ γ∞m,m(G[B ∪ S]) + p.

Proof. If S = ∅, G consists of the two subgraphs G[A] and G[B] with no connection

between them. Also, N(A, S) = ∅ and G+[A, S] = G[A]. Then,

γ∞m,m(G) = γ∞m,m(G[B]) + γ∞m,m(G[A]) ≥ γ∞m,m(G[B ∪ S]) + γ(G+[A, S])

≥ γ∞m,m(G[B ∪ S]) + p.

Therefore, assume that S 6= ∅.
Suppose that γ∞m,m(G) = k < γ∞m,m(G[B∪S])+p, k ≥ 0. Then, k guards can eternally

defend attacks at the vertices of G. Denote by C1 the set of k such guards.

Let O be the set of the vertices of G occupied by the guards in C1 initially or after

the defense of an attack at a vertex of G. We have that O is a dominating set of G. By

Lemma 3.1, |O ∩ A| ≥ p. Hence, there are, initially and after the defense of each attack,

at least p of the guards in C1 on the vertices in A. Thus, we can set k = p + q, q ≥ 0;

q < γ∞m,m(G[B ∪ S]).

Take a sequence of attacks at the vertices of G[B ∪ S]. This is also a sequence of

attacks at the vertices of G. Thus, the k guards in C1 moving through G can defend it.

We argue that q guards moving only through G[B ∪ S] can defend it too; we denote by

C2 the set of these q guards. Doing so, we conclude that γ∞m,m(G[B ∪ S]) ≤ q, which is a

contradiction.

Consider a sequence of movements made by the guards in C1 to defend the sequence

of attacks. We describe a sequence of movements made by the guards in C2 using the

former.

Let BS1, |BS1| = r, r ≥ 0, be the set of the guards in C1 initially placed on the

vertices in B ∪ S and p + s, s ≥ 0, be the number of guards in C1 initially placed on

the vertices in A. Since A ∪ S ∪ B = V (G) and A, S, and B are pairwise disjoint sets,

r+ s = q. Choose r guards in C2 (recall that |C2| = q) and call BS2 the set of them. Set

E2 = C2 \BS2 � the guards in E2 will act like extra guards (|E2| = s). Create a bijective

function f : BS1 → BS2 to make a correspondence between guards in the two sets. The

initial position of each guard g2 in C2 at a vertex of G[B ∪ S] is as follows:

• If g2 ∈ BS2, place g2 = f(g1) at the same vertex occupied by g1;

• If g2 ∈ E2, place g2 at an arbitrary vertex in S (recall that S 6= ∅).

In Figure 3.2(b), it is shown an example of the initial placement of the guards in C2

which is based on the example of the initial placement of the guards in C1 presented in

Figure 3.2(a). For the graph in Figure 3.2(a), γ∞m,m = 3 (γ(G) = 3, γ∞m,m(G[A ∪ S]) = 2,

and γ∞m,m(G[B]) = 1). In this case, r = 2, p = 1, s = 0 (there are no extra guards), and

q = 2.
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v1

v2 1 v3

1v4 v5

v6

v7 1 v8

(a) Initial placement

of the guards in C1

1v4 v5

v6

v7 1 v8

(b) Initial placement

of the guards in C2

v1

1v2 v3

v4 1 v5

v6

1v7 v8

(c) The guards in C1

after an attack at v2

v4 1 v5

v6

1v7 v8

(d) The guards in C2

after an attack at v2

Figure 3.2: Placements of the guards in C1 and in C2 (one guard on each black vertex)
on the vertices of a graph G and its subgraph G[B ∪ S], respectively � A = {v1, v2, v3},
S = {v4, v5, v6}, and B = {v7, v8}.

Now, consider the movements made by every guard g1 in C1 during the defense of an

attack. Suppose that g1 goes from a vertex u to a vertex w, u = w meaning g1 does not

move at all. If u 6= w, g1 goes through the edge uw. Proceed as follows considering the

guards in the order below.

1. For every g1 such that u,w ∈ B ∪ S and u 6= w, move the guard g2 = f(g1) from u

to w through the edge uw.

2. For every g1 such that u,w ∈ B ∪ S and u = w, do nothing.

3. If u ∈ B ∪ S and w ∈ A (thus u 6= w), since, for every a ∈ A, b ∈ B, ab /∈ E(G), then

u ∈ S. For every such g1, keep the guard g2 = f(g1) positioned at u. Furthermore,

set BS1 = BS1 \ {g1}, BS2 = BS2 \ {g2} and E2 = E2 ∪{g2}. As a consequence, g2
is no longer associated to g1, and becomes an extra guard.

4. If u ∈ A and w ∈ B ∪ S (thus u 6= w), since, for every a ∈ A, b ∈ B, ab /∈ E(G), then

w ∈ S. For every such g1, move an arbitrary guard g2 ∈ E2 � an extra guard � from

the vertex it occupies in S to w. Moreover, set BS1 = BS1∪{g1}, BS2 = BS2∪{g2}
and E2 = E2 \ {g2}. In addition, let g2 = f(g1). Observe that, since S is a clique,

the movement of g2 is valid.

5. For every g1 such that u,w ∈ A, do nothing.

The existence of an extra guard g2 in item 4 is ensured by every guard g1 in item 3

being considered before every guard g1 in item 4. Since, initially and after the defense of

each attack, at least p of the guards in C1 are on the vertices in A, after considering the

guards in item 5, we have that |BS1| ≤ q. Moreover, because the only item in which |BS1|
decreases (item 3) precedes the only one in which |BS1| increases (item 4), it follows that

|BS1| is never greater than q. This implies that there will be enough extra guards.

The importance of the order of items 3 and 4 is illustrated with Figures 3.2(c) and

3.2(d). If an attack occurs at vertex v2 of the graph of Figure 3.2(a), the guards in C1

have to move as follows: the guard on v4 goes to v2, the guard on v3 goes to v5, and the

guard on v8 either goes to v7 or stays at v8 � the placement in which v7 is occupied is
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pictured in Figure 3.2(c). In the order above, the movement of the �rst of these guards

is considered before the movement of the second one. Because of this, the guard on v4 in

Figure 3.2(b) �rst becomes an extra guard and then, when an extra guard is required to

occupy v5, it goes to v5. The resulting placement is shown in Figure 3.2(d).

We can see that, initially and after the defense of each attack, the vertices in B ∪ S
that are occupied by the guards in C1 are also occupied by the guards in C2. Additionally,

the guards in C2 move only through edges and vertices of G[B ∪ S]. Hence, our claim is

proved.

3.4 The values γ∞m,m and γ∞m,1 for proper interval graphs

We now determine γ∞m,m(G) and γ∞m,1(G) for a proper interval graph G by deriving a

relation that applies to both values: γ∞m,m(G) = α(G) and γ∞m,1(G) = α(G). Another

important connection obviously follows: γ∞m,m(G) = γ∞m,1(G).

Our �rst step is, using Theorem 3.2 from Section 3.3, to prove that γ∞m,m(G) = α(G)

for any proper interval graph G. We employ, in the process, a known characterization of

proper interval graphs. This characterization is found in the literature in di�erent forms.

We choose to state it, in Theorem 3.3, as Figueiredo, Meidanis, and de Mello [4] do, a

convenient language for us. Our result is given in Theorem 3.4.

Theorem 3.3. A graph G is a proper interval graph if, and only if, its vertices can

be linearly ordered so that, for each maximal clique Q of G, the vertices of Q occur

consecutively in this ordering.

An application of Theorem 3.3 for the proper interval graph of Figure 3.1(a) is illus-

trated in Figure 3.3. In this �gure, each maximal clique of the graph is represented by a

curve, and its vertices are the vertices between the ends of the curve, inclusive. We can

see that the ordering 〈v1, v2, . . . , v9〉 satis�es the condition stated in the theorem.

v1 v2 v3 v4 v5 v6 v7 v8 v9

Figure 3.3: Application of Theorem 3.3 for the proper interval graph of Figure 3.1(a).

Theorem 3.4. If G is a proper interval graph, then γ∞m,m(G) = α(G).

Proof. The proof is by induction on |V (G)|. The result is obviously valid for a graph with

no vertices (γ∞m,m = α = 0). Suppose that it also holds for all proper interval graphs with

less than n vertices and take G as a proper interval graph on n ≥ 1 vertices.

Since G is a proper interval graph, Theorem 3.3 holds for G. Let V (G) = {v1, v2,
. . ., vn} and consider an ordering 〈v1, v2, . . . , vn〉 of the vertices of G as in the theorem.

Notice that there cannot be two distinct maximal cliques Q′ = {vi, vi+1, . . . , vi+p} and

Q′′ = {vj, vj+1, . . . , vj+q} of G such that i = j or (i+ p) = (j + q). Otherwise, Q′ ⊂ Q′′ or

Q′′ ⊂ Q′ � either way, a contradiction. See the illustration in Figure 3.3.
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Now, take the maximal clique Q1 = {v1, v2, . . . , vk} (Q1 is the only maximal clique

containing v1). Consider, also, among all maximal cliques of G intersecting Q1, the

maximal clique Q2 = {vi, vi+1, . . . , vi+p} such that (i+p) is the largest possible index � in

Figure 3.3, Q1 = {v1, v2, v3}, and Q2 = {v3, v4, . . ., v7}. Note that, because, for every

edge uv of a graph, u and v are together in one of its maximal cliques, the following holds:

1. v1 has no neighbor outside Q1;

2. All neighbors of the vertices of Q1 that are not in Q1 are in Q2.

Let G1 denote G[V (G) \ Q1]. Considering v1, Q1 \ {v1} and Q2 \ Q1, we have the

situation pictured in Figure 3.4. Since every induced subgraph of a proper interval graph

is a proper interval graph, G1 is a proper interval graph. Hence, by induction hypothesis,

γ∞m,m(G1) = α(G1).

G1

. . .

Q2 \Q1

. . . Q1 \ {v1}

v1

G

Figure 3.4: A proper interval graph G and the subgraph G1.

To prove that γ∞m,m(G) = α(G), we �rst show that α(G) = α(G1) + 1. Suppose that

there is an independent set I of G such that |I| > α(G1) + 1. Since Q1 is a clique,

|I ∩ Q1| ≤ 1. Then, the set I ′ = I \ Q1 is an independent set of G1 with |I ′| > α(G1),

which is a contradiction. Thus, α(G) ≤ α(G1) + 1. Additionally, by the item 1 above, we

can construct an independent set of G of size α(G1) + 1 by adding v1 to a independent

set of G1 of largest size. Hence, our claim is true.

Secondly, we argue that γ∞m,m(G) = γ∞m,m(G1) + 1. Let A = Q1, S = Q2 \ Q1, and

B = V (G) \ (Q1 ∪ Q2). Note that A, S,B ⊆ V (G) are pairwise disjoint sets such that

A ∪ S ∪ B = V (G). By the item 2 above, for every a ∈ A, b ∈ B, ab /∈ E(G). By the

item 1 above and because A is a clique, γ(G+[A, S]) = |N(A, S)|+ 1. Given S is a clique,

Theorem 3.2 implies that γ∞m,m(G) ≥ γ∞m,m(G[B ∪ S]) + 1. Since B ∪ S = V (G) \ Q1, it

follows that γ∞m,m(G) ≥ γ∞m,m(G1) + 1.

We can also see that γ∞m,m(G1) + 1 guards can eternally defend attacks at the vertices

of G: it is possible to maintain γ∞m,m(G1) guards defending the attacks at the vertices

of G1 and one guard independently defending the attacks at the vertices in Q1. Thus,

γ∞m,m(G) = γ∞m,m(G1) + 1.
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Therefore, γ∞m,m(G) = γ∞m,m(G1) + 1 = α(G1) + 1 = α(G), and the theorem is proved.

As our second move, we combine the inequality on the right in (3.1) � Section 3.2,

Theorem 3.5, by Goddard et al. [6], and the theorem above to prove that, for any proper

interval graph G, γ∞m,1(G) = α(G) and γ∞m,m(G) = γ∞m,1(G). In the sequel, we reproduce

the theorem by Goddard et al. [6] and present our outcome.

Theorem 3.5 (Goddard et al. [6, Theorem 13]). For any graph G, γ∞m,1(G) ≤ α(G).

Theorem 3.6. If G is a proper interval graph, then γ∞m,m(G) = γ∞m,1(G) = α(G).

Proof. By the inequality on the right in (3.1) and Theorem 3.5, we have the following

inequality chain:

γ∞m,m(G) ≤ γ∞m,1(G) ≤ α(G).

By Theorem 3.4, it collapses and we reach our goal.

Notice that Theorem 3.6 does not hold for interval graphs in general. For example,

if K1,k is the star with k leaves and k ≥ 3, we have that γ∞m,1(K1,k) = 2 < α(K1,k) = k.

It is also worth noting that there are graphs which are not proper interval graphs and

for which γ∞m,1 = α. This is the case for the graph G resulting from removing edge v2x2
and adding edge v3x2 in the graph of Figure 3.1(b) (observe that G is an interval graph,

although not a proper one). Moreover, there are graphs that are not interval graphs for

which γ∞m,1 = α. The 4-cycle C4 is an instance where the latter equation holds.

Finally, we present two important implications of Theorem 3.6. First, since α can be

determined in linear time for proper interval graphs [7], the EDSP can be solved in linear

time for such graphs. Second, because any proper interval graph G is a perfect graph, we

have that γ∞m,1(G) = θ(G). This provides us with a straightforward defense strategy [6]

for the smallest possible number of guards. As the vertices of G can be partitioned into

θ(G) cliques, it is enough to have one guard to defend the vertices of each of them.
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Chapter 4

Practical Standpoint for m-Eternal

Domination

Next, our attention is turned to heuristic methods suited for practical applications of

the m-eternal dominating set problem. We propose heuristic methods that run in a

reasonable time, produce a good-quality upper bound k on the m-eternal domination

number, and output a structure from which one can derive an e�cient strategy that

k guards can follow to eternally defend the input graph. These features are validated

through extensive experimentation. As far as we know, neither implementations gathering

such features nor experiments reaching such extension have been reported before for the

m-eternal dominating set problem.

In the methods above, we employ integer and constraint programming models to

compute several bounds on the m-eternal domination number. One of these models is,

based on our information, the �rst integer program for the problem of determining a

minimum-weight neocolonization of a graph. By performing the experimental study of

this work, we generate a 750-instance benchmark and carry out a practical evaluation of

bounds for them-eternal domination number available in the literature. As a contribution

to the knowledge on the complexity of the m-eternal dominating set problem, we prove

that its decision version is NP-hard.

The subsequent text is a reproduction of a paper submitted to International Transac-

tions in Operational Research and co-authored by Márcio F. Reis1, Cid C. de Souza1, and

Orlando Lee1. A preliminary version of this paper was presented at the 13th Cologne-

Twente Workshop on Graphs & Combinatorial Optimization [6]. Our exact algorithm for

the m-eternal dominating set problem (which is mentioned in Section 1.3) is described in

Section 4.4.4.

Abstract

We address an issue that is fundamental to practical applications of the m-eternal

dominating set problem but that has received relatively little attention. Our goal is to

1Institute of Computing, University of Campinas, Brazil.
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obtain not only a good-quality upper bound on the m-eternal domination number but

also an associated e�cient strategy of defense. To this end, we introduce two heuristic

methods, in which we propose and solve integer and constraint programming models

to compute bounds on the m-eternal domination number. We perform an extensive

experiment to validate the features of these methods; as a consequence, a benchmark

of 750 instances is generated. Finally, we prove that the decision version of the m-eternal

dominating set problem is NP-hard.

4.1 Introduction

In a cyber-physical system (CPS), computational elements control physical processes in

a highly integrated manner. Examples of CPSs are modern electric power, water dis-

tribution, transportation, and health-care systems [23]. As CPSs scale, they get more

vulnerable to attacks, which range from data measurement failures to cyber or physical

attacks. Since such systems are increasingly larger and crucial to our society, we are

progressively in need of e�cient surveillance mechanisms for them.

The e�cient surveillance of a CPS may be viewed as a practical application of graph

protection, a class of problems that includes the following one (for a thorough survey on

graph protection, see the work of Klostermeyer and Mynhardt [27]). Place guards on

some vertices of a graph G. An attack to G occurs at a vertex, and, to defend an attack

at v, the guards must move so that one guard occupies v. In this movement, each guard

can stay at the same vertex or go to an adjacent one. At all times, there must be at most

one guard per vertex. We are asked to determine the minimum number of guards that can

eternally defend G, namely, that can eternally perform the task of defending any attack

to G. This number is denoted by γ∞m (G).

The problem above is called the m-eternal dominating set problem (m-EDSP) � al-

ternatively, the m-eternal domination problem � and has its origin back in Constantine's

approach to defend the Roman Empire, known as Roman domination [27]. Accordingly,

γ∞m (G) is denominated the m-eternal domination number of G. Consider guards eternally

defending G, that is, eternally performing the task of defending any attack to G. Note

that these guards must occupy, initially and after responding to each attack, a dominating

set of G (a set S of vertices of G such that every vertex of G that is not in S has a neighbor

in S). The problem's name captures the idea of a set of vertices that can be eternally

modi�ed yet remaining a dominating set (the pre�x �m� distinguishes the problem from a

version in which at most one guard can move during the defense of an attack [27]). Later,

we de�ne in terms of dominating sets a strategy of defense of G for k guards, which is a

strategy that k guards can follow to eternally defend G.

In this paper, we address an issue that is fundamental to practical applications of the

m-EDSP but that has been given relatively little attention in the literature. Works on the

m-EDSP usually provide bounds on γ∞m (G) for any graph G [8, 18, 25, 26] or determine

bounds on or even �nd the exact value of γ∞m (G) for G restricted to speci�c classes of

graphs [7, 10, 18, 19, 24]. The issue we deal with is to produce not only a good-quality

upper bound, say of value k, on γ∞m (G) for a generic graph G but also an e�cient strategy
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of defense of G for k guards � we translate such a strategy of defense into a de�nition

with polynomial-time and polynomial-space requirements. To our knowledge, a similar

goal was only pursued by Abbas et al. [1].

As our main contribution, we propose two heuristic methods suited for practical appli-

cations of the m-EDSP. The methods use integer and constraint programming techniques

to compute bounds on γ∞m (G) for an input graph G. We show that they

(i) run in a reasonable time,

(ii) produce a good-quality upper bound, say of value k, on γ∞m (G), and

(iii) output a structure from which one can derive an e�cient strategy of defense of G

for k guards,

with the �rst two features being validated through extensive experimentation. Based

on our information, neither implementations gathering such features nor experiments

reaching such extension have been reported before for the m-EDSP.

As a secondary contribution, we add to the knowledge on the complexity of the m-

EDSP: we show that its decision version � where one asks if γ∞m (G) ≤ k for a graph G and

a positive integer k � is NP-hard. Similar problems, given by two-player combinatorial

games, have been proven PSPACE-hard [12, 13, 14, 28]. If the m-EDSP is also proven

PSPACE-hard, then its decision version will unlikely be in NP and our result will likely

establish the closest relationship between the problem and the NP class.

The remainder of this paper is organized as follows. In the next section, we introduce

assumptions and de�nitions considered throughout the text and prove the complexity

result above. In Section 4.3, we provide demonstrations used to attest Feature (iii) and to

explain the correctness of upper bounds employed in the heuristic methods proposed for

the m-EDSP. We describe these methods in Sections 4.4 and 4.6, present computational

results for them in Sections 4.5 and 4.7, and discuss their limitations in Section 4.8.

Finally, in Section 4.9, we draw conclusions and comment on future work.

4.2 Preliminaries

All non-basic concepts used in this text without being speci�ed are standard (for the

respective mathematical programming and graph-related de�nitions, see the books by

Wolsey [32] and West [31]). All graphs that we deal with are �nite and, except for the ones

constructed in Section 4.4.4, simple. The graphs not stated as directed are undirected.

Throughout this paper, we employ the following terminology and notation, for which we

assume a graph G and a directed graph H. The key de�nitions are illustrated at the end

of the section.

Each of the symbols |S| for a set S; V (G) and E(G); G[S] for S ⊆ V (G); d(v), N(v),

and N [v] for a vertex v of G; V (H); and N+(v) and N−(v) for a vertex v of H has the

same meaning as in the notation used by West [31]. For S ⊆ V (G), we set N(S) =⋃
v∈S N(v) and N [S] =

⋃
v∈S N [v]. A neighborhood symbol is written with a subscript

(e.g., NG(v) and N+
H (v)) when the underlying graph needs to be explicitly stated. We
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denote the minimum size of a dominating set of G by γ(G) and, assuming that G is

connected, the minimum size of a connected dominating set of G by γc(G).

Let a partition Z of V (G), say Z = {V1, V2, . . . , Vk }, be such that, for each Vi ∈
Z, G[Vi] is connected. Consider an ordered pair 〈Z, Y 〉 having Y as a set composed of

a connected dominating set of G[Vi] for every Vi ∈ Z that is not a clique. We call Z

a neocolonization of G and 〈Z, Y 〉 a neocolonization setup of G; we denote (in an abuse

of notation) the element of Y corresponding to Vi ∈ Z by Y (Vi). The weight w(Z) of

Z is given by
∑

Vi∈Z w(Vi), where w(Vi) = 1 if Vi is a clique and w(Vi) = γc(G[Vi]) +

1 otherwise. The weight w(〈Z, Y 〉) of 〈Z, Y 〉 is given by the sum of 1 for every clique

part of Z and of min{|Y (Vi)| + 1, |Vi|} for each non-clique part Vi of Z. Notice that

w(〈Z, Y 〉) ≥ w(Z). We denote by θC(G) the minimum weight of a neocolonization setup

of G � equivalently, the minimum weight of a neocolonization of G.

Assume that D is the set of all dominating sets of G. We say that Di ∈ D shifts to

Dj ∈ D when there exists a bijective function f : Di → Dj such that, if f(u) = v, then

u = v or uv ∈ E(G); f is called a shift from Di to Dj (note that f exists only if |Di| =

|Dj|). For Di ∈ D and v ∈ V (G), we de�ne N (Di, v) = {Dj ∈ D : v ∈ Dj and Di shifts

to Dj }. Consider guards placed on the vertices of Di ∈ D. A shift from Di to Dj ∈ D
models these guards moving to the vertices of Dj to defend an attack to G. Moreover,

N (Di, v) gives all dominating sets that these guards may occupy after responding to an

attack at v ∈ V (G).

Suppose a nonempty collection C of k-size dominating sets of G such that, for every

Di ∈ C and every v ∈ V (G), N (Di, v) ∩ C 6= ∅. Take M to be a method that, given

Di ∈ C and v ∈ V (G), returns Dj ∈ N (Di, v) ∩ C and a shift from Di to Dj. Let

IM be the input data for M . The existence of C implies γ∞m (G) ≤ k: k guards can

eternally defend G by starting placed on the vertices of a dominating set D0 ∈ C and

responding to an i-th attack, say at vi, by moving from Di−1 ∈ C to Di ∈ N (Di−1, vi) ∩
C according to a shift f i. The triple 〈C,M, IM〉 speci�es such a defense: Di and f i are

the dominating set and the shift returned by M for Di−1 and vi. We refer to C as a

k,m-eternal-dominating-set collection (k,m-EDSC) � when convenient, we write m-EDSC

consisting of k-size dominating sets or just m-EDSC � of G, to M as a defense method of

C, and to 〈C,M, IM〉 as a strategy of defense of G for k guards. We also refer to 〈C,M, IM〉
as an e�cient strategy of defense of G for k guards if, with respect to |V (G)|,

1. C is composed of a polynomial number of dominating sets,

2. IM can be represented in polynomial length, and

3. M can be executed in polynomial time.

Consider k guards eternally defending G and all dominating sets that they may occupy

initially and after responding to an attack. These dominating sets form a k,m-EDSC of

G. Therefore, γ∞m (G) ≤ k implies that G has a k,m-EDSC. This implication and the

converse one above culminate in the following theorem.

Theorem 4.1. For a graph G, γ∞m (G) ≤ k if and only if G has a k,m-EDSC.
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Next, we prove that the decision version of the m-EDSP is NP-hard. To this end,

we employ an inequality established by Goddard et al. [18]: γ∞m (G) ≤ γc(G) + 1 for any

connected graph G.

Theorem 4.2. The decision version of the m-EDSP is NP-hard.

Proof. We provide a polynomial-time reduction from a classical NP-complete problem:

the vertex cover problem [17]. Call G the input graph of this problem, and build an

extension G′ of G as follows. Add new vertices u, w, and y and new edges uw, uy, and,

for each v ∈ V (G), uv. Moreover, for every vivj ∈ E(G), add a new vertex xij and new

edges vixij and vjxij; denote by X the set of all vertices xij. For a positive integer r, we

show that G has a vertex cover of size at most r if and only if γ∞m (G′) ≤ r + 2.

Suppose that Q is a vertex cover of G of size at most r. The set Q ∪ {u } is a

connected dominating set of G′ of size at most r + 1. Hence, by the aforementioned

inequality, γ∞m (G′) ≤ r+ 2. Now, consider r+ 2 guards eternally defending G′. After the

defense of an attack at w, there must be a guard on w and a guard on y or u. Thus,

V (G′) \ {u,w, y } has at most r occupied vertices; let S be the set of these vertices.

Notice that every vertex of X must be dominated by a vertex of S. As a consequence, we

can derive a vertex cover Q of G from S with |Q| ≤ |S| ≤ r.

b

c

d ea

g

f

h

Figure 4.1: A graph having a neocolonization of weight 3, a neocolonization setup of
weight 4, and a 5,m-EDSC.

Examples. As stated earlier, we illustrate the key de�nitions given in this section. Let

G be the graph of Figure 4.1, V1 = {a, b, c, d, g}, V2 = {e, f , h}, D = {b, c}, and, for
v ∈ {a, f , g, h}, Dv = {b, c, d, e, v}. We form a neocolonization Z and a neocolonization

setup 〈Z, Y 〉 of G by setting Z = {V1, V2} and Y = {D} � the set V1 is the sole non-clique
part of Z and Y (V1) = D. The weights w(Z) and w(〈Z, Y 〉) are 3 and 4 respectively.

Guards placed on the dominating set Da may defend an attack at f by moving along the

path ab . . . f to reach the dominating set Df . This movement is described by the shift

m : Da → Df speci�ed as m(a) = b, m(b) = c, m(c) = d, m(d) = e, and m(e) = f . Note

that Df ∈ N (Da, f). The collection {Da, Df , Dg, Dh} is a 5,m-EDSC of G. Thus, by

Theorem 4.1, γ∞m (G) ≤ 5.

4.3 Neocolonization-setup e�cient strategy of defense

and bound

We rely on the same demonstrations to provide the following insights into each m-eternal

domination number upper bound used in the proposed heuristic methods: how to derive an

associated e�cient strategy of defense and why the bound is valid. These demonstrations

are given below.
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Theorem 4.3. From a neocolonization setup 〈Z, Y 〉 of a graph G, one can derive an

e�cient strategy of defense 〈C,M, IM〉 of G for w(〈Z, Y 〉) guards.

Proof. Transform 〈Z, Y 〉 as follows assuming Z = {V1, V2, . . ., Vk }. For each non-clique

part Vr of Z such that Y (Vr) = Vr, �nd a spanning tree T of G[Vr] and set Y (Vr) =

Y (Vr) \ { v }, where v is a leaf of T ; note that Y (Vr) remains a connected dominating set

of G[Vr]. The resulting neocolonization setup weighs the same as before and has Y (Vr) (
Vr for every non-clique part Vr of Z.

Let S be the set formed of a vertex sr ∈ Vr for each clique part Vr of Z and of all

vertices of the connected dominating set Y (Vr) along with a vertex sr ∈ Vr \ Y (Vr) for

every non-clique part Vr of Z. For v ∈ V (G) \ S, de�ne Sv = S \ { sr } ∪ { v } if v belongs
to Vr ∈ Z. Because |S| = w(〈Z, Y 〉), Z is a partition of V (G), and, for each Vr ∈ Z, S ∩
Vr is a dominating set of G[Vr], S is a w(〈Z, Y 〉)-size dominating set of G. Analogously,

for every v ∈ V (G) \ S, Sv is a w(〈Z, Y 〉)-size dominating set of G. Set C = {S } ∪
{Sv : v ∈ V (G) \ S } � see the end of the proof for an instance of C.

Algorithm 4.1 Method M † (a defense method of an m-EDSC)
† This method is used in the proof of Theorem 4.3, where its input items are de�ned.

Input: G; 〈Z, Y 〉; C; for each Vr ∈ Z, sr; a dominating set Di ∈ C; and a vertex x ∈ V (G).
Output: A dominating set Dj ∈ N (Di, x) ∩ C and a shift f from Di to Dj .

1: If x ∈ Di, then set Dj = Di and f(t) = t, ∀t ∈ Di; output Dj and f ; and stop.

2: Determine Vp ∈ Z with x ∈ Vp and w with Di ∩ Vp \ (S \ { sp }) = {w }, and set x′ = x.
3: If Vp is a clique, then set f(w) = x′.
4: Else:

5: Compute a path wu1 . . . umx
′ of G[Vp] with u1, . . . , um ∈ Y (Vp).

6: Set f(w) = u1, f(ul) = ul+1 for l ∈ { 1, . . . ,m− 1 }, and f(um) = x′.

7: If Di = Sv with v in Vq ∈ Z and Vp 6= Vq, then set x′ = sq, Vp = Vq, and w = v, and go to 3.

8: Set f(t) = t for each unmapped t ∈ Di and Dj = S if x ∈ S and Dj = Sx otherwise.

9: Output Dj and f .

De�ne M as in Algorithm 4.1, which corresponds to the following guard approach �

see below for examples on this approach. Place guards on the vertices of a dominating

set of C. Next, these guards defend an attack at x ∈ V (G) by performing at most two

movements and reaching a dominating set of C that contains x.

If x is occupied, then the guards do not move. Otherwise, the �rst movement occurs.

Let x belong to Vp ∈ Z. Since the guards start on a dominating set of C, they occupy

exactly one vertex of Vp if Vp is a clique and of Vp \ Y (Vp) otherwise; call w this vertex.

Also, the guards occupy all vertices of Y (Vp) in case Vp is not a clique. In this case,

because Y (Vp) is a connected dominating set of G[Vp], there is a path P of G[Vp] with

P = wu1 . . . umx, u1, . . . , um ∈ Y (Vp), and all vertices of P but x occupied. If Vp is a

clique, then the guard on w moves to x; else, each guard on P moves one vertex further

towards x along the path.

The following three cases give the dominating set the guards occupy after executing

the �rst movement � note that, by the description above, w, x ∈ Vp; since, initially, x is

unoccupied and all vertices of Y (Vp) are occupied if Vp is not a clique, x ∈ S implies x =

sp; and x 6= w. If they start at S, then w = sp, x /∈ S, and they �nish at Sx. If they
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begin at Sv for v ∈ V (G) \ S such that v ∈ Vp, then w = v and they end at S when x ∈ S
(thus x = sp) and at Sx otherwise. If they initiate at Sv for v ∈ V (G) \ S with v in Vq ∈
Z and Vp 6= Vq, then w = sp, x /∈ S, and they terminate at S \ { sp, sq } ∪ {x, v }. Only
in the last case, where the ending dominating set is not in C, the guards do the second

movement, which is the same as the �rst except for x, Vp, and w replaced with sq, Vq,

and v respectively. By this movement, the guards reach Sx.

The output of M implies that, for every Di ∈ C and every x ∈ V (G), N (Di, x) ∩ C 6=
∅. Hence, C is an m-EDSC of G consisting of w(〈Z, Y 〉)-size dominating sets; the method

M is a defense method of C. The size of C equals (1 + |V (G) \S|) ∈ O(|V (G)|), the input
IM of M can be represented in O(|V (G)|2) length, and each step of M runs at most twice

and can be executed in O(|V (G)|2) time. Therefore, 〈C,M, IM〉 is an e�cient strategy of

defense of G for w(〈Z, Y 〉) guards.

d e

f h

g
i

a

b

c

j

l

k

Figure 4.2: A graph having an e�cient strategy of defense for 6 guards that is derived
from a neocolonization setup.

Examples. In the argumentation above, assume that G is the graph of Figure 4.2.

Moreover, consider that 〈Z, Y 〉 is the neocolonization setup 〈 {V1, V2, V3 }, {D′, D′′ } 〉,
where V1 = { a, b, c, d, e }, V2 = { f , g, h }, V3 = { i, j, k, l }, D′ = { d }, and D′′ = { i,
j } � it holds that Y (V1) = D′, Y (V3) = D′′, and w(〈Z, Y 〉) = 6. Finally, suppose that

s1 = a, s2 = g, and s3 = l.

As a consequence, C consists of the seven 6-size dominating sets of G given by S = { a,
d, g, i, j, l }, Sb = S \ { a } ∪ { b }, Sc = S \ { a } ∪ { c }, Se = S \ { a } ∪ { e }, Sf =

S \ { g } ∪ { f }, Sh = S \ { g } ∪ {h }, and Sk = S \ { l } ∪ { k }. In addition, the guard

approach corresponding to M works as in the following examples; we write Di and Dj,

respectively, for the initial and �nal placements of the guards. If Di = S and x = f , then

the guard on g moves to f and Dj = Sf (Vp = V2 and w = g). If Di = S and x = k, then

each guard on path lijk moves towards k and Dj = Sk (Vp = V3 and w = l). If Di = Sb

and x = a, then each guard on path bda moves towards a and Dj = S (Vp = V1 and w =

b). If Di = Sb and x = c, then each guard on path bdc moves towards c and Dj = Sc

(Vp = V1 and w = b). If Di = Sb and x = k, then each guard on path lijk moves towards

k, each guard on path bda moves towards a, and Dj = Sk (Vp = V3, w = l, Vq = V1, v =

b, and sq = a).

Theorem 4.4. For a neocolonization setup 〈Z, Y 〉 of a graph G, γ∞m (G) ≤ w(〈Z, Y 〉).

Proof. For simplicity, let w = w(〈Z, Y 〉). By Theorem 4.3, there is a strategy of defense

〈C,M, IM〉 of G for w guards. Because C is a w,m-EDSC of G, Theorem 4.1 implies

γ∞m (G) ≤ w.
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4.4 First heuristic method

Our �rst heuristic method (Heur 1) consists in computing several upper and lower bounds

on γ∞m (GH1) for an input graph GH1. The method is outlined in Algorithm 4.2 : below,

we de�ne the bounds in the list of Step 2 and detail their computation.

Algorithm 4.2 First heuristic method

Input: A connected graph GH1.

Output: An upper bound H1-UB and a lower bound H1-LB on γ∞m (GH1) and a structure H1-S.

1: Set u = ∞ and l = −∞.

2: For each bound B on γ∞m (GH1) in the list UB-MCD, LB-MDS, LB-MMD, UB-DNS, LB-TLE, do:

3: Compute B and, in the upper bound case, obtain a by-product p; call b the value of B.
4: If B is an upper bound on γ∞m (GH1) and b < u, then set u = b and s = p.
5: If B is a lower bound on γ∞m (GH1) and b > l, then set l = b.
6: If u = l, then go to 7.

7: Set H1-UB = u, H1-LB = l, and H1-S = s.
8: Output H1-UB, H1-LB, and H1-S.

In what follows, we also give an approach to derive, from the structure H1-S outputted

by Heur 1, an e�cient strategy of defense of GH1 for H1-UB guards. This approach is

presented in two cases, at Sections 4.4.1 and 4.4.3, corresponding to the two possible

assignments to H1-S.

For a graph G, since guards can only move to neighboring vertices during the defense

of an attack to G, it holds that γ∞m (G) = γ∞m (C1) + γ∞m (C2) + . . . + γ∞m (Ck), where C1, C2,

. . ., Ck are the components of G. Hence, one can assume, without loss of generality, that

the input graph to the m-EDSP is connected. We consider this assumption for Heur 1,

as stated in the input to Algorithm 4.2.

4.4.1 Minimum connected dominating set upper bound

The minimum connected dominating set upper bound (UB-MCD) is given by γc(GH1) +

1. A result by Goddard et al. [18, Theorem 14] stated earlier (for Theorem 4.2) implies

γ∞m (GH1) ≤ γc(GH1) + 1. The following is an alternative proof to this inequality. From a

minimum connected dominating set D of GH1, derive the neocolonization setup 〈ZD, YD〉,
where ZD = {N [D] } = {V (GH1) } and YD = ∅ if V (GH1) is a clique and YD = {D } if
not. By Theorem 4.4, γ∞m (GH1) ≤ w(〈ZD, YD〉). Since w(〈ZD, YD〉) = 1 = γc(GH1) in case

V (GH1) is a clique and w(〈ZD, YD〉) = γc(GH1) + 1 otherwise, γ∞m (GH1) ≤ γc(GH1) + 1.

We refer to 〈ZD, YD〉 as the neocolonization setup associated with UB-MCD.

To compute UB-MCD, we determine as follows a minimum connected dominating set

D of GH1. First, we �nd a maximum-leaf spanning tree T of GH1 using a �ow-based mixed

integer program proposed by Reis et al. [30] � this program provides a competitive and

simple-to-implement exact method for the problem of �nding a maximum-leaf spanning

tree of a connected graph. Next, we choose D to consist of all non-leaf vertices of T

if |V (T )| 6= 2 and to contain any of the two vertices of T otherwise; to see that |D| =

γc(GH1), observe that, for a smaller connected dominating set D′ of GH1, one could obtain
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a spanning tree TD′ of GH1[D
′] and enlarge TD′ into a spanning tree T

′ of GH1 having more

leaves in comparison with T .

In case H1-UB is set the value of UB-MCD (see Algorithm 4.2), H1-S is assigned

D. In this case, to derive an e�cient strategy of defense of GH1 for H1-UB guards from

H1-S, one can �rst build the neocolonization setup 〈ZD, YD〉 from D as above and then

construct an e�cient strategy of defense of GH1 for w(〈ZD, YD〉) guards from 〈ZD, YD〉 as
in the proof of Theorem 4.3.

4.4.2 Minimum and maximum minimum dominating set lower

bounds

Consider γ∞m (GH1) guards eternally defending GH1. After responding to an attack, these

guards must occupy the vertices of a dominating set of GH1 (recall the introduction of

the m-EDSP in Section 4.1). Therefore, γ∞m (GH1) ≥ γ(GH1). The value of the minimum

dominating set lower bound (LB-MDS) is γ(GH1).

For each v ∈ V (GH1), if the attack above occurs at v, then the guards must respond

to it by moving to a dominating set of GH1 containing v. Provided γv(GH1) denotes

the minimum size of such a dominating set, it follows that γ∞m (GH1) ≥ γv(GH1). As a

consequence, γ∞m (GH1) is at least maxv∈V (GH1) γv(GH1), which is the value of the maximum

minimum dominating set lower bound (LB-MMD). LB-MMD improves on LB-MDS but

to a limited extent: one can show that maxv∈V (GH1) γv(GH1) ≤ γ(GH1) + 1.

To compute LB-MDS, we solve a standard integer program to �nd the minimum size

of a dominating set (MDS-IP):

min

 ∑
v∈V (GH1)

xv :
∑

u∈N [v]

xu ≥ 1, ∀v ∈ V (GH1); xv ∈ {0, 1}, ∀v ∈ V (GH1)


To determine LB-MMD, we run a procedure A in which a version MDS-IP(v) of MDS-IP

for v ∈ V (GH1), a variable m, and a set S ⊆ V (GH1) play the following roles. MDS-IP(v)

calculates γv(GH1): it results from adding xv = 1 to MDS-IP and thus forcing the feasible

solutions to represent the dominating sets of GH1 containing v. The variable m tracks the

maximum γv(GH1) already calculated in the procedure. The set S �lters the vertices that

may render an improvement to m, that is, for each v ∈ V (GH1) \ S, γv(GH1) ≤ m.

We now present Procedure A; LB-MMD is given by the �nal value of m. First, set

m = γ(GH1) and S = V (GH1). Next, remove from S every vertex v with the following

property, denoted by P: v belongs to a dominating set of GH1 corresponding to an optimal

solution found when solving MDS-IP � note that γv(GH1) = γ(GH1). While S 6= ∅, extract
u from S, optimize MDS-IP(u) to obtain γu(GH1), and setm = γu(GH1) in case γu(GH1) >

m. Also, if γu(GH1) = γ(GH1), then remove from S each vertex v having Property P(u),

which is Property P de�ned for MDS-IP(u) � notice that γv(GH1) = γ(GH1).
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4.4.3 Dominating-set neocolonization-setup upper bound

The dominating-set neocolonization-setup upper bound (UB-DNS) results from an at-

tempt to improve on UB-MCD: it is given by the weight of a neocolonization setup

〈Z∗, Y ∗〉 of GH1 derived from a dominating set that is not restricted to be connected.

Theorem 4.4 implies the validity of the bound.

In case H1-UB is given the value of UB-DNS (see Algorithm 4.2), H1-S is assigned

〈Z∗, Y ∗〉. In this case, to derive an e�cient strategy of defense of GH1 for H1-UB guards

from H1-S, one can build an e�cient strategy of defense of GH1 for w(〈Z∗, Y ∗〉) guards

from 〈Z∗, Y ∗〉 as in the proof of Theorem 4.3.

The neocolonization setup 〈Z∗, Y ∗〉 is computed as follows. First, we construct a

collection D of dominating sets of GH1. Next, for each D ∈ D, we build a neocolonization

setup 〈ZD, YD〉 from D, run an improvement procedure for 〈ZD, YD〉, and assign 〈ZD, YD〉
to 〈Z∗, Y ∗〉 if 〈Z∗, Y ∗〉 is still unset or w(〈ZD, YD〉) < w(〈Z∗, Y ∗〉).

To build 〈ZD, YD〉 from D for each D ∈ D, we employ the following approach � see

the end of this subsection for an illustration of this approach. Sort the components of

GH1[D] in non-increasing order of number of vertices; assume the components are sorted

as C1, C2, . . ., Cp. Form p corresponding sets: V1 = N [V (C1)] and, for i = 2, . . ., p, Vi =

N [V (Ci)] \ (V1 ∪ V2 ∪ . . . ∪ Vi−1). Find which of these sets are not cliques; say Vi1 , Vi2 ,

. . ., Viq . Finally, let 〈ZD, YD〉 = 〈{V1, V2, . . ., Vp }, {V (Ci1), V (Ci2), . . ., V (Ciq) }〉.
In order to improve 〈ZD, YD〉, we consider a result on reducing its weight � see the

provided example of applying this result. For v ∈ V (GH1) \ D, denote by Pv the set of

every non-clique part Vi of ZD such that the component Ci of GH1[D] has a neighbor of v

and V (Ci) ( Vi. Choose u ∈ V (GH1) \D; let u belong to Vj ∈ ZD. Transform 〈ZD, YD〉
by setting

ZD =


ZD \ Pu ∪

{ ⋃
Vi∈Pu

Vi

}
in case Vj ∈ Pu,

ZD \ (Pu ∪ {Vj }) ∪
({ ⋃

Vi∈Pu

Vi ∪ {u }
}
∪ {Vj \ {u } }

)
otherwise;

YD = YD \ {V (Ci) : Vi ∈ Pu } ∪

{ ⋃
Vi∈Pu

V (Ci) ∪ {u }

}
.

If |Pu| ≥ 3, then w(〈ZD, YD〉) is reduced by |Pu|− 2.

We run the following simple improvement procedure for 〈ZD, YD〉 � see below for

an execution of this procedure. De�ne v ∈ V (GH1) \ D to be an improving vertex if

|Pv| ≥ 3. While there are improving vertices, select v∗ ∈ arg maxv∈V (GH1)\D |Pv|, apply
the transformation above to 〈ZD, YD〉 for v∗, and update Pv for each v ∈ V (GH1) \ D so

that the newly formed non-clique part of ZD is removed from further consideration.

The constructed collection D consists of an s-size dominating set of GH1 for every s in

a size range R. The motivation to add a larger dominating set D to D is that it may yield

a less-weight neocolonization setup 〈ZD, YD〉. As an example, for the graph of Figure 4.3,

while the 4-size dominating set { a, e, h, i } renders a 7-weight neocolonization setup,

the 5-size dominating set { b, e, f , h, i } gives origin to a 6-weight one. We choose R =
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Figure 4.3: A graph for which a larger
dominating set may yield a less-weight
neocolonization setup.
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Figure 4.4: A graph having an 8-weight
neocolonization setup that can be im-
proved into a 7-weight one.

[γ(GH1), γc(GH1)] � this range seems reasonable for our aim: to produce neocolonization

setups weighing less than γc(GH1) + 1, the value of UB-MCD.

We arrange D to be formed of the dominating sets computed through the mixed integer

programs below. Our intention is to obtain dominating sets inducing subgraphs having

large components. In a pursuit of this intention, we determine dominating sets inducing

subgraphs having maximum vertex-degree sum (equivalently, having maximum number

of edges).

First, we solve the following program, in which we use x variables to select vertices

that form a dominating set of GH1 and y variables to count the vertex degrees of the

subgraph induced by this dominating set. At an optimal solution, the x variables encode

a minimum dominating set of GH1 inducing a subgraph having maximum vertex-degree

sum.

min |V (GH1)|
∑

v∈V (GH1)

xv −
∑

v∈V (GH1)

yv

s.t.: ∑
u∈N [v]

xu ≥ 1, ∀v ∈ V (GH1)

yv ≤ d(v) xv, ∀v ∈ V (GH1)

yv ≤
∑

u∈N(v)

xu, ∀v ∈ V (GH1)

xv ∈ {0, 1}, yv ≥ 0, ∀v ∈ V (GH1)

Next, we optimize modi�ed versions of this program. For each s ∈ [γ(GH1)+1, γc(GH1)],

we consider the version that results from removing the term |V (GH1)|
∑

v∈V (GH1)
xv from

the objective function and adding the constraint
∑

v∈V (GH1)
xv ≤ s. In this version, an op-

timal solution corresponds to an s-size dominating set of GH1 inducing a subgraph having

maximum vertex-degree sum.

Examples. We illustrate two steps of the computation of UB-DNS: the construction of

a neocolonization setup 〈ZD, YD〉 from a dominating set D of the collection D and the

execution of the improvement procedure for 〈ZD, YD〉. To this end, assume that GH1 is

the graph of Figure 4.4 and D is { b, e, g, h, m }.
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In the approach to build 〈ZD, YD〉 from D, suppose that the components of GH1[D]

are sorted as C1, C2, C3, C4 such that V (C1) = { b, e }, V (C2) = { g }, V (C3) = {h },
and V (C4) = {m }. We obtain 〈ZD, YD〉 = 〈{V1, V2, V3, V4 }, {V (C1), V (C2), V (C3) }〉,
where V1 = { a, b, c, d, e, f }, V2 = { g, i, j }, V3 = {h, k, l }, and V4 = {m, n }.
Note that w(〈ZD, YD〉) = 3 + 2 + 2 + 1 = 8. The improvement procedure applies the

transformation to 〈ZD, YD〉 once, for vertex f . In this case, Pf = {V1, V2, V3 }. It results
that ZD = { (V1 ∪ V2 ∪ V3), V4 } = { { a, b, . . . , l }, {m, n } } and YD = {V (C1) ∪
V (C2) ∪ V (C3) ∪ { f } } = { b, e, f , g, h }. Now, w(〈ZD, YD〉) = 6 + 1 = 7.

4.4.4 Time-limited exact-algorithm lower bound

The time-limited exact-algorithm lower bound (LB-TLE) is drawn from a time-limited

version of Algorithm 4.3, an exact algorithm for the m-EDSP developed by us inspired on

the work of Fomin et al. [11] for a closely related problem. Below, we further describe

this algorithm and derive LB-TLE.

Algorithm 4.3 Exact algorithm for the m-EDSP

Input: A graph G.
Output: γ∞m (G) and an m-EDSC of G.
1: Compute γ(G).
2: For every integer k from γ(G) to |V (G)|, do:
3: If γ∞m (G) ≤ k, then output k and a k,m-EDSC ofG, and stop � it follows that γ∞m (G) = k.

In Step 3 of Algorithm 4.3, we use the fact that γ∞m (G) ≤ k if and only if G has a

k,m-EDSC (see Theorem 4.1). First, we obtain a graph Gk with the following property,

denoted by P1: in case V (Gk) is nonempty, V (Gk) is a k,m-EDSC of G; otherwise, G does

not have a k,m-EDSC. Then, we check if γ∞m (G) ≤ k by testing if V (Gk) 6= ∅ and, in case

the condition is true, output k and V (Gk). We detail next how Gk is obtained and why

Property P1 is valid.

We begin by constructing a graph G0k : V (G0k) consists of all k-size dominating sets of

G and, for Di, Dj ∈ V (G0k), E(G0k) contains DiDj if and only if Di shifts to Dj � because

Di shifts to itself and, if Di shifts to Dj, then Dj shifts to Di, this graph has a loop for

each vertex and is de�ned to be undirected. To assemble V (G0k), we employ constraint

programming to search for all feasible solutions to constraints∑
v∈V (G)

xv = k;
∑

u∈N [v]

xu ≥ 1, ∀v ∈ V (G); xv ∈ {0, 1}, ∀v ∈ V (G).

To decide if DiDj ∈ E(G0k), we test if there is a k-unit �ow in a directed graph where, for

every u ∈ Di and v ∈ Dj, at most one unit of �ow can pass through all arcs uw such that

w ∈ N [u] ∩ Dj and through all arcs wv such that w ∈ N [v] ∩ Di. Provided n = |V (G)|,
one can build V (G0k) in O(2nn2) time and determine E(G0k) in ((|V (G0k)|(|V (G0k)| − 1)/2)

nO(1)) ∈ O(4nnO(1)) time.

Next, we assign to Gk the last graph obtained in the following process. For every graph

Gik below, let a vertex of Gik be unsafe if it corresponds to a dominating set D of G such

that N (D, v) ∩ V (Gik) = ∅ for some v ∈ V (G). Set i = 0. While V (Gik) 6= ∅ and Gik has
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unsafe vertices, �nd all unsafe vertices of Gik, obtain Gi+1
k by removing them from Gik, and

increment i by 1. This loop can be executed in O(8nn) time: it performs at most |V (G0k)|
iterations, which can each be run in O(|E(G0k)|n + |V (G0k)|)) time.

We now show that Gk has the following property, named P2: every k,m-EDSC of G is

a subset of V (Gk). By induction on i, we prove that each graph Gik above has Property

P2(i), which is Property P2 de�ned for Gik. Since V (G0k) contains all k-size dominating

sets of G, G0k has Property P2(0). Suppose that Gik has Property P2(i). The property

implies that the dominating sets of G corresponding to the unsafe vertices of Gik cannot

belong to a k,m-EDSC of G. Hence, Gi+1
k has Property P2(i+1).

Finally, we prove that Gk has Property P1. If V (Gk) 6= ∅, then, by its construction,

Gk has no unsafe vertices and, therefore, V (Gk) is a k,m-EDSC of G. Else, Property P2

implies that G has no k,m-EDSC.

The correctness of Algorithm 4.3 is based on the fundamental lower bound γ(G) (see

Section 4.4.2) and upper bound |V (G)| on γ∞m (G). Its running time is dominated by the

duration of Step 2's loop, which can be executed in O(8nnO(1)) time � recall the partial

complexities discussed above. The subsequent characteristic of the algorithm contrasts

with Feature (iii) of the heuristic methods proposed in this work. If we also output Gk
in Step 3, then one can derive as follows, from the return of Algorithm 4.3, a strategy of

defense of G for γ∞m (G) guards that is not necessarily e�cient. De�ne C to be them-EDSC

V (Gk); since the output of the algorithm occurs for k = γ∞m (G), this m-EDSC consists of

γ∞m (G)-size dominating sets. Develop an O(|V (Gk)| + nO(1))-time defense method M of

C such that, for Di ∈ C and v ∈ V (G), M consults Gk to �nd Dj ∈ N (Di, v) ∩ C and

employs the �ow test mentioned in the construction of G0k to determine a shift from Di to

Dj. Set IM to be an appropriate O(|V (Gk)|+n2)-length input toM . The triple 〈C,M, IM〉
is a strategy of defense of G for γ∞m (G) guards. Because |V (Gk)| may be exponential in

n, it is not necessarily e�cient.

To obtain LB-TLE, we modify Algorithm 4.3 to output a lower bound on γ∞m (G). We

allow the algorithm to be interrupted due to time limit when performing Step 3. Assume

such an interruption occurs, and suppose k at its current value. In case it was checked

that γ∞m (G) ≤ k, the algorithm completes normally. If it was checked that γ∞m (G) > k

or this checking was not �nished, then the algorithm outputs k + 1 or k respectively and

stops (no k,m-EDSC of G is provided).

Consider this modi�ed version of Algorithm 4.3 applied toGH1 and optimized as below;

LB-TLE is the lower bound on γ∞m (GH1) outputted. The following optimizations rely on

two observations and on lower and upper bounds on γ∞m (GH1), namely, l and u, known at

the time of the computation of LB-TLE (see Algorithm 4.2). In Step 2, one can replace

γ(G) with any lower bound on γ∞m (G). We remove Step 1 and initialize k to l � when

computing LB-TLE, we know that l is greater than or equal to the value of LB-MDS (see

Algorithm 4.2) and thus l ≥ γ(GH1). If γ
∞
m (G) ≤ p for some integer p, then the best lower

bound on γ∞m (G) is determined up to the end of Step 2 loop's iteration for k = p−1, when

one concludes that γ∞m (G) ≥ p in case the algorithm does not stop. We replace |V (G)|
with u− 1 in Step 2 and add a new step after the loop that simply outputs u.
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4.5 Results � Part 1

In this section, we present computational results for Heur 1. We implemented Heur 1 in

C/C++ using IBM CPLEX 12.5.1 [22] to solve all involved integer programs except that for

UB-MCD, for which we employed Gurobi 5.6.3 [20]. The solution search done for LB-TLE

with constraint programming (see Section 4.4.4) was performed via IBM CP 12.5.1 [21].

Moreover, we set 5 minutes to be the time limit for LB-TLE. All runs were made on an

Intel Quad-Core 3.4GHz machine with 8 GB of RAM.

4.5.1 Instances

Our instance set contains 600 Erd®s-Rényi random graphs forced to be connected and

divided into 20 groups of 30 graphs. Each group is characterized by a pair of intervals,

one restricting the order of the graphs and the other, their density. The order intervals are

[10, 20], [21, 30], [31, 40], and [41, 50], while the density intervals are (0%, 20%], (20%, 40%],

(40%, 60%], (60%, 80%], and (80%, 100%].

We evaluate if this instance set is representative by analyzing if it is heterogeneous

with respect to the following aspects: for each graph G, t(G), namely, the time taken by

Algorithm 4.3 to compute γ∞m (G), and p(G), that is, the number of dominating sets of

G of size γ∞m (G). Having distinct instances with respect to these aspects, we expect to

experiment on cases where it ranges from easy to di�cult to solve the m-EDSP and to

obtain an m-EDSC consisting of a polynomial number of small dominating sets.

Our analysis is carried out through Figures 4.5 and 4.6. The former �gure shows for

how many graphs p lies, respectively, in intervals P1 = [1, 100], P2 = [101, 500], P3 =

[501, 1000], P4 = [1001, 5000], P5 = [5001, 15000], and P6 = [15001, 187140] � the maxi-

mum p found being 187140. The latter �gure presents, for graphs with p in each interval

from P1 to P6, the percentage of cases where t belongs, respectively, to intervals T1 =

(0s, 1s], T2 = (1s, 10s], T3 = (10s, 1m], T4 = (1m, 10m], T5 = (10m, 30m], T6 = (30m, 1h],

and T7 = (1h, 2h] � s, m, and h meaning seconds, minutes, and hours � or is greater than

the limit of 2 hours (>2h).

By Figures 4.5 and 4.6, we see that the instances vary considerably with respect to p

and t. Notice that, for 42.5% of the graphs, there are at least 1000, and, for 6.3% of the

graphs, there are at least 15000 dominating sets of size γ∞m . Since the time complexity of

Algorithm 4.3 grows with this number, t has larger values in the last three columns and

the largest values in the last column of Figure 4.6.

4.5.2 Results

We validate Features (i) and (ii) (see Section 4.1) of Heur 1 by measuring the outputted

gap, i.e., H1-UB − H1-LB (see Algorithm 4.2), and the running time. We also discuss

how the instance aspects listed in Section 4.5.1 in�uence the gap value.

The optimum was obtained for 61% of the instances and the gap was at most 1 in

97% of the cases. Moreover, the gap was at most 2 for all but one test, and the overall

maximum gap was 3. As for the running time, it was at most 1 second for 72.5% of the
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Figure 4.5: Number of instances per inter-
vals of number (p) of γ∞m -size dominating
sets.
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Figure 4.6: Intervals of time (t) to
compute γ∞m per intervals of number
(p) of γ∞m -size dominating sets.

instances and at most 18.67 seconds � the average running time � in 90% of the cases.

The overall maximum time the method took to execute was 308.32 seconds.

It is worth noting that LB-TLE was in general the most time-consuming bound. When

Heur 1 executed in more than 1 second and computed LB-TLE (recall Algorithm 4.2), this

computation represented on average 86.6% of the running time. Nevertheless, LB-TLE

improved the gap for 12.17% of all the graphs and for 42.50% of the graphs of density at

most 20%, which, as seen below, form an important instance class.

In Tables 4.1 to 4.4, we report how the obtained gap values distribute over each order,

density, p, and t interval (see Section 4.5.1), respectively. For each order interval, for all

but one p interval, and for all but two t intervals, the picture is practically the same: for

at least 96% of the instances, the gap is at most 1. One explanation for the distinction

of intervals P6, T6, and >2h is that it is simply caused by the reduced number of tests

in these intervals, especially in T6, which make a signi�cant percentage result from a

few cases of gap greater than 1. We mention that, for intervals P6, T6, and >2h, these

cases correspond to graphs of density at most 20%, and that, as observed next, very low

densities substantially impact the quality of H1-UB.

Among the density intervals, there is a clear contrast: for intervals (20%, 40%] to

(80%, 100%], the gap is greater than 1 for at most 0.83% of the graphs, while, for interval

(0%, 20%], the gap is greater than 1 in 14.17% of the cases. This contrast can be related to

the quality of UB-MCD. In the last two columns of Table 4.2, we count, for UB-MCD and

UB-DNS, for how many graphs each of them is the origin of H1-UB. By these columns,

we see that UB-MCD is the main responsible for the value of H1-UB. However, UB-MCD

is not as e�cacious in the cases of density at most 20% as it is in the other ones. For

interval (0%, 20%], UB-DNS improves on UB-MCD but does not prevent a quality loss of

H1-UB.

From the discussion above, we conclude that, for a graph G, one can produce a good-

quality upper bound on γ∞m (G) at a small time cost by �rst computing the weight of

a particular neocolonization setup of G, namely, the one associated with UB-MCD (see
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Gap

0 1 2 3

[10, 20] 101 43 6 0
[21, 30] 91 55 4 0
[31, 40] 86 60 3 1
[41, 50] 88 58 4 0

Gap H1-UB

0 1 2 3 (UB-) MCD DNS

( 0%, 20%] 39 64 16 1 96 24
(20%, 40%] 83 36 1 0 117 3
(40%, 60%] 83 37 0 0 119 1
(60%, 80%] 90 30 0 0 120 0
(80%, 100%] 71 49 0 0 119 1

Table 4.1: Gap (H1-UB− H1-LB) per
order intervals.

Table 4.2: Gap (H1-UB − H1-LB) and H1-UB
origin per density intervals.

Gap

0 1 2 3

P1 43 30 2 0
P2 89 94 4 0
P3 47 34 2 0
P4 118 35 4 0
P5 43 15 2 0
P6 26 8 3 1

Gap

0 1 2 3

T1 113 99 6 0
T2 66 56 3 0
T3 55 25 2 0
T4 74 23 3 0
T5 25 5 0 0
T6 12 0 1 0
T7 7 1 0 0
>2h 14 7 2 1

Table 4.3: Gap (H1-UB − H1-LB)
per intervals of number (p) of γ∞m -size
dominating sets.

Table 4.4: Gap (H1-UB − H1-LB) per intervals
of time (t) to compute γ∞m .

Section 4.4.1), and next calculating the potentially improving weights of other speci�c

neocolonization setups of G, that is, the ones considered for UB-DNS (see Section 4.4.3).

It is thus natural to investigate if it pays o� moving further in the direction of determining

the minimum weight of a neocolonization setup of G. We perform this movement in our

second heuristic method.

4.6 Second heuristic method

Our second heuristic method (Heur 2) extends the �rst one by computing an additional up-

per bound on them-eternal domination number of the input graph, namely, the minimum-

weight neocolonization-setup upper bound (UB-MNS). Heur 2 is summarized in Algorithm

4.4 ; we assume without loss of generality a connected input graph to Heur 1 (see the

introduction of Section 4.4) and do the same for Heur 2.

Algorithm 4.4 Second heuristic method

Input: A connected graph GH2.

Output: An upper bound H2-UB and a lower bound H2-LB on γ∞m (GH2) and a structure H2-S.

1: Steps 1 to 8 of Algorithm 4.2 with the list of Step 2 changed to UB-MCD, LB-MDS, LB-

MMD, UB-DNS, UB-MNS, LB-TLE and GH1, H1-UB, H1-LB, and H1-S replaced with,

respectively, GH2, H2-UB, H2-LB, and H2-S.

In Section 4.6.1, we propose an integer program to determine the minimum weight of
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a neocolonization setup of GH2. We obtain a solution s to this program and a by-product

B(s) using the restricted branch-and-price method described in Section 4.6.2. The value

of UB-MNS is the cost c(s) of s. Also in Section 4.6.1, we specify B(s) and explain how

one can build from B(s) a neocolonization setup 〈Z, Y 〉 of GH2 such that w(〈Z, Y 〉) ≤
c(s). This inequality combined with Theorem 4.4 implies γ∞m (GH2) ≤ c(s) and, therefore,

the validity of UB-MNS.

We show in Section 4.4 that one can derive, from the structure H1-S outputted by

Heur 1, an e�cient strategy of defense of GH1 for H1-UB guards. To prove an analogous

result for Heur 2, it remains to consider the following assignment to H2-S. In case H2-UB

is set the value of UB-MNS (see Algorithm 4.4), H2-S is assigned B(s). In this case,

by �rst building a neocolonization setup 〈Z, Y 〉 of GH2 from B(s) as mentioned above

and next constructing an e�cient strategy of defense of GH2 for w(〈Z, Y 〉) guards from

〈Z, Y 〉 as in the proof of Theorem 4.3, one can derive from H2-S an e�cient strategy of

defense of GH2 for H2-UB guards � this number of guards is actually at most H2-UB since

w(〈Z, Y 〉) ≤ c(s).

4.6.1 Minimum-weight neocolonization-setup integer program

Consider the weight of a forest F of GH2 to be as follows. Let T be a tree of GH2. The

peripheral vertices of T form a subset of the set of all 0-degree and 1-degree vertices of T .

The weight wT of T is the number of non-peripheral vertices of T added by 1. Suppose that

T1, T2, . . ., Tk are the maximal trees of F , that is, the components of F . The peripheral

vertices of F are the peripheral vertices of T1, T2, . . ., Tk all together. The weight wF of

F is given by
∑k

i=1wTi
; observe that wF equals the number of non-peripheral vertices of

F added by k.

Furthermore, consider the following correspondence between forests of GH2 and neo-

colonization setups of induced subgraphs of GH2. Take a forest F of GH2 having maximal

trees T1, T2, . . ., Tk. Let S = V (F ), and build the neocolonization setup 〈Z, Y 〉 of GH2[S]:

assume Vi = V (Ti) for i = 1, 2, . . ., k, set Z = {V1, V2, . . ., Vk }, and, for each non-clique

part Vi of Z, assign to Y (Vi) the set of all non-peripheral vertices of Ti � one can show

that these vertices form a connected dominating set of GH2[Vi] if Vi is a non-clique part

of Z. We call 〈Z, Y 〉 the neocolonization setup corresponding to F . Conversely, choose a

neocolonization setup 〈Z, Y 〉 of an induced subgraph of GH2. For every Vi ∈ Z, construct
a spanning tree Ti of GH2[Vi] such that, in case Vi is not a clique, Vi \ Y (Vi) gives all

peripheral vertices of Ti � one can always meet this condition because Y (Vi) is a connected

dominating set of GH2[Vi]. De�ne F to be the forest composed of the constructed trees.

We refer to F as a forest of GH2 corresponding to 〈Z, Y 〉. Notice that w(〈Z, Y 〉) ≤ wF in

both alternatives above.

The integer program below models the problem of calculating the minimum weight

θC(GH2) of a neocolonization setup of GH2. In this program, we determine a neocolo-

nization setup 〈Z, Y 〉 of GH2 as follows. Next, C and F denote, respectively, the set of

all cliques and of all forests of GH2. We use x variables to select some clique parts of

Z. Moreover, we employ a single y variable to establish the remainder of 〈Z, Y 〉, namely,

〈Z ′, Y 〉, where Z ′ is the set of all remaining parts of Z � note that 〈Z ′, Y 〉 is a neocolo-
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nization setup of the subgraph of GH2 induced by
⋃

Vi∈Z′ Vi; if yF = 1, then 〈Z ′, Y 〉 is the
neocolonization setup corresponding to the forest F .

min z =
∑
C ∈C

xC +
∑
F ∈F

wFyF (4.1)

s.t.: ∑
C ∈C: v ∈C

xC + tv = 1, ∀v ∈ V (GH2) (4.2)∑
F ∈F : v ∈V (F )

yF = tv, ∀v ∈ V (GH2) (4.3)

∑
F∈F

yF ≤ 1 (4.4)

xC , yF , tv ∈ {0, 1}, ∀C ∈ C, ∀F ∈ F , ∀v ∈ V (GH2) (4.5)

Constraint (4.4) ensures that there is at most one nonzero y variable. Assume that

xC1 , xC2 , . . ., xCk
and yF are, respectively, the x and y variables having value 1. For each

v ∈ V (GH2), if the variable tv is assigned 0, then constraints (4.2) state that v belongs to

exactly one of the cliques C1, C2, . . ., Ck. In case tv = 1, constraints (4.3) say that v is

a vertex of the forest F . Constraints (4.2) and (4.3) combined impose that {C1, C2, . . .,

Ck, V (F ) } is a partition of V (GH2).

To see that the optimum z∗ of program (4.1)-(4.5) equals θC(GH2), observe the fol-

lowing. The cost of a solution to the program is an upper bound on the weight of the

corresponding neocolonization setup of GH2. Thus, z∗ ≥ θC(GH2). Given a neocoloniza-

tion setup 〈Z, Y 〉 of GH2, transform 〈Z, Y 〉 as in the beginning of the proof of Theorem

4.3 : w(〈Z, Y 〉) remains the same and, for each non-clique part Vi of Z, Y (Vi) ( Vi. Take

a solution s to program (4.1)-(4.5) corresponding to 〈Z, Y 〉 in which all clique parts of Z

are determined by x variables. The cost of s equals w(〈Z, Y 〉). Hence, θC(GH2) ≥ z∗ and,

therefore, θC(GH2) = z∗.

Modify program (4.1)-(4.5) by de�ning C to be the set of only the maximal cliques

of GH2 and by turning constraints (4.2) into ≥ inequalities. Call the minimum-weight

neocolonization-setup integer program (MWNS-IP) the resulting program:

min z =
∑
C ∈C

xC +
∑
F ∈F

wFyF (4.6)

s.t.: ∑
C ∈C: v ∈C

xC + tv ≥ 1, ∀v ∈ V (GH2) (4.7)

Constraints (4.3)-(4.5) (4.8)

Notice that, if C1, C2, . . ., Ck and F are, accordingly, the cliques and the forest selected

in a solution to this program, then {C1, C2, . . ., Ck, V (F ) } is not necessarily a partition

of V (GH2). However, such a partition may be obtained by removing from the cliques C1,

C2, . . ., Ck each vertex that belongs to F and keeping in a single clique among C1, C2,
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. . ., Ck every vertex that is outside F . One can conclude that program (4.1)-(4.5) has

the same optimum as the MWNS-IP, which contains a potentially much smaller number

of x variables. We choose the MWNS-IP to compute θC(GH2) � our choice is inspired

by a formulation due to Mehrotra and Trick [29] for the problem of �nding a minimum

coloring of a graph.

We now specify B(s) (see the introduction of Section 4.6) for a solution s to the

MWNS-IP and show how to derive from B(s) a neocolonization setup 〈Z, Y 〉 of GH2

having weight less than or equal to the cost of s. Suppose that xC1 , xC2 , . . ., xCp and

yF are, respectively, the x and y variables with value 1 in s. We have that B(s) = {C1,

C2, . . ., Cp, V (F ), P (F ) }, where P (F ) is the set of all peripheral vertices of the forest

F . To derive 〈Z, Y 〉, proceed as follows. Set V1 = C1 \ V (F ) and, for i = 2, . . ., p,

Vi = Ci \ (V (F ) ∪ C1 ∪ C2 ∪ . . . ∪ Ci−1). Find the components G1, G2, . . ., Gq of

GH2[V (F ) \ P (F )]. For i = 1, 2, . . ., q, compute Pi = { v ∈ P (F ) : ∃u ∈ V (Gi), uv ∈
E(G) }. Let Vp+1 = V (G1) ∪ P1 and, for i = 2, . . ., q, Vp+i = V (Gi) ∪ Pi \ (P1 ∪ P2 ∪
. . . ∪ Pi−1). Assign Z = {V1, V2, . . ., Vp+q }, and, for i = 1, 2, . . ., q, add V (Gi) to Y if

Vp+i is not a clique of GH2. It can be argued that w(〈Z, Y 〉) is at most the cost of s.

The MWNS-IP has relatively few constraints. Nevertheless, it may have tremendously

many x variables � even with C containing only the maximal cliques of GH2, |C| may be

exponential in |V (GH2)| � and y variables. Its variables must not, therefore, be handled

all together in an explicit manner. To deal with the MWNS-IP, we use a branch-and-price

method [32], which is a method that employs the column generation technique within a

branch-and-bound framework.

4.6.2 Restricted branch-and-price

We apply a restricted branch-and-price method to the MWNS-IP. This method is re-

stricted because the solving process can be prematurely stopped due to time limit or as

a consequence of the employed branching rules (speci�ed in Section 4.6.2.5) not applying

to the current node of the enumeration tree. Below, we present the main details of the

method, which was developed using SCIP [16], a full-�edged constraint and mixed integer

programming solver that supports the implementation of column generation for integer

programs.

Terminology and notation. Our method is a linear-relaxation-based branch-and-price.

Given a node of the enumeration tree, denote by IP the integer program of the node and

by LP the linear relaxation of the IP. We call clique and forest variables, respectively, the x

and y variables of the IP (see (4.6)-(4.8)). We write clique and forest columns, analogously,

for the columns corresponding to the x and y variables in the matrix representation of

the IP. The same nomenclature is used for the LP.

To solve the LP, we begin by optimizing the restricted LP (RLP), namely, a feasible

restricted version of the LP that has all constraints, all t variables, and a number of clique

and forest variables of the LP. The optimal solution obtained to the RLP is also optimal

to the LP if the reduced cost of every remaining clique and forest variable of the LP is

non-negative. While this condition is not met, we add at least one column corresponding
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to a variable with negative reduced cost to the RLP and reoptimize it.

The master problem (MP) stands for the linear relaxation of the integer program of the

current node of the enumeration tree. The restricted master problem (RMP) designates

the most recently solved restricted version of the MP; u∗RMP denotes the optimal dual

solution computed for the RMP. The clique and forest pricing problems are, respectively,

the problems of determining the minimum reduced cost of a clique and of a forest variable

of the MP.

4.6.2.1 Pricing strategy

We test if the optimal solution obtained to the RMP is also optimal to the MP by checking

if c̄∗cliq and c̄∗for are non-negative, where c̄∗cliq and c̄∗for denote, respectively, the minimum

reduced cost of a clique and of a forest variable. To check if c̄∗cliq ≥ 0, we run a greedy

method that tries to �nd a clique variable with negative reduced cost and, only when

this method fails, we solve the clique pricing problem. To check if c̄∗for ≥ 0, we proceed

analogously.

Furthermore, we begin by checking if c̄∗cliq ≥ 0 and, only in case this condition holds,

we move on for checking if c̄∗for ≥ 0. The motivation to this approach is twofold. First,

in our early experiments, the time to solve the forest pricing problem was signi�cantly

greater in comparison with the clique pricing problem. Secondly, as seen later in Section

4.6.2.4, as a consequence of this approach, we can set an interesting lower bound on the

optimum of the MP.

4.6.2.2 Clique-column generation

The reduced cost of a clique variable xC is given by 1 −
∑

v∈C θ̌v, where C is the corre-

sponding clique of GH2 and θ̌v for v ∈ V (GH2) are the values in u
∗
RMP (see the introduction

of Section 4.6.2) of the non-negative dual variables θv for v ∈ V (GH2) associated with con-

straints (4.7) of the MP. To solve the clique pricing problem, we de�ne the weight of a

vertex v ∈ V (GH2) to be θ̌v, consider the weight of a clique of GH2 to be the sum of the

weights of its vertices, and determine the maximum weight of a clique of GH2. For this

purpose, we use the Tclique algorithm, a combinatorial branch-and-bound by Borndörfer

and Kormos [6] that, in a version of limited number of enumeration nodes, has been suc-

cessfully applied for heuristically separating clique-based cuts [3, 4, 5]. An implementation

of Tclique is already included in SCIP.

Before solving the clique pricing problem, we run a greedy method M that tries to

build a clique C of GH2 such that the reduced cost of the clique variable xC is negative.

The methodM initializes C to be empty, sorts the vertices of GH2 in non-increasing order

with respect to θ̌ values, and, following this order, inserts into C every vertex of GH2 that

is adjacent to each one previously inserted.

If M succeeds, i.e.,
∑

v∈C θ̌v > 1, then the corresponding clique column is added to

the RMP. Else, we run Tclique. In this case, among the cliques of weight greater than 1

found during Tclique's execution, the clique columns corresponding to the ones of highest

weights are added to the RMP. The number of added columns is a function of the number
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of vertices of GH2 and the number of initial clique columns, which are discussed in Section

4.6.2.7.

We code the clique-column generation above by adapting an implementation provided

in SCIP. This implementation works in an analogous manner within the context of a

branch-and-price method to �nd a minimum coloring of a graph using an integer program

proposed by Mehrotra and Trick [29].

4.6.2.3 Forest-column generation

Inspired by the �ow-based mixed integer program introduced by Reis et al. [30] to �nd a

maximum-leaf spanning tree of a connected graph (this program is mentioned in Section

4.4.1), we propose a �ow-based mixed integer program (FPP-MIP) to solve the forest

pricing problem. To this end, we write the reduced cost of a forest variable yF as below.

Assume that the corresponding forest F of GH2 has k maximal trees. Let O(F ) = { v ∈
V (GH2) : v is outside F } and P (F ) = { v ∈ V (F ) : v is a peripheral vertex of F }.
Consider µv for v ∈ V (GH2) and λ to be, respectively, the dual variables associated with

constraints (4.3) and constraint (4.4) of the MP. Suppose that µ̌v for v ∈ V (GH2) and λ̌

are, accordingly, the values in u∗RMP (see the introduction of Section 4.6.2) of µv for v ∈
V (GH2) and λ. We write the reduced cost of yF as

wF −
∑

v ∈V (F )

µ̌v − λ̌ = k + |V (F )| − |P (F )| −
∑

v ∈V (F )

µ̌v − λ̌

= k + |V (GH2)| − |O(F )| − |P (F )| −
∑

v ∈V (F )

µ̌v − λ̌

= k +
∑

v ∈O(F )

µ̌v − |O(F )| − |P (F )|+ |V (GH2)| −
∑

v ∈V (GH2)

µ̌v − λ̌. (4.9)

Convert GH2 into a directed graph by replacing each edge uv ∈ E(GH2) with arcs uv

and vu. Extend the resulting graph into a directed graph H by adding new vertices r, o,

and p, and new arcs ro, pr, and rv, ov, and vp for every v ∈ V (GH2). Set br = |V (GH2)|,
bo = bp = 0, and bv = −1 for each v ∈ V (GH2). Regarding the supply/demand of a vertex

v of H as bv, we can describe a �ow in H as follows. An amount of at least |V (GH2)|
leaves r and reaches all vertices in V (GH2) by passing through arcs rv for v ∈ V (GH2) or

going via vertex o. One unit of this amount is consumed by each vertex in V (GH2). The

remainder returns to r by continuing to arcs vp for v ∈ V (GH2) and falling into arc pr.

The FPP-MIP is given below. In this program, we employ f variables to determine a

�ow in H: for each arc uv of H, fuv settles the amount in uv. From this �ow, one can

derive a forest F of GH2 as follows. For each v ∈ V (GH2), consider v to be outside F

if and only if fov = 1 and v to be a peripheral vertex of F if and only if fvp = 1 � in

case fov = fvp = 0, v is a non-peripheral vertex of F . For each v ∈ V (GH2) with fov =

0 and frv > 0, build a tree of F from v and every t ∈ V (GH2) satisfying the subsequent

conditions: fot = 0 and there is a directed path P in H from v to t such that, for each

arc uw of P , fuw > 0, and, for each vertex u of P , u is not yet added to a tree of F and

fru = 0 if u 6= v.

Moreover, we use
∑

v∈V (G
H2

) grv to count the number of maximal trees of F . Also, we
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set C = |V (GH2)| −
∑

v∈V (G
H2

) µ̌v − λ̌ and write, in the objective function, the reduced

cost of the variable yF (see (4.9)). Finally, we denote byM the maximum �ow in H going

out from a vertex in V (GH2): M = 2(|V (GH2)| − 1).

min
∑

v ∈V (GH2)

grv +
∑

v ∈V (GH2)

(µ̌v − 1)fov −
∑

v ∈V (GH2)

fvp + C

s.t.: ∑
u∈N+

H(v)

fvu −
∑

u∈N−H (v)

fuv = bv, ∀v ∈ V (H) (4.10)

∑
u∈NGH2

(v)

fvu +M(fov + fvp) ≤M , ∀v ∈ V (GH2) (4.11)

frv ≤ (M + 1)grv, ∀v ∈ V (GH2) (4.12)

fro, fpr, frv ≥ 0, ∀v ∈ V (GH2) (4.13)

fuv, fvu ≥ 0, ∀uv ∈ E(GH2) (4.14)

fov, fvp, grv ∈ {0, 1}, ∀v ∈ V (GH2) (4.15)

Constraints (4.10) impose �ow conservation in H. Constraints (4.11) state that, for

every v ∈ V (GH2), if fov = 1 or fvp = 1, then v sends �ow to no other node of H or sends

�ow only to p. Constraints (4.12) relate, for each v ∈ V (GH2), the �ow in arc rv to the

tree-counting variable grv.

To try to optimize the FPP-MIP faster, we add to it the following constraints. These

constraints reduce the set of forest columns to be generated for the MWNS-IP without

compromising optimality � if a forest F of GH2 is such that yF = 1 in an optimal solution

to the MWNS-IP, then one can obtain an optimal solution to the MWNS-IP in which no

forest variable has value 1 or one can transform F into a forest F ′ of GH2 such that yF ′ =

1 in an optimal solution to the MWNS-IP and F ′ corresponds to a solution to constraints

(4.10)-(4.20).

frv ≥ 4grv, ∀v ∈ V (GH2) (4.16)

fov + fvp ≥ 1, ∀v ∈ V (GH2), |NG
H2

(v)| = 1 (4.17)

fou ≤ fov, ∀v ∈ V (GH2), NG
H2

(v) = {u} (4.18)

fvp = 0, ∀v ∈ V (GH2), u ∈ NG
H2

(v), |NG
H2

(u)| = 1 (4.19)

fou ≤ fov + fvp, ∀v ∈ V (GH2), |NG
H2

(v)| > 1, ∀u ∈ NG
H2

(v) (4.20)

Derive as above a forest F of GH2 from the �ow in H determined by a solution to the

FPP-MIP. Constraints (4.16) forbid the maximal trees of F to all have fewer than three

vertices. Constraints (4.17) impose that every 1-degree vertex of GH2 either is not in F or

is a peripheral vertex of F . Constraints (4.18) state that, if a 1-degree vertex of GH2 is in

F , then its sole neighbor is also in F . Constraints (4.19) say that every vertex of GH2 that

has a 1-degree neighbor either is not in F or is a non-peripheral vertex of F . Constraints

(4.20) imply that, if a vertex of GH2 has degree greater than 1 and is a non-peripheral

vertex of F , then each of its neighbors is in F .
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Prior to solving the forest pricing problem, we execute three greedy methods that aim

to build a forest of GH2 such that the associated forest variable has negative reduced cost.

These methods, denoted by MA, MB, and MC , rely on three sets of vertices, given by

V1 = { v ∈ V (GH2) : µ̌v > 1 }, V2 = { v ∈ V (GH2) : 0 < µ̌v ≤ 1 }, and V0 = V (GH2) \
(V1 ∪ V2).

Suppose that we are constructing a forest F of GH2. For a vertex v ∈ V (GH2), assume

that we set v to be a vertex of F (non-peripheral or peripheral vertex) if v ∈ V1, a

peripheral vertex of F if v ∈ V2, and a vertex outside F if v ∈ V0. Regarding the FPP-

MIP, this setting is equivalent to the assignment fov = 0 and fvp = 0 or fov = 0 and fvp =

1 if v ∈ V1, fov = 0 and fvp = 1 if v ∈ V2, and fov = 1 and fvp = 0 if v ∈ V0. The term

(µ̌v−1)fov − fvp of the objective function of the FPP-MIP encodes the outside-peripheral

contribution of v to the reduced cost of the forest variable yF . Observe that, under the

assignment above, this contribution is less than or equal to 0. The greedy method MA is

based on this observation: the method constructs a forest F of GH2 out of the vertices

of V1 seeking to minimize wF and then tries to include the vertices of V2 as additional

peripheral vertices of the existing trees of F . An improvement step performed in MA is

to remove from F every tree T such that wT −
∑

v∈V (T ) µ̌v > 0.

In some of our early experiments, we detected a negative-reduced-cost forest variable

yF with the corresponding forest F of GH2 having the following layout, denoted by L:

several non-peripheral vertices of F contained in V2 and several peripheral vertices of F

contained in V1. According to the outside-peripheral contribution of a vertex v ∈ V2 to

the reduced cost of yF , it is not advantageous to set v to be a non-peripheral vertex of

F . However, this setting may pay o� when it enables some vertices of V1 to be added as

peripheral vertices of F . The greedy methods MB and MC try to generate a forest F of

GH2 satisfying the layout L above: in MB, F is constructed as in MA with sets V1 and V2
interchanged; in MC , the non-peripheral vertices of F come from V2 and the peripheral

vertices of F are both chosen from V2 and formed of every vertex of V1 having a neighbor

in V2.

We execute MC , MA, and MB obeying this order and running the next method only

when the previous one fails. If any of them succeeds, then the corresponding forest

column is added to the RMP. Else, we solve the FPP-MIP. In this case, if the optimum

of the FPP-MIP is negative, then we add to the RMP the forest columns derived from

the solutions of lowest costs obtained while solving the problem. The number of added

columns is a function of the number of vertices of GH2 and the number of initial forest

columns, a subject addressed in Section 4.6.2.7.

In the process above, we may add to the RMP some forest columns derived from

solutions to the FPP-MIP that have non-negative cost. The forest variables corresponding

to these columns have non-negative reduced cost and, therefore, do not help improving

the optimum of the RMP. Nevertheless, in case one of these variables has later negative

reduced cost, we may spare a round of pricing variables and thus of possibly optimizing the

FPP-MIP, a task found to be computationally expensive in our preliminary experiments.
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4.6.2.4 Lower bound on the optimum of the master problem

Denote by z∗RMP the optimum of the RMP. Multiply every constraint of the MP by −1

times the value in u∗RMP (see the introduction of Section 4.6.2) of the corresponding dual

variable � this operation preserves the sign of constraint (4.4) and reverses the sign of

constraints (4.7). Add all resulting constraints to the MP's solution-cost equation∑
C ∈C

xC +
∑
F ∈F

wFyF = zMP .

It follows that

zMP ≥ z∗RMP +
∑

v ∈V (GH2)

c̄(tv) tv +
∑
C ∈C

c̄(xC) xC +
∑
F ∈F

c̄(yF ) yF , (4.21)

where, for each π ∈ { tv ∀v∈V (GH2), xC ∀C∈C, yF ∀F∈F }, c̄(π) is the reduced cost of

the variable π.

When testing if the optimal solution obtained to the RMP is also optimal to the MP,

suppose that we proceed to check if the minimum reduced cost c̄∗for of a forest variable is

non-negative. In this case, because of our pricing strategy (see Section 4.6.2.1), c̄(xC) ≥ 0

for each C ∈ C; moreover, since the RMP contains all t variables, c̄(tv) ≥ 0 for each

v ∈ V (GH2). Within this context, we can rewrite inequality (4.21) as

zMP ≥ z∗RMP +
∑
F ∈F

c̄(yF ) yF ≥ z∗RMP + c̄∗for
∑
F ∈F

yF . (4.22)

Assume that c̄∗for is negative, and multiply this value by constraint (4.4) � thus, re-

versing the sign of the constraint � of the MP. By combining the resulting constraint with

inequality chain (4.22), we conclude that

zMP ≥ z∗RMP + c̄∗for.

Since this inequality holds for the cost zMP of any solution to the MP, we arrive at a lower

bound on the optimum z∗MP of the MP, which is employed in our method:

z∗MP ≥ z∗RMP + c̄∗for.

This lower bound is based on a lower bound highlighted by Desrosiers and Lübbecke [9]

for the optimum of a linear program being solved using column generation.

4.6.2.5 Branching strategy

We employ a branching strategy that may cause our method to stop without a proven

optimal solution to the MWNS-IP � in Section 4.7.2, we discuss how assuredly solving

the MWNS-IP would a�ect the performance of Heur 2. Before describing this strategy, in

which only t variables are branched on, we point out a di�culty of branching on a clique

variable; a similar complication stems from branching on a forest variable.

Suppose that we branch on a clique variable xC � two nodes are created in the enu-
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meration tree, one where xC is �xed at 0 and other where xC is �xed at 1. In each node

of the enumeration tree where xC is �xed, we have the task of preventing the clique col-

umn corresponding to xC to be generated again. It seems complex to perform this task

when xC is �xed at 0: this conclusion is drawn from arguments analogous to the ones

presented by Mehrotra and Trick [29, Section 4] when considering branching rules for a

branch-and-price method to �nd a minimum coloring of a graph.

As stated above, we branch only on t variables. Denote by s∗ the optimal solution

found for the MP. For each v ∈ V (GH2), de�ne ťv to be the value in s
∗ of the variable tv. If

ťv is fractional for some v ∈ V (GH2), then let u ∈ arg maxv ∈V (GH2)
min{ťv, 1− ťv}. Else,

among every vertex v of GH2 such that tv is a non-�xed variable, take u for a maximum-

degree vertex. We branch on the variable tu; in case ťu is integral, s∗ is still an optimal

linear relaxation solution in one of the two nodes created in the enumeration tree.

It may happen that each t variable is already �xed in the current node of the enumer-

ation tree and, after being processed, the node cannot be fathomed. In this case, it would

remain to solve two independent problems: a minimum clique-cover problem on GH2[V0]

and a minimum-weight spanning-forest problem on GH2[V1], where V0 = { v ∈ V (GH2) :

tv is �xed at 0 } and V1 = V (GH2) \ V0. We, however, just interrupt the solving process

instead.

4.6.2.6 Enumeration-node selection

We use an enumeration-node selection strategy that aims to process �rst the nodes that

are more promising in containing optimal solutions to the MWNS-IP. This strategy is

the so-called best estimate search [2] and is implemented through the corresponding SCIP

plugin [16].

4.6.2.7 Initial solutions and columns

Based on preliminary experiments, we decided to add, as initial solutions to our method,

the neocolonization setup corresponding to bound UB-MCD (see Section 4.4.1) and the

neocolonization setup 〈Z∗, Y ∗〉 corresponding to bound UB-DNS (see Section 4.4.3) in

case Z∗ is formed of only non-clique parts. Before setting the method in motion, we do

the following as well.

We add a solution s in which all forest variables have value 0. To produce s, we

compute a coloring of the complement of GH2 seeking to minimize the number of used

colors. As a consequence, we obtain a partition {C1, C2, . . ., Ck } of V (GH2) into cliques.

The nonzero variables of s are the clique variables xC′1
, xC′2

, . . ., xC′k
, where, for i = 1, 2,

. . ., k, C
′
i is a maximal clique of GH2 that includes Ci.

To compute the coloring above, we employ an implementation provided in SCIP that

generates an initial solution in the context of a branch-and-price method to �nd a mini-

mum coloring of a graph by solving an integer program due to Mehrotra and Trick [29].

In this implementation, a coloring is �rst constructed by a greedy method. Tabucol � a

tabu search algorithm that, although proposed more than 30 years ago, seems to remain

popular, probably for being simple and easy to implement and for providing good-quality
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solutions at a reasonable computational e�ort [15] � is next run successive times to try to

achieve a coloring that uses fewer colors until an improving coloring cannot be found.

We also add a solution s in which all clique variables have value 0. To this end, we

solve a minimum-weight spanning-forest problem: a version of the FPP-MIP (see Section

4.6.2.3) with the variable fov �xed at 0 for every v ∈ V (GH2). The nonzero variables of s

are all t variables and the forest variable yF , where F is the obtained spanning forest of

GH2.

Aiming to create a diversi�ed initial forest column set, we add forest columns that are

in some sense complementary to the ones involved in the preceding solutions:

• For each vertex v of GH2 with degree at least 2, a forest column corresponding to

the tree with an edge vu for each u ∈ N(v);

• For each edge uv of GH2 such that N(u) 6⊆ N [v] and N(v) 6⊆ N [u], a forest column

corresponding to the tree with an edge uw for each w ∈ N(u) and an edge vw for

each w ∈ N(v) \ N [u].

4.7 Results � Part 2

We now report on computational tests for Heur 2. All bounds already employed in Heur 1

were computed as described in Section 4.5. The calculation of UB-MNS was implemented

as follows: whereas the general restricted branch-and-price method was coded in C/C++

using SCIP 3.2.0 [16], the FPP-MIP (see Section 4.6.2.3) and the linear relaxations were

solved through IBM CPLEX 12.5.1 [22]. The instance set and the machine used to carry

out the tests were the same as in the computational evaluation of Heur 1 (see Section

4.5).

4.7.1 Time limit for the restricted branch-and-price

We experimented on di�erent time limits for the restricted branch-and-price method used

to calculate bound UB-MNS (see Section 4.6). A description of our �nal experiment

follows.

First, we executed Heur 2 for all instances stopping it immediately before the com-

putation of UB-MNS (see Algorithm 4.4). There were 275 unsolved instances. Next, we

applied to these unsolved instances a 5-minute and a 1-hour time-limit version of the

restricted branch-and-price method. In every run, the best neocolonization setup found

by both versions was the same. However, while the 5-minute time-limit version proved

this neocolonization setup to have minimum weight in 84.36% of the cases, the 1-hour

counterpart did so for 95.27% of the tests.

Recall that the purpose of Heur 2 is to produce, within a reasonable amount of time, a

good-quality upper bound on them-eternal domination number of the input graph. When

computing UB-MNS, our goal is not to prove that an obtained neocolonization setup has

minimum weight, but just to �nd one of weight as small as possible. For this reason, we

settled on the 5-minute time limit for the restricted branch-and-price method.
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4.7.2 Results

As done for Heur 1, we validate Features (i) and (ii) (see Section 4.1) of Heur 2 by

assessing the reached gap, that is, H2-UB − H2-LB (see Algorithm 4.4), and the running

time. This assessment is performed in comparison with the results for Heur 1, which are

given in Section 4.5.2. We make use of the same instance aspects considered before.

With respect to the gap, we can state the following. The results for Heur 2 discussed

next are presented in Tables 4.5 to 4.8, where we show how the gap values obtained

by the method distribute over each order, density, p, and t interval (see Section 4.5.1),

respectively. Additionally, in the last three columns of Table 4.6, we count for how many

times each of the bounds UB-MCD, UB-DNS, and UB-MNS is the origin of H2-UB.

For all order, p, and t intervals but T5, T6, and T7, Heur 2 improved on the results

of Heur 1. Accordingly, for all order, p, and t intervals except P6, T6, and >2h, the

percentage of cases of gap at most 1 increased from at least 96% to at least 98.67%. The

exceptions of intervals P6, T6, and >2h can be explained as in Section 4.5.2.

As for the density intervals, the results were improved on for intervals (0%, 20%] and

(20%, 40%]. As a consequence, the contrast between interval (0%, 20%] and the other ones

was signi�cantly diminished. The percentage of cases of gap greater than 1 was reduced

from at most 0.83% to 0% for intervals (20%, 40%] to (80%, 100%] and from 14.17% to

3.33% for interval (0%, 20%]. The impact of UB-MNS on the improvement for interval

(0%, 20%] can be quanti�ed through the percentage of tests for which each employed

upper bound was the origin of H2-UB: 69.17% for UB-MCD, 14.17% for UB-DNS, and

16.66% for UB-MNS.

In general, the gap found by Heur 2 was better. The percentage of instances that were

solved to optimality increased from 61% to 62.5%. Moreover, the gap was at most 1 in

99.33% instead of in 97% of the tests, and, in the four remaining cases, the gap was 2.

In regard to the running time, the results were worse in general. The percentage of

runs of at most 1 second decreased from 72.50% to 63.66%. Furthermore, the average

running time rose from 18.67 to 52.77 seconds, and the proportion of running time values

not greater than the mean went from 90% to 83.17%. The maximum running time grew

from 308.32 to 608.32 seconds even though Heur 2 took at most 308.32 seconds to execute

for 93.33% of the instances.

Based on the analysis above, we draw the following conclusions. By employing Heur 2,

one can achieve bold gap results � overall maximum gap 2 and gap at most 1 for 99.33%

of the tests � but has to a�ord larger running times. By using Heur 1, one can still obtain

good gap results at a smaller time cost.

Lastly, we make a relevant investigation. Consider a version Heur 2∗ of Heur 2 in which

the MWNS-IP is solved to optimality and the value of UB-MNS is the minimum weight

θC(GH2) of a neocolonization setup of the input graph GH2 � recall that, in Heur 2 (see

Section 4.6), a restricted branch-and-price method is applied to the MWNS-IP and the

value of UB-MNS is greater than or equal to θC(GH2). We examine how Heur 2∗ would

perform in comparison with Heur 2.

We report that, for only 7 of the 600 instances, the value of UB-MNS was computed

and not proved to equal θC(GH2). Hence, Heur 2∗ might improve on H2-UB for just
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Gap

0 1 2

[10, 20] 106 43 1
[21, 30] 94 55 1
[31, 40] 86 62 2
[41, 50] 89 61 0

Gap H2-UB

0 1 2 (UB-) MCD DNS MNS

( 0%, 20%] 46 70 4 83 17 20
(20%, 40%] 85 35 0 114 3 3
(40%, 60%] 83 37 0 119 1 0
(60%, 80%] 90 30 0 120 0 0
(80%, 100%] 71 49 0 119 1 0

Table 4.5: Gap (H2-UB − H2-LB)
per order intervals.

Table 4.6: Gap (H2-UB − H2-LB) and H2-UB
origin per density intervals.

Gap

0 1 2

P1 43 32 0
P2 91 95 1
P3 49 33 1
P4 121 36 0
P5 44 16 0
P6 27 9 2

Gap

0 1 2

T1 115 102 1
T2 69 55 1
T3 57 25 0
T4 75 25 0
T5 25 5 0
T6 12 0 1
T7 7 1 0
>2h 15 8 1

Table 4.7: Gap (H2-UB − H2-LB)
per intervals of number (p) of γ∞m -
size dominating sets.

Table 4.8: Gap (H2-UB − H2-LB) per intervals
of time (t) to compute γ∞m .

1.17% of the instances. Moreover, Heur 2∗ would likely run in substantially more time in

general compared with Heur 2, which could be prohibitive to using Heur 2∗ for practical

applications of the m-EDSP.

4.8 Results � Part 3

In order to discuss the limitations of Heur 1 and Heur 2, we analyze results obtained

using instances for which the methods were likely to perform worse. Heur 1 and Heur 2

were executed under the settings stated in Sections 4.5 and 4.7 with the following change:

to ensure reasonable running times for the methods, the sum of the times for computing

UB-MCD and UB-DNS was limited to 5 minutes. The computational environment was

the same as before (see Section 4.5).

4.8.1 Instances

The instances consist of 150 Erd®s-Rényi random graphs forced to be connected, restricted

to have density at most 20%, and separated into groups g1, g2, . . ., g5. For i = 1, 2, . . .,

5, group gi contains 30 graphs with order in the interval [51 + 10(i − 1), 60 + 10(i − 1)].

Compared with the instances presented in Section 4.5.1, the current instances are given

by graphs that are larger in order and have their density concentrated into the interval

(0%, 20%].
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The previous results for Heur 1 and Heur 2 (see Sections 4.5.2 and 4.7.2) imply that

the upper bounds computed by the methods are likely to succeed the least for graphs

of density at most 20%. Furthermore, the problems solved by Heur 1 and Heur 2 are

likely to demand more computational e�ort for graphs of larger order. In this case, the

methods are expected to run in more time and to obtain worse-quality values for the

bounds computed with time limit � the values obtained for these bounds being more

distant from the values attainable without the �xed time limits. Therefore, Heur 1 and

Heur 2 are likely to perform worse for the current instances.

4.8.2 Results

As before, we analyze the achieved gap, i.e., H1-UB − H1-LB for Heur 1 and H2-UB −
H2-LB for Heur 2 (see Algorithms 4.2 and 4.4), and the running time. In what follows,

this analysis is done by comparing the results for the current instance set, namely, the

graphs described in Section 4.8.1, with the results for the previous instance set, that is,

the graphs introduced in Section 4.5.1.

The gap values outputted by Heur 1 and Heur 2 for the current instance set are

displayed, respectively, in Tables 4.9 and 4.10. The �rst columns of these tables give the

number of instances per gap value. The last columns of the former and of the latter table

present the number of cases in which each employed upper bound is the origin of H1-UB

and H2-UB, accordingly.

Compared with the results for the previous instance set, the gap and the run time

obtained by Heur 1 and Heur 2 for the current instance set were substantially worse in

general. Regarding the gap, even in comparison with only the instances of density at most

20% of the previous instance set, the results of the methods for the current instances were

worse. It is worth noting that the comparison of results between Heur 1 and Heur 2 is

considerably less advantageous to Heur 2 when done for the current instance set. The fact

that UB-MNS surpassed the other upper bounds for only 1.33% of the current instances

explains this loss of advantage.

To illustrate the performance deterioration of the methods, we address the results

of Heur 1 for the current in relation to the previous instance set. As for the gap, the

percentages of instances that were solved to optimality and of cases of gap at most 1

decreased from 61% to 26% and from 97% to 82%, respectively. The maximum gap rose

from 3 to 6, there being cases of each gap in the range [0, 6]. As for the running time, the

percentage of executions of at most 1 second dropped from 72.5% to only 2.66%, and the

average running time increased from 18.67 to 254.69 seconds. The proportion of running

time values not greater than the mean reduced from 90% to 27.33%, and the maximum

running time went from 308.32 to 621.49 seconds.

Recall that the bounds computed with time limit are UB-MCD, UB-DNS, UB-MNS,

and LB-TLE. With respect to the values obtained for these bounds being more distant

from the values attainable without the time limits, we report the following related results.

We compare the impact of larger time limits for the previous and for the current instance

set. For UB-MCD, UB-DNS, and UB-MNS, the in�uence of a 1-hour time limit would

be null for both instance sets: in every test, each of these upper bounds was already at
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Gap H1-UB

0 1 2 3 4 5 6 (UB-) MCD DNS

# of instances 39 84 15 5 3 3 1 147 3

Table 4.9: Gap (H1-UB − H1-LB) and H1-UB origin for graphs with larger order and
density at most 20%.

Gap H2-UB

0 1 2 3 4 5 6 (UB-) MCD DNS MNS

# of instances 39 84 16 5 3 2 1 146 2 2

Table 4.10: Gap (H2-UB − H2-LB) and H2-UB origin for graphs with larger order and
density at most 20%.

its minimum or would not be improved. In contrast, for LB-TLE, the e�ect of a 2-hour

time limit would be greater for the current instance set: the bound would be improved,

accordingly, in 0.36% and in 14.03% of the cases in which it was computed.

From the results above, we conclude that Heur 1 and Heur 2 performed signi�cantly

worse for the current instance set. In addition, these results put light on a limitation of

our approach: for instances given by graphs of large enough order, the gap outputted by

Heur 1 and Heur 2 is likely to not be e�cacious as a consequence of worse-quality values

derived from the time-limited parts of the methods.

4.9 Conclusion and future work

In this paper, we addressed an issue that is fundamental to practical applications of the

m-eternal dominating set problem but that has received relatively little attention. Our

goal was to obtain not only a good-quality upper bound on the m-eternal domination

number but also an associated e�cient strategy of defense. To this end, we introduced two

heuristic methods, in which we proposed and solved integer and constraint programming

models to compute bounds on the m-eternal domination number. We performed an

extensive experiment to validate the features of these methods. As a consequence, we

carried out a practical evaluation of bounds for them-eternal domination number available

in the literature. Furthermore, we generated a benchmark that has 750 instances and

varies with respect to the best known solution: there are cases of proven optimal solution,

of small bound gap, and of larger bound gaps. Finally, we proved that the decision version

of the m-eternal dominating set problem is NP-hard.

As a future work, we aim to develop improved heuristic methods as follows. Each

currently used upper bound is derived from the weight of a neocolonization setup, which

is calculated considering only defenses executed by guards moving along paths. By also

employing upper bounds drawn from defenses involving cyclic movements, we expect to

achieve better results. For an illustration, take the n-vertex hole Hn with n ≥ 5. The

minimum weight of a neocolonization setup of Hn is dn/2e. By moving together either
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clockwise or counterclockwise during each defense, guards in less number, namely, dn/3e,
can eternally defend Hn.
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Chapter 5

Conclusion

In this work, we disproved a result on them-eternal dominating set problem and examined

the problem for two speci�c classes of graphs: Cayley graphs and proper interval graphs.

Additionally, we addressed an issue that is fundamental to practical applications of the

m-eternal dominating set problem but that has been given relatively little attention: to

provide an e�cient strategy of defense for the guards. Furthermore, we developed and

extensively experimented heuristic methods for the m-eternal dominating set problem.

Finally, we proposed and implemented an exact algorithm for the m-eternal dominating

set problem and proved that its decision version is NP-hard.

Goddard et al. [20] published that, for Cayley graphs, the m-eternal domination num-

ber γ∞m,1 was equal to the minimum size γ of a dominating set. In our study of Cayley

graphs, we disproved this result and established its validity for a subclass of these graphs.

Moreover, we performed an experimental analysis of the parameters γ∞m,1 and γ for Cay-

ley graphs. We showed that the di�erence between these parameters can be inde�nitely

increased for disconnected Cayley graphs, but left open the question of whether it can be

greater than 1 if connectivity is enforced. Future work includes going further into this

open question, checking if the equality γ∞m,1 = γ holds for other classes of vertex-transitive

graphs, and investigating if γ∞m,1 can be computed in polynomial time for Cayley graphs.

In our research on proper interval graphs, we demonstrated several results on the

m-eternal dominating set problem restricted to these graphs: the m-eternal domination

number equals the maximum size of an independent set, them-eternal domination number

can be computed in linear time, there is no advantage in allowing multiple guards to

occupy the same vertex, and there is a straightforward strategy of defense for the smallest

possible number of guards. In addition, we gave a lower bound on γ∞m,m that may also be

useful when delving into other classes of graphs. Recently, Rinemberg and Soulignac [33]

dealt with the m-eternal dominating set problem for the broader class of interval graphs.

It seems promising to continue studying the problem for related classes of graphs, such

as the proper circular-arc and circular-arc graphs.

Using integer and constraint programming, we developed heuristic methods suited

for practical applications of the m-eternal dominating set problem. Through extensive

experimentation, these methods were shown to run in a reasonable time, produce a good-

quality upper bound on the m-eternal domination number, and output a structure from

which one can derive an associated e�cient strategy of defense. To our knowledge, neither
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implementations gathering such features nor experiments reaching such extension have

been reported before for the m-eternal dominating set problem. It is worth noting that

we generated a 750-instance benchmark, performed a practical evaluation of bounds for

the m-eternal domination number available in the literature, and, as far as we know,

presented the �rst integer program for the problem of determining a minimum-weight

neocolonization of a graph.

Attempts to improve the heuristic methods above should consider the following. The

heuristic methods consist in computing several upper and lower bounds on the m-eternal

domination number. Each of the upper bounds is derived from the weight of a neocolo-

nization setup, which is calculated taking into account only defenses executed by guards

moving along paths. Upper bounds drawn from defenses involving cyclic movements may

require fewer guards and, therefore, their use may narrow the bound gap outputted by

the heuristic methods.

Based on our information, we �rst implemented an exact algorithm for the m-eternal

dominating set problem. We also developed a time-limited counterpart that provides a

lower bound on them-eternal domination number. A future enhancement to the presented

algorithms is to employ parallelization to reduce execution times. Within the main loop

of the algorithms, one can parallelize the processes of determining the edges of the initial

dominating-set graph and �nding the unsafe vertices of the subsequent dominating-set

graphs.

To advance the knowledge on the complexity of the m-eternal dominating set prob-

lem, a next step is to further understand the relationship between the problem and the

complexity classes NP and PSPACE. For this purpose, the following questions should

be answered � the latter question is mentioned by Klostermeyer and Mynhardt [28]. Is

it possible to describe a solution to the m-eternal dominating set problem so that one

can check if the solution is indeed valid within time polynomial in the order of the input

graph? Given a graph G of order n, is there a polynomial function f(n) such that, if

guards can defend any sequence of f(n) attacks to G, then they can eternally defend G?
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