Bounds for the mm-Eternal Domination Number of a Graph

Abstract

Mobile guards on the vertices of a graph are used to defend the graph against an infinite sequence of attacks on vertices. A guard must move from a neighboring vertex to an attacked vertex (we assume attacks happen only at vertices containing no guard and that each vertex contains at most one guard). More than one guard is allowed to move in response to an attack. The mm-eternaldomination number, \edom(G), of a graph GG is the minimum number of guards needed to defend GG against any such sequence. We show that if GG is a connected graph with minimum degree at least~22 and of order~n5n \ge 5, then \edom(G) \le \left\lfloor \frac{n-1}{2} \right\rfloor, and this bound is tight. We also prove that if GG is a cubic bipartite graph of order~nn, then \edom(G) \le \frac{7n}{16}

    Similar works