41,585 research outputs found

    Estimation Of Multiple Local Orientations In Image Signals

    Get PDF
    Local orientation estimation can be posed as the problem of finding the minimum grey level variance axis within a local neighbourhood. In 2D image signals, this corresponds to the eigensystem analysis of a 22-tensor, which yields valid results for single orientations. We describe extensions to multiple overlaid orientations, which may be caused by transparent objects, crossings, bifurcations, corners etc. Multiple orientation detection is based on the eigensystem analysis of an appropriately extended tensor, yielding so-called mixed orientation parameters. These mixed orientation parameters can be regarded as another tensor built from the sought individual orientation parameters. We show how the mixed orientation tensor can be decomposed into the individual orientations by finding the roots of a polynomial. Applications are, e.g., in directional filtering and interpolation, feature extraction for corners or crossings, and signal separation

    Spherical deconvolution of multichannel diffusion MRI data with non-Gaussian noise models and spatial regularization

    Get PDF
    Spherical deconvolution (SD) methods are widely used to estimate the intra-voxel white-matter fiber orientations from diffusion MRI data. However, while some of these methods assume a zero-mean Gaussian distribution for the underlying noise, its real distribution is known to be non-Gaussian and to depend on the methodology used to combine multichannel signals. Indeed, the two prevailing methods for multichannel signal combination lead to Rician and noncentral Chi noise distributions. Here we develop a Robust and Unbiased Model-BAsed Spherical Deconvolution (RUMBA-SD) technique, intended to deal with realistic MRI noise, based on a Richardson-Lucy (RL) algorithm adapted to Rician and noncentral Chi likelihood models. To quantify the benefits of using proper noise models, RUMBA-SD was compared with dRL-SD, a well-established method based on the RL algorithm for Gaussian noise. Another aim of the study was to quantify the impact of including a total variation (TV) spatial regularization term in the estimation framework. To do this, we developed TV spatially-regularized versions of both RUMBA-SD and dRL-SD algorithms. The evaluation was performed by comparing various quality metrics on 132 three-dimensional synthetic phantoms involving different inter-fiber angles and volume fractions, which were contaminated with noise mimicking patterns generated by data processing in multichannel scanners. The results demonstrate that the inclusion of proper likelihood models leads to an increased ability to resolve fiber crossings with smaller inter-fiber angles and to better detect non-dominant fibers. The inclusion of TV regularization dramatically improved the resolution power of both techniques. The above findings were also verified in brain data

    Increasing the Analytical Accessibility of Multishell and Diffusion Spectrum Imaging Data Using Generalized Q-Sampling Conversion

    Full text link
    Many diffusion MRI researchers, including the Human Connectome Project (HCP), acquire data using multishell (e.g., WU-Minn consortium) and diffusion spectrum imaging (DSI) schemes (e.g., USC-Harvard consortium). However, these data sets are not readily accessible to high angular resolution diffusion imaging (HARDI) analysis methods that are popular in connectomics analysis. Here we introduce a scheme conversion approach that transforms multishell and DSI data into their corresponding HARDI representations, thereby empowering HARDI-based analytical methods to make use of data acquired using non-HARDI approaches. This method was evaluated on both phantom and in-vivo human data sets by acquiring multishell, DSI, and HARDI data simultaneously, and comparing the converted HARDI, from non-HARDI methods, with the original HARDI data. Analysis on the phantom shows that the converted HARDI from DSI and multishell data strongly predicts the original HARDI (correlation coefficient > 0.9). Our in-vivo study shows that the converted HARDI can be reconstructed by constrained spherical deconvolution, and the fiber orientation distributions are consistent with those from the original HARDI. We further illustrate that our scheme conversion method can be applied to HCP data, and the converted HARDI do not appear to sacrifice angular resolution. Thus this novel approach can benefit all HARDI-based analysis approaches, allowing greater analytical accessibility to non-HARDI data, including data from the HCP

    Learning Active Basis Models by EM-Type Algorithms

    Full text link
    EM algorithm is a convenient tool for maximum likelihood model fitting when the data are incomplete or when there are latent variables or hidden states. In this review article we explain that EM algorithm is a natural computational scheme for learning image templates of object categories where the learning is not fully supervised. We represent an image template by an active basis model, which is a linear composition of a selected set of localized, elongated and oriented wavelet elements that are allowed to slightly perturb their locations and orientations to account for the deformations of object shapes. The model can be easily learned when the objects in the training images are of the same pose, and appear at the same location and scale. This is often called supervised learning. In the situation where the objects may appear at different unknown locations, orientations and scales in the training images, we have to incorporate the unknown locations, orientations and scales as latent variables into the image generation process, and learn the template by EM-type algorithms. The E-step imputes the unknown locations, orientations and scales based on the currently learned template. This step can be considered self-supervision, which involves using the current template to recognize the objects in the training images. The M-step then relearns the template based on the imputed locations, orientations and scales, and this is essentially the same as supervised learning. So the EM learning process iterates between recognition and supervised learning. We illustrate this scheme by several experiments.Comment: Published in at http://dx.doi.org/10.1214/09-STS281 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Evaluating the accuracy of diffusion MRI models in white matter

    Full text link
    Models of diffusion MRI within a voxel are useful for making inferences about the properties of the tissue and inferring fiber orientation distribution used by tractography algorithms. A useful model must fit the data accurately. However, evaluations of model-accuracy of some of the models that are commonly used in analyzing human white matter have not been published before. Here, we evaluate model-accuracy of the two main classes of diffusion MRI models. The diffusion tensor model (DTM) summarizes diffusion as a 3-dimensional Gaussian distribution. Sparse fascicle models (SFM) summarize the signal as a linear sum of signals originating from a collection of fascicles oriented in different directions. We use cross-validation to assess model-accuracy at different gradient amplitudes (b-values) throughout the white matter. Specifically, we fit each model to all the white matter voxels in one data set and then use the model to predict a second, independent data set. This is the first evaluation of model-accuracy of these models. In most of the white matter the DTM predicts the data more accurately than test-retest reliability; SFM model-accuracy is higher than test-retest reliability and also higher than the DTM, particularly for measurements with (a) a b-value above 1000 in locations containing fiber crossings, and (b) in the regions of the brain surrounding the optic radiations. The SFM also has better parameter-validity: it more accurately estimates the fiber orientation distribution function (fODF) in each voxel, which is useful for fiber tracking

    Scale Invariant Interest Points with Shearlets

    Full text link
    Shearlets are a relatively new directional multi-scale framework for signal analysis, which have been shown effective to enhance signal discontinuities such as edges and corners at multiple scales. In this work we address the problem of detecting and describing blob-like features in the shearlets framework. We derive a measure which is very effective for blob detection and closely related to the Laplacian of Gaussian. We demonstrate the measure satisfies the perfect scale invariance property in the continuous case. In the discrete setting, we derive algorithms for blob detection and keypoint description. Finally, we provide qualitative justifications of our findings as well as a quantitative evaluation on benchmark data. We also report an experimental evidence that our method is very suitable to deal with compressed and noisy images, thanks to the sparsity property of shearlets

    Local Visual Microphones: Improved Sound Extraction from Silent Video

    Full text link
    Sound waves cause small vibrations in nearby objects. A few techniques exist in the literature that can extract sound from video. In this paper we study local vibration patterns at different image locations. We show that different locations in the image vibrate differently. We carefully aggregate local vibrations and produce a sound quality that improves state-of-the-art. We show that local vibrations could have a time delay because sound waves take time to travel through the air. We use this phenomenon to estimate sound direction. We also present a novel algorithm that speeds up sound extraction by two to three orders of magnitude and reaches real-time performance in a 20KHz video.Comment: Accepted to BMVC 201

    Learning to Extract Motion from Videos in Convolutional Neural Networks

    Full text link
    This paper shows how to extract dense optical flow from videos with a convolutional neural network (CNN). The proposed model constitutes a potential building block for deeper architectures to allow using motion without resorting to an external algorithm, \eg for recognition in videos. We derive our network architecture from signal processing principles to provide desired invariances to image contrast, phase and texture. We constrain weights within the network to enforce strict rotation invariance and substantially reduce the number of parameters to learn. We demonstrate end-to-end training on only 8 sequences of the Middlebury dataset, orders of magnitude less than competing CNN-based motion estimation methods, and obtain comparable performance to classical methods on the Middlebury benchmark. Importantly, our method outputs a distributed representation of motion that allows representing multiple, transparent motions, and dynamic textures. Our contributions on network design and rotation invariance offer insights nonspecific to motion estimation
    • …
    corecore