EM algorithm is a convenient tool for maximum likelihood model fitting when
the data are incomplete or when there are latent variables or hidden states. In
this review article we explain that EM algorithm is a natural computational
scheme for learning image templates of object categories where the learning is
not fully supervised. We represent an image template by an active basis model,
which is a linear composition of a selected set of localized, elongated and
oriented wavelet elements that are allowed to slightly perturb their locations
and orientations to account for the deformations of object shapes. The model
can be easily learned when the objects in the training images are of the same
pose, and appear at the same location and scale. This is often called
supervised learning. In the situation where the objects may appear at different
unknown locations, orientations and scales in the training images, we have to
incorporate the unknown locations, orientations and scales as latent variables
into the image generation process, and learn the template by EM-type
algorithms. The E-step imputes the unknown locations, orientations and scales
based on the currently learned template. This step can be considered
self-supervision, which involves using the current template to recognize the
objects in the training images. The M-step then relearns the template based on
the imputed locations, orientations and scales, and this is essentially the
same as supervised learning. So the EM learning process iterates between
recognition and supervised learning. We illustrate this scheme by several
experiments.Comment: Published in at http://dx.doi.org/10.1214/09-STS281 the Statistical
Science (http://www.imstat.org/sts/) by the Institute of Mathematical
Statistics (http://www.imstat.org