research

Increasing the Analytical Accessibility of Multishell and Diffusion Spectrum Imaging Data Using Generalized Q-Sampling Conversion

Abstract

Many diffusion MRI researchers, including the Human Connectome Project (HCP), acquire data using multishell (e.g., WU-Minn consortium) and diffusion spectrum imaging (DSI) schemes (e.g., USC-Harvard consortium). However, these data sets are not readily accessible to high angular resolution diffusion imaging (HARDI) analysis methods that are popular in connectomics analysis. Here we introduce a scheme conversion approach that transforms multishell and DSI data into their corresponding HARDI representations, thereby empowering HARDI-based analytical methods to make use of data acquired using non-HARDI approaches. This method was evaluated on both phantom and in-vivo human data sets by acquiring multishell, DSI, and HARDI data simultaneously, and comparing the converted HARDI, from non-HARDI methods, with the original HARDI data. Analysis on the phantom shows that the converted HARDI from DSI and multishell data strongly predicts the original HARDI (correlation coefficient > 0.9). Our in-vivo study shows that the converted HARDI can be reconstructed by constrained spherical deconvolution, and the fiber orientation distributions are consistent with those from the original HARDI. We further illustrate that our scheme conversion method can be applied to HCP data, and the converted HARDI do not appear to sacrifice angular resolution. Thus this novel approach can benefit all HARDI-based analysis approaches, allowing greater analytical accessibility to non-HARDI data, including data from the HCP

    Similar works

    Full text

    thumbnail-image

    Available Versions