64 research outputs found

    A physics-constrained machine learning method for mapping gapless land surface temperature

    Full text link
    More accurate, spatio-temporally, and physically consistent LST estimation has been a main interest in Earth system research. Developing physics-driven mechanism models and data-driven machine learning (ML) models are two major paradigms for gapless LST estimation, which have their respective advantages and disadvantages. In this paper, a physics-constrained ML model, which combines the strengths in the mechanism model and ML model, is proposed to generate gapless LST with physical meanings and high accuracy. The hybrid model employs ML as the primary architecture, under which the input variable physical constraints are incorporated to enhance the interpretability and extrapolation ability of the model. Specifically, the light gradient-boosting machine (LGBM) model, which uses only remote sensing data as input, serves as the pure ML model. Physical constraints (PCs) are coupled by further incorporating key Community Land Model (CLM) forcing data (cause) and CLM simulation data (effect) as inputs into the LGBM model. This integration forms the PC-LGBM model, which incorporates surface energy balance (SEB) constraints underlying the data in CLM-LST modeling within a biophysical framework. Compared with a pure physical method and pure ML methods, the PC-LGBM model improves the prediction accuracy and physical interpretability of LST. It also demonstrates a good extrapolation ability for the responses to extreme weather cases, suggesting that the PC-LGBM model enables not only empirical learning from data but also rationally derived from theory. The proposed method represents an innovative way to map accurate and physically interpretable gapless LST, and could provide insights to accelerate knowledge discovery in land surface processes and data mining in geographical parameter estimation

    Remote Sensing Monitoring of Land Surface Temperature (LST)

    Get PDF
    This book is a collection of recent developments, methodologies, calibration and validation techniques, and applications of thermal remote sensing data and derived products from UAV-based, aerial, and satellite remote sensing. A set of 15 papers written by a total of 70 authors was selected for this book. The published papers cover a wide range of topics, which can be classified in five groups: algorithms, calibration and validation techniques, improvements in long-term consistency in satellite LST, downscaling of LST, and LST applications and land surface emissivity research

    Harmonization of remote sensing land surface products : correction of clear-sky bias and characterization of directional effects

    Get PDF
    Tese de doutoramento, Ciências Geofísicas e da Geoinformação (Deteção Remota), Universidade de Lisboa, Faculdade de Ciências, 2018Land surface temperature (LST) is the mean radiative skin temperature of an area of land resulting from the mean energy balance at the surface. LST is an important climatological variable and a diagnostic parameter of land surface conditions, since it is the primary variable determining the upward thermal radiation and one of the main controllers of sensible and latent heat fluxes between the surface and the atmosphere. The reliable and long-term estimation of LST is therefore highly relevant for a wide range of applications, including, amongst others: (i) land surface model validation and monitoring; (ii) data assimilation; (iii) hydrological applications; and (iv) climate monitoring. Remote sensing constitutes the most effective method to observe LST over large areas and on a regular basis. Satellite LST products generally rely on measurements in the thermal infrared (IR) atmospheric window, i.e., within the 8-13 micrometer range. Beside the relatively weak atmospheric attenuation under clear sky conditions, this band includes the peak of the Earth’s spectral radiance, considering surface temperature of the order of 300K (leading to maximum emission at approximately 9.6 micrometer, according to Wien’s Displacement Law). The estimation of LST from remote sensing instruments operating in the IR is being routinely performed for nearly 3 decades. Nevertheless, there is still a long list of open issues, some of them to be addressed in this PhD thesis. First, the viewing position of the different remote sensing platforms may lead to variability of the retrieved surface temperature that depends on the surface heterogeneity of the pixel – dominant land cover, orography. This effect introduces significant discrepancies among LST estimations from different sensors, overlapping in space and time, that are not related to uncertainties in the methodologies or input data used. Furthermore, these directional effects deviate LST products from an ideally defined LST, which should correspond to the ensemble directional radiometric temperature of all surface elements within the FOV. In this thesis, a geometric model is presented that allows the upscaling of in situ measurements to the any viewing configuration. This model allowed generating a synthetic database of directional LST that was used consistently to evaluate different parametric models of directional LST. Ultimately, a methodology is proposed that allows the operational use of such parametric models to correct angular effects on the retrieved LST. Second, the use of infrared data limits the retrieval of LST to clear sky conditions, since clouds “close” the atmospheric window. This effect introduces a clear-sky bias in IR LST datasets that is difficult to quantify since it varies in space and time. In addition, the cloud clearing requirement severely limits the space-time sampling of IR measurements. Passive microwave (MW) measurements are much less affected by clouds than IR observations. LST estimates can in principle be derived from MW measurements, regardless of the cloud conditions. However, retrieving LST from MW and matching those estimations with IR-derived values is challenging and there have been only a few attempts so far. In this thesis, a methodology is presented to retrieve LST from passive MW observations. The MW LST dataset is examined comprehensively against in situ measurements and multiple IR LST products. Finally, the MW LST data is used to assess the spatial-temporal patterns of the clear-sky bias at global scale.Fundação para a Ciência e a Tecnologia, SFRH/BD/9646

    Satellite remote sensing of aerosols using geostationary observations from MSG-SEVIRI

    Get PDF
    Aerosols play a fundamental role in physical and chemical processes affecting regional and global climate, and have adverse effects on human health. Although much progress has been made over the past decade in understanding aerosol-climate interactions, their impact still remains one of the largest sources of uncertainty in climate change assessment. The wide variety of aerosol sources and the short lifetime of aerosol particles cause highly variable aerosol fields in both space and time. Groundbased measurements can provide continuous data with high accuracy, but often they are valid for a limited area and are not available for remote areas. Satellite remote sensing appears therefore to be the most appropriate tool for monitoring the high variability of aerosol properties over large scales. Passive remote sensing of aerosol properties is based on the ability of aerosols to scatter and absorb solar radiation. Algorithms for aerosol retrieval from satellites are used to derive the aerosol optical depth (AOD), which is the aerosol extinction integrated over the entire atmospheric column. The aim of the work described in this thesis was to develop and validate a new algorithm for the retrieval of aerosol optical properties from geostationary observations with the SEVIRI (Spinning Enhanced Visible and Infra-Red Imager) instrument onboard the MSG (Meteorological Second Generation) satellite. Every 15 minutes, MSG-SEVIRI captures a full scan of an Earth disk covering Europe and the whole African continent with a high spatial resolution. With such features MSG-SEVIRI offers the unique opportunity to explore transport of aerosols, and to study their impact on both air quality and climate. The SEVIRI Aerosol Retrieval Algorithm (SARA) presented in this thesis, estimates the AOD over sea and land surfaces using the three visible channels and one near-infrared channel of the instrument. Because only clear sky radiances can be used to derive aerosol information, a stand-alone cloud detection algorithm was developed to remove cloud contaminated pixels. The cloud mask was generated over Europe for different seasons, and it compared favorably with the results from other cloud detection algorithms - namely the cloud mask algorithm of Meteo-France for MSG-SEVIRI, and the MODIS (Moderate Resolution Imaging Spectroradiometer) algorithm. The aerosol information is extracted from cloud-free scenes using a method that minimizes the error between the measured and the simulated radiance. The signal observed at the satellite level results from the complex combination of the surface and the atmosphere contributions. The surface contribution is either parameterized (over sea), or based on a priori values (over land). The effects of atmospheric gases and aerosols on the radiance are simulated with the radiative transfer model DAK (Doubling-Adding-KNMI) for different atmospheric scenarios. The algorithm was applied for various case studies (i.e. forest fires, dust storm, anthropogenic pollution) over Europe, and the results were validated against groundbased measurements from the AERONET database, and evaluated by comparison with aerosol products derived from other space-borne instruments such as the Terra/- Aqua-MODIS sensors. In general, for retrievals over the ocean, AOD values as well as their diurnal variations are in good agreement with the observations made at AERONET coastal sites, and the spatial variations of the AOD obtained with the SARA algorithm are well correlated with the results derived from MODIS. Over land, the results presented should be considered as preliminary. They show reasonable agreement with AERONET and MODIS, however extra work is required to improve the accuracy of the retrievals based on the proposed metho

    A model to estimate daily albedo from remote sensing data : accuracy assessment of MODIS MCD43 product

    Get PDF
    L’albedo superficial és un paràmetre físic que afecta al clima de la Terra i, a més, suposa una de les majors incerteses radiatives en l’actual modelització climàtica. Aquest paràmetre és molt variable tant a nivell espacial com temporal degut als canvis en les propietats de les superfícies i als canvis en les condicions d’il•luminació. En conseqüència, es requereix una resolució temporal diària de l’albedo per a realitzar estudis climàtics. L’augment de la resolució espacial dels models climàtics fa necessari l’estudi de les seues característiques espacials a nivell global. La teledetecció proporciona l’única opció pràctica de proporcionar dades d’albedo a nivell global amb alta qualitat i alta resolució tant espacial com temporal. El sensor MODerate Resolution Imaging Spectroradiometer (MODIS) a bord dels satèl•lits Terra i Aqua presenta unes característiques adequades per a l’estimació d’aquest paràmetre. En el present treball realitzem diversos estudis buscant les possibles fonts d’incertesa del producte oficial d’albedo de MODIS (MCD43). A més, presentem un model que millora la resolució temporal d’aquest paràmetre.Surface albedo is a critical land physical parameter affecting the earth’s climate and is among the main radiative uncertainties in current climate modelling. This parameter is highly variable in space and time, both as a result of changes in surface properties and as a function of changes in the illumination conditions. Consequently, an albedo daily temporal resolution is required for climate studies. The increasing spatial resolution of modern climate models makes it necessary to examine its spatial features. Satellite remote sensing provides the only practical way of producing high-quality global albedo data sets with high spatial and temporal resolutions. The MODerate Resolution Imaging Spectroradiometer (MODIS) sensor on board the Terra and Aqua satellites presents the required sampling characteristics in order to derive the this parameter. In this PhD we develop several studies looking for the improvement of the official MODIS albedo product (MCD43) accuracy. Moreover, we present a model that improves the temporal resolution of this parameter

    Cloud Detection And Trace Gas Retrieval From The Next Generation Satellite Remote Sensing Instruments

    Get PDF
    Thesis (Ph.D.) University of Alaska Fairbanks, 2005The objective of this thesis is to develop a cloud detection algorithm suitable for the National Polar Orbiting Environmental Satellite System (NPOESS) Visible Infrared Imaging Radiometer Suite (VIIRS) and methods for atmospheric trace gas retrieval for future satellite remote sensing instruments. The development of this VIIRS cloud mask required a flowdown process of different sensor models in which a variety of sensor effects were simulated and evaluated. This included cloud simulations and cloud test development to investigate possible sensor effects, and a comprehensive flowdown analysis of the algorithm was conducted. In addition, a technique for total column water vapor retrieval using shadows was developed with the goal of enhancing water vapor retrievals under hazy atmospheric conditions. This is a new technique that relies on radiance differences between clear and shadowed surfaces, combined with ratios between water vapor absorbing and window regions. A novel method for retrieving methane amounts over water bodies, including lakes, rivers, and oceans, under conditions of sun glint has also been developed. The theoretical basis for the water vapor as well as the methane retrieval techniques is derived and simulated using a radiative transfer model

    A modeling study of land surface processes and surface energy budgets using the maximum entropy production theory

    Get PDF
    Land surface model (LSM) plays an important role in numerical climate simulations. However, the existing LSMs have been found to produce inconsistent surface energy and water budgets due to the deficiencies in parameterization of land surface processes. In particular, surface heat flux parameterizations using the conventional gradient-based methods are subject to large modeling error and uncertainty. The primary goal of this study is to investigate the potential applications of an innovative approach, the Maximum Entropy Production (MEP) model of surface heat fluxes, in facilitating the understanding of land surface processes and global surface energy budgets. Specifically, two objectives, by applying the MEP model, are conducted to (1) improve model predictions of surface temperature, surface soil moisture, and near-surface air temperature for used in LSMs as well as climate models (2) reconstruct the global surface heat flux budgets. A coupled model of surface temperature, surface soil moisture, and near-surface air temperature is formulated based on the classical Force-Restore Method (FRM) incorporating the MEP model of surface heat fluxes, referred to as the FRMEP model. The FRMEP model is driven by surface net radiation and precipitation without explicitly using other meteorological variables and location specific empirical tuning parameters. The case studies suggest that the FRMEP model outperforms the classical FRMs, which are forced by observed or gradient-based parameterized surface heat fluxes. The FRMEP model well captures the diurnal and seasonal variations of surface temperature, surface soil moisture, near-surface air temperature, as well as surface heat fluxes. The results presented in this study justify the potential usefulness of the MEP model in climatic and hydrological studies. In this study, the 2001-2010 climatology of global surface heat flux budgets along with the corresponding trend and uncertainty is re-estimated using the MEP model and the input data from remote sensing observations and reanalysis data products. The MEP model generates the first dataset of global ocean surface conductive heat flux, which is not available from the existing data products. Global sublimation/deposition, sensible, and surface conductive heat fluxes over land snow-ice and sea ice covered areas are produced separately owing to the unique formulation of the MEP model. The uncertainties of MEP modeled surface heat fluxes are less than those of existing estimates and bounded by that of surface net radiation. Analysis of MEP heat fluxes suggests a global increase of land surface heat fluxes and a decrease of ocean surface heat fluxes during 2001-2010 consistent with the trends of surface radiation. The results indicate that the MEP model can be applied as an alternative approach to meet the challenge of monitoring and modeling global surface energy budgets. The new estimates of global surface heat fluxes based on the MEP model lead to a broader view of global energy and water cycles from a surface perspective.Ph.D

    The climatic significance of tropical forest edges and their representation in global climate models

    Get PDF
    An emerging theme in global climate modelling is whether land covers created in the clearance of tropical humid forests influence water exchange between remnant forest patches and the atmosphere, and, if so, how this affects regional and global water exchange. Fieldwork presented in this thesis ascertains whether the amount of water transferred to the atmosphere from a humid tropical forest situated in Sabah, Northern Borneo, Malaysia, differs between its edge and interior due to the influence of surrounding clearings through horizontal heat transfer. Using satellite imagery to measure the shape and size of tropical forests, field measurements of water transfer were extrapolated to continental and global levels to infer how differences in water exchange with the atmosphere between forest edges and interiors may influence regional and global forest-atmosphere water exchange. Mean sap flow in trees within 50 meters of a forest-clearing boundary was found to be 73% greater than that in trees further into the forest; an observation supported by the decreased canopy temperature also recorded there. Evaporation from the forest canopy constituted a high fraction of annual rainfall (33%), but showed no edge effect similar to that of sap flow. Edge plots, however, expressed evapotranspiration rates 22% lower than forest interiors (657-890 mm yr-1), owing to the lower number and size of trees there. One edge plot, however, exhibited evapotranspiration 49.5% greater than that of forest interiors. Gradients of air temperature, vapour pressure deficit and wind speed from the adjacent clearing to the forest interior indicated that warm, dry air moving from the clearing to the forest was the most credible cause of increased sap flow of trees near the forest edge. This hypothesis was supported by a strong correlation between the amount of vapour in the air moving from the clearing and tree water use. It was estimated that the influence of differences in water transfer to the atmosphere between the edges and interiors of tropical forest would not alter global water transfer to the atmosphere by more than 0.25-4%, or by 4-7% in the most fragmented tropical continent, Africa. However, it remains unclear whether the inclusion of tropical forest edge effects within climate models is necessary, as the pioneering nature of this thesis, and of existing studies reviewed within it, means that solid conclusions will be dependent upon future work. This thesis concludes with suggestions for future research that will most effectively consolidate the provisional conclusions and recommendations herein

    Clouds and the Earth's Radiant Energy System (CERES) Algorithm Theoretical Basis Document

    Get PDF
    The theoretical bases for the Release 1 algorithms that will be used to process satellite data for investigation of the Clouds and Earth's Radiant Energy System (CERES) are described. The architecture for software implementation of the methodologies is outlined. Volume 3 details the advanced CERES methods for performing scene identification and inverting each CERES scanner radiance to a top-of-the-atmosphere (TOA) flux. CERES determines cloud fraction, height, phase, effective particle size, layering, and thickness from high-resolution, multispectral imager data. CERES derives cloud properties for each pixel of the Tropical Rainfall Measuring Mission (TRMM) visible and infrared scanner and the Earth Observing System (EOS) moderate-resolution imaging spectroradiometer. Cloud properties for each imager pixel are convolved with the CERES footprint point spread function to produce average cloud properties for each CERES scanner radiance. The mean cloud properties are used to determine an angular distribution model (ADM) to convert each CERES radiance to a TOA flux. The TOA fluxes are used in simple parameterization to derive surface radiative fluxes. This state-of-the-art cloud-radiation product will be used to substantially improve our understanding of the complex relationship between clouds and the radiation budget of the Earth-atmosphere system
    corecore