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Abstract  

Urban vegetation plays an important role in both ecological systems and hydrological circles. Selecting 

a proper spatial resolution for urban hydrological processes modeling was not a trivial issue because it 

could affect the model outputs. Recently, the development of remote sensing technology and 

increasingly available data source had enabled rainfall runoff process to be modeled at detailed and 

micro scales.  

 

This study attempted to explore the impact of model scales on model performance as well as the effects 

of urban vegetation. A small urban catchment in Japan was used as the study site. Models with different 

discretization degree were built up on the basis of actual drainage networks, urban parcels and specific 

land use. Remotely sensed data were obtained and used for a distributed representation of vegetation 

growth information by converting to canopy storage abilities. The effects of the interception process 

modeling and the flood reduction of green infrastructures (GIs) were considered. The SWMM model 

and the Rutter model are coupled to simulate the urban vegetation interception process and the flow 

routing process.  

 

The results showed that there was very little difference in the total runoff volumes while peak flows 

showed an obvious scale effects which could be up to 30%. Generally, model calibration could 

compensate the scale effect. The calibrated models with different resolution showed similar 

performances. The consideration of EIA (effective impervious area) as a calibration parameter 

marginally increased performance of calibration period but also slightly decreased performance in 
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validation period which indicated the importance of detailed EIA identification. The seasonal effect of 

the interception is very obvious. The seasonal difference in the interception ratio was as great as 12%. 

The rainfall characteristics also have a great influence on the interception. For tree species, deciduous 

trees have a higher annual interception ratio (16.62%), while the interception effect of evergreen trees 

is more stable with seasonal changes. The results of each GI indicate that the green roof has a relatively 

good flood-reduction effect (19% runoff reduction). The combination of green roof and urban canopy 

is a more effective response to flood reduction.  

 

 

Key words: urban hydrology; modeling scale; hydrological process; interception; urban vegetation.  
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Chapter 1. Introduction 

 

1.1 Background 

Urban hydrology is defined as the interdisciplinary science of water and its interrelationships within an 

urban watershed. An urban or urbanizing watershed may be defined as one in which impervious surfaces 

(e.g., roads, parking lots, buildings, etc.) cover or will soon cover a considerable area of the watershed, 

and where natural flow paths have been substituted by paved gutters, sewers, or other elements of 

artificial drainage. Consequently the land cover, the geomorphology characteristics and thus the 

hydrological processes in urbanized area were quite different and more complex compared with that in 

natural state. Due to the intense alteration of natural environmental processes by human activity, the 

watershed response to precipitation are also significantly altered (e.g. reduced infiltration, decreased 

travel time, higher runoff, etc.). Urban hydrology involves numerous interacting processes subsystems 

such as surface runoff, infiltration, conduit routing, groundwater discharge to receiving water, etc. 

(Salvadore et al., 2015).  

 

In the past decades, driven by developments in computer capability and the availability of remote 

sensing data, the use of distributed hydrological models are becoming more and more a common 

practice. Hydrological modelling of urban catchments is highly challenging as urban catchments are 

strongly heterogeneous and have very specific hydrological processes. ‘The circulation of rainwater 

within urban areas has not yet been described in a detailed manner, as studies on this topic often remain 

limited to the runoff on impervious surfaces (Rodriguez et al., 2008). Developments in this direction 
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generally focus either on very specialized tools for a particular aspect of the urban hydrological cycle, 

or on generic software that combines and/or integrates several semi-specialized components to describe 

the total water cycle in urban areas. Bach et al. (2014) recognized the importance of integration in 

modelling the urban water system and proposed to classify models based on their degree of integration. 

However there is still insufficient agreement so far on a universal concept or methodology for 

simulating the urban water cycle at the catchment scale.  

 

The fast urbanization processes had also impacted the local urban water systems. Several researches 

had reported that urbanization is considered to be the one major cause of pollution of water resources 

(Cronin et al., 2003). On the other hand, a more popular problem is the frequent flooding events which 

had increased the management costs. Urban areas have shown to be among the most vulnerable systems 

to the adverse impact of heavy rainfalls. Floods are becoming more frequent and more devastating than 

ever before as urban areas are enlarging and becoming denser (Schmitt et al., 2004; Chen et al., 2009). 

Society suffers yearly from the consequences of (flash) floods, with mortality nearly homogeneous over 

different continents (Jonkman and Vrijling, 2008). 

 

Urban forests or urban vegetation is a kind of important urban infrastructure that has many 

environmental benefits. Vegetation plays an important role in preventing soil erosion and thus protecting 

soil structure and infiltration capacity by reducing raindrop energy by canopy interception. Also, urban 

forests had provided more green spaces for the city which could reduce urban heat island (UHI) effect 

and improve the air quality (Endreny et al., 2008; Nowak et al., 2018). The beneficial of urban 

vegetation on the aspect of hydrology or water resource management is also conspicuous. Different 
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kinds of green infrastructures (GIs) have improved the hydrological cycle and alleviated the burden of 

traditional drainage systems (Wang et al., 2018) by means of infiltration, storage and interception.  

 

Traditionally, urban hydrological models have generally emphasized on the simulation of rainfalls of 

one event, so the interception process is often overlooked or simplified. But from the perspective of the 

whole year, the amount of intercepted/evaporated water usually accounts for a large proportion of the 

annual water balance. (Mitchell et al., 2009) had estimated the components of total water balance of an 

urban catchment and found that the actual evaporation rate usually exceeded 50%. (Berland et al., 2017) 

studied the function of trees as green infrastructure in urban storm water management and concluded 

that trees can play a substantial role in reducing storm water runoff by interception, infiltration and 

other methods. (Mullaney et al., 2017) generalized the benefits and challenges in growing streets trees 

in paved urban environments and emphasized the multi-perspective benefits of street trees. (Zabret et 

al., 2015) studied the possibility for urban trees to compensate the impact of climate change on storm 

runoff and suggested that urban green infrastructures mitigated the alterations caused by urbanization 

and also helped adapt to climate change. (Song XP et al., 2014) had reviewed the economic benefits 

and costs of urban forest management and concluded that the types of benefits were various and in most 

cases the benefits of urban trees outweigh the costs. 

 

As stated above, urban catchments and urban water systems are naturally very complex: not only in the 

scales but also in the interactions of different hydrological process. As a result, complex mathematical 

models are needed to predict or simulate watershed response to rainfall events in urban areas and it was 

essential to make an accurate representation or characterization of urbanized catchment and 
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hydrological processes for hydrological modeling.  

 

Reliable assessment of hydrological processes are crucial for human lives, environmental protection 

and infrastructures or goods safety. Water movement in urban areas is however not well understood, 

and so are the physical principles that regulate this movement as well as the interactions occurring 

between the hydrological processes. Scientific understanding can be supported by detailed and 

consistent measurements and by hydrological modelling. Those urban hydrology issues will become 

more and more important in the decades ahead (Praskievicz and Chang, 2009; Fletcher et al., 2013).  

 

 

1.2 Literature review 

1.2.1 Hydrological modeling scale issues 

Modeling urban hydrological process at proper scale is not a trivial issue. However, increasing the 

modeling detail and reducing model uncertainty are two naturally conflicting goals. Thus, practically 

speaking, a compromise or tradeoff should be find between these targets (Petrucci and Bonhomme, 

2014). In recent 10 years, both the computational capacity and the availability of high resolution 

distributed data had increased in a large degree. As a consequence, more and more researchers built up 

their model in high resolutions with detailed methods. Recently, hyper resolution input data obtained 

from multiple information source and urban features had already been used in flood modeling of urban 

area (Amaguchi and Kawamura, 2016; Noh et al., 2018). Schubert et al. (2008) emphasized the 

importance of rooftop footprints extraction and found that the rooftop representation in model could 
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better reproduce the inundation processes. Mannina and Viviani (2010) compared simplified and 

detailed integrated modelling approaches for urban water quality assessment and found the detailed 

model to be more robust and presented less uncertainty. Leandro et al. (2016) had pointed out the 

importance of identify heterogeneity urban key features (roof type and land surfaces) in successful 

urban flood modeling. Most recent efforts in this category focused on the impact of the inclusion of 

collecting inlets in urban flood simulation (Chang et al., 2018; Jang et al., 2018). Both studies claimed 

the necessity of inclusion of inlets for accurate flood extent and duration estimation because these inlets 

provided a more realistic representation of the actual drainage capacity between surface and sewer 

system. 

 

All these researches modeled urban hydrological processes at very fine scales (single rooftop or urban 

blocks), and this method called for a lot of tedious work in delineating and data processing. Recent 

development, however, posed a possibility to effectively alleviate this problem. The public available 

database like the Open Street Map, could provide information like roof top footprint and detailed surface 

land use distribution which could be directly transferred to objects in GIS tools. On the other hand, 

(semi)automatic surface delineation tools had been developed and this could largely relieve the model 

building work. Sanzana et al. (2017) presented a semi-automatic tool Geo-PUMMA which could 

generate well-shaped vectorial meshes or Urban Hydrological Elements (UHEs). In order to avoid the 

tedious task of building the SWMM model, Warsta et al. (2017) developed a tool called GisToSWMM5 

that could automatically generate raster based sub-catchments as well as their parameters values that 

can be directly used in model. 
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Although it is an irreversible trend to model urban hydrology at higher resolution with more detailed 

method, the benefits and drawbacks of doing so should be further discussed. One of the concerns was 

that the high resolution may lead to the increase of uncertainty or over-parameterization: When 

inappropriate selected or too many parameters were calibrated on limited data set, they would 

correspond well with the calibration data set but fail to fit additional data or predict future observations 

reliably (Petrucci and Bonhomme, 2014). The other concern was the existence of effective parameters. 

These effective parameters could representing a global hydrological behavior. This meant that some 

low resolution models could have same performances with more detailed model and the former could 

save more resources. Leitão et al. (2010) had assessed the influences of urban drainage network 

simplification and suggested that simplified models had less simulation time without compromising 

simulation results. What was more, although the high resolution model could simulate more detailed 

hydrological processes, most of the current calibration technology were focused on fitting the 

hydrograph data of one or few points. This raised an issue called equifinality which meant that the 

different parameter sets might produce equal model performance. This also reduced the fidelity of the 

simulated results at the local scale of a distributed model.  

 

Therefore, the scale issue of distributed model is an important question to be understand. It is also a 

naturally concomitant problem in urban hydrology due to the nonlinear characteristics usually found in 

environmental hydrological systems (Jayawardena, 2014). The research of scale or resolution issues in 

urban hydrology had a long history. Zaghoul (1981) had examined the effect of spatial discretization 

and parameters in urban catchment. Goyen and O'Loughlin (1999) discuss the basic building blocks 

used for dividing urban hydrological modelling unit. A series of recent studies had also discussed this 
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issue with different model structures and catchments and got various results (Ghosh and Hellweger, 

2012; Sun et al., 2014; Goldstein et al., 2016).  

 

1.2.2 Vegetation and green infrastructures in urban area 

The research about modeling the interception process had quite a long history. One of the earliest effort 

was (Rutter et al., 1971), who established a predictive forest intercept model, also known as the Rutter 

model. (Muzylo et al., 2009) had reviewed 15 physical based interception models and found majority 

of them were based on the original Gash models (Gash, 1979) or Rutter models, and the Mulder and 

Liu models also should be emphasized. (Bulcock et al., 2012) had modeled both canopy and litter 

interception in a commercial forest using a modified Gash model and idealized drying curve. The results 

showed that canopy and litter interception can account for 26% and 13% of the gross precipitation. 

(Huang et al., 2017) used sparse Gash model to model rainfall interception of four deciduous tree 

species in urban forest and suggested that the model performed well for all the tree species and the 

reason for differences between modelled and observed values should be the uncertainties in the 

measurements of different variables. (Mitchell et al, 2008) modeled the urban vegetation interception 

and evaporation for the purpose of urban water balance and found that interception and evaporation 

account for considerable proportion in urban water balance and also urban vegetation had potential to 

impact the urban microclimate. (Wang et al., 2008) evaluated the tree’s effects and contributions for 

urban water balance consideration in several urban catchments and the results illustrated that trees can 

significantly reduce runoff for low intensity and short duration rainfall events. (F. Rodriguez et al., 2008) 

modeled the rainwater circulation within urban catchments with detailed manner and various 
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hydrological processes using a distributed hydrological model. The results highlighted the importance 

of evaluation of most hydrological fluxes on urban catchments.  

 

On the other hand, there had also been many experimental based studies on the interception process. 

(Guevara-Escobar et al., 2007) studied the interception and distribution patterns of an isolated Ficus 

benjamina tree. This experiment had indicated many prominent rainfall partitioning parameters and 

those patterns were relatively stable to different rainfall events. (Armson et al., 2013) assessed the effect 

of street trees and amenity grass on the urban surface flow. The results suggested that the reduction 

caused by grass, tree and tree pit was more than interception alone could have produced. (Livesley et 

al., 2014) investigated the effect of canopy density and bark type on the interception and stem flow 

using direct measurement. It is suggested that tree canopy and bark characteristics should be considered 

before tree planting and street canopies is a cost-effective compliment method to urban design for 

stormwater reduction benefits. (Xiao et al., 2000) measured rainfall interception of 2 open-grown trees 

(one evergreen and one deciduous) during winter time and found that the interception ratio of gross 

precipitation were 15% and 27%, respectively.   

 

Some researches integrated the monitoring and modeling of plant interception. (Bryant 2005) had 

compared the throughfall variability of 5 forest communities. The measurement results were compared 

with the simulated results using Gash model. (Herbst et al., 2006) studied the rainfall interception loss 

of hedgerows by comparing the modeled and monitored results and found that the interception loss 

predicted by Gash model had reasonable accuracy.  
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On the other hand, remote sensing technology has made great progress in recent years. This is also 

beneficial for the accuracy improvement of hydrological models. More and more researches are now 

taking advantage of the remote sensing data. (Kumar et al., 2015) analyzed remote sensing based indices 

for the purpose of improving urban water resources management. The results showed that the change 

of land use is the important reasons leading to increase in land surface temperature. (Elhag et al., 2014) 

assessed the remote sense based indices to improve water resources management using sensitivity 

analysis method and found that daily evapo-transpiration is the less sensitive and more certain index 

followed by draught vegetation index. (Sriwongsitanon et al., 2011) had used remote sensed data (band 

combinations of Landsat TM1/TM3) to assess the influence of atmospheric correction and the number 

of sampling points on the accuracy of lake water clarity and found out that the remote sensed data had 

improved the predicted average values of indices of clarity as well as their maximum and minimum 

values. (Udelhoven et al., 2009) analyzed the anomalies between climatic indices and Normalized 

Difference Vegetation Index (NDVI) data in ten years and suggested that the anomalies were good 

indicators of after drought biomass production. (Nourani et al., 2015) had utilized NDVI data to 

incorporate land cover variation effect with a rainfall runoff model in a small scale catchment and found 

that the models in which considered the land cover effects provided acceptable prediction results at both 

catchment and sub-catchments scale.  

 

1.3 Research gap and problem statement 

The above reviewed researches had addressed the important problems about the scale issues and 

vegetation in urban hydrological modeling. However, there are still lots of points that are not yet fully 
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discussed.  

 

The previous research had discussed scale issues with different model structure in different catchments 

and obtained various results. However, these researches always lack detailed descriptions of how the 

parameter values were determined during the change of scale. Krebs et al. (2014) used the method of 

area weight average to determine the parameters across different resolutions but the value of one 

important parameter EIA (effective impervious area) was not maintained during the sub-catchment 

upscale process.  

 

Also, there are lacking of the generalization of the calculated results: the scale effects may have some 

relationship with some other catchments characteristics. The finding and generalization of such 

relationships may reflect more fundamental logic of model scale and could be beneficial to other future 

modeling work (error estimation framework). What was more, most of these previous studies neglected 

a calibration process.  

 

Finally, those who implemented calibration did not or failed to calibrate models with different 

resolutions to assess how calibration can compensate the scale non-linearity of the model. In such cases, 

several questions were worth to be asking: if the less complex models were calibrated to the available 

data and allowed to have alternative parameter values to those obtained for the most complex model, 

how would the parameter values change? Also, if the parameter values for the most complex model are 

better than those obtained for a less complex model? In other words, equifinality should be an issue in 

this discussion.  
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The research about urban vegetation have a lot of types. The monitoring studies had improved the 

understanding of the different components of rainfall partitioning and also provided helpful insight in 

determining the parameters of the interception models. But those researches were usually confined in 

one site during certain period of time and had not expanded to larger scale urban watersheds. For 

simulation studies, but most of them consider the interception as a separate process, lack of discussion 

on integration and interaction with other hydrological processes. The spatially variability were also lack 

of discussions, even though the computation capability and availability of remote sensing data had been 

developed in a large degree. 

 

One of the obvious existing gaps is the lack of sufficient processed-based modeling of the hydrology of 

forests in urban areas with detailed information about the spatial distribution of vegetative areas as well 

as their seasonal variations to be considered. Coincident with the progress in remote sensing and GIS, 

it has been shown that in hydrological modeling, the use of remote sensing data to detect spatial values 

is more appropriate and efficient. Widely available earth observation data, such as Landsat images for 

detecting land cover changes via the normalized difference vegetation index (NDVI), have been 

demonstrated to be very beneficial for the successful evaluation, monitoring and depiction of landscape 

situations in many areas. The NDVI is functionally correlated with the leaf area index (LAI) and 

vegetation coverage; the higher the NDVI is, the larger the LAI, and the higher the vegetation coverage. 

Therefore, the NDVI can reflect the growth status of surface vegetation and act as an effective index 

for monitoring variations in vegetation. Some studies have considered the effect of vegetation cover 

using the NDVI on different hydrologic properties, such as inflow into reservoirs (Wang et al., 2012), 
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runoff coefficient (Sriwongsiatnon et al., 2011), runoff and sediment yield (Braud et al., 2001), rainfall 

and temperature (Wang et al., 2013) and evapotranspiration (Sun et al., 2008). The effects of variation 

in land cover over the watershed have not been explicitly incorporated into model formulation. However, 

such models may appropriately predict the output hydrographs in watersheds as well as reliably estimate 

interior sub-watershed outlet hydrographs in a watershed with extremely heterogeneous urban 

watersheds.  

 

The logic relationship of those existing studies and the remaining gaps were shown in Fig 1.1.  

 

 

Fig 1.1 The conceptual representation of previous researches, research gaps and targets. 
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1.4 Research objectives 

This study will address the following research questions:  

(1) What are the impacts of spatial resolution change on model performance?  

(2) If calibration can compensate the scale effects, how do the calibrated parameters change?  

(3) How can remote sensing data contribute to a better hydrological parameterization of vegetation 

dynamics within the urban catchment scale?  

(4) What is are the mitigation effects for runoff and urban heat for existing urban vegetation and/or with 

other potential green infrastructures?  

 

The EPA Storm Water Management Model (SWMM) was used for rainfall runoff modeling. The Rutter 

model was used for interception modeling and a simple energy based model was used for heat island 

effect modeling.  

 

1.5 Thesis organization 

This section briefly describes the structure of the thesis (Fig 1.1). The description of study site and the 

data used were presented in Chapter 2. The general flow chart and methodology and the concept of the 

models used were also introduced in this chapter.  
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Fig 1.2 The structure and work flow chart of the thesis 

 

Chapter 3 first discussed the initial build up and parameterization of the rainfall-runoff model. And then 

showed the results of sensitivity analysis and results of model calibration.  

 

Chapter 4 firstly discusses the scale effects observed with respect to total outflow volume and peak 

flows for different storm events. These results were then compared and categorized with different 

indices (max rainfall intensity/total rainfall depth). Those scale effects were generalized using a 

dimensional analysis method. Independent calibration of different scale models were conducted after to 

find compensatory degree on scale effects. Parameter demines and equifinality degree were also 

discussed.  
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Chapter 5 showed the results of the interception model. The seasonal variation and were discussed. The 

integrated model results were compared with the previous model. The results of the energy balance 

model were also showed and compared with remote sensed data.  

 

Chapter 6 discussed the effect of tree species and tree aging. The compare and combination with other 

potential green infrastructures (GIs) were also showed. Finally the effect of urban vegetation on urban 

heat island were discussed.  

 

Chapter 7 generalized the important results and made the major conclusions of the work. The limitations 

and potential future directions were also discussed.  
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Chapter 2. Approach and methodology 

 

2.1 Study site description 

Sendai is the capital city of Miyagi Prefecture, Japan, the largest city in the Tohoku region of Japan.  

Sendai City is located around the center of the Tohoku region, at 38°16_05_N, 140°52_11_E. The city's 

borders are defined by the western Ou Mountains and the eastern Pacific Ocean. Its area is 786.30km2, 

and is 50.58km wide (east-west), and 31.20 km long (north-south). Approximately 60% of the city is 

covered by forests so it is nicknamed the City of Trees. There are zelkova trees lining many of the main 

streets and areas in the city. The Hirose-gawa River, the Natori-gawa River, and the Nanakita-gawa 

River flow through these hills into the Pacific Ocean.  

 

According to the information of Japan Meteorology Agency (https://www.jma.go.jp/jma/indexe.html), 

Sendai has a humid continental climate, which features warm and wet summers, and cool and dry 

winters. Sendai summers are not as hot as Tokyo to the south, while the winters are much milder than 

Sapporo to the north, but retains significant seasonal differences in temperature and rainfall. Extremes 

range from −11.7 to +37.2 °C. Of Japan's prefectural capitals, Sendai experiences the fewest days of 

extreme temperatures (high temperature above 30° or below 0°) at 19.6 per year. Winters are cool and 

relatively dry, with January temperatures averaging 1.5 °C. Summers are very warm and much of the 

year's precipitation is delivered at this time, with an August average of 24.1 °C. The city is rarely hit by 

typhoons, and experiences only 6 days with more than 10 centimeters of rainfall on average. Sendai's 

rainy season usually begins in late June to early July, which is later than in most cities in Japan. The 
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city's average yearly temperature is 12.4 °C, and its yearly precipitation is 1,254.1 mm. 73% of Sendai's 

yearly precipitation falls in the six months from May to October (fig.2.1).

 

Fig 2.1. Average monthly temperature and monthly precipitation depth of Sendai City. 

 

We chose the Kunimigaoka Area (KA) in Sendai City, Japan for the case study. KA is a residential 

dominated area located in the north-western part of Sendai City (Fig 2.2). This catchment covers 

approximately 46 ha with a medium gradient slope topography. The construction processes of KA 

mainly occurred in the 1990s. Currently the urbanization degree is rather complete and the land use 

showed little change after 2005. The surface runoff was firstly collected by the gutters which were built 

on both sides of the roads and then drained to storm water sewer conduits. At the outlet of the sewer 

system there is a regulation pond. The storm water firstly drains to this regulating pond and then to a 

downstream river.  
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Fig 2.2. Location and aerial photo of the study catchment 

 

2.2 Data preparation and processing 

2.2.1 Topographic data 

The DEM of KA was available in the form of a high-resolution (5 × 5 m) elevation data set (fig 2.3(a)), 

which was processed and quality controlled by the Ministry of Land, Infrastructure, Transport and 

Tourism of Japan (MLIT, https://www.mlit.go.jp/). In order to better represent the detailed path on 

surface flows, the building profiles as well as the shapes of streets and residential gardens were 

distinguished from the original DEM using a Google satellite image (the buildings foot prints can be 

seen in Fig. 2.3 (b)).  
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Fig 2.3. (a) Top view of the DEM of the study region and sewer network with 2 outlets and, (b) Scheme of 

the KA catchment: buildings footprints (black) pipe drainage network (blue), raingauges (blue triangle), 

and outlets (red circle). 

 

2.2.2 Sewer network data 

The underground pipeline data were provided by Sewer Administration Office of Sendai City which 

contained geographic and geometric information of more than 400 conduits and manholes (fig 2.3 (b)). 

Although some streets had quite steep slopes, the slope of underground conduits were no more than 3% 

while most of them had a slope of 0.5%. Most of the conduits were circular with diameters ranging 

from 0.3 to 2.4 m, while some pipes were rectangular whose widths and heights varied from 0.4 to 0.8 

m. The drainage system of the study area also included street gutters mentioned before. The slopes and 

elevations of gutters were adopted from these values of adjacent roads. The slopes of gutters were 

ranged from 1.3% to 38%. 
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2.2.3 Precipitation monitoring 

The rainfall was collected by two tipping-bucket rain gauges within the catchment from 26th February 

2018 to the 29th July 2018 and include 23 individual events with a record resolution of 0.5mm. Those 

23 rainfall events were used for model calibration and validation. The location of the two rain gauges 

were shown in Fig 2.3 (b). The data recorded by these 2 gauges were rather similar due to the limited 

catchment area. Some additional rainfall data got from the Japan Metrological Agency were also used 

in the simulation. These rainfall data included 39 rainfall events from July to October of 2017 and was 

collected by a metrological station at Sendai city which was around 4.2 km to the study site with 0.5 

mm resolution. Those original rainfall data were processed into rainfall data with 5 minute temporal 

resolution that can be used in the hydrological models. All those rainfall data were used for simulation 

to observe the scale effect of model. 

 

2.2.4 Flow monitoring 

At the outlet, the water level was recorded at 5 min intervals. The water level–flow rate relationship 

(Fig 2.4) was obtained from several velocity measurement campaigns. There were some very small dry 

weather flow rate, which might be due to ground water exfiltration, was subtracted from records in 

order to obtain the storm water flow rate. Continuous flow measurements used for this study had a same 

period with the rain gauges in the catchment. The rainfall runoff data in this period were used for model 

calibration and validation.  



35 

 

 

 

 

Fig 2.4. Calibrated rating curve used in calculation of flow rates in the KA catchment. 

 

2.2.5 Remote sensing and climate data 

Remote sensing provides a helpful tool for the precise detection of land cover changes over time and 

over relatively large areas. The effect of land cover changes on the proposed geomorphologic rainfall–

runoff model was explored using Landsat 8 images as well as rainfall and runoff data. A well-developed 

global archive of Landsat images is available and is widely used to detect and monitor land-cover 

changes (Kepner et al., 2012). Landsat 8 data with a 30 m spatial resolution and 16 day temporal 

resolution were used to detect land use variation. The Landsat 8 satellite images of the studied area were 

downloaded from the USGS website (https://earthexplorer.usgs.gov/login/). As the urban 

subcatchments are approximately constant, the average vegetation index for the selected images could 
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be assigned for each sub-catchment. Cloud-free conditions over the watershed should be regarded for 

image selection. 

 

The normalized difference vegetation index (NDVI) measures the photosynthetic activity indirectly and 

varies between -1 for low and +1 for high photosynthetic activity. The NDVI is a well-known vegetation 

index introduced by Rouse et al. (1974) as: 

𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅−𝑅𝐸𝐷

𝑁𝐼𝑅+𝑅𝐸𝐷
                         (2-1) 

The main concept behind the NDVI is that for vegetated surfaces, red (RED) and near-infrared (NIR) 

wavelengths are characterized by high and low absorptions, respectively (Chen et al., 2003). 

Chlorophyll reflects approximately 20% in the red (RED) and 60% in the near-infrared (NIR). The 

contrast among the responses of these bands is the quantified absorbed energy by chlorophyll, which 

indicates the level of different vegetated lands. The NDVI value for a specific pixel always varies from 

-1 to +1, and the NDVI value of a pixel with no green leaves will be close to zero. Water bodies are 

specified by extreme negative values, surfaces with no vegetation cover result in zero NDVIs, and the 

highest density of green leaves is indicated by NDVI values close to +1 (0.8–0.9). NDVI is related to 

the leaf area index (LAI) and vegetation coverage; the higher the NDVI is, the larger the LAI, and the 

higher the vegetation coverage. Therefore, the NDVI indicates the vegetation cover level and acts as a 

beneficial index for monitoring vegetation variations and land cover changes. 

 

The aforementioned steps were applied to obtain the NDVI maps of the study area for 9 images. The 

‘Sum NDVI’ values indicate the summation of the NDVIs in all pixels of each subwatershed land cover 

map. The NDVI of each subwatershed was calculated using GIS tools. The summation of the NDVIs 
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(over all pixels) in each subwatershed was calculated as: 

                         (2-2) 

 

 

The climate data were used in the Penman-Montieth equation. Those data include net radiation (Rn), 

air temperature (Tc), wind speed (u2), saturation vapor pressure (es), and humidity (H). The time series 

data of these parameters were obtained from Japan meteorological agency with a time step of 1 hour. 

 

2.3 Description of models and methods 

2.3.1 Storm Water Management Model (SWMM) 

SWMM is a physically based, spatially distributed model for simulating all aspects of hydrologic and 

water quality cycles primarily within urban areas (Huber et al. 1988; Rossman 2010) (Fig 2.5 (a)). 

SWMM treats each catchment as a nonlinear reservoir (Fig 2.5(b)) and employs the combined 

continuity Eq. and Manning’s Eq. on each subcatchment (Huber et al. 1988). Usually, a subcatchment 

is defined as an area of land containing its own fraction of pervious and impervious surfaces whose 

runoff drains to an outlet point, which could be either a storm drain or another subcatchment (Rossman 

2010) 

  

𝑑𝑉𝑠𝑢𝑏

𝑑𝑡𝑐
= (𝐴 × 𝑖𝑒) − 𝑄𝑠𝑢𝑏                         (2-3) 

Where Vsub = volume of water on the subcatchment; tc = computational time step; Asub denotes the area 
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of the subcatchment; ie =effective inflow; and Qsub = subcatchment outflow, derived as follows: 

           

𝑄𝑠𝑢𝑏 = 𝑊𝑠𝑢𝑏
𝑘

𝑛
(𝑑 − 𝑑𝑠)5/3 − 𝑆𝑠𝑢𝑏

1/2
             (2-4) 

Where Wsub denotes the subcatchment width; k = conversion constant equal to 1.486 for U.S. metric 

units or 1.0 for SI units; n = Manning’s roughness coefficient; d = the depth of ponded water on the 

subcatchment surface; ds = surface depression storage; and Ssub = subcatchment slope.  

 

Fig 2.5. (a) Conceptual representation of the SWMM drainage system (Rossman, 2010), (b) Nonlinear 

reservoir model used to calculate surface runoff of a subcatchment. 
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Runoff routing in the pipe or channel was calculated by the one dimensional the St. Venant equations 

which include the Continuity equation and Momentum equation. They can be expressed as: 

𝜕𝐴𝑐

𝜕𝑡1
+

𝜕𝑄𝑐

𝜕𝑥1
= 0                      (2-5) 

 

𝜕𝑄𝑐

𝜕𝑡1
+

𝜕(𝑄𝑐2/𝐴𝑐  )

𝜕𝑥1
+ 𝑔𝐴𝑐

𝐻ℎ

𝜕𝑥1
+ 𝑔𝐴𝑐𝑆𝑓 = 0        (2-6) 

 

Here, x1 = pipe distance (m); t1 = time elapsed (sec); Ac = flow cross section area (m2); Qc = flow rate 

(m3/s); Hh = hydraulic head of water in the conduit (m);  

 

The SWMM model can use different method to calculate the infiltration process within a subcatchment. 

The possible method include: Horton’s method, Green-Ampt method, modified Horton’s method, 

modified Green-Ampt method, and curve number method. In this study, the Green Ampt method (Fig 

2.6) was adopted to calculate the infiltration, so this method is introduced here. The governing equation 

of Green-Ampt model is: 

                       (2-7) 

Where, 

fp = infiltration capacity into soil (m/hr) 

Ks = saturated hydraulic conductivity (m/hr) 

ψs = suction head along the wetting front (m) 

d = the depth of ponded water at the surface (m) 

Ls = depth of the saturated layer below the surface (m) 
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Fig 2.6. Conceptual representation of the two-zone in the Green-Ampt infiltration model  

 

2.3.2 Interception model- the Rutter model 

The Rutter model was used here. It is one of the foundations of modern interception modeling (Rutter 

et al., 1971; Rutter and Morton, 1977). It is a numerical model that uses continuous running equations 

describing the canopy water balance, trunk water balance, the rate of drainage from the canopy, 

evaporation from the canopy, stemflow and evaporation from the trunks: 

Canopy water balance: 

 

(1 − 𝑝 − 𝑝𝑡) ∫ 𝑅
𝑡𝑟

0
𝑑𝑡 =  ∫ 𝐷𝑐

𝑡𝑟

0
𝑑𝑡 + ∫ 𝐸𝑐

𝑡𝑟

0
𝑑𝑡 + ∆𝐶           (2-8) 

Trunk water balance:   

 

𝑝𝑡 ∫ 𝑅
𝑡𝑟

0
𝑑𝑡 =  𝑆𝑓 + ∫ 𝐸𝑡

𝑡𝑟

0
𝑑𝑡 + ∆𝐶𝑡                    (2-9) 

Canopy drainage: 

𝐷𝑐 = {
𝐷𝑠 exp[𝑏(𝐶 − 𝑆𝑐)]       𝐶 ≥ 𝑆𝑐

0                                      𝐶 < 𝑆𝑐
                   (2-10) 
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Evaporation from canopy:   

𝐸𝑐 = {
𝐸𝑃

𝐶

𝑆𝑐
     𝐶 < 𝑆𝑐

𝐸𝑃           𝐶 ≥ 𝑆𝑐

                        (2-11) 

Stemflow:   

                        (2-12) 

Evaporation from trunks:   

                        (2-13) 

Here, R is the mean rainfall rate, p is the free throughfall coefficient, pt is the stemflow coefficient, Sc 

is the maximum canopy storage capacity, tr is rainfall duration time, St is the trunk storage capacity, C 

is the actual canopy storage, EP is potential evaporation, EC is evaporation from the canopy, Et is 

evaporation from the trunk, 𝜖  describes the evaporation from the trunk as a proportion of the 

evaporation from the saturated canopy, DC is the rate of water dripping from the canopy, DS is the rate 

of water dripping from the canopy when the canopy storage capacity has been reached, b is an empirical 

drainage parameter, and I is interception. The conceptual representation of the relationships among 

these equations were shown in Fig 2.7. 
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Fig 2.7. The conceptual framework of Rutter model (adopted from Rutter et al, 1971) 

 

The Penman-Montieth reference evaporation equation was used to calculate hourly potential 

evaporation [EP] in the interception models. The Penman-Montieth equation requires observational 

measurements of maximum and minimum temperature, maximum and minimum relative humidity, 

solar radiation, and wind speed. Here, Rn is net radiation, GS is the soil heat flux density, TC is the air 

temperature, u2 is wind speed at 2 m height, es is saturation vapor pressure, ea is actual vapor pressure, 

H is humidity and γ is the psychometric constant. 

 

𝐸𝑃 =
0.408∆(𝑅𝑛−𝐺𝑆)+𝛾

900

𝑇𝐶+273
𝑢2(𝑒𝑠−𝑒𝑎)

∆+𝛾(1+0.34𝑢2)
          (2-14) 

 

2.3.3 Energy Balance model 

 

Solar radiation and atmospheric longwave radiation warm the surface and provide energy to drive 
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weather and climate. The energy is expended as follows： 

 

• Some of it is stored in the ground (or the oceans); 

• Some of it is returned to the atmosphere, warming the air; 

• The rest is used to evaporate water. 

 

These are the surface energy fluxes which we will be discussing in this Section. The surface energy 

balance equation is: 

(1 − 𝑟)𝑆↓ + 𝐿↓ = 𝐿↑ + 𝐻 + 𝜆𝐸 + 𝐺𝐻             (2-15) 

where r is the albedo of the surface (dimensionless), S↓ is the solar radiation incident on the surface 

(W/m2), L↓ is the longwave radiation incident on the surface (W/m2), L↑ is longwave radiation 

emitted by the surface (W/m2), H is sensible heat flux from thesurface (W/m2), λE is latent heat flux 

from the surface (W/m2) and GH is heat conducted away from the surface (W/m2). 

 

The left hand side of the equation denotes the energy inputs to the surface – gain terms - (also called 

the radiative forcing term). The right hand side of the equation denotes energy outputs from the surface 

(loss terms). The net radiation can be defined as follows:  

𝑅𝑛 = (1 − 𝑟)𝑆↓ + (𝐿↓ − 𝐿↑)               (2-16) 

 

The surface energy balance equation can be rewritten as, 

(1 − 𝑟)𝑆↓ + (𝐿↓ − 𝐿↑) = 𝐻 + 𝜆𝐸 + 𝐺𝐻          (2-17) 
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Thus, the energy balance equation is a statement of how net radiation is balanced by sensible, latent and 

conduction heat fluxes.  

 

Albedo (r): Aledo is the fraction of incident solar radiation reflected by a surface. It varies between 0 

and 1. The albedo of natural surfaces varies from about 0.1 (vegetated surfaces) to greater than 0.9 

(fresh snow). The albedo of a surface depends on the solar zenith angle, that is, it changes during the 

day time. 

 

Solar Radiation: Electromagnetic radiation from the sun is contained approximately between 0.3 and 4 

microns. The energy is inversely proportional to the wavelength. The total solar radiation at the surface 

can be as high as 1000 W/m2 at midday on a sunny day. A surface receives both direct and diffuse solar 

radiation. The amount of direct solar radiation incident on a surface varies with the solar zenith angle. 

Diffuse solar radiation is radiant energy that has interacted with the constituents of the atmosphere and 

thus has no directionality. The fraction of diffuse radiation depends on the cloud conditions. On clear 

days, the diffuse fraction is about 10-20% and varies with the solar zenith angle. 

 

Longwave Radiation: Terrestrial objects emit electromagnetic radiation in the wavelength range of 4 to 

100 microns. The amount emitted is given by the Boltzmann’s law as 

                    (2-18) 

Where (TS + 273.15) is absolute temperature in degrees Kelvin, σ is Boltzmann’s constant (5.67 x 10-

8 W/m2/K4) and ε is the emissivity of the surface (between 0.95 and 1).  
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Sensible Heat Flux: Movement of air carries heat and mass (water and carbon dioxide molecules, for 

example) away from an object. This is called convection or sensible heat transport. The heat flux can 

be represented as being directly proportional to the temperature difference between the object and the 

air surrounding it and inversely proportional to the transfer resistance (in analogy to Ohm’s law in 

electricity), 

                (2-19) 

Where ρ is density of air (about 1.2 kg/m3), CP is heat capacity of the air (about 1010 J/kg/K), Ta and 

Ts are temperature of the air and the surface, respectively, and rH is the transfer resistance (s/m), which 

depends on wind speed and surface characteristics. 

 

Latent Heat Flux: Heat is also lost from an object through evaporation and/or transpiration. This process 

involves transfer of mass and heat to the atmosphere from the object. Clearly, a significant amount of 

energy is required to change the state of water from liquid to gas. Importantly, this exchange does not 

involve temperature changes, that is, as energy from the surface is released into the atmosphere, it does 

not result in an increase in the temperature of the air surrounding the object. This latent heat of 

vaporization varies with temperature (about 2.43×106 J/kg at 30 °C). This latent heat is released when 

water vapor condenses back to liquid. The values of this item were calculated based on Penman-

Montieth equation mentioned in previous Section.  

 

Conduction: Conduction is transfer of energy in solids, that is, transfer of heat along a temperature 
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gradient due to direct contact. The rate at which an object gains or loses heat via conduction depends 

on the temperature gradient and thermal conductivity as: 

GH = κ(ΔT/ΔZ)                 (2-20) 

Where κ is thermal conductivity (W/m/K) – which is a measure of the ability of an object to conduct 

heat. 

 

 

2.3.4 Sensitivity analysis and calibration methods 

The water management of urban system have become an important issue which increased the need of 

enhancing the modeling for the hydrological and the water quality processes in both the overland flow 

and the flow in sewer systems. Nowadays many researchers and practitioners studying and managing 

stormwater sewer systems in urban catchments use semi-distributed models like SWMM, CANOE or 

MOUSE (Zoppou, 2001; Elliott and Trowsdale, 2007). These models are based on a description of the 

catchment as a set of subcatchments linked by a drainage network. The runoff generation processes are 

simulated for each subcatchment, and the network is used to simulate the routing of water to the 

catchment outlet. Due to the natural complexity, the number of parameters of these models are so large 

that the calibration and validation of such models require a huge amount of data and computation.  

 

In order to discern which parameters have the most influence over model performance and to identify 

what are the most appropriate parameter values, we need to find a way to screen out sensitive parameters 

and quantitatively evaluate the influence of each parameter on model performance. Sensitivity analysis 
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(SA) has been used by many people for this purpose. SA can identify parameters of which a reduction 

in uncertainty specification will have the most significant impact on improving model performance 

measures. Thus, if some non-influential parameters can be identified and fixed reasonably at given 

values over their ranges, the computational cost may decrease without reducing model performance. 

 

SA approaches based on design of experiment (DOE) have gained popularity recently because they 

offer sensitivity measures while maintaining computational efficiency. A typical DOE-based SA method 

involves two steps: first, generating a sample set of parameters within the feasible parameter spaces 

using a chosen design; and then, obtaining a quantitative attribution of model output variation due to 

the variation of different parameters. There are many sampling techniques, such as MC, Latin 

Hypercube (LH), Orthogonal Array (OA) and Orthogonal Array based Latin Hypercube (OALH), 

which are commonly used for DOE-based SA. Some DOE based SA methods, such as Morris One-At-

a-Time (MOAT), Fourier Amplitude Sensitivity Test (FAST), and extended Sobol method, require 

special sampling techniques. More recently, along with the development of response surface methods 

(RSM), SA based on RSM makes it cheaper for estimating parameter effects. 

 

In this study, 2 methods of sensitivity analysis were used. One is a Morris One-At-a-Time (MOAT) 

method: 

𝑆𝑒 = ∑
(𝑌𝑖+1−𝑌𝑖)/𝑌0

(𝑃𝑖+1−𝑃𝑖)/100
/𝑛𝑛−1

𝑖=0                        (2-21) 

Where:  Se: Morris sensitivity 

         Yi: Model output of the i th run (output refers to peak flow (m3/s) or total flow (m3)), 

         Y0: Model output of initial parameter values, 
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         Pi: Variation degree of a certain parameter in the i th run, 

         n: times of model run. 

In this study, the fluctuation range of parameters were set to [70%, 130%] with a step of 5%.  

 

Another method is the Variance based Global Sensitivity Analysis (GSA) methods. Variance GSA 

methods explore the entire parametric space of a model by simultaneously using different combinations 

of values for each uncertain parameter. The Sobol method is an example of a variance based GSA 

method. Sobol uses a quasi-Monte-Carlo based method to decompose the model variance (Saltelli et al., 

2004). The total variance of the model is partitioned in terms of increasing dimension, which represents 

the contribution of single, paired, tripled, etc. parameters to the overall model sensitivity: 

             (2-22) 

Here, y is the model output, z is the total number of parameters, Vi is the first order effect for each 

parameter, Vij is the second order interaction between two parameters, etc. 

The first order sensitivity index [Ni] and the second order sensitivity index [Nij] for each parameter is 

given by the following equations:  

                            (2-23) 

                             (2-24) 

Thus, the total sensitivity index [NTi], which is given below, represents the total contribution to the 

output variance by a single parameter from first and higher order interactions. The complete description 

of this method could be found in (Sobol, 1993) and (Saltelli et al., 2004) 
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            (2-25) 
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Chapter 3. Sensitivity analysis and model calibration 

 

3.1 Runoff model build up 

Subatchments for the SWMM model were delineated using available sewer network data maintained 

by the local water supply office, complemented with catchment information acquired through on-site 

observations in wet and dry conditions. The catchment surface was categorized using different surface 

types and further subdivided based on the land-use type. The high-resolution discretization based on 

surface types results in subcatchments covered by a single surface type and homogenous surface 

properties (e.g. green area, asphalt surface, roof surface). Thus, the vast majority of subcatchments are 

either 100% impervious or pervious. Consequently, these subcatchments are conceptionally not 

subdivided into pervious and impervious sub-areas. The remaining subcatchments are areas covered 

with stone pavers, cobble stone, or asphalt. The corresponding pervious fraction of 5% for these surface 

types represents cracks in the asphalt surface and seams for stone paver and cobble stone surfaces and 

allow for infiltration of surface water. However, as the pervious sub-area of these surface types is very 

small, they were assigned the same parameter value applied to both the pervious and impervious sub-

areas (i.e. the subcatchment depression storage D include Di (impervious), Dp (pervious) and the 

subcatchment Manning’s n include ni and np). This simplification allows the reduction of the number 

of calibration parameters and the potentially larger depression storage and Manning’s n of surface 

cracks and seams are accounted for in the parameter values for the entire surface. Thus, in this study, 

the annotation ‘‘pervious’’ refers to pervious surface types (e.g. vegetation, lawn, etc.) and the 

annotation ‘‘impervious’’ refers to impervious surface types (e.g. asphalt, metal sheeted roofs, etc.), 
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rather than subcatchment sub-areas. The created surfaces were then further subdivided to assign 

stormwater sewer network inlets and to describe flow paths of overland flow between subcatchments 

before runoff enters the drainage network. Each sub-catchment was built upon small urban structures 

like a single rooftop, a single garden or a short part of road. This made each sub-catchment to be 

occupied by a single land use type. The routing between sub-catchments could better represent the 

actual flow path at micro scale. In this model, not only the drainage conduits underground, but also the 

street gutters (small trench) with fixed cross section beside the road were considered and modeled 

explicitly. 

 

 

3.2 Sensitivity analysis method and results 

Five rainfall event were selected for sensitivity analysis. These rainfall included 3 single rainfall events 

recorded in 2017, a designed extreme rainfall and a long series rainfall for the entire year of 2016. The 

snow events of 2016 were picked out and then removed from the series. The shape of the three single 

rainfalls were single peak, double peak and non-peak flat rainfall with similar total rainfall amount. 

Their characteristics were shown in Table 3.1. We developed models with 2 different resolution, the 

ordinary and high resolution (Fig 3.1). The ordinary model was delineated based on urban block. Each 

block was treat as a homogenous area and the flow with the block was neglected. While the high 

resolution model was delineated based on each roof, garden and road. The flow direction between 

different components were modeled explicitly. The considered parameters were listed in Table 3.2. 
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Fig 3.1 Surface discretization and flow routing for the high (a) and ordinary (b) resolution model 

 

Table 3.1  The characteristics of rainfall events used in sensitivity analysis 

 Rainfall depth (mm) Rainfall duration 

   
Single peak rainfall 24.5 3.2 h 

Double peak rainfall 27.5 4.5 h 

Flat rainfall 21 12 h 

Extreme rainfall 199 6 h 

Long series rainfall 1117 1 year 
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Table 3.2  Parameter abbreviations and descriptions. OR=ordinary resolution, HR=high resolution, 

LS=local sensitivity, GS=global sensitivity. The “x” indicates that the parameter is considered in 

sensitivity analysis 

ABBREVIATION DESCRIPTION 

OR HR 

LS GS LS GS 

      
%Imperv Impervious ratio X  X  

Min-inf Hydraulic conductivity  X  X  

Max-inf Initial infiltration rate  X X X X 

N-imp Manning’s roughness at imperv surface X X X X 

N-perv Manning’s roughness at perv surface X X X X 

N-con Manning’s roughness of pipe X X X X 

D-imp Depression storage at imperv surface X X X X 

D-perv Depression storage at perv surface X X X X 

 

The results of global and local sensitivity analysis were shown in this section (Fig 3.2, Fig 3.3 and Fig 

3.4). The sensitivity analysis had identified the most and least important parameters in the model. 

Overall, the parameters behaved similarly in different precipitation and with different objective function, 

with the most and the least important parameters fairly consistent across scenarios. For local sensitivity 

(Fig 3.2), the ranks of parameters were similar in different rainfall, resolution and criteria. 

Imperviousness was the most sensitive parameter, and its sensitivity was much larger than other 

parameters. The secondary important parameters were N-imp and D-imp. Relatively, infiltration 

parameters, the infiltration parameters, were not sensitive. The sensitivity performance of annual 

rainfall and single rainfall were different in some degree. In the annual rainfall, the Imperviousness 
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impact was less than that in the single rainfall while the depression storage parameters impacts were 

larger than that in single rainfall. 

 

 

 

Fig 3.2 Local sensitivity results of (a) ordinary resolution, peak flow (b) ordinary resolution, total flow (c) 

high resolution, peak flow (d) ordinary resolution, total flow. 

 

For the global sensitivity analysis (Fig 3.3), the results were generally similar with the local sensitivity 

analysis. As the imperviousness was not taken into consideration, generally the most important model 

parameters were depression storage and roughness parameters. For total flow, D-imp accounted for 
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15%-24% of the total model sensitivity and followed was the N-imp accounted for 16-30%. For peak 

flow, N-imp was the most sensitive parameter which accounted for 15% of the total, D-imp was 

followed by an occupation of 15% of total sensitivity. The specific ranking of the top most important 

parameters varied between different rainfall events and evaluations criteria. There were a number of 

parameters that were relatively unimportant in all of the models. The infiltration parameters max-inf, 

min-inf, and the appended parameters in the high resolution model, also showed unimportant characters. 

The sensitivity occupations of these parameters were usually less than 10%.  

 

 

Fig 3.3 Global sensitivity results of (a) total flow (b) peak flow. 
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Fig 3.4 The hydrograph comparison with different parameter perturbations, (a) Manning’s roughness, (b) 

Impervious ratio, and (c) Depression storage depth. 

 

For the long series annual rainfall event, the importance of depression storage and infiltration 

parameters were increased obviously (Fig 3.2). The main reason of this was the distribution 

characteristics of the rainfall in the entire year. Among the 1117 mm rainfall of 2016, the small rainfall 

events occupied a large proportion of the total rainfall. These small rainfall event usually generated only 

little amount or completely no runoff. The large proportion of the rainfall was intercepted by the canopy 

and shrubs and stored by the depression on the land surface. The intercepted or stored water was then 

evaporated. Infiltration process in this situation was relative significant because the infiltration capacity 

was considerable compared with the small rainfall depth. Thus, on the scale of the entire year, the 

interception and infiltration were actually important processes. Meanwhile, from the same reason, the 
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roughness parameters like N-imp or N-conduit were less important compared with single events. 

 

We considered several different rainfall types of single event, including the typical single peak event, 

double peak event, mild flat rainfall event and designed extreme event. We found that when the total 

amount of rainfalls were similar, the temporal distribution characteristics of rainfall had an impact on 

the results. The results of single peak and double peak rainfall were quite similar. The result of mild flat 

rainfall had some differences compared with peak rainfalls while the infiltration parameters became 

more important. The reason might be that the small intensity allowed more amount of infiltration, which 

made the infiltration a more important process. And for the extreme rainfall, the parameter sensitivities 

showed a large difference compared with other rainfalls. The importance of infiltration and depression 

storage decreased a lot. The roughness parameters were decreasing as well. As an only exception, the 

sensitivities of impervious ratio did not change much, which was still an important parameter. This was 

because that this designed rainfall was with very strong intensity and very large rainfall amount. The 

infiltration and depression storage capacities were soon overwhelmed by the vast amount of rainfall 

water. Also a very fast routing process occurred. At this situation, the importance of roughness also 

decreased. 

 

For different resolutions of the model, the differences were relatively small, which might indicate that 

the model spatial resolution did not have a large impact on the sensitivity. Fig 3.5 showed a comparison 

between OR and HR. We can see that the sensitivity changes for most parameters are not significant. 

The conduit roughness was an exception. The sensitivity of this parameter increased in the high 

resolution model. Also the N-imp decreased slightly compared with the ordinary resolution model. This 
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was mainly because of that different modeling way of high and ordinary resolution model. In high 

resolution model every underground pipe and gutter beside the road were modeled explicitly. The 

change of resolution had altered the form of surface routing process in some degree. Even though, the 

differences of sensitivity were not significant.  

 

 

Fig 3.5 Cross comparison of sensitivity results (a) between different rainfalls (b) between different 

resolutions. 

 

 

3.3 Calibration method and results 

The model was optimized by using an automatic calibration method based on genetic algorithms. 

Genetic algorithms (GA) is a meta-heuristic that belongs to the larger class of evolutionary algorithms. 

In recent years, it has been widely used in the optimization of hydrological modeling. The detailed 

description of genetic algorithm were shown in Section 2.3.4. In this study, the monitored rainfall runoff 

data were divided into the calibration period (from 26th February to 31st May of 2018, and from 1st 

Mar to 30th Jun of 2019) and validation period (from 1st June to 30th Oct 2018). The Nash–Sutcliffe 

efficiency (NSE) was selected as the objective function for the optimization: 
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𝑁𝑆𝐸 = 1 −
∑ (𝑄𝑚

𝑡 −𝑄𝑜
𝑡 )

2𝑇
𝑡=1

∑ (𝑄𝑜
𝑡 −�̅�𝑜)

2𝑇
𝑡=1

                     (3-1) 

Where �̅�𝑜 is the mean of observed discharges, and 𝑄𝑚
𝑡  is modeled discharge while 𝑄𝑜

𝑡  is observed 

discharge at time t. The higher values of NSE represent more accurate models. After simulation, the 

NSE values in calibration period and validation period were calculated. All the rainfall events in certain 

period were connected into one longer series and the monitored and modeled data of this longer series 

were used for calculating. Thus, the calculated NSE values represented the general performance in the 

period and the irrelevant part (base flows) was effectively avoided.  

 

For S1 model, due to its highly detailed representation method and the single land use type on each sub-

catchment, the information like the imperviousness land surface or the flow path length could be all 

identified. The soil type in the study area was dominated by clay loam, thus the corresponding 

infiltration parameter values in the SWMM manual were used here. Even though, the depression storage 

parameters (di/dp: depression depth on impervious/pervious surface) and the roughness parameters (ni, 

np and nc: the manning’s roughness of impervious/pervious surface and of conduits) remained unknown. 

Thus the values of these parameters were obtained through model calibration. Fig 3.6 had shown the 

hydrographs of several calibration and validation events. 
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(a) Hydrograph of 1st Mar 2018 event for calibration; 

 

(b) Hydrograph of 17th May 2018 event for calibration; 
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(c) Hydrograph of 29th Jun 2018 event for validation; 

 

(d) Hydrograph of 5th Jul 2018 event for validation. 

Fig 3.6 Hydrographs of calibration and validation events (a~d).  

 

3.4 Discussion 

This sensitivity analysis had identified the most and least important model parameters. The impervious 
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ratio, the depression storage and surface roughness parameters were important parameters. The 

infiltration related parameter were unimportant. The impervious ratio was a very important parameter. 

Its sensitivity was much larger than any other parameters. Nevertheless, the development of GIS and 

remote sensing technology allowed users to get higher quality impervious information. Actually 

currently the modeler could determine the impervious area in a very high accuracy. (Krebs et al., 2014) 

had built a high resolution model of an urban catchment and only N-conduit and depression storage 

parameters were calibrated, the model showed good performance during validation. On the other hand, 

although the accurate impervious area can be got, they are lack of a further classification such as the 

determination of EIA (directly connected impervious area), which was reported to play an important 

role in the rainfall runoff modeling (Yao et al, 2016). 

 

For roughness parameters, the result showed that they were important parameter. What was more, it 

was usually difficult to measure these parameters directly. Even though some measurement could be 

done, it was hard to deal with the spatial differences of the parameter. Thus these parameter were usually 

regarded as calibration parameter. And based on our analysis, the peak flow was suitable to use for 

calibrating roughness parameter. 

 

For depression storage parameters, they were quite important in some certain situation. Actually in 

SWMM model these parameters were effective parameter that represent a general behavior. In our case 

the entire interception process including not only the interception of the land surface but also the 

interception of different layers plants like the canopy, shrubs and grass. Therefore, on the one hand, the 

total runoff amount should be used to calibrate there parameters. On the other hand, these parameters 



63 

 

had the potential to be further divided. One way to do this was the integrated modeling method which 

explicitly modeled the plant interception process. The spatial distributed remote sensing data like NDVI 

could be used to reduce parameter uncertainty. This will be the future work after sensitivity analysis. 

 

3.5 Brief summary 

 

The key parameters for calibration found in this study were the depression storage parameters and the 

Manning’s roughness parameters. All other potential calibration parameters were found to have no or 

little effect on the simulation results. The high spatial resolution in this study, resulting in detailed 

catchment disaggregation into individual homogenous surfaces, allows very accurate initial estimates 

and narrow boundaries for surface properties. The chosen approach limits both the number of 

calibration parameters and individual parameter ranges. (Ghosh and Hellweger, 2012) showed that the 

scale effect of catchment disaggregation is partly induced by the effects of conduit routing on runoff 

dynamics for smaller storms in the range explored in this study. Conduit length decreases when the 

sewer network becomes less dense with coarser catchment resolution.  

 

The calibrated model performed well in terms of the Nash-Sutcliffe efficiency with the E values of more 

than 0.8 and 0.7 for the calibration and the validation, respectively. The quality of high frequency 

rainfall-runoff data is a critical issue in a successful calibration and validation of an urban hydrological 

model. The calibration, addressing only the identified key parameters and hence drastically reducing 

the number of calibration parameters, produced good results throughout the investigated statistical 
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measures for both calibration and validation. 
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Chapter 4. Effects of model spatial resolution 

 

4.1 Different model scales 

The models of the study area were build up at 4 levels of spatial resolution (S1, S2, S3, and S4). The 

S1 model which had the highest resolution was build up firstly. The principles of establishing S1 model 

referred to some previous research about high resolution or hyper resolution urban hydrologic model 

(Krebs et al., 2014; Amaguchi and Kawamura, 2016; Noh et al., 2018). Each sub-catchment was built 

upon small urban structures like a single rooftop, a single garden or a short part of road. This made each 

sub-catchment to be occupied by a single land use type. The routing between sub-catchments could 

better represent the actual flow path at micro scale. In S1 model, not only the drainage conduits 

underground, but also the street gutters (small trench) with fixed cross section beside the road were 

considered and modeled explicitly.  

 

The sub-catchments of S2 model was discretized based on the urban blocks. The idea was similar to the 

concept of Urban Hydrological Elements (UHEs) proposed by Rodriguez et al., (2008). In S2 model a 

sub-catchment included a single residential block and the road surrounding them. All the gutters was 

neglected in this level but all underground conduits were remained.  

 

S4 model was delineated by the partitioning information of pipelines system provided by Sewer 

Administration Office. The whole catchment was divided to 6 sub-catchments. Those sub-catchment 

drains directly to a most downstream inlet within the sub-catchment and the pipes located at upstream 
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of that inlet was neglected.  

 

S3 was a transitional scale between S2 and S4. Several adjacent blocks in S2 were aggregated to form 

larger UHEs than S2 model according to the drainage directions. Similar with S4, the pipes within each 

sub-catchment was omitted. The spatial representations of models were shown in Fig 4.1and a brief 

summary of these 4 levels of models was listed in Tab 4.1.  

 

 

Fig 4.1 The spatial resolutions representations of different model scales: (a) S1 model; (b) S2 model; (c) 

S3 model; and (d) S4 model. The orange lines showed the boundaries of the subcatchments; the blue 

lines showed the underground pipes modeled. The gutters in S1 model were not showed here. 
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Table 4.1  Characteristics of 4 models with different level of detail. 

Model 
Sub-catchment 

number 

Average sub-

catchment area (m2) 
Modeled conduits 

Total conduits 

length (m) 

S1 3216 143.4 
All Pipes and street 

gutters 
18331.1 

S2 147 3138.1 All pipes 6400.9 

S3 26 17742.2 Partial pipes 3642.3 

S4 6 76883.3 Partial pipes 1033.8 

 

Area weighted average of parameter values. After the calibration of S1 model, the parameters values of 

S2, S3 and S4 model were derived from S1 model by parameter upscale. Most of the parameters 

including the imperviousness, slope, depression storage and roughness were calculated by area 

weighted average method during upscale process. Dominant parameters like the proportion of EIA 

(Effective Impervious Area: the impervious area which were directly connected to drainage sewer) and 

TIA (Total Impervious Area) within particular area were conserved during upscale. In the SWMM 

model, the pervious sub-area routing was set as the routing mode in order to represent the EIA 

proportion within sub-catchments by adjusting the sub-area routing ratio (Kong et al., 2017). The width 

parameter were determined using the method proposed by (Guo et al., 2011) because it took sufficient 

consideration of the impact of surface flow convergence pattern on width parameters. 

 

4.2 Results and comparison 

After the parameterization, these models would run under different rainfall events to find how the model 
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spatial discretization degree affected the simulation results. The rainfall used for simulation here include 

the events which was collected by two tipping-bucket rain gauges within the catchment from 26th 

February 2018 to the 29th July 2018 and include 23 individual events with a record resolution of 0.5mm. 

Those measured rainfall events were also used for model calibration and validation. Some additional 

rainfall data got from the Japan Metrological Agency were also used in the simulation. These rainfall 

data included 39 rainfall events from July to October of 2017 and was collected by a metrological station 

at Sendai city which was around 4.2 km to the study site with 0.5 mm resolution. Those original rainfall 

data were processed into rainfall data with 5 minute temporal resolution that can be used in the 

hydrological models. All those rainfall data were used for simulation to observe the scale effect of 

model. 

 

The S1 model was firstly calibrated. The detailed information were mentioned in Section 3.2. Afterward, 

the parameters of S2-S4 models were determined by area weighted average method in upscale process. 

And those models with different resolutions were run under all the 62 rainfall events. Fig 4.2 showed 

the hydrographs of two rainfall events: 5th Mar 2018 and 17th Sept 2017. It can be seen that the model's 

response to rainfall was weakened with the decrease of resolution with the most obvious phenomenon 

to be the deceasing of peak discharge. The decreasing trend of peak discharge was more distinct in the 

17th Sept 2017 event.  
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Fig 4.2 Hydrographs comparing of models with different resolutions. (a) Rainfall event of 5th Mar 2018; 

(b) rainfall event of 17th Sept 2017. 

 

In order to compare the results of all the rainfall events, the general trends observed in the hydrologic 

outputs should be identified. The S1 model with the highest resolution was used as reference model. 

Hydrological modelling outputs were analyzed based upon these statistics: relative peak flows and 

relative total flows. The peak flows and total flows were normalized to those results of the S1 model. 
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Fig 4.3 had generalized the results of all the rainfall events simulated. It can be seen that as the spatial 

scale of the model decreased, the total flow and peak flow tended to decrease as well. While the 

variations of total flow were very slight, and the peak flows of different resolution showed a distinct 

variation. 

 
Fig 4.3 Boxplots of relative peak and total runoff (S1 results as the reference value). (a) relative peak and 

total runoff for all rainfall events; (b) relative peak flow for different rainfall depths; (c) relative peak 

flow for different peak rainfall intensities; (d) relative peak flow for different rainfall durations. 
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4.3 Analysis of scale effects 

Generally speaking, the coarsening of model spatial resolution lead to a decreasing of both peak runoff 

and total runoff. It should be pointed out that not all simulation scenarios strictly follow this trend, and 

actually there were exceptions in the results. However, from the larger point of view, this general trend 

was clear. At the same time, rainfall characteristics had an impact on the degree of models’ scale effect. 

The larger the peak intensity and total depth, the more obvious the scale effect (fig.3 (b) and fig.3 (c)). 

Thus the impacts of rainfall should be considered simultaneously. In order to quantify those scale effects, 

the method of dimensional analysis (Legendre et al., 2012) was used here. 

 

Since the total flow rate showed little variation with different spatial resolutions while the variation on 

the peak flow rate was more obvious, only the results of the peak flow rate was quantified. The sub-

catchment average size dx (square of average sub-catchment area) and drainage density dd (total 

conduits length divided by catchment area) was used to represent the level of discretization degree of 

different models. The peak 10 minutes rainfall intensity Ipk was used to represent the rainfall 

characteristic. The relative peak flow was selected as the independent variable, and the other factors 

were selected as the dependent variable. Then a scatter plot of the independent variable and the 

dependent variable were made. After several round of trial and error, an empirical relationships were 

obtained. 
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Fig 4.4 Scatterplots of relative peak flow versus combinations of rainfall intensity (Ipk) and resolution 

index (dx, dd). 

 

In Fig 4.4, the relative peak flow were plotted as a function for different resolution and rainfall intensity 

combinations. An exponent function was fitted to the resulting plots. The function structure was defined 

as:  

Rel.Qp=A1*exp( (-Ipk*dx)/t1)+y0                       (4-1) 

Rel.Qp=A1*exp( (-Ipk/dd)/t1)+y0                       (4-2) 

The obtained A1, t1 and y0 parameters and the associated coefficient of determination (R2) of the fitting 

were summarized in Fig.4. The exponent functions provided a rough estimate of what hydrodynamic 

modelling performance could be expected for a given input resolution and rainfall peak intensity. 

 

After obtaining these results, another question was how to use these results. Fig 4.4 had showed the 

relationship between relative peak flow and resolution with rainfall intensity. My opinion is that these 

results could be used as an error estimation framework in practical situation. In practical usage of 

hydrological models in a new area without observed flow data. In such a situation, the determination of 

the parameter will refer some manual or previous studies. In such a case, the scale differences should 
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be noted. If there were scale differences, there will be errors in modeled results. Also the impact of 

rainfall will be considered because rainfall intensity is one major factor that can affect the peak flow 

estimation which is one of the most important purpose of modeling. The results showed in Fig 4.4 can 

help determine the peak flow estimation errors for certain model scale under certain rainfall intensity. 

 

4.4 Parameters variation analysis 

S2, S3 and S4 models were calibrated independently to find if calibration overcome the scale effect and 

how the parameters will change. Following the calibration of S1 model, here 5 calibration parameters 

were selected: The depression storage parameters (di and dp) and the roughness parameters (ni, np and 

nc). Other parameters like Slope, TIA and EIA were obtained by area weighted average. As stated in 

section “Model parameterization and simulation design”, due to its importance and particularity, EIA 

was necessary to be considered as calibration parameter. So this generated a secondary calibration 

scenario in which EIA was regarded as unknown and thus 6 parameters were calibrated (5 above 

parameters and EIA). The models performance during calibration and validation period were shown in 

Fig 4.5. 

 

It was clear that the performance of S2-S4 models were similar with S1 model after independent 

calibration. The NSE value of all the model exceeded 0.83 for calibration sequence and 0.71 for 

validation period. This indicated that calibration process could compensate the differences caused by 

scale effect. The calibration performance of models were almost the same, while the prediction ability 

had small difference. For the NSE during validation period, of S1, S2 and S3 were slightly higher than 
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that of S4.   

 

When EIA was regarded as calibrated parameter, the models performances in calibration period was 

quite good and NES value were equal to or slightly better than the previous calibration that did not 

taken EIA into consideration. However, the NSE values during validation period were relatively lower 

than previous results. Among them the NSE of S4 model had an obvious declining. This phenomenon 

indicated that the calibration method had caused over-parameterization in a certain degree. The above 

analysis demonstrated that it was better to use the detailed spatial distributed EIA parameter in model 

application when this information was available. 

 

Fig 4.5 Performance of models for independent calibration. (a) Roughness and depression storage were 

calibrated parameters; (b) roughness, depression storage and EIA were calibrated parameters. 

 

In order to better represent the spatial resolution effect on model calibration, the NSE response surface 

of certain parameters were analyzed. Fig.6 showed a certain slice of objective function surface for ni vs 

nc, EIA vs ni and EIA nc bi-variance parameter domain while other parameters remained at their optimal 

values. It was obvious that the domain of ni and nc showed a long strip structure. This indicated that 
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those 2 parameter interact with each other. This kind of dependence between parameters was harmful 

to model build up and parameterization. The reason for this phenomenon was that the model structure 

and certain assumptions in which all the runoff was firstly in the form of overland flow and then all the 

runoff drained into an inlet and became conduit flow. This assumption simplified the complex runoff 

process and the interactions between different flow pattern and may be had large differences with real 

world process and thus caused conceptual error (Leandro et al., 2016; Salvadore et al., 2015). 

 

Fig 4.6 Impacts of model spatial resolution on the response surface of performance objective function 

(NSE). Several principle parameters conbinations were considered: (a) ni vs nc, (b) EIA vs ni and (c) 

EIA vs nc. The black dot represent the calibrated optimal value. 
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When EIA was introduced, the NSE response surface showed large difference with that of the ni vs nc. 

Firstly, as EIA had a relative large impact on model, the shape of NSE contour had a big change with 

the direction of EIA. And relatively, the impact of ni and nc parameter were weakened. Different from 

previous, the EIA did not show clear interaction or dependence with ni and nc parameter. The shapes of 

the NSE contour were no longer a strip but oval. All the scenarios had a similar macroscale shape with 

different microscale features.  

 

The optimal calibrated parameter values were also showed in Fig.6. It could be seen that the values of 

impervious surface roughness (ni) had a declining trend with the increase of model resolution. The 

calibrated ni parameter values of S2 to S4 models were 0.022, 0.019 and 0.015 (fig.6 (a)). It is mainly 

because that the peak flow variations of different models were compensated by this parameter. The 

values of conduits roughness (nc) did not show a clear pattern after calibration. The calibrated EIA ratio 

were quite similar among different model scales and this emphasized the importance of correctly 

determining EIA value in model applications. The area of the orange region (NSE>0.8) and red region 

(NSE>0.85) indicated the degree of equifinality of the models. It can been seen that the equifinality 

existed not only in different parameter sets of the same model but also among different models. 

 

As stated in Section 2.1, the drainage system divides the study area into 2 drainage catchments: a larger 

one of 41 ha and a smaller one of 5.1 ha. Previously calibration and validation were based on the runoff 

data observed at outlet of the larger catchment (OT1). For models with different scales, the 

corresponding optimal parameters values were determined by model calibration. In order to evaluate 
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the universality of those calibrated parameter sets. The calibrated parameters values of the larger 

catchment models were used in the small catchment models of corresponding spatial resolution.  

 

The results were shown in fig.5. In the aspect of NSE value, the performance of all the scales had a 

declining compared with catchment alpha. Among them, S1 and S2 model had a relative low declining 

and S3 model had a larger decrease in NSE performance. This indicated that the best solution found by 

calibration could be the optimal at entire catchment scale but not at local scale. The reason could be that 

the equifinality effect was difficult to eliminate and this hampered the small scale performance. Also, 

there could be errors on model structure and parameterization and global optimal is a result of errors 

compensating with each other which lead to poorer performance at local scale. The actual reason was 

probably the combination of above possible explanations. 

 

Fig 4.7 Performance of models for regionalization of the OT2 outlet during calibration and validation 

period.  

 

This kind of performance declining at local scale manifest that there were disadvantages of current used 

single point data calibration method. Thus, the distributed calibration or process based calibration 

should be advocated in order to improve local scale performance of distributed model. The error 
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identification or reduction of model structure is also important. For example, a model sub-catchment 

can represent a very small area like single roof top and it can also represent a relative large catchment 

which main contain hundreds of roof tops and conduits. But we actually expect them to have a same 

performance pattern. Thus the improvement of model theory is still essential. A detailed distinguish and 

quantification is beyond the scope of this research but is an interesting topic in future research. 

 

4.5 Discussion  

There had been some previous studies on model scales issues but the conclusions are not the same. 

(Ghosh and Hellweger, 2012) found that the total discharge was not affected by the model resolution 

while the peak flow rate showed a dual scale effect. (Guo et al., 2011) concluded that that a model with 

more drainage details results in higher peak flows. However, in these studies, the method to determine 

or maintain the parameters at different spatial resolution modes was ambiguous. (Krebs et al., 2014) 

had found that model aggregation increased peak flow rates but this could be due to that the EIA 

parameter was not maintained: all the imperviousness area in high resolution model became EIA in low 

resolution model. In this study we found that the model aggregation led to a decrease in peak flow while 

the total runoff was not affected. By summarizing the above studies, it could be found that, in general, 

the total outflow was less affected by the resolution of the model, while the peak flow was affected 

more greatly with different variation trends. This could be because of that total outflow were controlled 

by several important factors: The infiltration rate, the pervious ratio and the EIA ratio. All these factors 

were kept constant at catchment scale using areal weighted average method during the upscale. So the 

infiltration process and infiltrated amount were quite similar in different models, this is why the total 
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flow changed little. While the peak flow is quite different. Although the factors responsible for peak 

flow rate (the roughness parameters, the slope and depression storage parameters) were obtained using 

area weighted averaged method, the surface runoff routing process itself was non-linear. Also different 

EIA distribution may have an impact on peak flow. So the peak flow rate cannot be maintained across 

scales. 

 

Meanwhile, our results show that rainfall characteristics also have an effect on the scale effect of the 

model. Then the scale effect caused by spatial resolution and rainfall intensity was quantified. The 

quantification results showed that a exponent function can well represent the scale effect and this can 

be used as an error estimation method in practical application. Those quantification had provided useful 

insights into the impacts and interactions of model resolution and rainfall characteristics but should be 

applied with caution in practical use. 

  

While discussing the impact of model spatial resolution on the results, the calibration of models with 

different resolution is also worth mentioning, which include the performance of the model after 

calibration, and the comparison of the calibrated parameter values (Merz et al., 2009; Wildemeersch et 

al., 2014). When considering only the roughness and depression storage parameter, the models can 

always have satisfied performance with respect to resolution. When the EIA is considered, the predictive 

ability showed a decline. This indicated that EIA and its distribution were key information for the model. 

Therefore, when then benefit of high resolution data were removed (EIA considered as unknown 

parameter), a coarse model resolution may lead to a relatively poor EIA identification and performance. 

The selection of model scale should be related to the data obtained and purpose of the model. In our 
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case, the scale of S2 and S1 were both considered satisfying while the S3 and S4 model had the potential 

of performance declining. Thus it is suggested that in such small urban areas the urban block scale is 

recommended in hydrological modeling. 

 

Also, the response surface analysis suggested that equifinality existed among different models and 

parameter sets, and the scale of the model had a certain influence on the parameter domain and the 

corresponding surface. Among them, the parameter ni, nc has an interaction relationship, and its 

response surface shape was greatly affected by the accuracy of the model. The corresponding surface 

associated with EIA was more stable in shape. On a large scale, the reduction in accuracy did not destroy 

the shape of the corresponding surface, nor does it led to mathematical artifacts. The distribution 

information of EIA only affected the performance of the model to a small extent although several 

previous research suggested that EIA distribution had a great impact. This would be a topic worthy of 

further discussion. 

 

4.6 Brief summary 

 

This Chapter attempted to analyze how the model performance and parameter optimization were 

affected by model grid resolution for a given model structure, SWMM. The performances of models 

with different resolution were compared. The parameterization and prediction capacities were discussed 

during and after the calibration. The conclusions are as follows:  
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Although weighted average method was used, there were obvious scale effect across models due to the 

non-linearity nature of model structure. With the coarsening of grid, both the total and peak runoff tend 

to decrease while the variations of peak runoff rate was quite obvious while the relative differences can 

be larger than 30%. The effect of spatial resolution on simulated peak flows is also influenced by storm 

characteristics. The impact of these factors was quantified by dimensional analysis and a exponent 

function was fitted to the resulting scatter plots. This provide useful insights into the impact and 

interaction of spatial resolutions and other factors as well as a practical estimation of the performance 

that can be expected for a given model input resolution.  

 

After independent calibration, all the models showed satisfying performances. The performance of the 

calibrated models were similar to the S1 model (NSES2=0.837, NSES3=0.836 and NSES4=0.841). 

This meant that calibration could completely compensate models’ scale effect. When EIA was 

considered as a calibrated parameter, the NSE value of S2, S3 and S4 model during calibrated period 

were 0.859, 0.863 and 0.845, while the performance of validation period hold the line or decreased 

(NSES2=0.744, NSES3=0.685 and NSES4=0.613). The objective function surface of the models were 

analyzed. It could be found that the grid resolution led to the change of the overall shape of the surface 

and deviation of the best performance area. 
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Chapter 5. Interception process and energy balance 

modeling 

 

5.1 Interception modeling and integration 

There were a lot of parameters (Table 5.1) in Rutter model and one of the most important one is the 

canopy storage capacity. The initial steps were to obtain the NDVI maps within the study area for 

different seasons.  

 

 

Fig 5.1 The LAI measure locations in the study area 

 

At the same time, the LAI were measured at 2 locations within the catchments (Fig 5.1). Those 2 

locations were both covered by urban forest and could be considered homogenous in a relatively larger 
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scale. The LAI-2200C Plant Canopy Analyzer were used to measure LAI values. 

 

Many previously research had showed that the NDVI and LAI had a statistical effective relationship 

although those relationships were not exactly same. Several representative relationships from previous 

studies were generalized in Table 5.2 as well as their study site information. The relationships of NDVI 

and LAI calculated from these equations were shown in Fig 5.2. 

 

Table 5.1  Parameters used for Rutter model. Reference values adopted from (Linhoss et al.2016) 

Abb. description Parameterization 

RP Precipitation (mm) Data 

Pf free throughfall coefficient (%) Reference  U(0.06, 0.55) 

pt stemflow coefficient (%) Reference   U(0.0031, 0.0600) 

Sc canopy storage capacity (mm) Calculated from NDVI 

C Current storage (mm) Calculated real-time 

St trunk storage capacity (mm) Reference  U(0.0037, 0.9800) 

EP potential evaporation Calculated from P-M eq. 

EC Canopy evaporation Calculated from Ep 

Et Trunk evaporation Calculated from Ep and 𝜖 

𝜖 proportion coefficient Reference   U(0.022, 0.024) 

DC water dripping from the canopy Calculated from Ds 

be empirical drainage parameter Reference   U(3.0, 4.6) 

DS water dripping from the canopy when C=S Reference   U(0.024, 0.740) 
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Table 5.2  Relationships between NDVI and LAI adopted from previous research 

 equation  reference country forest type scale area 

1 LAI=0.57*exp(2.33* NDVI) 

Sato et 

al,2001 Japan 

peri-

urban/natural 

forest 

watershed 

scale  

2 LAI =5.19*( NDVI ^2.138) 

Alexandre et 

al,2004 Brazil natural forest 

watershed 

scale 5973 ha 

3 LAI =5.36* NDVI -0.617 

Stenberg et 

al,2004 Finland artifical forest  2000 ha 

4 LAI =0.44+3.69* NDVI 

L.Fan et 

al,2009 China natural forest site scale  

5 LAI =0.228*exp(NDVI /0.311) 

L.Fan et 

al,2009 China natural forest site scale  

6 LAI =0.0459*exp(4.7955* NDVI) 

Santounu et 

al,2015 US natural forest 

watershed 

scale  

 

 

 

Fig 5.2 A comparison of different LAI calculate equations 
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Because the amount of the observed LAI data were limited, those data were used for only equations 

validation but not for fitting new relationships. Fig 5.3 had showed the comparison of the calculated 

LAI values and the measured ones. The results from Fig 5.3 suggested that the Equation.1 outperformed 

other equations and thus this equation were used in our calculation. 

 

 

Fig 5.3 The Measured LAI value were compared with the calculated LAI value. The results showed that 

eq.1 had the best performance, so eq.1 was adopted to calculate LAI.  
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5.2 Annually variation and rainfall partitioning results 

The seasonal effects of rainfall itself (Fig 5.4) are very obvious. The total precipitation from April to 

September accounted for more than 90% of the annual precipitation. Most of the precipitation in 

December, January, and February is snowfall. From the perspective of the ratio of interception, from 

March to July there was a clear upward trend. The proportion of interception increased from 6.7% to 

19.1%, and from July to November interception showed a downward trend, dropping to approximately 

12%. In proportion, this difference does not seem to be particularly large because the precipitation itself 

is seasonal. If the absolute intercept flow is considered, then the intercept flow in March is 2 mm, the 

intercept flow in April is 23 mm, the intercept flow in June reaches 29 mm, and in November it drops 

to 2.5 mm. 

 

 

Fig 5.4 Monthly rainfall amount of 2018, with snow season excluded 
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During the summer seasons (May to August), net precipitation (NP) (rainwater that reached the ground 

surface) was 79.5% of gross precipitation (GP), whereas interception and tree surface storage was 21.5% 

of total precipitation. However, during the winter event, 94.5% of GP reached the ground surface as NP, 

and interception accounted for only 5.5% of GP. Evaporation after summer storms reduced tree surface 

storage, thereby increasing interception during subsequent rainfall. Evaporation and infiltration rates, 

seen as declining surface storage rates in Fig 5.5, were higher during the winter storms than during the 

summer storms.  

 

 

Fig 5.5 Monthly water balance of the year 2018. 
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5.3 Energy balance modeling method and results 

 

For energy balance model, in this study it is relied upon not only the climate data but also the 

evapotranspiration time series calculated from the interception model. The calculation unit of energy 

balance was on the sub-catchment scale. Because of the modeling theory, the scale used and the data 

required, this model would have a relatively larger uncertainty. 

 

Fig 5.6 The sub-catchment (orange boundary) and the land surface temperature grid (grey grid) 
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Fig 5.7 The validation of calculated surface temperature and measured temperature with landsat 8 (up: 

2018-04-08, 1 am; down: 2018-05-26, 1 am). 

 

However, due to the current technology there are difficulties for measuring the validation data (surface 

temperature on site), there are larger uncertainties and errors relatively. Our result showed that the 

correlations were neither so good nor too bad, the energy balance model performance in this study is 
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within a reasonable range. 

 

5.4 Discussion 

 

Spatio-temporal gaps exist between the physical scales of hydrological processes and the resolution of 

applied models. Many approaches target very specific objectives and the level of detail in representing 

physical processes is not consistent. 

 

Simulations are one option to evaluate the performance and cost effectiveness of GIs. Nowadays 

majority of the study is focusing on relative smaller area, with the resolutions as high as possible. With 

higher resolutions the characteristics of greenings were easy to catch up. However, the evaluation of GI 

performance for large scales (i.e., an entire city) remains a challenge (Kahder and Montalto, 2008). 

Building the high spatial resolution model required for GI scenario evaluation is time consuming and 

can only be applied to small watersheds covering subareas of cities. In such a case the scale problem, 

both the scale on land surface and the scale of vegetation, is an important question to discuss. 

 

In this study, the interception model is integrated to the hydrological model like and add-on, so the scale 

of the ground surface is the base of the scale of the interception layer. The NDVI data had fixed 

resolutions but the resolutions of ground surface can be variable, it is better that the scales of these two 

calculation unit to be matched. The higher resolution is better for descripting the process, the effect of 

scale changing should be discussed in advance. 
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Urban forest management and planning requires knowledge of optimal tree species for maximizing 

canopy interception when developing strategies for mitigating stormwater runoff and flooding. Forest 

types and structures have a direct impact on rainfall partitioning in forest ecosystems (Brauman et al. 

2010). To maximize canopy interception, appropriate forest species and structure should be established 

and then maintained with silvicultural measures. Urban forest management activities alter the 

composition of forests, which can be expected to influence rainfall partitioning in canopies. The impacts 

of managing the forest composition were evident, and the effects of logging on rainfall partitioning have 

been observed in many studies (Dietz et al. 2006). Dietz et al. (2006) reported lower canopy interception 

in forest plots under management than in natural or unmanaged forest (18–20% versus 30% of bulk 

precipitation, respectively). 

 

When canopy interception by urban forest is a priority in forest management goals, several general 

aspects should be considered. First, species composition should contain deciduous and coniferous trees, 

forming mixed forest stands. Forests containing species that are adopted to a particular site are also 

more biologically resilient and prone to sudden environmental (climate) changes (Beniston et al. 2007). 

Second, continuous canopy cover should be maintained, and larger canopy gaps need to be avoided. 

Finally, the deciduous trees have a relatively larger interception capability all year because their leafed 

period overlaps with the study area rainy season, while evergreen tree species with larger dimensions 

are desired due to their ability to intercept precipitation in the leafless period. In our study, all deciduous 

scenarios and the current scenario (majority of deciduous species with less proportion of evergreen trees) 

exhibited many of these features, while all evergreen forests and mixed forests had larger interception 
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capabilities during the leafless season, but in leafed seasons, the interception was considered to be lesser. 

Key findings of this study indicate that for the maximized canopy interception, urban forest structures 

should have mixed tree species compositions with mostly broad leaf deciduous trees. This may be useful 

for urban forest management and planning and could contribute to the implementation of hydrology-

oriented measures in urban forests, aiming at mitigating stormwater runoff and flooding (Kirnbauer et 

al. 2013; Livesley et al. 2014). 

 

 

5.5 Brief summary 

In this Chapter, remotely sensed NDVI data were obtained and used for a distributed representation of 

vegetation growth information. The SWMM model and the Rutter model are coupled to simulate the 

urban vegetation interception process and the flow routing process. The rainfall data for 2018 were used 

for simulation. The NDVI data are first converted to LAI and then converted to canopy storage ability. 

The NDVI to LAI equations was validated using the on-site monitoring data and the equation with the 

highest performance (R2=0.74) was used in this study. After the interception model, a simple energy 

balance model were adopted to model the heat and temperatures in the area 

 

The results showed that the use of NDVI data is helpful in obtaining distributed vegetation information, 

and the interception process is simulated separately, making the model more process-based. Due to the 

seasonality of the vegetation, interception, as a hydrological process, also has a strong seasonality. The 

interception ratio during the leafed season is more than 85% of the annual interception. This is mainly 
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due to the increase in the degree of vegetation and the intensity of rainfall during this season. At the 

same time, the rainfall characteristics have a greater impact on the interception process. The smaller the 

rainfall is, the greater the rate of interception. The energy balance modeling results of the current 

situation had showed a reasonable performance compared with other studies. 
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Chapter 6. The mitigation of runoff and heat island by 

urban vegetation 

 

6.1 Effects of plant species and aging 

The average estimated stemflow was 5.33% of bulk precipitation in the all deciduous scenario, 4.98% 

in the all evergreen scenario, 5.48% in the current scenario and 5.56% in the mixed forest (50% 

deciduous + 50% evergreen). In all scenarios, the estimated leafed-period stemflow was higher than the 

estimated leafless-period stemflow. In the mixed forest, the leafed-period stemflow was 5.65% of the 

bulk precipitation, and stemflow in the leafless period was 5.2%. In the current scenario, the leafed-

period stemflow was 5.8% of bulk precipitation, and the leafless period stemflow was estimated as 

2.98%. In all evergreen forests, the leafed-period stemflow was estimated to represent 4.99% of bulk 

precipitation, and stemflow values in the leafless period accounted for 4.68%. In all deciduous scenarios, 

the leafed-period stemflow was 5.65% of bulk precipitation, and the stemflow in the leafless period was 

4.31%.  
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Fig 6.1 Average throughfall, stemflow and canopy interception (% of gross precipitation) for all deciduous 

scenarios; all evergreen scenarios; current scenarios; and mixed forest scenarios for the leafed period 

(from April to Sept), the leafless period (Mar, Oct and Nov), and all year. 
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Fig 6.2 (a) The effect of canopy age on interception; (b) the effect of low plant species on interception. 

 

Annual canopy interception was highest in all deciduous forests (16.62% of bulk precipitation) and 

lowest in all evergreen forests (10.85%), followed by mixed forests (12.12%) and current scenarios 

(12.72%) (See Fig 6.2). Seasonally, the all deciduous forest exhibited the largest seasonal differences 

in canopy interception, followed by the current scenario forest, which had considerably higher leafed-

period canopy interception compared to that in the leafless period. In the mixed forest, where the leafed-

period canopy interception was higher compared to that in the all evergreen forest, seasonal canopy 
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interception partitioning was nearly identical. In addition, the leafed-period canopy interception in the 

mixed forest was only 0.4% lower compared to that during the leafless period. The age of the trees also 

has a certain impact on the interception. As the age of trees increases, the proportion of interception 

shows a more obvious increasing trend. At the same time, the proportion of the stem flow decreases 

with the increase in the age of the tree, which may be due to the effect of the increase in the leaf area 

being significantly greater than the increase in the trunk. Low plants also have an effect on the overall 

intercept ratio, but the magnitude of the impact is relatively small. This may be because the low biomass 

has a relatively small biomass and thus has a weaker impact on the overall ratio. In general, the situation 

of Ericaceae species has the largest interception ratio throughout the year.  

 

6.2 Combination of other green infrastructures  

 

The results (Fig 6.3) showed that GI is effective in reducing flooding within the study area. Three 

different possible green infrastructures were considered: the green roof, permeable pavement and 

permeable trench. Urban canopy (UC) was also considered a green infrastructure here. The effects of 

each GI were evaluated separately. After that, evaluation of flood reduction was performed using 

combinations of the three types of GIs and the UC. For example, the peak flow reduction rate of the 

UC+GR scenario was as high as 28% under the whole year rainfall average. However, flooding cannot 

be eliminated under the different GI scenarios for all rainfall events, and the effectiveness of the various 

GI practices was diminished under scenarios of heavier rainfall. Therefore, combinations of green and 

gray infrastructure will result in improved flood mitigation effects. Because of the high densities of  
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Fig 6.3 Runoff reduction effect with different green infrastructures. 
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buildings and populations in urban areas, the implementation of GI often involves many stakeholders. 

However, the implementation of gray infrastructure reduces land occupation, indicating that the 

combined development of green and gray infrastructure could be practical, even in megacities. 

 

The GI performance varies with the variations in rainfall scenarios, and the effectiveness decreased with 

increasing rainfall amount because the GIs are interception or infiltration-based flood control measures, 

and under heavy rainfall events, the GIs are easier to saturate. In summary, this study confirms the 

effectiveness of both urban canopy (UC) and other GIs on flood mitigation.  

 

SWMM represents GI practices at the watershed scale. First, the estimation of the potential areas of GI 

practices in this study could be considered optimistic given that the methodology presented in Table 2 

probably overestimates the real potential. It was assumed that all space belonging to the selected land 

use categories could effectively implement GI practices, meaning that the implementation of GI 

practices was technically possible. Second, different GI areas were considered unique entities at the 

subcatchment scale without taking into account the spatial distribution of the specified land use and GI 

operations. Thus, we considered this representation suitable to assess the hydrological impacts of GI 

strategies at the watershed scale but not at the subcatchment scale. In general, the combination of green 

roofs and urban canopy had good performance in flood mitigation. Thus, this combination was 

recommended for similar urban catchments.  

 

In this situation, the water will firstly going through the urban canopy. Then the throughfall and 

stemflow will go through green infrastructures (PP, PT and GR) and then to the surface runoff or 
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conduits runoff of the hydrological model. But in the actual situation, even though there are vegetation 

and urban trees in the study area, there are few trees that were growing above the rooftop. In this case, 

the calculation method will have “conceptual errors” and might have mistakenly estimated the rainfall 

amount intercepted by trees and green roofs. 

 

In order to overcome this conceptual error, the roof area and non-roof area were divided. In all the 

calculations in the dissertation about the “current situation”, the throughfall and stemflow of the urban 

canopy layer will only going to the non-roof area. The rainfall will go directly to the roof area. This is 

shown in below. 
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Fig 6.4 the conceptual representation of water flow. (a) without other green infrastructures; (b) in 

combination with other green infrastructures (PP, PT and GR). 

 

On the other hand, for some future-based scenarios, I will consider that the growth of plants will increase 

the plant area, which will cause a part of the canopy area to overlap with the roof area. Therefore, in 

several future scenarios, the water flow of the model will consider the overlap. Such scenarios include 

calculations that take into account tree age and calculations that consider the increase of LAI in section 

6.3. In these calculations, the schematic diagram of the water flow is shown in the figure.  
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6.3 The effect of urban heat island 

The calculation of surface temperature depends on the ET (evapotranspiration) time series calculated in 

the previous interception model. ET is an important component of heat balance (latent heat), and in 

order to keep the consistency of scales with the interception model, the S2 scale mentioned in Chapter 

4 is adopted in this part. Each urban block/urban parcel is considered a sub-catchment.   

 

Figures 6.5 to 6.10 show the results of the spatial distribution of the calculated surface temperature of 

the energy balance model. To account for seasonal changes in temperature, three seasons are defined: 

spring (March, April), summer (June, July) and winter (October-November). Figures 6.5, 6.6, and 6.7 

show the average LST in different seasons under current actual vegetation conditions, respectively. The 

difference in values between small areas can be seen by the color shade. The darker the colors, the 

higher the values will be.   
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Fig 6.5 Spatial distribution of the simulated surface temperature (LST) (Celsius degree in each sub-

catchment area) between Mar, 2018 and April, 2018 (spring season) on catchment KA. Dark parcels 

are characterized by high values. 

 

Fig 6.6 Spatial distribution of the simulated surface temperature (LST) (Celsius degree in each sub-

catchment area) between Oct, 2018 and Nov, 2018 (autumn season) on catchment KA. Dark parcels are 

characterized by high values. 
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Fig 6.7 Spatial distribution of the simulated surface temperature (LST) (Celsius degree in each sub-

catchment area) between June, 2018 and Jul, 2018 (summer season) on catchment KA. Dark parcels 

are characterized by high values. 

 

On the other hand, because LAI is a very important vegetation factor, the change in LAI can represent 

the amount of vegetation. In order to explore the difference in the amount of urban vegetation, the 

existing LAI distribution values were adjusted by multiples. Figure 6.8, Figure 6.9, and Figure 6.10 

show the surface temperature distribution of the study area in summer when the LAI values are 80%, 

120%, and 140% of the actual values, respectively. It can be seen that as the LAI index increases, the 

surface temperature in the study area tends to decrease accordingly. 
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Fig 6.8 Spatial distribution of the simulated surface temperature (LST) with 80% of current LAI (Celsius 

degree in each sub-catchment area) between June, 2018 and Jul, 2018 (summer season) on catchment 

KA. Dark parcels are characterized by high values. 

 

Fig 6.9 Spatial distribution of the simulated surface temperature (LST) with 120% of current LAI (Celsius 

degree in each sub-catchment area) between June, 2018 and Jul, 2018 (summer season) on catchment 

KA. Dark parcels are characterized by high values. 
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Fig 6.10  Spatial distribution of the simulated surface temperature (LST) with 140% of current LAI 

(Celsius degree in each sub-catchment area) between June, 2018 and Jul, 2018 (summer season) on 

catchment KA. Dark parcels are characterized by high values. 

 

Figure 6.11 summarizes changes in urban vegetation (changes in LAI) for surface temperature and 

reductions in total runoff. With the increase of urban vegetation, the surface temperature and total 

runoff have decreased, indicating that urban vegetation has the ability to reduce runoff and urban heat 

island effect. 
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Fig 6.11 The relationship of different LAI with catchment average LSTs (Celsius degree) and the total 

flow volume (percentage) between June, 2018 and Jul, 2018 (summer season). 

 

There are several schemes of planning or projects about the greening of the city. There are description 

about the current greening situation or the future planning. Several documents were referred, they are 

listed below. 
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Table 6.1  The generalization of Sendai’s greening policy 

Name  Link 

Development of Sendai City Road Tree Manual http://www.city.sendai.jp/shisetsukanri/kurashi/shizen/

midori/mesho/manual.html 

Realization of a beautiful green city-Sendai http://www.city.sendai.jp/hyakunen-

chose/kurashi/shizen/midori/midori/saise.html 

Sendai City Green Basic Plan http://www.city.sendai.jp/hyakunen-

chose/kurashi/shizen/midori/midori/kekaku/index.html 

The current state of greening in Sendai http://www.city.sendai.jp/shisetsukanri/kurashi/shizen/

midori/mesho/genjo.html 

City park barrier-free specific business plan http://www.city.sendai.jp/koen-

kensetsu/kurashi/shizen/midori/midori/jigyo.html 

 

The specific policies can be various, but there are general ideas can be generalized:  

 

1. Keep and protect the current greening.  

2. Increasing the city’s greening in a mild and steady way.  

The increasing were mainly focused in 3 aspects: street trees (main avenues and community streets), 

the greening in parks and the greening along the river.  

 

In the file “Development of Sendai City Road Tree Manual”  

The expected beneficial of city greening can be generalized as:  

http://www.city.sendai.jp/shisetsukanri/kurashi/shizen/midori/mesho/manual.html
http://www.city.sendai.jp/shisetsukanri/kurashi/shizen/midori/mesho/manual.html
http://www.city.sendai.jp/hyakunen-chose/kurashi/shizen/midori/midori/saise.html
http://www.city.sendai.jp/hyakunen-chose/kurashi/shizen/midori/midori/saise.html
http://www.city.sendai.jp/hyakunen-chose/kurashi/shizen/midori/midori/kekaku/index.html
http://www.city.sendai.jp/hyakunen-chose/kurashi/shizen/midori/midori/kekaku/index.html
http://www.city.sendai.jp/shisetsukanri/kurashi/shizen/midori/mesho/genjo.html
http://www.city.sendai.jp/shisetsukanri/kurashi/shizen/midori/mesho/genjo.html
http://www.city.sendai.jp/koen-kensetsu/kurashi/shizen/midori/midori/jigyo.html
http://www.city.sendai.jp/koen-kensetsu/kurashi/shizen/midori/midori/jigyo.html
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1. Maintenance of living environment (purification of air, reduction of noise);  

2. Ensuring comfort by forming green shade (inhibiting temperature rise);  

3. Ensuring traffic safety (Gaze guidance, separation of walking paths);  

4. Disaster prevention functions such as fire prevention, wind prevention, and evacuation routes; 

5. Conserving the natural environment (green corridor connecting park green spaces and existing 

forests); 

 

In this study, several topics were closely related to the Sendai City’s policy. The results could have 

the evaluation and referring significance for Sendai’s policy: 

 

1. This study had evaluated the hydrological and atmospheric benefits of the urban vegetation under 

current situation. 

 

2. This study investigated the effects of increasing/decreasing of greening (tree age/ LAI change), 

especially, the effect of LAI increasing is in accordance with the previous described future greening 

growing, this had significance of the future scenario estimation and evaluation. 

 

3. Although the Sendai city policy did not emphasize other constructed green infrastructures like 

green roofs or porous pavement, the study about these GIs could have reference meanings for decision 

makings in newly constructed areas. 
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6.4 Discussion 

 

Reasonable urban landscape and drainage design is becoming increasingly important for urban 

stormwater management, requiring a deeper understanding of the hydrologic performances of 

imperviousness within small urban drainage catchments. The current study emphasized the effects of 

TIA and EIA on rainfall-runoff processes in consideration of various storm conditions. Consistent with 

those of previous research, our results show that increased imperviousness can enhance runoff depth 

and shorten lag time. Thus, the primary measurement for mitigating runoff risk is to limit the sizes of 

TIA and EIA. In addition, established quantitative relationships between imperviousness and runoff can 

help to optimize the impervious arrangement within urban catchments in order to achieve specific runoff 

control goals. Moreover, variances in imperviousness among subareas were significant in KA, which 

make the results more valuable for extrapolation. However, limited and high-cost urban land prevents 

designers from decreasing the sizes of impervious areas without restricting urban landscape planning. 

Green Infrastructures (GIs) can provide good solutions for urban rainwater regulation because they 

occupy only a small amount of urban resources but function effectively in runoff mitigation (Dietz, 

2007; Walsh et al., 2009). This study also provides an interesting prospect for solving urban runoff 

issues. Our results show that EIA can alter the runoff hydrograph considerably by altering Qp. By 

decreasing EIA, such as through the placement of swales/trenches along roads (Dietz and Clausen, 

2008), usage of permeable paving materials (Jia et al., 2012), and parcel-based landscape design (Stone, 

2004), peak runoff can be reduced and postponed, which can aid rainwater control measures already in 

place. On this basis, optimizing the imperviousness compositions can reasonably stagger all of the 
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runoff hydrographs generated from subareas from upper to lower reaches. Therefore, the runoff peak 

discharge and lag times of the entire catchment can be maintained at acceptable levels for normal 

operation of urban drainage systems. However, these alternative measures are affected significantly by 

storm conditions. Moreover, the sensitivity analysis and scale analysis results imply that the 

effectiveness of imperviousness in predicting runoff variables such as Qp and Qt are sensitive to 

variations of rainfall pattern and duration. Thus, storm conditions should be treated individually for 

urban landscape design with distinct stormwater management purposes.  

 

Table 6.2  The performance comparison of SWMM model between this study and previous studies  

 Study site and model  Performance  

Krebs et al., 2014  Small urban area, SWMM  NSEcalibration=0.88  NSEvalidation=0.72  

Pertrucci et al., 2014  Medium urban area, SWMM NSEcalibration=0.82  NSEvalidation=0.75 

Goldstein et al., 2015  Micro urban area, SWMM NSEcalibration=0.75  NSEvalidation=0.69 

Dongquan et al., 2009  Large urban area, SWMM NSEcalibration=0.92  NSEvalidation=0.86 

This study Small urban area, SWMM NSEcalibration=0.84  NSEvalidation=0.73 

 

Table 6.2 summarizes several previous studies and the model performance NSE for this study. The 

research of (Krebs et al., 2014) was based on three small watersheds (5.87 ha, 6.63 ha, and 12.59 ha). 

The first two regions are highly urbanized, and the third region is urbanized area with large greening. 

In all the areas the land use type and the direction of water flow on a very small scale had been accurately 

identified, which means a very fine EIA classification. In addition, both rainfall and outflow were 
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measured in a very precise manner (0.2mm / 1min for rainfall and 1min step for flow). These factors 

can play a role in promoting the performance of the model. The study area of (Pertrucci et al., 2014) 

was a medium-sized urban area (230 ha), with time steps of 5 min for both rainfall and outflow. The 

size of the area of this study is about 50 ha, and the time step of rainfall outflow is also 5 min. Finally, 

the model results are similar to those of (Pertrucci et al., 2014). For (Dongquan et al., 2009), a SWMM 

model was established for a macro urban watershed (1000 ha) and only limited rainfall and runoff data 

were used for calibration and validation. This model has a slightly higher check performance and a 

lower verification performance, but it is still within a similar range. From the numerical results, the 

model of this study performed satisfactorily. The NSE values are located in the midstream of all 

comparisons. The average NSE in the verification stage is 0.84 and the NSE in the verification stage is 

0.73. This means that the hydrological model SWMM already has good simulation and prediction 

capabilities.  

 

Table 6.3  The average NSE performances of the model before and after incorporating the NDVI data  

 Before After 

Mar-May 2018 (calibration) 0.842 0.842 

Jun-Jul 2018 (validation) 0.731 0.735 

Aug-Nov 2018 (validation) 0.704 0.719 

 

The incorporation of remoted sensed NDVI data had slightly improved the outlet flow performance of 

the model. The model was initially calibrated using the rainfall-runoff data from Mar to May 2018 and 
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validated using data from Jun to Jul 2018. Here the extra rainfall runoff data form Aug to Nov 2018 

were also used for validation for the purpose of comparison. The NSE values had increased from 0.731 

to 0.735 in Jun to Jul period and from 0.704 to 0.719 in Aug to Nov period. When there were no these 

NDVI data, the interception process were represented using the depression storage values. These kind 

of parameters were fixed values on certain land use types. The depression storage parameter were 

calibrated parameters. Even though calibration can help estimate the overall interception depth, the 

seasonal variations of urban vegetation and the subsequent interception capability change were ignored 

under this method. The interception abilities were completely same across the year and this may cause 

the conceptual errors of model. The use of remote sensed data were one way to fetch up these errors. 

However, the process of conversion of NDVI to LAI and then to canopy storage capacity will possibility 

introduce new errors and uncertainties and these errors may hamper the model performance. The results 

in Table 6.3 had proved that the beneficial of remote sensed data outperformed the drawbacks caused 

by the potential errors. These results were in accordance with (Nourani et al., 2015), who had used 

NDVI data as indicators of land use variations in a small watershed and found that the model 

performance at the sub-watershed level were improved. These results had demonstrated the benefits of 

introducing remote sensed data into hydrological models.  
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Table 6.4 The interception modeling results of this and previous studies (from Inkiläinen et al., 2013) 

 

Land use 

(scale) 

Climate (species/ type) LAI Interception 

ratio (%) 

authers 

Urban (stand) Humid subtropical (broad-leaved deciduous) 1.9 9.1-10.6 Elina N.M. et al. 2013 

Urban (stand) Humid subtropical (broad-leaved deciduous) 1.9 19.9-21.4 Elina N.M. et al. 2013 

Urban (stand) Mediterranean (broad-leaved deciduous) 4.3 18.4 Wang et al. (2008) 

Urban (stand) Mediterranean (broad-leaved evergreen) na 6.0 Xiao et al. (1998) 

Urban (stand) Mild oceanic (Pseudotsuga menziesii) na 13.0 Xiao et al. (1998) 

Urban (crown) Mild oceanic (Thuja plicata) na 49.1 Asadian and Weiler (2009) 

Urban (crown) Mild oceanic (Thuja plicata) na 60.9 Asadian and Weiler (2009) 

Urban (crown) Semiarid (Ficus benjamina) na 59.5 Guevara-Escobar et al. (2007) 

Urban (crown) Mediterranean (Pyrus calleryana) 7.0 15.0 Xiao et al. (2000b) 

Urban (crown) Mediterranean (Quercus suber) 3.4 27.0 Xiao et al. (2000b) 

Urban (crown) Mediterranean (Jacaranda mimosifolia) na 15.3 Xiao and McPherson (2002) 

Urban (crown) Mediterranean (Tristania conferta) na 66.5 Xiao and McPherson (2002) 

Urban (crown) Mediterranean (Ginkgo biloba) 5.2 25.2 Xiao and McPherson (2011) 

Urban (crown) Mediterranean (Liquidambar styraciflua) 4.7 14.3 Xiao and McPherson (2011) 

Urban (crown) Mediterranean (Citrus limon) 3.0 27.0 Xiao and McPherson (2011) 

Rural (stand) Humid subtropical (mixed hardwood-conifer) na 18.6 Bryant et al. (2005) 

Rural (stand) Humid subtropical (deciduous broadleaved) na 17.4 Bryant et al. (2005) 

Rural (stand) Humid subtropical (deciduous broad-leaved) 3.1 16.8 Bryant et al. (2005) 

Rural (stand) Humid subtropical na 10.0 Lin et al. (2000) 

 

The results listed in Table 6.4 had showed that the interception ratio is ranged from around 6% to 60%. 

One important reason of this is the different scales of the study: some researches were conducted in the 

single tree scale while others were conducted on much larger scales. Larger scales will always have 

more sparse places than the situations under the tree crown, so the stand scale results usually showed 

less interception ratios than that of the crown scale. Our study scale is a small urban residential 

catchment, so the results of stand scales were emphasized. In the Mediterranean climate of Sacramento, 

CA, Xiao et al. (1998) found throughfall percentages between 86.4 and 93.4%. Xiao et al. (1998) noted 

that less throughfall (86.4%) was generated in the ‘suburban sector’ dominated by broadleaved 

evergreen trees compared to the ‘city sector’ dominated by broadleaved deciduous trees (93.3%). Apart 
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from maintaining foliage throughout the rainy winter seasons, evergreen trees also tend to have higher 

LAI than do deciduous trees (Xiao et al., 1998). Wang et al. (2008) found that rainfall interception in 

Maryland, USA, accounted for 18.4% of P, resulting in net precipitation, of 81.6%. These results were 

simulated using the model UFORE-Hydro in an urban watershed dominated by deciduous vegetation 

(22% of watershed), located in the humid subtropical climate. Our storm-based results from similar 

climate are comparable with theirs as we found our cumulative yearly interception ratio to be 15%.  

 

Runoff computed with hourly rainfall did not generate a substantial number of flood events in the 

watershed. Thus, GI practices at various implementation levels were evaluated for mitigating flood 

volumes. All GI scenarios and the non-GI scenario analyzed in this section were simulated with hourly 

rainfall data for the year 2018. Implementation of individual GI practices resulted in average annual 

runoff reduction were ranged from around 11% to 19% (Fig 6.3). Implementation of two or more GI 

practices indicated a reduction in average annual runoff from around 17% to 28% and 20% to 37% 

respectively. For the largest ratio, it is the combination of 4 GIs (UC+GR+PP+PT) which was the most 

effective scenario as expected. The GR included scenario also exhibited large reduction in runoff 

because of the large impervious surfaces covered by roof top, which represent more than 20% of the 

total watershed area and more than 50% of total EIA. Treating rooftop runoff with GR was the rather 

effective scenario due to their large areas. The roadside area and other area treated by PP and PT 

accounted less than 10% of the watershed area and less than 30% of the total EIA. So the mitigation 

effect of PP and PT is less effective than GR. Simulation results obtained in this study are consistent 

with the literature, which showed that runoff volume at the outlet of the watershed was reduced with 

increasing implementation levels of GI practices (e.g., Walsh et al., 2014; Di Vittorio and Ahiablame, 
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2015; Ahiablame et al., 2013). In general, individual implementation of GR scenarios for rooftop runoff 

performed better than other GIs, followed by UC for interception runoff.  

 

Reduction in runoff logically led to reduction in flood events. Nevertheless, even though there are 

evidence that green infrastructures systems can be used to effectively manage stormwater, they are more 

credited for controlling small storm events, indicating storm with high peaks (i.e. flood flows) may be 

too large for these systems to handle, especially when the area treated is relatively small. It is noted that 

the results achieved in this study are somewhat case specific, and depend on the site characteristics 

including the distribution of different land use and hydrologic properties. Nevertheless, the concepts 

and methodologies involving a comprehensive evaluation of different GIs combinations, including their 

cost and average long-term performance is recommended, as a way of ensuring that the most cost 

efficient options are ultimately selected for detailed design and implementation. 

 

One of the goals of green infrastructures in this watershed was to ‘maintain base flow’. However, a 

broader goal of green infrastructure is to maintain the pre-development water balance and flow regime, 

which was not observed. In our study watershed, the majority of stormwater facilities were underground 

rather than vegetated and aboveground. Stormwater facilities that are belowground and un-vegetated 

limit the potential for evapotranspiration of incoming stormwater and more efficiently recharge 

stormwater compared with a forested landscape, where more diffuse infiltration may have never made 

it deeper than the root zone. Recent developments in stormwater quantity management are focused 

primarily on reducing stormwater volume through infiltration, with little sustained consideration given 

to collecting stormwater for indoor use or increasing evapotranspiration. The harvesting or 
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evapotranspiration of stormwater in most areas needs to dominate over recharge to maintain pre-

development streamflow volumes (Askarizadeh et al., 2015), and these pathways remove flow from the 

stream altogether rather delaying entry ranging from minutes to years with recharge (Miles and Band, 

2015).  

 

Based on a series of explicit or implicit assumptions, SWMM is used for watershed-scale runoff 

simulations. This paper describes implicit assumptions, some of which are based on subject consensus. 

Various assumptions about modeling conditions, parameter specifications, and data quality (Aich et al., 

2016; Yu and Coulhardhard, 2015) may generate uncertainty. Uncertainties related to parameter 

specifications and data resolution may introduce inevitable errors in the results obtained. However, 

deviations from the model output are considered acceptable, and the model is considered satisfactory 

for scenario analysis. Therefore, uncertainty is not expected to affect the main trends and key insights 

obtained, and the general results are considered to be related to the design of reasonable strategies for 

the implementation of geographical indications in the study area. 

 

Uncertainty is inherent in any modeling process, and it originates from multiple sources from model 

development to the required data collection. Uncertainty cannot be eliminated, so it is necessary to 

understand its source and the consequences of model results (Beven, 2001).  
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Fig 6.12 General modelling framework (adopted from Deletic et al., 2012).  

 

A common modeling framework is used, which requires the following information (Fig 6.12): model 

structure (e.g. relationships and numerical methods), measurable input data (e.g. rainfall or 

evapotranspiration time series), model calibration parameters; (e.g. effective impermeability Area), 

measured calibration data (e.g. water flow time series), and calibration algorithms (e.g. the sum of 

squared differences between modeled and measured data) with well-defined objective standards. 

 

According to several previous studies (A. Deletic et al., 2009; Refsgaard et al., 2007; Refsgaard and 

Keur, 2006; Butts et al., 2004; Engeland et al., 2016), there are several kinds of uncertainties during the 

urban hydrological modeling and they are listed below. This is a very general and broad classification.      

 

Model input uncertainties:    

1. Measured input data– both random and systematic effects that are generated in input data collection 

process;        

2. Model parameters– uncertainty in their calibrated values or estimates (if models are not calibrated, 

the parameters are ‘guesses’ or ‘defaults’ used).      
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Calibration uncertainties           

3. Measured calibration data uncertainties. Including the data availability, data choices and temporal 

resolution of the time series;           

4. Calibration Algorithms and Criteria Functions which is about assessing the effectiveness of the 

algorithm in finding a global minima;     

 

Model structure uncertainties:     

5. Conceptualisation errors, such as scale-issues or ignoring key processes;     

6. Equations and Numerical methods, the former could be ill posed and thus inadequately represent the 

hydrological process; the latter can be ill defined leading to non-accurate solutions;    

7. Integrated modeling Uncertainty. Including the propagation of uncertainty.  

 

Uncertainty cannot be completely eliminated. One must try to reduce uncertainty and improve the 

situation. Based on current technology and understanding, the best way to discuss uncertainties from 4 

to 6 is to compare different methods and models. For monitoring data sets (uncertainty 1 and 3), 

although there are some numerical methods to estimate uncertainty under certain assumptions, the 

quality of the data usually depends on the measurement instrument or data provider (Dotto et al., 2012; 

Pertrucci et al., 2014). 

 

In this study, the conceptual errors, including the scale issues and ignoring key process, were actually 

one most important topic of the study and had been discussed a lot in Chapter 4. The model parameters 
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uncertainty were discussed and reduced using sensitivity analysis and model calibration in Chapter 3. 

There were several research had discussed the uncertainties caused by calibration algorithms, criteria 

functions and numerical methods (Clark MP et al., 2010; Kavetski et al., 2010; Gan et al., 2018; 

Hernandez-Suarez et al., 2018). However, these discussions were somehow out of the scope of this 

study.  

 

This study had conducted a sensitivity analysis which can determine how different values of an 

independent variable affect a particular dependent variable under a given set of assumptions. 

Uncertainty analyses study how various sources of uncertainty in a mathematical model contribute to 

the model's overall uncertainty. The concept are quite similar and related, so ideally, uncertainty and 

sensitivity analysis should be run in sequence. The fully understanding of the Propagation of 

Uncertainties through models will need a Total Error Estimation Framework. Due to the large 

computational burden, here the new uncertainty analysis will not be conducted. The accuracy and 

uncertainty of different models were discussed independently.  

 

This study had used three models: the hydrological model (SWMM), the interception mode (Rutter 

model) and the surface energy model. They were integrated in a sequence: firstly only the hydrological 

model; then the fixed interception parameters were expanded, the interception model were introduced; 

finally, the calculated evapotranspiration time series and other climate data had created the third model, 

the energy balance model.  
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Fig 6.13 The relationship integration of different models.  

 

The storm water management model (SWMM) is a widely used urban hydrology model. Many previous 

researches had discussed its calibration, validation, uncertainty and parameters. In this study a 

thoroughly sensitivity analysis were discussed in Chapter 3. Several parameters are quite important: the 

impervious ratio, roughness parameters and depression storage parameters.   

 

The impervious ratio is the most important parameter. However in this study the value of this parameter 

is quite well determined: every rooftop foot print, every residential garden and the land use of each 

urban block are all defined. So in this case, the quite precise impervious ratio values were obtained 

which largely reduced the space of uncertainty. Thus only the roughness parameters and depression 

storage parameters were left for calibration.  

 

For the Rutter model, there were previous research which had conducted sensitivity analysis and 
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uncertainty analysis (Linhoss et al., 2016). The sensitivity analysis results of Rutter model were shown 

below.   

 

Fig 6.14 Sensitivity analysis of Rutter model (adopted from Linhoss et al, 2016).  

 

It is clear that there were several important parameters: PG (gross precipitation), Dur (rainfall duration), 

Rn (net radiation), S (Canopy Storage Capacity) and T (air temperature). Among these parameters, PG, 

Dur, Rn and T are actually data obtained from Japan Meteorological Agency. For the S parameter, the 

values were obtained from NDVI values from Landsat 8. The equations that convert NDVI to LAI and 

then to canopy storage were widely used equations and the LAI value were measured at the site. So the 

LAI equations were validated using these data and had a satisfied performance. So, based on these 

analysis, it could suggest that the interception model had relatively low errors. The largest error source 
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might be from the estimation of canopy storage capacity. But the overall uncertainty is limited (with 

50% to 150% error range, the variation of results is around 15% (the first order indices)).  

 

6.5 Brief summary 

 

Tree species also have a significant impact on the interception process. Four tree species scenarios 

were discussed in this study: all deciduous scenario; all evergreen scenario; current scenario and 

mixed forest scenario. All deciduous scenarios have the highest interception ratio from a year-round 

perspective, but the seasonality is more pronounced. In the leafed period, the interception ratio is 

large, and in the leafless period, this ratio is rather small. The all evergreen scenario is the opposite 

situation: the interception ratio for different seasons remains stable, and the annual interception ratio 

is lower. The current and mixed scenarios are between the two scenarios mentioned above. Because 

the all deciduous scenario has a long leafless season, from the perspective of interception and 

environmental comfort, the recommended choice for tree species is a large proportion of deciduous 

trees with a small proportion of evergreen trees.  

 

The effects of several different green infrastructures (GIs) are also discussed in the study. As a green 

infrastructure based on interception, UC (urban canopy) is more effective in reducing flooding in 

small rainfall events and weaker in heavy rain. For a single GI facility, GR (green roof) has better 

overall flow and peak flow reduction. The combination of green roof and urban canopy is a more 

effective response to flood reduction. The increase of vegetation in the urban area can have both the 

flood and heat reduction effects in the catchment. This had proved and estimated the potential 

beneficial of the greening policies of the city.  
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Chapter 7. General summary and conclusions 

 

7.1 Conclusions 

This research attempted to analyze how the scales and vegetation affected urban hydrological processes 

and modeling. The performances of models with different resolution were compared. The 

parameterization and prediction capacities were discussed during and after the calibration. Spatially 

distributed values for interception storage capacity was obtained from the NDVI data and field LAI 

(leaf area index) measurements. The flood mitigation effect with some other green infrastructures as 

well as the impact of tree species were also discussed. The conclusions are generalized as follows:  

 

1. Although weighted average method was used, there were obvious scale effect across models due to 

the non-linearity nature of model structure. With the coarsening of grid, both the total and peak runoff 

tend to decrease while the variations of peak runoff rate was quite obvious while the relative differences 

can be larger than 30%. The effect of spatial resolution on simulated peak flows is also influenced by 

storm characteristics. The impact of these factors was quantified by dimensional analysis and a 

exponent function was fitted to the resulting scatter plots. This provide useful insights into the impact 

and interaction of spatial resolutions and other factors as well as a practical estimation of the 

performance that can be expected for a given model input resolution.  

 

2. After independent calibration, all the models showed satisfying performances. The performance of 

the calibrated models were similar to the S1 model (NSES2=0.837, NSES3=0.836 and NSES4=0.841). 
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This meant that calibration could completely compensate models’ scale effect. When EIA was 

considered as a calibrated parameter, the NSE value of S2, S3 and S4 model during calibrated period 

were 0.859, 0.863 and 0.845, while the performance of validation period hold the line or decreased 

(NSES2=0.744, NSES3=0.685 and NSES4=0.613). The objective function surface of the models were 

analyzed. It could be found that the grid resolution led to the change of the overall shape of the surface 

and deviation of the best performance area. 

 

3. The use of NDVI data is helpful in obtaining distributed vegetation information, and the interception 

process is simulated separately, making the model more process-based. Due to the seasonality of the 

vegetation, interception, as a hydrological process, also has a strong seasonality. The interception ratio 

during the leafed season is more than 85% of the annual interception. This is mainly due to the increase 

in the degree of vegetation and the intensity of rainfall during this season. At the same time, the rainfall 

characteristics have a greater impact on the interception process. The smaller the rainfall is, the greater 

the rate of interception. 

 

4. Tree species also have a significant impact on the interception process. Four tree species scenarios 

were discussed in this study: all deciduous scenario; all evergreen scenario; current scenario and mixed 

forest scenario. All deciduous scenarios have the highest interception ratio from a year-round 

perspective, but the seasonality is more pronounced. In the leaded period, the interception ratio is large, 

and in the leafless period, this ratio is rather small. The all evergreen scenario is the opposite situation: 

the interception ratio for different seasons remains stable, and the annual interception ratio is lower. The 

current and mixed scenarios are between the two scenarios mentioned above. Because the all deciduous 
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scenario has a long leafless season, from the perspective of interception and environmental comfort, the 

recommended choice for tree species is a large proportion of deciduous trees with a small proportion of 

evergreen trees.  

 

5. The effects of several different green infrastructures (GIs) are also discussed in the study. As a green 

infrastructure based on interception, UC (urban canopy) is more effective in reducing flooding in small 

rainfall events and weaker in heavy rain. For a single GI facility, GR (green roof) has better overall flow 

and peak flow reduction. In the combined GIs, the combination of UC and GR has the best flood-

reduction effect.  

 

7.2 Recommendations for future studies 

 

The study on effects of spatial resolution could be extended to determine a threshold or optimum 

resolution, beyond which subdivision produces little or no effect on peak flow predictions. Identifying 

such a threshold level is of particular interest to modelers to address the appropriate level of subdivision. 

For this threshold analysis, models would have to be developed for a large number of spatial resolutions, 

hydrologic simulations performed and peak flows analyzed. Such a study could also be a suitable 

application of artificial sewer networks, where the modeler can easily generate networks at multiple 

resolutions without requiring the exact configuration of drainage area, pipes and nodes in the network.  

 

The study of spatial resolution effects was conducted using the model SWMM. Although similar results 
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are expected from other models, this needs further verification. It would be an important contribution 

to perform a similar spatial scaling analysis using other urban hydrology models. This would be 

valuable for model comparisons often done in rural hydrology, but not so common in urban hydrology.  

 

In addition, the relationship and interaction between model scales and hydrological process scales 

remains a topic worth exploring. The previously mentioned model scale studies are based primarily on 

the simulated scale of surface runoff. However, the urban hydrological process is very complicated and 

is divided into many different processes. Each process has its own physical scale. At the time of 

simulation, the importance of physical scale and model scale is very obvious. The impact of different 

simulation scales of different hydrological processes on the final results still lacks quantitative research.  

 

The influence of urban vegetation or green infrastructure has been discussed in many aspects. Under 

the premise of selecting the appropriate simulation scale, this study evaluated the impact of urban 

vegetation. However, this process is related before and after. The result of the previous process is used 

for the input of the latter process, and the transmission and transfer of errors occur during the coupling 

process. For such a process, uncertainty analysis should be necessary.  
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