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Abstract

The objective of this thesis is to develop a cloud detection algorithm suitable for the 

National Polar Orbiting Environmental Satellite System (NPOESS) Visible Infrared 

Imaging Radiometer Suite (YIIRS) and methods for atmospheric trace gas retrieval for 

future satellite remote sensing instruments. The development of this VIIRS cloud mask 

required a flowdown process of different sensor models in which a variety of sensor 

effects were simulated and evaluated. This included cloud simulations and cloud test 

development to investigate possible sensor effects, and a comprehensive flowdown 

analysis of the algorithm was conducted. In addition, a technique for total column water 

vapor retrieval using shadows was developed with the goal of enhancing water vapor 

retrievals under hazy atmospheric conditions. This is a new technique that relies on 

radiance differences between clear and shadowed surfaces, combined with ratios 

between water vapor absorbing and window regions. A novel method for retrieving 

methane amounts over water bodies, including lakes, rivers, and oceans, under 

conditions of sun glint has also been developed. The theoretical basis for the water 

vapor as well as the methane retrieval techniques is derived and simulated using a 

radiative transfer model.
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Chapter 1 
Introduction

1.0 Introduction

Clouds are known to strongly moderate the energy balance of the Earth- 

atmosphere system through their interaction with solar and terrestrial radiation. Clouds 

reflect part of the solar energy back to space, and in doing so have a cooling effect upon 

the Earth-atoosphere system. Clouds also have a role in the greenhouse effect, by 

absorbing part o f the longwave radiation emitted by the Earth’s surface and thus 

warming the Earth’s surface and the lower atmosphere. In Addition, the surface albedo 

and cloud properties are of great interest in studies of the global radiation budget and 

climate change.

The Earth’s lower atmosphere is composed of gas molecules, cloud droplets, and 

aerosols. These components interact with solar and terrestrial radiation through 

processes involving scattering, absorption, and reflection. The radiation from the Sun is 

partially absorbed by aerosols, molecules, and clouds as well as the underlying surface. 

A significant portion of the solar radiation is scattered back to space by the atmosphere 

(aerosols, molecules and clouds) and the Earth’s surface. The surface absorbs part of the 

incident solar radiation reaching it, and reflects the rest. The radiation reflected by the 

surface interacts with molecules, clouds, and aerosols in the atmosphere on its transit 

back to space, with a fraction reaching space and the rest being reflected back to the 

surface once more or absorbed by the atmosphere. The Earth’s surface additionally 

emits thermal radiation which is partly absorbed by molecules, mainly water vapor, 

carbon dioxide, and ozone, absorbed by aerosols or cloud droplets, and weakly scattered 

by aerosol particles before it also reaches the top of the atmosphere. Clouds, aerosols, 

and molecules in the atmosphere also absorb and emit thermal radiation.
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Satellite sensors detect a combination of radiation emitted and reflected from the 

Earth’s surface and transmitted through the atmosphere. Additionally, sensors detect 

radiation emitted by the atmosphere or scattered into the field of view of satellite sensors 

by particles or molecules in the atmosphere. This radiation has spectral absorption 

signatures that allow for sensors to be developed to facilitate the retrieval of specific 

atmospheric and surface properties. The retrieval of these properties requires 

understanding of the physical processes of absorption, emission, and scattering by the 

atmosphere-surface system. Measured radiation can be used in conjunction with 

radiative transfer calculations to retrieve surface and atmospheric properties.

Due to the sparse spatial coverage of ground-based sensors to do such studies, 

programs such as the National Polar-orbiting Operational Environmental Satellite 

System (NPOESS) have been developed to investigate global climate and produce 

environmental products for research and monitoring purposes. This chapter contains a 

discussion of the NPOESS program, the NPOESS sensor/algorithm system, the Visible 

Infrared Imaging Radiometer Suite (VIIRS) sensor, the VIIRS multi-spectral and 

imaging handset, and the MODIS Airborne Simulator (MAS) sensor. The MAS sensor 

has been used for the VIIRS cloud detection algorithm development.

Cloud detection algorithms are an initial step in satellite remote sensing

processing. Such algorithms discriminate cloudy from clear pixels and enable additional 

processing to be done upon cloudy as well as cloud-free regions. To this end, a cloud 

detection algorithm has been developed for the VEERS sensor. Chapter 2 describes this 

VIIRS Cloud detection algorithm, explaining the physics, the processing, the resulting

product, the error sources, and the flowdown of this cloud detection algorithm using 

MAS imagery and simulated cloud scenes.

Chapter 3 is a study of the effects of Band-to-Band Mis-Registration (BBM) on 

the multi-spectral VIIRS cloud detection algorithm. The BBM occurs in imagery when 

pixels from multiple bands are not completely co-registered to the same location on the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



18

Earth. The BBM is either a result of sensor imaging optical array defects, focal plane 

misalignment, and/or errors in the geolocation processing. Because the VIIRS Cloud 

Mask algorithm employs multiple bands that may be mis-registered, it could possibly be 

affected by BBM. The sensitivity of the of cloud detection to BBM is presented in this 

chapter.

Once cloud detection is done for a satellite-borne remote sensing system, then 

additional algorithms may be developed and applied to the clear sky imagery. Such 

algorithms are developed in Chapters 4 and 5.

In Chapter 4, an algorithm is developed that employs cloud shadows to improve 

upon water vapor retrievals under hazy atmospheric conditions. Historically, techniques 

to retrieve total column water vapor have been developed that rely upon observation of 

water vapor attenuation of near infrared solar radiation reflected by the Earth’s surface. 

Ratios of measured radiances at wavelengths inside and outside of water vapor absorbing 

channels are used for retrieval purposes. These ratios partially remove the dependence 

of surface reflectance on wavelength, and are used to retrieve the total column water 

vapor amount. Hazy atmospheric conditions, however, introduce errors into this widely 

used technique. In this chapter a new method is presented, it is based upon radiance 

differences between clear and nearby shadowed surfaces, combined with ratios between 

water vapor absorbing and window regions. This new method improves water vapor 

retrievals under hazy atmospheric conditions. Radiative transfer simulations are used to 

demonstrate the advantage offered by this technique.

In Chapter 5, an algorithm is developed to use remote sensing to detect methane 

seepage over water bodies. Methane seepage is indicative of petroleum or natural gas 

reserves. Techniques aimed at detecting methane seepage with surface-based 

instrumentation have progressed significantly in recent years. These instruments rely 

upon measurement of light attenuation due to methane absorption of Short Wave 

Infrared (SWIR) radiation. Detection of methane seepage over water bodies with

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



19

electro-optical remote sensing has been limited due to the low surface reflectance of 

water. Also, due to sensor saturation, imagery over sun glint is commonly discarded in 

satellite remote sensing because the glint conditions produce high surface reflectance. 

However, recent measurements in the SWIR of sun glint regions have revealed that the 

surface reflectance is spectrally flat while enhanced without causing saturation. This 

higher surface reflectance in sun glint regions allow for retrieval of total column methane 

amount using ratios of measured radiances at wavelengths inside and outside of methane 

absorbing SWIR channels. The methane retrieval method presented here, based on short 

wave infrared ratios in sun glint regions, allows for detection of methane seepage over 

the Earth’s oceans and lakes, and the detection of possible petroleum or natural gas 

reserves. Radiative transfer simulations are used to demonstrate the capabilities offered 

by this technique.

Finally, a summary of the thesis is provided in Chapter 6.

1.1 The NPOESS Program

In 1994, tbe decision was made to merge America’s military and civil operational 

meteorological satellite systems into a single satellite system. This new satellite system 

is the National Polar-orbiting Operational Environmental Satellite System (NPOESS). 

NPOESS merges Department of Defense (DoD), National Oceanic and Atmosphere

Administration (NOAA), and Department of Commerce (DOC) meteorological satellite 

systems into a single national asset.

The mission of the NPOESS system is to provide a national, operational, polar- 

orbiting, environmental remote-sensing capability to the United States and her allies. In 

addition, by merging the three national agencies (NOAA, DoD, and DOC) civilian 

satellite programs together a projected savings of 1.8 billion United States dollars is 

projected {Cunningham, 2001). Also, NPOESS is expected to incorporate new

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



20

technologies from the National Aeronautics and Space Administration (NASA) and also 

to encourage international cooperation.

Observing the Earth from space, polar-orbiting satellites collect and disseminate

data on Earth's weather and atmosphere, oceans, land, and space environment. The polar 

orbiters are able to monitor the entire Earth to provide data for long-range weather and 

climate forecasts. The NPOESS system consists of a suite of sensors on each platform.

The Departments of Commerce and Defense as well as NASA created the 

NPOESS Integrated Program Office (IPO) to develop, acquire, manage, and operate the 

next generation of polar-orbiting operational environmental satellites. As part of this 

effort, the United States has partnered with the European Organization for the 

Exploitation of Meteorological Satellites (EUMETSAT) to provide long-term continuity 

of observations from polar orbit that will continue and improve the operational 

meteorological and environmental forecasting and global climate monitoring services of 

the participating organizations.

The NPOESS program extends to the year 2018, building on new technologies to

create a new system supporting long-term data continuity for environmental monitoring 

and global change assessment.

1.1.1 NPOESS Program Description

NPOESS has undertaken a far-reaching program of sensor development and 

satellite transition to provide complete coverage of meteorological conditions for civil, 

military, and scientific purposes while cutting operational costs dramatically.

To accomplish its mission, NPOESS satellites in two orbital planes will replace 

the two-satellite Defense Meteorological Satellite Program (DMSP) and Polar Orbiting 

Environmental Satellite (POES) constellations, respectively, along with EUMETSAT 

providing data in the mid-morning orbital plane. NPOESS and EUMETSAT will share
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data from their polar-orbiting satellites. The evolution of the satellite configuration is 

depicted in Figure 1.1 (Cunningham, 2001).

As is depicted in Figure 1.1, the NPOESS satellites will be a polar-orbiting 

satellite system. There are several benefits to such a system. A polar-orbiting satellite is 

able to provide M l global coverage, while its geostationary counterparts, such as the 

Geostationary Operational Environmental Satellite (GOES) satellites, are limited to 

approximately 60 degrees of latitude at a fixed point over the Earth. Polar-orbiting 

satellites are able to circle the globe approximately once every 101 minutes. This global 

coverage allows polar systems to provide critical environmental information for 

initializing Global Forecast Models (GFM) and improving their output. The data from 

polar-orbiting satellites also provide higher spatial resolution than data from 

geostationary satellites.

Figure 1.1: Evolution of the NPOESS satellite system.
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1X2 Sensors of the NPOESS program

The array of sensors onboard NPOESS will collect and disseminate data about 

Earth's oceans, atmosphere, land, climate, and space environment. The sensors for the 

program are both under development and heritage instruments, drawing upon proven 

technology. These sensors serve to produce Environmental Data Requirement (EDR) 

products. These data products, and the sensors which measure/determine them are 

summarized in Table 1.1.

The Visible/Infrared Imager/Radiometer Suite (VIIRS) sensor collects visible and 

infrared radiometric data of the Earth's atmosphere, ocean, and land surfaces. This 

sensor is currently under development and is the sensor for which I developed the Cloud 

Mask methodology explained in Chapter 2. Data types produced from this sensor 

include atmospheric, clouds, Earth radiation budget, land/water and sea surface 

temperature, ocean color, and low light imagery.

The Conical Microwave Imager/Sounder (CMIS) instrument is also under 

development. For the CMIS sensor there are 22 products produced that are relevant to 

clouds, sea winds, hurricanes, rainfall. Also the CMIS instrument will collect global 

microwave radiometry and sounding data to produce microwave imagery and other 

meteorological and oceanographic data.

The Crosstrack Infrared Sounder (CRIS) instrument is under development for the 

NPOESS program. This sounder will measure the thermal radiation emitted by the 

Earth’s atmosphere to determine the vertical distribution of temperature, moisture, and 

pressure in the atmosphere.

The Global Positioning System Occupation Sensor (GPSOS) will measure the 

refraction of radiowave signals from the GPS and Russia's Global Navigation Satellite
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System (GLONASS) to characterize the state of the Earth’s ionosphere. The instrument 

is also used for spacecraft navigation.

The Ozone Mapping and Profiler Suite (OMPS) will collect data to permit the 

calculation of the vertical and horizontal distribution of ozone in the Earth's atmosphere. 

Also measurements of the ultraviolet radiation will allow the characterization of aerosols 

over bright snow and ice surfaces.

The Space Environment Sensor Suite (SESS) instrument is dedicated to space

physics measurements. SESS will measure neutral and charged particles, magnetic 

fields, and optical signatures of aurora.

1.1.3 NPOESS Data Products

The data collected by the suite of instruments summarized in Section 1.1.2 

above will be processed into Raw Data Records (RDRs), Sensor Data Records (SDRs), 

Data Products (DPs) and Environmental Data Requirements (EDRs) for use by a number 

of operational communities. The EDRs are the primary product of the NPOESS sensors. 

The types ofNPOESS EDRs are shown in Table 1.1, in that the first six boxes in the far 

left column have been assigned top priority by the NPOESS program. In this table the 

EDRs with asterisks are those that are products of the VIIRS sensor, and other Non- 

VIIRS generated EDRs produced for NPOESS have no asterisks. The VIIRS Cloud 

Mask is a component of the Cloud Cover/Layers EDR product listed below. The 

development of this product is discussed in Chapters 2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



24

Table 1.1: NPOESS Environmental Data Records and Imagery Products.

Atmospheric Vertical Moisture Profile Dowaward Longwave Radiance 

(Surface)

Ozone -  Total Column/Profile

Atmospheric Vertical Temp Profile Electric Fields Precipitable Water

Imagery * Electron Density Profile Precipitation Type/Rate

Sea Surface Temperature * Energetic Ions Pressure (Surface Profile)

Sea Surface Winds Fresh Water Ice * Sea Ice/Age and Edge Motion *

Soil Moisture * Geomagnetic Field Sea Surface Height/Topography

Aerosol Optical Thickness * Ice Surface Temperature * Snow Cover/Depth *

Aerosol Particle Size * In-situ Plasma Fluctuations Solar Irradiance

Albedo (Surface) * In-situ Plasma Temperature Supra-Thermal -  Auroral 

Particles

Auroral Boundary Insolation Surface Type *

Auroral Imagery Ionospheric Scintillation Surface Wind Stress

Cloud Base Height* Medium Energy Charged Particles Suspended Matter *

Cloud Cover/Layers * Land Surface Temperature * Total Auroral Energy Deposition

Cloud Effective Particle Size * litto ra l Sediment Transport * Total Longwave Radiance (TOA)

Cloud Ice Water Path Mass Loading/T urbidity * Total Water Content

Cloud Liquid Water Net Heat FJai * Vegetation Index/Surface Type *

Cloud Optical Depth * Net Short Wave Radiance (T0A) Imagery Product -  Cloud Type *

Cloud Top Height * Neutral Density Profile Imagery Product -  Cloud Cover 
*

Cloud Top Pressure * Neutral Winds Imagery Product -  Ice 

Concentration *

Cloud Top Temperature * Ocean Color/CMorophyi * Imagery Product -  Ice Edge 

location *

Currents (Ocean) * Ocean Wave Characteristics Imagery Product- Near Constant 

Contrast
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1.1.4 NPOESS Timeline

The NPOESS Timeline is depicted in Figure 1.2 {Cunningham, 2001). In this 

figure the earliest NPOESS satellite to be launched is in 2008, with the DMSP shown as 

being phased out, and replaced by the NPOESS system. Also, the NOAA POES system 

will be replaced by the NPOESS system in 2009. Depicted also are the NASA Earth 

Observing System (EOS) Terra and Aqua satellites phasing into the NPOESS system. 

The European Meteorlogical Operational (METOP) system is shown initially being 

deployed as part of the NPOESS system of satellites.

Figure 1.2s NPOESS system timeline.
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1.2 The VIIRS Sensor System

The VIIRS instrument is briefly described here to clarify the context of the 

descriptions of the VIIRS Cloud Mask product presented in Chapter 2. The VIIRS can 

be pictured as a convergence of three existing sensors, two of which have historically 

seen extensive operational use. These three sensors are the DoD Operational Linescan 

System (OLS), the NOAA Advanced Very High Resolution Radiometer (AVHRR), and 

the NASA Moderate Resolution Imaging Spectroradiometer (MODIS) Sensor.

The OLS is the operational visible/infrared scanner for the Department of 

Defense (DoD). Its unique strengths are controlled increasing in spatial resolution 

through rotation of the ground instantaneous field of view (GIFOV) and the existence of 

a Low-Level Light Sensor (LLLS) capable of detecting visible radiation at night. OLS 

has primarily served as a data source for manual analysis of imagery. The AVHRR is 

the operational visible/infrared sensor flown on the National Oceanic and Atmospheric 

Administration (NOAA) Television Infrared Observation Satellite (TIROS-N) series of 

satellites. Its unique strengths are low operational and production cost and the presence 

of five spectral channels that can be used in a wide number of combinations to produce 

operational and research products. Figure 1.3 compares the VIIRS bandset to that of the 

heritage AVHRR and OLS sensors.
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Figure 13: Comparison of the VIIRS imagery bandset with heritage sensors.

In December 1999, the National Aeronautics and Space Administration (NASA) 

launched the Earth Observing System (EOS) morning satellite, Terra, which includes the 

Moderate Resolution Imaging Spectroradiometer (MODIS). This sensor possesses an 

unprecedented array of thirty-two spectral bands at resolutions ranging from 250 m to 1 

km at nadir, allowing for unparalleled accuracy in a wide range of satellite-based 

environmental measurements.

The VIIRS sensor will reside on a platform of the National Polar-orbiting 

Operational Environmental Satellite System (NPOESS) series of satellites. It is intended 

to be the product of a convergence between DoD, NOAA and NASA in the form of a 

single visible/infrared sensor capable of satisfying the needs of all three communities, as 

well as the research community beyond. As such, VIIRS will require three key
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attributes: high spatial resolution, minimal production and operational cost, and a large 

number of spectral bands to satisfy the requirements for generating accurate operational 

and scientific products.

Illustrated in Figure 1.4 is the design concept for the VIIRS instrument, to be 

designed and built by Raytheon Santa Barbara Remote Sensing (SBRS). At its heart is a 

rotating telescope scanning mechanism that minimizes the effects of solar impingement 

and scattered light. Calibration is performed onboard using a solar diffuser for short 

wavelengths and a V-groove blackbody source and deep space view for thermal 

wavelengths. A solar diffuser stability monitor is also included to track the performance 

of the solar diffuser. The nominal altitude for NPOESS will be 833 km. The VIIRS 

scan will extend to 56 degrees on either side of nadir.

Passive Radiative Coder

Solar CaMbratmt Port* Door and Screen 
(EIMf/RCBISSraVlifSWRS)

Aft 
(IHEMIS)

Electronics 4^4^
Modules
{Emtmwm, 
SnWFSWIKS)

Bladd>ody(MOiHS/VERS) 

“Rotating Telescope Sain (SmWISS)

f  Velocity * Constant-Speed Rotating Telescope 
• Simple AU-Reflective Optics 
• Proven IkiMV^Rrtecttve Gatfbntthm

Figure 1.4: Summary of VIIRS design concepts and heritage.

The VIIRS Sensor Requirements Document (SRD) places explicit requirements 

on spatial resolution for the Imagery EDR. Specifically, the horizontal spatial resolution 

(HSR) of bands used to meet threshold Imagery EDR requirements must be no greater 

than 400 m at nadir and 800 m at the edge of the scan. This led to the development of a
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unique scanning approach which optimizes both spatial resolution and signal-to-noise 

ratio (SNR) across the scan. The nested lower resolution radiometric bands follow the 

same paradigm at exactly twice the size. The VIIRS detectors are rectangular, with the 

smaller dimension projecting along the scan. At nadir, three detector footprints are 

aggregated to form a single VERS “pixel”, illustrated in Figure 1.5. Moving along the 

scan away from nadir, the detector footprints become larger both along track and along 

scan, due to geometric effects and the curvature of the Earth. The effects are much 

larger along scan. At around 32 degrees in scan angle, the aggregation scheme is 

changed from 3x1 to 2x1. A similar switch from 2x1 to 1x1 aggregation occurs at 48 

degrees. The VIIRS scan consequently exhibits a pixel growth factor of only two both 

along track and along scan, compared with a growth factor of six along scan which 

would be realized without the use of the aggregation scheme.

Imaging (“Hig h-Resolut ion”1 Bands 
Nadir 2028 km 3000 km

• aggregate 3 sam ples
• SN R  increases by  sqrt{3)

■ lim it for aggregating 2 samples 
1 SN R  increases by sqrt(2)

' no aggregation

371 m 605 m

H
131 m

800 m

L
393 m

393 m 800 m
786 m

Figure 1.5: Summary of VIIRS imaging bands design.
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13 The VIIRS Sensor Bandset

The VIMS sensor has a total of 22 bands which may be broken down to subsets 

of 6 high resolution imagery bands, and 18 radiometric bands. Imagery bands are higher 

resolution (371 m) than the radiometric bands (742 m), and have primary uses in sea ice 

and cloud typing applications and use for imagery analysts to discern surface features. 

While radiometric bands are used in the suite of VIIRS algorithms to retrieve VIIRS 

EDRs.

Similarly the VIIRS bandset may be broken down into the spectral regions the 

bands span. The bandset may be subdivided into the Visible-Near-Infrared (VNIR), 

Short Wave Infra-Red (SWIR), Mid-Wave-Infra-Red (MWIR), and Long Wave Infra­

Red (LWIR) spectral regions. Each of these regions, and the VEERS bands which span 

them will be discussed briefly.

13.1 The VMM VIIRS Sensor Bandset

The positioning of the VIIRS spectral bands in the VNIR spectral region are 

summarized in Figure 1.6. Radiation in this spectral region is solar in origin, and 

therefore there exists a great dependence upon the solar zenith angle. The spectral 

region between 400 and 600 nm are the limitation of human vision, so even across the 

VNIR region, which spans 300 to 1000 nm, there are spectral features and reflectances 

undetectable to the naked eye require sensors to discern them.

Figure 1.6 is a depletion of the reflectances of snow, vegetation, water, and non­

vegetated soil across the VNIR spectral region. Across much of the VNIR region most 

materials have a low reflectance, high absorption, except for in the longer wavelength 

regions. The most pronounced effect for a variety of materials is the decrease with 

longer wavelength of snow surface reflectance, the linear increase of reflectance with
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wavelength of non-vegetated soil, the dramatic increase in the reflectance of vegetated 

regions between 600 nm and 800 nm, and the uniform low reflectance of water surfaces 

across the VNIR.

Wavelength (micron)

Figure 1.6: The VIIRS VNIR spectral bands. Bands are depicted by solid straight lines.
Also illustrated are the surface reflectance of water, vegetated surfaces, snow, and non­
vegetated soil. Atmospheric absorption features, and the molecules responsible are 
noted in this figure by labeling of the species responsible, and by the resultant drops in 
the atmospheric transmission (solid curve).

There are various important atmospheric effects across the VNIR region. 

Aerosols have a increase in their scattering effect as one goes from higher to lower 

wavelengths across this region. Clouds also scatter uniformly across this region, with 

similar reflectance properties to the snow reflectance curve in Figure 1.6. Additionally,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



32

molecular scattering, which is commonly referred to as Rayleigh scattering also has an 

increase in magnitude as one goes to the smaller wavelengths.

Atmospheric absorption, the solid curve depicted in Figure 1.6, illustrates the 

absorbing properties of various atmospheric molecules across this spectral region.

Where the solid line drops in magnitude there is an absorption feature of a specific 

atmospheric molecule encountered. Some atmospheric absorption features worth 

mentioning across the VNIR region. The first feature is at the lower wavelength region 

of the VNIR, the primary ozone absorption features are at the edge of the Ultraviolet 

(UV-B and UV-A) spectral regions of ozone, which leads to the drop in atmospheric 

transmission less than 400 nm in Figure 1.6. There are also additional weaker ozone 

absorption features near 580 nm in the Chapins bands. There are additional features 

across the VNIR region, with the oxygen absorption features at 760 nm, and the various 

water vapor features about 700,820, and 945 nm being most prominent. Absorption 

regions exist due to discrete vibration bands in which solar radiation is absorbed by 

molecules across this spectral region. Energy absorbed by molecules and the surfaces in 

the solar region of the spectrum leads to warming and produces the surface and 

atmospheric temperature characteristics.

The VIIRS sensor bandset across the VNIR have various uses, dependent upon 

the atmospheric properties and surface reflectances in the spectral regions within their 

bandwidth. The three bands at wavelengths less than 500 nm have two predominant 

uses, one is in ocean color retrievals, and additional algorithms use this region for 

atmospheric aerosol retrievals. Phytoplankton and blue-green algae are detectable in this 

region using these bands, in addition to turbidity in the water. Of note is that ocean- 

color retrieval algorithms have also benefited from using bands near 550,680, and 750 

nm, whereas aerosol retrieval algorithms have primarily used the shorter wavelength 

bands. Vegetation amount is commonly inferred from the Normalized Differential 

Vegetation Index (NDVI) based on the low reflectance 650 nm band and the higher 

reflectance 850 nm band to discern vegetated areas. The bands near 650 and 850 nm
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have additional uses in retrieving the optical depth of clouds. Across this spectral region 

there are additional bands which are used in cloud detection, the discussion of these 

bands will be done in Chapter 2. Sensors such as MODIS, use the 945 nm spectral 

region to retrieve atmospheric water vapor amounts. VERS however does not have 

requirements to produce this product, and thus lacks bands in this spectral region. The 

use of this spectral region for water vapor retrieval will be discussed in Chapter 4.

13 2  The SWIR VIIMS Sensor Bandset

The positioning of the VERS spectral bands in the SWIR spectral region are 

summarized in Figure 1.7. Radiation in this spectral region (1000 -  3000 nm) is 

primarily solar in origin. One exception to this rule is for very hot regions, i.e. forest 

fires, which can be hot enough to emit radiation, according to Planks Law at the longer 

wavelengths in this spectral region. The entire SWIR spectral region are beyond the 

upper wavelength limits of human vision, making the spectral features and reflectances 

invisible to the human eye and undetectable without sensors to identify them.

Figure 1.7 is a depiction of the reflectances of snow, vegetation, water, and non­

vegetated soil across the SWIR spectral region. Across much of the SWIR region most 

materials have a decrease in reflectance with increasing wavelength, resulting in higher 

absorption, except for primarily non-vegetated surface types. The most pronounced 

atmospheric absorption effects across this spectral region are the numerous water vapor 

absorption regions, these are called ‘dirty windows’. Atmospheric water vapor 

absorption features are notable in Figure 1.7 near 1180,1375,1900, and 2600 nm. In 

these ‘dirty windows5 minimal solar radiation reaches the surface and is reflected back to 

satellite borne sensors. Thus, measured radiation in these spectral regions is used 

primarily for atmospheric, rather than for surface property retrieval. In contrast to these 

dirty window spectral regions are the ‘window’ regions in which atmospheric absorption
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is minima.!. These regions allow one to measure surface properties with minimal 

atmospheric attenuation.

Wavelength jmicron)

Figure 1.7: The VIIRS SWIR spectral bands. Bands are depicted by solid straight lines. 
Also illustrated are the surface reflectance of water, vegetated surfaces, snow, and non­
vegetated soil. Atmospheric absorption features, and the molecules responsible are 
noted in this figure by labeling of the species responsible, and by the resultant drops in 
the atmospheric transmission (solid curve).

The SWIR spectral region has been primarily exploited for cloud effective 

particle size retrieval, cloud detection, and cloud phase/type. Additionally, this region 

has been used to discern surface snow cover using a Snow Differential Index (SD1), 

analogous to the NDVI in the visible spectral region, using the lower reflectance of snow 

near 1600 nm and the higher reflectance in the VNIR to discriminate surface snow cover.

There are additional important atmospheric effects across the SWIR region, aside 

from the dirty windows and window regions previously mentioned. Clouds have similar 

reflectance properties similar to those depicted for snow, with a general lower
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reflectance that depends upon the clouds particle size. In the SWIR window regions 

clouds are easily discemable from snow. This will be discussed in more detail in 

Chapter 2. Methane has weak atmospheric absorption features located near 1600 and 

stronger features near 2200 nm. These features will be discussed and used in Chapter 5. 

Aerosols have a increase in their scattering effect as one goes from higher to lower 

wavelengths across this region, but their scattering is much less than in the VNIR 

spectral region.

The VIIRS sensor handset across the SWIR have various uses, dependent upon 

the atmospheric properties and surface reflectances in the spectral regions within their 

bandwidth. The band located near 1200 nm has uses in discerning ice age and type, and 

additional applications in retrieving cloud particle size. The band near 1375 nm has a 

primary use in detecting thin cirrus clouds, which reflect radiation back to space before it 

encounters the atmospheric water vapor beneath the high cirrus clouds. The bands 

located in the 1600 and 2200 nm window regions are primarily used for cloud detection 

over snow and ice surfaces, and have uses in cloud typing of imagery.

1 3 3  The MWIR VIIRS Sensor Bandset

The Mid-Wave-Infra-Red spectral region is between 3000 and 5000 nm, depicted 

in Figure 1.8. This spectral region is also referred to as the ‘crossover region’ because 

the solar radiation decreases while the thermal infrared radiation increases with 

wavelength here. With both thermal and solar radiation components in this spectral 

region there are both thermal and solar uses of the radiation field. During the daytime 

the solar radiation component in this spectral region disappears, while the thermal 

radiation component is always present. ■

Surface reflectance of a majority of surface types across this spectral region is 

uniformly low, illustrated in Figure 1.8 . However, the exception is the reflectance of 

non-vegetated soils regions. Another property in addition to reflectance that may be
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used in the thermal regions of the spectrum is the emissivity. The emissivity is the 

degree to which a surface adheres to being a black body, for which emissivity is unity 

and the surface emits following Plank’s law (a perfect black body). The sum of 

emissivity and reflectivity of a surface equals one for a non-transmissive surface. This 

allows the use of both of these properties in studying atmospheric and surface 

interactions and effects.

3 3.2 3.4 3.6 3.8 4  4.2 4.4 4.8 4.8 5

Wavelength (micron)

Figure 1.8: The VIIRS MWIR spectral bands. Bands are depicted by solid straight 
lines. Also illustrated are the surface reflectance of water, vegetated surfaces, snow, and 
non-vegetated soil. Atmospheric absorption features, and the molecules responsible are 
noted in this figure by labeling of the species responsible, and by the resultant drops in 
the atmospheric transmission (solid curve).

The absorption features across the MWIR are caused by both vibrational and 

rotational absorption bands. The most notable features across the region are dirty 

windows from water vapor (near 3100 and 4800 run), from methane (3300 nm) and the 

strong carbon dioxide dirty window absorption region near 4300 ran. These features
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both absorb solar radiation, and additionally absorb the thermal radiation emitted by the 

Earth’s surface and atmosphere.

The VIIRS MWIR bandset are used for surface temperature retrieval, for 

snow/ice detection, for ocean current retrieval, for forest fire detection, for cloud type 

determination, and for cloud detection. The cloud detection bands usage is based 

primarily upon spectral differences in solar radiation, and is discussed more in Chapter 

2 .

13.4 The LWIR VIIRS Sensor Bandset

The Long-Wave-Infra-Red spectral region is between 5000 and 15000 nm, 

depicted in Figure 1.9. This spectral region consists of entirely emissive thermal 

radiation and unlike the other spectral regions considered there is no solar radiation. The 

amount of emitted thermal radiation is depends upon Plank’s law, with variations a 

result of atmospheric absorption and spectral emissivity differences. During day and 

night the thermal radiation across the LWIR is always present.

Surface emissivity is considered across this spectral region as opposed to 

reflectance in the other spectral regions discussed. The emissivity of a majority of 

surface types across this spectral region is uniformly high as illustrated in Figure 1.9. 

However, the exception is the spectrally lower emissivity of non-vegetated soils regions. 

Additionally clouds have a spectrally varying emissivity across the LWIR region.

The absorption features across the LWIR are caused by rotational molecular 

absorption features. These features are illustrated in Figure 1.9. The most notable 

features across the region are dirty windows from water vapor (from 5000 -  8000 nm), 

from the carbon dioxide dirty window absorption region ( wavelengths longer than 

13000 nm) and from a sharp ozone absorption feature (9600 nm). These features absorb 

the thermal radiation emitted by the Earth’s surface and atmosphere. The window
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regions near 8600, and 10000-12000 ran allow thermal radiation to escape from the 

Earth’s surface and atmosphere to space.

!  9 18 11

Wavelength (micron)

Figure 1.9: The VIIRS LWIR spectral bands. Bands are depicted by solid straight lines. 
Also illustrated are the surface emissivity of water, vegetated surfaces, snow, and non­
vegetated soil. Atmospheric absorption features, and the molecules responsible are 
noted in this figure by labeling of the species responsible, and by the resultant drops in 
the atmospheric transmission (solid curve).

The VIIRS LWIR bandset is used for surface temperature retrieval, for snow/ice 

detection, for ocean current retrieval, for forest fire detection, for cloud type 

determination, and for cloud detection. The cloud detection bands usage is based 

primarily upon spectral differences in cloud emissivity, and is discussed more in Chapter 

2 .
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1.4 The MOMS Airborne Simulator Sensor

The MODIS Airborne Sensor (MAS) has been used extensively in the 

development of the VIIRS Cloud Mask EDR, discussed in Chapter 2. Data acquired by 

the MAS have in the past been used to define, develop, and test algorithms for the 

MODIS sensor, a key sensor of NASA's Earth Observing System (EOS). The VIIRS 

system has bands which are highly MODIS-like, therefore the MAS data has been used 

in developing the VERS algorithms as well, serving as VIIRS surrogate data in the 

absence of M l simulation capabilities.

The MODIS Airborne Simulator (King et a l, 1992; King et a l, 1996) is a 

modified Daedalus Wildfire scanning spectrometer which flies on a NASA Experimental 

Research (ER-2) high altitude research aircraft and provides spectral information similar 

to that which is now provided by the MODIS instrument on the EOS platform.

Since 1992 the MAS has been flown in a series of experiments that have lasted 

on average 2-8 weeks, with anywhere from 5-15 flights conducted during each 

experiment. These experiments have been flown all over the world collecting an 

abundance of data over many varying surfaces and varying atmospheric conditions.

The MAS spectrometer acquires high spatial resolution imagery in the spectral 

range between 0.4 and 14.3 microns. A total of 50 spectral bands are available in this 

range. A 50-channel digitizer records all 50 spectral bands at 16 bit. The MAS 

spectrometer is mated to a scanner sob-assembly which collects image data with an 

Instantaneous Field of View (IFOV) of 2.5 mrad, giving a ground resolution of 50 m 

from 20 fan altitude, and a cross track scan width of 85.92 degrees. A summary of the 

MAS instrument is presented in Table 1.2, and examples of MAS imagery is presented 

in both Chapters 2 and 3.
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Table 1.2: Description of the MAS Instrumentation.

Platform: NASA ER-2 aircraft

Ground Speed: 400 kts (206 m/s)

Altitude: 20 km (nominal)

Pixel Spatial Resolution: 50 m (at 20 km altitude)

Pixels per Scan Line: 716 (roll corrected)

Scan Rate: 6.25 scans/s

Swath width: 37.25 km or 22.9 mi (at 20 km altitude)

Total Field of View: 85.92°

Instantaneous Field of View: 2.5 milliradians

Roll Correction: Plus or minus 3.5 degrees (approx)

Data Channels: 50 (16-bit resolution)

Spectral Bands: Port 1: 09 bands from 0.529 - 0.969 pm 

Port 2: 16 bands from 1.595 - 2.405 pm 

Port 3: 15 bands from 2.925 - 5.325 pm 

Port 4: 09 bands from 8.342 -14.521 pm

Data Rate: 246 Megabytes/hr

Visible Calibration: Integrating sphere on the ground

Infrared Calibration: Two black bodies on board
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1.5 Algorithms Developed for Future Sensors

For the VIIRS sensor the author has developed the cloud detection algorithm, 

which will be discussed in detail in Chapter 2. The cloud detection algorithm has been 

developed and validated, along with flowdown of the error budget and effects of hand- 

to-hand mis-registration upon cloud detection for the VIIRS sensors algorithmic suite.

A cloud detection algorithm is needed to identify the cloudy and clear pixel 

regions in imagery. Once clear regions are discriminated from cloud regions then 

additional processing can be performed upon each of them to generate VIIRS products. 

For the regions identified as cloud-covered additional cloud processing algorithms are 

available to determine cloud phase, cloud effective particle size, cloud optical depth, 

cloud top height, and cloud base height, and to generate VIIRS Cloud EDR products. 

For regions identified as being clear atmospheric and surface processing algorithms are 

available. The atmospheric processing algorithms generate aerosol optical property and 

aerosol type products. The surface processing algorithms determine surface type, 

albedo, vegetation detection, snow/ice surface detection, surface temperature, ocean 

current retrieval, lead detection, sea ice detection, ocean color detection, and snow/ice 

imagery product development.

Two new techniques of retrieving atmospheric information, to be applied on 

future satellite remote sensing platforms, have been developed as part of this thesis. The 

first of these new techniques improve upon current MODIS water vapor retrieval 

algorithms under hazy atmospheric conditions by making use of cloud shadowed 

regions. This work is presented in Chapter 4. The second method employs regions of 

sun glint to retrieve total atmospheric and surface methane amounts. This work is 

presented in Chapter 5.
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Chapter 2 

The VIIRS Cloud Mask

2.# Introduction

This chapter consists of excerpts from the VIIRS Cloud Mask (VCM) Algorithm 

Theoretical Basis Document (ATBD) (Larsen, 2000a), a document which explains the 

theoretical background required to derive the Environmental Data Requirement (EDR) 

of the VCM. This EDR is a binary cloudy/not cloudy flag, which is a required segment 

of the Cloud Cover/Layers EDR (NPOESS IPO, 2000). In addition, this chapter 

provides an overview of the required input data, a description of how cloud detection is 

performed for VIIRS, examples of cloud detection, and a description of the error budget 

for the described algorithm. The cloud mask described in this chapter is part of the 

Cloud Cover/Layers EDR developed for the National Polar Orbiting Environmental 

Satellite System (NPOESS)VIIRS software package of EDRs. Parameters relevant to 

the EDR VCM are displayed in Table 2.2.

2.1 Overview

This chapter covers the theoretical basis for the generation of the VIIRS EDR 

VCM Algorithm. Sections 2.1.1 and 2.1.2 give an overview of the cloud mask 

objectives. Section 2.1.4 describes the VCM, its input data, the theoretical background, 

and some practical considerations. Section 2.4 provides an overview of the error budget

and simulation results, and Section 2.5 shows validation examples for the VCM.
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2.1.1 Cloud Mask Definition

In the VIIRS Sensor Requirements Document (NPOESS IPO, 2000) the Cloud 

Cover/Layers EDR Is outlined and explained as follows.

Cloud cover/layers EDR consists of two data products:

(a) fractional cloud cover, defined as the fraction of a given area on the Earth’s surface 

for which a locally normal line segment extending between two given altitudes intersects 

a cloud, and

(b) a biliary (cloudy/not cloudy) map at the pixel level indicating which pixels are 

deemed to contain clouds. This is a specification which the cloud detection algorithm 

fills in.

As a threshold, fractional cloud cover is required for up to four layers of the 

atmosphere between the surface and an altitude of 20 km. As an objective, cloud cover 

is required for contiguous, 0.1 km thick layers at 0.1 km increments in altitude, from the 

surface of the Earth to an altitude of 30 km.

Table 2.1 below depicts the Cloud Cover/Layers EDR requirements. The cloud 

mask is the probability of correct typing (binary map) section of Table 2.1. With no 

threshold or objective probability of correct typing values specified by the VIIRS SRD 

(NPOESS IPO, 2000) the government asked for the developers to assign specifications 

for the probability of correct typing. These values are provided in Section 2.5.
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Table 2.1 s VHRS Cloud Cover/Layers/ Mask EDR.

Para. No. Field Thresholds Objectives
a. Horizontal Cell Size

V40.4.2-11 1. Fractional cloud cover 25 km 2 km
V40.4.2-12 2. Binary Map pixel size (TBD)
V40.4.2-2 b. Horizontal Reporting 

Interval
To Be Determined 
(TBD)

(TBD)

c. Vertical Cell Size N/A N/A
V40.4.2-3 d. Vertical Reporting 

Interval (fractional cloud 
cover)

Up to 4 layers 0.1 km

V4Q.4.2-4 e. Horizontal Coverage Global Global
V40.4.2-5 f. Vertical Coverage 0 -20  km 0 - 30 km
V40.4.2-6 g. Measurement Range 0-1.0 0-1.0
V40.4.2-14 1. Fractional cloud cover 0 -1 .0 0 -1 .0
V40.4.2-15 2. Binary map Cloudy/not cloudy Cloudy/not

cloudy
V40.4.2-7 h. Measurement Accuracy 

(fractional cloud cover)
0.1 0.05

V40.4.2-8 i. Measurement Precision 
(fractional cloud cover)

0.15 0.025

V40.4.2-13 xl Probability of Correct 
Typing (binary map)

> (TBD) at 95 % 
To Be Resolved 
(TBR) confidence 
level

> (TBD) at
95%
(TBR)
confidence
level

V40.4.2-9 j. Mapping Uncertainty 4 km 1 km
k. Maximum Local Average 
Revisit Time

6 fars 4 hrs

1. Maximum Local Refresh (TBD) (TBD)
V40-4.2-10 m. Minimum Swath Width 

(All other EDR thresholds 
met)

3000 km (TBR) (TBD)
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2*1.2 Objective ©f the Cloud Mask

The objective of the VCM is to determine if a given Field of View (FOV) has a 

cloud present. The VCM is defined as the pixel level flag which indicates when a line 

segment extending between the sensor and a given area of the Earth’s surface is 

intersected by a cloud. The cloud mask EDR is a binary cloudy/not cloudy flag 

operating at the pixel level using VIIRS radiance data. Aggregation of the cloud mask to 

a larger HCS is performed to retrieve the Cloud Cover/Layers EDR. The VCM operates 

at a radiometric pixel resolution (742 m), and at the imagery pixel resolution (371 m), at 

nadir along the scantrack. It should be noted that not only is the VCM an EDR, but it is 

crucial as a first step in evaluating any scene before further processing is begun to 

retrieve the many other VIIRS EDRs. Also generated by the VCM, in addition to the 

binary cloudy/not cloudy EDR, are many processing flags and test result indicators, 

which are used by other EDRs in the VIIRS processing architecture.

2.13 Historical Perspective ©n Cloud Detection

Cloud masking, or screening, involves the discrimination between clear and 

cloudy pixels within an image. Excellent reviews of the many cloud detection methods 

can be found in the literature {Ackerman et a l, 1997; Hutchison and Hardy, 1995; 

Saunders and Kriebel, 1988; Stowe et at., 1995; Goodman and Renderson-SeUers, 1988; 

and Rossow, 1989). The methods used in detecting clouds are generally based upon 

radiance and Brightness Temperature (BT) thresholding and statistical techniques which 

make use of the spectral and textural features in the imagery. The radiance and BT 

thresholding techniques performed by the VCM work on a pixel-by-pixel basis. Single 

or multi-channel thresholds are used to discriminate clear from cloudy pixels. 

Thresholding tests performed by the VCM have a heritage from the NOAA Clouds from
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AVHRR tests (CLAVR) and the NASA MODIS program. Statistical techniques use 

groups of adjacent pixels to recognize cloud apparent behavior.

2.1.4 Cloud Mask Algorithm

The VCM is essentially derived from the MODIS Cloud Mask (MCM) multi­

channel cloud masking techniques (Ackerman et a l, 1997), which in turn have their 

heritage in other algorithms. These include the Support of Environmental Requirements 

for Cloud Analysis and Archive (SERCAA) algorithm (Gustafson et a l, 1994), and the 

Clouds from AVHRR-Phase I (CLAVR-1) algorithm (Stowe et al., 1998). The heritage 

technology that the VCM is based on uses the most recent advancements in cloud 

detection techniques. This research has been conducted by the MODIS cloud research 

team at the University of Wisconsin, headed by Dr. Steve Ackerman, and the CLAVR-2 

algorithm team at NOAA, lead by Dr. Larry Stowe of the NPOESS Integrated Project 

Office (IPO). A third cloud mask has been developed specifically for cloud detection in 

the cryosphere. This cloud mask was developed for the Global Imager (GLI) instrument 

on the Advanced Earth Observing Satellite (ADEOS-2) satellite (Stamms, 1999; 

Stamms, 2003). When new cloud detection techniques are developed and proven to be 

effective, the modularized coding of the VCM will allow for these techniques to be 

added.

2X4.1 Inputs to the Cloud Mask

The inputs to the VCM algorithm are listed in Table 2.2. Additional ancillary data 

inputs are shown in Table 2.4. The spectral radiance is required for cloud thresholding 

tests. Within the VCM the radiances, reflectances (for solar bands at wavelengths less 

than 5 pm), and Brightness Temperature (BT) (for bands at wavelengths longer than 2 

pm) for each band are needed for cloud tests. Normalized incident Top of Atmosphere
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(TOA) irradiance and sun/sensor geometries (terrain-referenced geometric parameters) 

are required for determination of TOA reflectances, and identification of regions 

susceptible to sun glint effects. The retrieval quality indicators are relevant to the quality

of the sensor data in Table 2.2 being used by the VCM for cloud detection. They 

indicate that the respective input data are suspect.

Table 2.2; Parameters for the VCM product.

Name Units Ilefliiitioit/CoiaitaeBte
Spectral radiance (L) W/(m2 sr pm) Radiant energy per time-area-solid

angle wavelength interval
Brightness Temperature 
(BT)

K Brightness temperature for a given 
channel of the sensor, derived from 
spectral radiance.

Equivalent reflectance
(Pequiv)

None x x L  divided by normal incidence 
TOA irradiance

Normal incident TOA
Irradiance

W/(m2 pm) Normalized incident TOA 
irradiance in specific channel

Terrain-referenced
geometric parameters

Deg Solar- and observer geometry, solar
and sensor zenith and azimuthal 
angles.

Retrieval quality indicators vary Determine the quality assessment of 
the VCM

Not all bands of the VIIRS are used in the VCM for cloud detection. A list of the 

bands which are used by the VCM are given in Table 2.3. The radiometric parameters of 

these bands listed in Table 2.2 are required for operation of the VCM. The spectral 

response functions and additional information about the bandset below are described in 

chapter one. The band names listed in Table 2.3 are from the pre-PDR (Preliminary 

Design Review) of the VIIRS sensor. These band names are subject to change in the 

future VIIRS sensor development, however the band center and Bandwidth (BW ) is 

considered to be fixed.
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Table 23: The VIIRS channels used by the VCM.

Band Center X (jurat) Bandwidth (p a )
DNB 0.7000 0.4000
5i 0.6450 0.0500
OC2 0.6720 0.0200
61 0.8650 0.0390
6r 0.8650 0.0390
7 1.3780 0.0150
8i 1.6100 0.0600
8r 1.6100 0.0600
lOiw 3.7400 0.3800
lOr 3.7000 0.1800
SST2 4.0500 0.1550
SST4 8.5500 0.3000
11 10.7625 1.0000
12iw 11.4500 1.9000
12r 12.0125 0.9500

Table 2.4: Ancillary VIIRS data for the VCM.

Input Data Source of Data

Land/Water Tag EROS Data Center

Ecosystem Map Olson/Loveland

Topographical Map USGS/EDC

Radiometric Quality Indicator VERS

Most Recent Snow/Ice Map VIIRS/ CMIS/RAD ARS AT

Sun/Sensor Geometry VERS

Geolocation Data VERS

Table 2.4 lists the required ancillary data. The following section explains all of 

the input ancillary data in greater detail.
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The VCM requires a land/water map, which is sometimes referred to as a 

land/water tag, to discriminate land from water. Land and water possess different 

surface reflective properties. These properties affect the thresholds applied in 

discriminating clear sky from cloud. The best quality land/water map available will be 

used. Presently the VCM uses the 1 km resolution world map provided from the Earth 

Research Environmental Systems (EROS) Data Center (EDC). A possible future 

solution is to use the data product generated by the MODIS instrument. After launch it 

is hoped that a VERS land/water surface product is available for use.

A global ecosystem map is required to discriminate different land types. Various 

land types possess different reflective properties. The reflective properties need to be 

known to properly develop and identify the correct thresholds to be applied in cloud 

tests. The Olson map of ecosystems (Olson et a l, 1994) at 10 minute resolution is used 

for global processing. Tom Loveland’s ecosystem map (Loveland et a l, 1991) at 1 km 

resolution is applied, while over North America. The MODIS land cover classification 

is planned to be used in future development stages for this algorithm. Once NPOESS is 

operating, and global data are being acquired and updated regularly, the VIIRS Surface 

Type EDR (Brown De Coulston, 2000) can be applied, which at this level will be an 

Intermediate Product (IP).

Presently, a topographical map is not used by the VCM. However, in the future, 

a topographical map, or Digital Elevation Model (DEM) may be applied to assist in 

defining rugged versus plateau terrain. This is needed to determine the pixel elevation, 

define terrain type, identify topographically induced shadowing, modify surface 

reflectances, and to assist in cloud versus snow/ice cover discrimination. The plan is to 

use the United States Geological Survey GTOPO30 (USGS/EDC) DEM, with 

approximately 1 km resolution, in the future. The quality of the topographical data, and 

the methodology utilized, will be developed with a heritage of MODIS technology.

The radiometric quality of the input radiances are described by the Radiometeric 

Data Quality Indicator (RDQI). The sensor provides the RDQI to the VCM. A
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threshold of RDQI >1 must be obtained to start the VCM retrieval procedure. This 

RDQI differs from the quality indicators mentioned in Table 2.2 in that the other quality 

indicators pertain more to input data results than just the radiometric quality, of which 

the RDQI is an indicator.

For the VCM, snow/ice discrimination is required. This snow/ice map is needed 

to decide which cloud detection tests will be applied, and also to adjust thresholds 

applied over snow/ice surfaces. Spectrally, snow/ice and clouds have many similar 

features. A snow/ice map will decrease the misclassification of snow/ice as clouds. 

Presently the VCM uses a Normalized Differential Ice Index (NDJI) snow/ice threshold 

detection technique {Hall et al., 1996). The snow/ice mask is planned to be a combined 

result of the Conical Scanning Microwave Image/Sounder (CMIS) snow cover EDR, the 

CMIS fresh water ice EDR, the CMIS sea ice edge motion EDR, the VIIRS snow cover 

EDR, the VIIRS fresh water ice EDR, the thresholding techniques developed by 

MODIS, and the global climatological records of sea ice extent and location. The plan is 

to use the most recent snow/ice knowledge within the region being masked. This will be 

a stored global array which is updated within the VCM by conducting snow/ice tests. 

Knowledge of snow/ice is also needed beneath the clouds by other cloud EDRs 

following the VCM.

The sun viewing geometry (including solar and azimuthal angles), and the sensor 

viewing geometry are required for the VCM. These are used for setting some reflectance 

threshold tests. The data will be used to look for sun glint effects; set, apply, or adjust 

thresholds for cloud detection tests; assist in eliminating optically thick aerosol-laden

paths (which can be mlsideutified as clouds); assist in the identification of cloud 

shadows; and to determine if a pixel is in the day or night regime. The night regime is 

defined as when the solar zenith angle exceeds 85 degrees.

The geolocated positions on the Earth’s surface are needed as input to the VCM. 

The latitude and longitude coordinates of the surface being viewed allow the 

land/sea/ecosystem information to be retrieved from the land/water and ecosystem maps.
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Surface temperature maps are presently not being used in the VCM, but are 

considered to be a future input which will increase the probability of correct typing of 

clouds. The surface temperature map, when available, may be used as ancillary input 

data to the VCM. A surface temperature map for both land and sea is needed to enhance 

cloud detection. With the lack of daytime solar radiance measurements, low surface 

temperatures can be misidentified as clouds in some thermal cloud detection tests. Also, 

thermal threshold tests, for cloud detection will need to be modified using surface 

temperature data. The surface temperature map is expected to come from a combination 

of the CMIS Sea Surface Temperature EDR, CMIS Land Surface Temperature EDR, 

CRIS Vertical Temperature Profile EDR, VIIRS Ice Surface Temperature EDR, VIIRS 

Land Surface Temperature EDR, VIIRS Sea Surface Temperature EDR, ground based in 

situ surface temperature measurements, and sea ice based in situ measurements from the 

International Arctic Buoy Program (IABP). These surface maps may be used for 

establishing thresholds over a region for cloud detection tests. The primary benefit 

achieved from using surface temperature maps would be for nighttime cloud tests.

As with surface temperature maps, as explained above, the clear sky 

radiance/reflectance composite maps are presently not being used in the VCM. Clear 

sky radiance maps will allow cloud detection thresholds to be set and evaluated, and 

improve cloud detection. These clear-sky composite maps are expected to be composed 

of clear sky VIIRS radiance measurements, clear sky OMPS radiance measurements, 

clear sky CRIS radiance measurements, and clear sky CMIS radiance measurements. 

Dramatic seasonal differences in vegetated surface reflectances may require monthly or 

seasonal clear sky radiance composite maps at a regional level. In many cases, just using 

the most recent clear sky radiance map will assist in cloud detection. These radiance 

composite maps are not required for the cloud mask, but if they are available they may 

be used.

The VIIRS Daytime Nightime Band (DNB) Top of Atmosphere (TOA) is not 

presently used for VIIRS cloud detection. The DNB may be useful for cloud detection at
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nighttime when lunar Illumination is concurrent. The usefulness of the DNB for this 

application will be investigated for the final cloud mask product, along with the 

thresholds for the cloud detection tests associated with it. The DNB is also called the 

Low Level Light Sensor (LLLS).

Imagery channels BT of and TO A reflectances are presently used to Improve the 

detection of subpixei clouds within pixels which the imagery channels nest with other 

VEERS channels. The VERS imagery resolution bands ‘nest’ in the radiometric bands as 

depicted in Figure 2.1.

Imagery Resolution
<4--------------►

c0
1
8a>Q£

2
Ior

Figure 2.1: An illustration of band nesting. Depiction of the nesting of the imagery 
resolution bands within the VIIRS radiometric resolution bands.

This nesting allows the inclusion of an imagery resolution cloud mask along with 

the VCM output. The individual imagery resolution pixels, four of which are contained 

within a given radiometric pixel, undergo cloud detection tests, and the 2x2 imagery 

pixel region are subjected to spatial contrast tests which are of CLAVR heritage. For the 

48 bit output Intermediate Product (IP) the 4 bits are ordered from the upper left imagery 

resolution quadrant. Looking at the bit numbers 3-6, we note that the first bit is this 

upper left quadrant, the second bit is the upper right quadrant, the third bit is the lower 

left quadrant, and the fourth bit is the lower right quadrant.
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The use of additional ancillary (non-VIIRS) data sources to be considered for 

future use has also been investigated, and is detailed in Appendix A.

2.1.4.2 Algorithm Description and Processing

The VCM is developed from a hybrid of the MODIS/CLAVR cloud masks 

(Ackerman et a l , 1997; Stowe et al., 1998). As a hybrid algorithm, it combines the best 

features from both of these cloud detection algorithms. The overall processing structure 

of the VCM is directly related to the MODIS Cloud Mask algorithm processing 

structure, developed by Dr. Steve Ackerman’s research team at the University of 

Wisconsin.

Generation of the VCM occurs routinely as part of the first level of EDR 

processing, residing in the Sensor Data Record (SDR) module (Kuin, 2000). The VCM 

pixel level results are then used at a pixel level by the other EDRs. The VCM results 

also undergo a conversion from a pixel level cloud mask to a Horizontal Cell Size (HCS) 

in the VIIRS Cloud Cover EDR. VCM output is used by the many other EDRs which 

depend on cloud masking. The VCM does cloud tests at both the radiometric resolution, 

using the radiometric bands, and at the higher Imagery resolution, using the Imagery 

bands. The pixel level detection is performed using a limited number of cloud 

thresholding tests, and spatial homogeneity tests applied to the 2x2 imagery bands. The 

Imagery tests use thresholding at the imagery resolution. Imagery resolution tests 

available in CLAVR-1 are used in the VCM. These multi-pixel contrast and 

thresholding tests are done using the imagery bands nested within radiometric bands.

Use of the imagery resolution bands for cloud detection allows for the sub-pixel level 

clouds to be more easily detected.

A conceptual overview of the VCM algorithm is displayed in Figure 2,2. The 

data input to the VCM is illustrated in the ellipsoids above the ‘black box’ in which the 

VCM is contained. Output from the VCM is illustrated at the bottom of Figure 2.2. The
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output data are reported at a pixel level. For the multi-pixel tests, the output data are 

reported at an aggregated pixel resolution. The VCM box in Figure 2.2 has been 

expanded in order to assist in explaining how the VCM algorithm processes the data.

Every Ckrnd Test Resell 
Srsowflce Flag 
Larsd/WaierFfeg
SiadowFkg 
Non-Ooad Obstruction 
Fas

Figure 2.2; Conceptual overview of the VCM EDR.

Figures 23-2.5 and 2.7 depict the expansion of the VCM depicted in Figure 2.2, 

and show the general flow of the algorithm. The final box in the flowcharts from 

Figures 23-2.6 continue onto the next figure in sequence.
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The first modules (Figure 2.3) of the VCM show the processing steps for the 

cloud mask. These are performed in a loop over a given scan line of the image being 

masked. First, the arrays for the algorithm are defined. This sets up the appropriately 

sized arrays for channel radiances, latitude, longitude, channel BTs, channel reflectances, 

sun/sensor geometry, ecosystem, and others. Once these arrays have been defined, they 

are then filled with data read in from ancillary data products, VIIRS radiance data, and 

sun/sensor data. In order to perform BT thresholding tests, the radiances for the VIIRS 

thermal channels are assumed to have been converted to Brightness Temperatures (BT) 

values before the VCM is applied in the SRD Module. These radiances are placed in the 

appropriate arrays. Due to limited data flow from the sensor to the algorithms, the 

additional sun/sensor relative azimuthal and reflectance angles are assumed to be 

calculated prior to the application of the VCM for the given FOV. The background 

beneath the pixel being masked is then determined and the land/ocean, sun glint, and 

ecosystem masks are applied. Logical arrays are defined along the entire scan line which 

define the pixel in terms of its background. Ib is is necessary to define which 

thresholding tests are to be performed later in the algorithm, as well as to set the 

appropriate cloud detection threshold values. The BT and reflectance values are then 

unsealed. Note, however, that this unsealing step may not be necessary if no scaling was 

done to the radiance before the algorithm began processing. Scaling has often been 

performed in cloud mask program architectures in the past to decrease the overall data 

flow rate. The solar radiance channels are then converted to reflectances, and the 

thermal radiance channels are converted to BTs, if either have not been converted prior 

to the application of the cloud mask. These reflectances are used in the thresholding 

cloud detection tests, while the BTs are used in differencing tests which are employed to 

detect the presence of a cloud.
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Figure 2.3; First section of flowchart of the VCM.

Once a given scan line of an image is prepared, the loop along the scan line is 

performed. Each scan line is processed within the loop over the scan lines. For an 

image, a simple way to envision this looping process (Figure 2.4) is the following. If, x 

denotes the horizontal position along a scan line and the vertical is y, there is a loop over 

x done within a loop over y. To facilitate the cloud tests, a context region is first set up. 

This is an N by N region, with N defined by the user. At present the context region has 

N set at the value N =l, this corresponds to the VERS radiometric pixel resolution. In 

the future, if cloud contrast tests are performed upon the bands for mask output at a
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coarser resolution, the context region considered might be increased in size. An array is 

then filled with the radiometric band BT, reflectance, and radiance values for the pixels 

within the N by N region. This N by N region is set up in order to be slid along a given 

scan line. The central pixel will be subject to pixel level tests. Also, in future 

algorithms, the larger region surrounding the center pixel will have the capability to have 

contrast and statistical tests performed upon it. Contrast and threshold tests will also be 

performed upon the five 2x2 imagery and DNB/LLLS channels which nest within the 

VERS radiometric resolution pixels; tests under consideration are CLAVR in heritage.

In the MCM (Ackerman et a l, 1997), it has proven necessary to perform an averaging of 

the thermal channels over the entire context region, in order to minimize the thermal 

noise. Presently, this is not being done for the BT threshold tests. In the future, this 

averaging may be performed if it demonstrates an improvement in cloud masking. The 

cloud mask array results are then cleared prior to cloud masking. The ancillary data 

logic flags are subsequently set for the pixel region being masked. This means that the 

region is defined as being within the following categories: land/water, in a possible sun 

glint geometry, day/night, or in a polar region. This is a crucial step. The definition of 

the region will control the dataflow of the algorithm, and determine which cloud 

masking tests are performed and which thresholds applied. In sun glint regions there will 

still be a cloud mask generated. This cloud mask, however, will only employ the 

thermal cloud detection tests which are unaffected by sun glint. The region is then tested 

for snow/ice using Normalized Differential Ice Index (NDII) tests developed by D. Hall 

(Hall e ta l, 1995).
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Figure 2.4: Second section of the flowchart of the VCM.

The crucial masking occurs in the first box depicted in Figure 2.5. This box is 

expanded in Figure 2.8 and explained in more detail later in this processing description. Along 

with the cloud detection (performed on a radiometric pixel level and at the imagery resolution), 

the specific cloud test which flagged the cloudy pixel will be repented. By reporting the cloud
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test which was successful, the capabilities of specific cloud tests can be better assessed and the 

detection thresholds adjusted appropriately. The presence of high versus low level clouds, 

classification of cloud thermodynamic phase, and automated cloud typing are also performed. 

Another capability of this cloud mask is the use of a confidence code upon each pixel. This 

confidence technique is presently employed by the MODIS Cloud Mask (MCM) (Ackerman et 

al., 1997). The setting of an absolute threshold to distinguish between completely cloudy and 

clear is quite abrupt in some cases. A range of values between the definite confident clear and 

definite confident cloudy is established to identify the confidence level to be assigned to a pixel. 

From experience with the MCM, the author notes these regions are commonly the cloud edge 

regions. Assessment of confidence of the cloudy vs. clear will assist other EDR algorithms, 

which depend on the VCM to judge the qualify of the cloud-flagged pixels. A similar series of 

confidence levels are also established for the cloud phase determination.

The confidence flag methodology applied to establish four levels o f cloud 

confidence is similar to that used in the MCM (Ackerman et a l, 1997). The reasoning 

behind using these confidence levels is that as one approaches the threshold limits, the 

certainty or confidence in the labeling of a pixel as being cloudy or not cloudy becomes 

uncertain. As such, an individual confidence flag is assigned to each single pixel test, 

and the value of this confidence is a function of how close the observation is to the 

thresholds. All of the individual confidence flags are combined to produce the final 

cloud mask radiometric resolution EDR flag. The four confidence levels are designed to 

provide information about how much confidence a user of the cloud mask can place in 

the result. Each test is given a value between 0 and 1, representing increasing 

confidence that the pixel has clear sky conditions. Figure 2.6 is a graphical 

representation of how a confidence level is assigned for a given spectral test. This 

technique is commonly called the S function approach, named after the shape of the 

curve in Figure 2.6 (Ackerman et a l , 1997). The abscissa represents the observations 

and the ordinate the confidence of clear sky conditions. In this figure the observation 

with a value greater than y is high confidence clear, while an observation with a value
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less than a  is cloudy. Likewise a value between a  and (3 indicates probably cloudy 

confidence, whereas a value between (3 and y indicates probably clear confidence. These 

high confidence clear and cloud thresholds, y and a  respectively, are determined from 

observations and/or theoretical simulations. The MODIS cloud mask team has found 

that the S function may be applied to assign confidence, and the VCM team has adopted 

a similar approach. In the final cloud mask only four levels of confidence are provided, 

these confidence levels are based upon how close the observed value is to a set of 

thresholds. These individual confidence levels are combined to determine a final 

decision of cloudy or clear, with the probably cloudy and confident cloudy indicating the 

binary EDR cloudy result, and the probably clear and confident clear indicating the 

binary EDR not cloudy result. The way in which the bits are arranged in the VCM and 

also the modularized coding of the VCM will allow the use of a full MODIS cloud 

confidence determination if this approach is proven to be a beneficial methodology. The 

imagery resolution 2x2 nested in each radiometric pixel is analyzed as follows: if only 

one of the four pixels indicates a cloud then the results are probably cloudy; if two or 

more indicate cloud presence then the pixel is confident cloudy; and if none indicate 

cloud presence then it is confident clear.
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Figure 2.5: Third section of the flowchart of the VCM.
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Figure 2.6: Graphical depiction of confidence thresholds.

Once a cloud mask result has been returned for the context region or individual 

pixel, several additional tests are then performed, including a shadow test. This test 

determines if there are shadows within the regions where clouds were not detected. 

Detection of cloud on cloud shadows and cloud shadow on snow/ice is an issue for 

further research. These detections are not presently being considered. The next test 

performed over the pixel region is a non-cloud obstruction test. The cloud mask 

statistics from the context region are then set into the proper arrays. The cloud mask 

flags are also set, along with quality flags for use by other EDRs in assessing the cloud 

mask performance. When this has been done, the loop along the scan line is complete. 

The loop over the scan lines is continued with the next scan line. This loop will be 

continued until all scan lines of the image have been masked.

The final step in the loop over scan lines is depicted in Figure 2.7. For each scan 

line the output of the cloud mask is written as a stream of 48 bits for each pixel within 

the region. The output also includes quality flags indicating the performance and

High Confident Cloudy High Confident Clear

Observation
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confidence of the cloud mask, and the imagery resolution cloud mask results. This 

Cloud Mask IP will be explained and is depicted in Table 2.5.

Data are then rebuffered for the next scan line, thus freeing up arrays with 

appropriate indexing. The loop over the scan lines is then resumed until all scan lines in 

the image have been masked. At this point, the statistics of the cloud mask image as a 

whole are produced. TMs step is performed for the inspection by the analyst. These 

image statistics may be used by the cloud cover EDR or imagery EDRs in the future. If 

not, that step can be removed from the final algorithm structure.

O .
Oo

Figure 2.1% The final section of the flowchart of the VCM.

Figure 2.8 illustrates the flow of the VCM within the first module of Figure 2.5. 

For a given pixel, the knowledge of the underlying surface type determines which 

specific cloud tests are performed. The flow of the algorithm determines the cloud tests
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and threshold settings for the pixel, based upon the underlying surface type. The 

underlying surfaces are designated as polar, land, ocean, desert, and coastal. The tests

performed for these specific regions will be discussed in Section 2.3. As the algorithm 

develops, additional surface type modules may be added, based on whether more specific 

threshold differences are found to improve cloud detection.

DECISION TREE FOR VERS CLOUD TESTS

Figure 2.8s Conceptual overview of the pixel region classification by the VCM.

Fora more detailed description of the Cloud Mask software architecture structure 

there is further development and explanation provided in Appendix B.

2.1.43 Cloud Mask Output

The Cloud mask output is summarized in Figure 2.6. Output from the VCM is 6 

bytes (48 bits) for each radiometric resolution pixel, this is called an Intermediate 

Product (IP). This output is a binary result ( l ’s and 0’s) for each pixel.
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Table 2.5; The 48 bit Intermediate Product (IP) output of the VCM.

Byte Flag Bit# Note (bit results iaiiatte)
l Cloud Mask Quality

Flag
1 1= mask okay/0=mask questionable

Binary Cloud EDR 
result

2 1= cloudy/Q=not cloudy

Cloud Imagery 
Resolution Flag

3-6 l=cloudy/0=not cloudy (each bit is a pixel of the 2x2 
imagery resolution pixels nested in the radiometric 
resolution pixel), 1111 = all cloudy, 0000=all not 
cloudy

Cloud Confidence 
Flag

7-8 4 confidence levels of cloud EDR flag, 11= confident 
cloudy', 10=probably cloudy, 01= probably dear, 
00=confident clear

2 Sun Glint Flag 9-10 11= geometry based sungiint, 10= wind speed based 
sunglint, 00= no glint (1 spare flag 01)

Snow Surface 11 l=snow/ice, 0=no snow/ice
Surface Type 12-14 11 l=land, 0Q0=water, 010=coastal, 011=desert 

other 5 flags (101,110,100,001,010) reserved for 
additional surface types used in future

Non-Cloud
Obstruction

15 l=yes, 0=no

Thin Cirrus Detected
.(Daytnne)..................

16 l=yes, 0=no

3 Cloud Phase 17-18 1 l=water, 00=ice, 10=mixed, 01=unknown
Pixel Within 2 of a 
cloudy pixel

19 l=yes, 0=no (radiometric pixel size considered)

Shadow Flag 20 l=yes, 0=«o
High Cloud Flag 21 l=yes,0=no
Low Cloud Flag 22 l=yes,0=no
Fire Detected 23 l=yes, 0=no
Day/Night 24 l=day,0=night

4 Cloud Test Flags 25-32 4 cloud test results indicators 
l=tested/0=not tested and !=cloud detected/0=no 
cloud detected. Each cloud test done has a 2 bit flag 
which tells if a pixel was tested and if  it passed or
failed.

5 33-40 4 cloud test results indicators (see Byte 4)
6 41-44 2 cloud test results indicators (See Byte 4)

46-48 spare bits (2 more cloud tests allowed in future)

The exact number of bytes for each pixel of output is presently 6, but may be 

increased as needed. This depends on the number of cloud tests performed in the final 

product, and the demands placed upon the cloud mask by other VIIRS EDRs.
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The Cloud Cover EDR is an aggregation over a multiple pixel region of the cloud 

mask cloudy/not cloudy results. Summing these results over a given area and dividing 

by the total number of pixels within that area result in the fractional cloud cover. The 

Horizontal Cell Size (HCS) at which this will be done is still being considered. The 

cloud mask will deliver the cloudy/not cloudy decision at the radiometric and imagery 

pixel levels. The Cloud Cover/Layers EDR is covered in depth in the VIIRS Cloud 

Cover/Layers (Apling e ta t,  2000).

2.2 Description and Physics of Cloud Masking

In the following section, the background of the processes previously outlined will 

be described. These processes apply only to regions which successfully passed the 

quality examinations.

The detection of clouds using simple visible reflectance and thermal BT 

thresholding tests has been demonstrated with considerable success. Due to their nature, 

clouds are generally characterized by a higher reflectance and lower temperature than the 

underlying surface. This statement is generally true for most surface types around the 

Earth, such as ocean and sea level vegetated land. However, some surfaces require 

adjustments to the thresholds needed to detect clouds, and the use of different cloud 

detection tests. The various cloud detection tests and techniques will be discussed in the 

section below.

2.2.1 Pixel Level Cloud Detection Tests

The basis of the VCM is the pixel level cloud detection tests. These are 

performed over an entire image. The pixel level tests define if a pixel is clear or cloudy. 

This will be done at the radiometric resolution using the radiometric channels, and at the 

higher imagery resolution using the imagery bands. Table 2.6 displays the current
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threshold values for the various cloud tests presently being performed within the VCM; 

note however the threshold values illustrated are for MAS channels, not VEERS. As a 

result these threshold values are subject to change in the future, however the changes are 

not expected to be large. The number of tests and scenarios will also increase with the 

development of the VCM. In the following section the various cloud tests currently 

employed are discussed, along with those which will be researched/considered in the 

future. Many of the tests presented here are performed by the MCM and CLAVR. 

Thresholds for the tests will be developed in the future using MODIS data sets. These 

thresholds, depicted below in Table 2.6, were developed from representative MAS 

spectral data.

In the future, contrast tests will be developed using the 2x2 imagery pixels which 

nest within the radiometric pixels to define clear and cloudy regions. These high- 

resolution tests will use imagery resolution channels, which are nested within and at a 

finer physical resolution than the VERS bands. Many of the techniques presently used 

by CLAVR will be used in contrast tests applied to the imagery pixels for cloud 

detection.

Bi-spectral cloud detection tests are computationally inexpensive. However, it is 

important that pixels are only detected as cloud a single time; therefore, the most 

efficient cloud detection test is applied first to all pixels. Those pixels classified as 

cloud-contaminated are removed, flagged, and the second cloud test is applied only to 

those remaining cloud-free, and so forth. Adjustments for special effects, e.g., partially 

cloudy pixels and shadows, are made only after all cloud tests have been applied and 

pixels identified as cloud-contaminated have been flagged.
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Table 2.6: VCM tests performed with MAS thresholds.

Test Day
Ocean

Night
Ocean

Day
Land

Night Day 
Land Snow

Night
Snow

Day
Desert

Night
Desert

BT11
IR

Threshold

<270K <270K

R1.38 
High Cirrus

>2.5% >3.5
%

.........  >3.5
%

>3.5%

BT3.7- 
BT12 

Thin Cirrus

0.6 K -16K >4 K . . . >4 K Used

BT11- 
BT3.7 

Low water 
clouds

< -8
K

>0.6 K <-16
K

>0.6 >9 K 
K

>0.6
K

Used

R0.66
Visible

reflectance

>27
% j i i l i a i

R0.87
Visible

reflectance

>7% i - g iS i i l
>30%

R0.87/R0.6
6

Visible ratio

0.9­
1.1

0.9­
1.1

iifiifiiit
■

BT3.7-
BT4.05

>6K >10
K

>8K

R1.6
Near-IR

reflectance

>25% >50
%

>35% >60%

, = '

BT8.6- 
BT11 & 

BT11-BT12
Tri-spectral

test

Table 
or 

<0.2 K

Table
or 

<0.2 K

Tabl 
e or 

>3 K

Table . Table
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2.2X1 Thermal BT Tests

The BT11 threshold test is a simple Infra-Red (IR) window threshold test. This 

test is performed over open water. The test should be cautiously used in other regions, 

due to the effects of cold snow/ice surfaces on this channel, and the emissivities of some 

land types. Over open ocean, when the BT of the 11 pm channel is less than 270 K, the 

pixel is designated as cloudy. This test is only applied over open water at present.

A test that has proven successful for the detection of thin cirrus clouds under 

primarily night time conditions is the BT3.7-BT12 micron test. Applying this BT 

difference test is useful for separating thin cirrus and cloud free conditions (Hutchison 

and Hardy, 1995).

The BT11-BT3.7 differencing test became best known for the detection of stratus 

in nighttime imagery (Saunders and Kriebei, 1988); however, this BT difference test is 

also useful for detecting clouds during both day and night. The differences present in a 

cloudy scene are a result of the different emissivities between the 3.7 and 11 pm 

channels, and the presence of a solar component in the 3.7 pm channel. Thermal 

difference tests will be performed with caution in the polar regions, where cold surface 

temperatures may give false cloud detection.

Scatter plots o f the BT8.6-BT! 1 and BT11-BT12 differences has been useful in 

detecting clouds as demonstrated by researchers at the University of Wisconsin. The 

spectral uniformity of surface emittance in these IR window regions can be used to 

detect clouds. For a complete explanation of the technique see Ackerman et al. (1990) 

and Strabala et al. (1994).

The BT3.7-BT4.05 difference test is another method of removing the solar and 

thermal contribution of the 3.7 pm channel. Due to the small wavelength differences 

between these two bands the thermal contributions are relatively close. The largest 

difference between these two bands is due to the larger solar component in the 3.7 pm
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channel. The BT3.7-BT4.05 difference removes the BT component and thus isolates the 

difference due to the larger solar component in the 3.7 pm channel. Due to the low 

reflectances of most surface types, and the relative high reflectance of clouds in the 3.7 

pm channel, this test has shown much promise in MAS and simulated VIIRS data. This 

test works only during daytime conditions, but over a majority of surface types.

2 2 1 2  Visible to MWIR Reflectance Tests

A single channel reflectance test for bright clouds over dark surfaces may be 

applied using the 0.65 pm channel. This test may not be used over bright snow/ice 

covered surfaces, but has success over heavily vegetated areas and some success over 

open ocean regions.

A single channel reflectance test for bright clouds over dark surfaces may be 

applied using the 0.86 pm channel. This test may not be successful over vegetated 

regions, but has demonstrated some success over snow/ice and desert regions. The 

primary use for this test is for cloud detection over water surfaces.

The R0.86/R0.65 reflectance ratio test is based upon the fact that the reflectances 

for cloud covered regions in these bands should be very close to one another (Saunders 

and Kriebsl, 1988). For cloudy pixels, this ratio is slightly less than one, but may be as 

small as 0.6 depending upon solar illumination and scattering geometry. But over clear 

vegetated land scenes this ratio is generally greater than one, and for clear water surfaces 

this ratio is much less than one, depending upon solar illumination and scattering 

geometry {Hutchison and Hardy, 1995).

A single channel 1.38 pm reflectance test may be performed for high cirrus cloud 

detection (Gao et a l, 1993; Gao et a l, 1998). This single channel reflectance test 

greatly improves the detection of thin cirrus over land surfaces in daytime imagery, if 

sufficient lower-level water vapor is present {Hutchison and Choe, 1996) and can be 

used to decouple high cirrus clouds from lower level clouds for the analysis of cloud top
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phase {Hutchison et a l , 1997). The high amount of water vapor absorption across this 

channel means radiation reflected from the surface and lower level cloud is absorbed by 

water vapor. The resulting reflectance/absorption signature is indicative of a thin cirrus 

cloud presence. This test may require modifications to the thresholds, if it is to be 

applied in polar regions with low water vapor levels.

The reflectance threshold test at 1.6 pm uses the high absorption of snow/ice 

surfaces, and the highly variable reflectance of clouds within this band to differentiate 

between water clouds and these cloud-free surfaces. The dramatic variation in snow/ice 

versus cloud absorption was first detected by Russian scientists (Valvocin, 1978). Use of 

this reflectance test has demonstrated promising capabilities for cloud detection over 

snow and sea ice, and cloud vs. snow/ice discrimination.

2.2.1.3 Imagery Band Tests

The imagery bands on the VERS sensor are at a finer resolution than the other 

VERS radiometeric bands, within which they nest. Presently these bands are centered at 

0.65,0.86,1.6, 3.7, and 11.45 pm, having a Horizontal Cell Size (HCS) of 

approximately 370 m. Cloud tests performed with these bands will rely on spectral 

contrasts as well as tests being conducted at the finest spatial resolution available, and 

will be reported at the imagery resolution. These tests are BT and reflectance tests of 

CLAVR heritage.

The imagery BT11 threshold test is the same as the radiometric test, except that it 

relies on the imagery resolution band centered at 11.45 pm. Thus, the BT11-BT3.7 

difference test is the same conceptually as the test used at the radiometric resolution with 

the radiometric bands, but it is performed at the imagery resolution with the imagery 

bands centered at 3.7 and 11.45 pm.

The reflectance 0.66 pm threshold test is the same as the test used for the 

radiometric resolution test, but relies on the imagery resolution band centered at 0.645
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pm. The reflectance threshold test at 0.86 fim is the same as the test used for the 

radiometric resolution test, but uses the imagery resolution band centered at 0.845 jam.

The reflectance ratio test of the R0.86/R0.65 is the same as the test used for the 

radiometric resolution test, but uses the imagery resolution bands centered at 0.645 and 

0.845 pm. Finally, the 1.6 pm reflectance ratio test is the same as the test used for the 

radiometric resolution test, but uses the imagery resolution band centered at 1.6 pm.

2.2X4 Tests For Future Investigation

Use of the BT8.6-BT3.7 pm brightness temperature difference test should be 

considered for further investigation. This would be a radiometric resolution pixel 

threshold based test. It has shown promise in detection of clouds over snow and ice 

covered surfaces, and it is under investigation.

A BT3.7 thermal and solar component separation test is proposed for future 

investigation. By decoupling the solar and thermal component of the 3.7 pm channel, it 

has been demonstrated that the contrast between a snow-covered surface and thin cirrus 

is greatly enhanced using only the reflective characteristics, along with the Advanced 

Very High Resolution Radiometer (AVHRR) 0.6 pm band {Hutchison et a l, 1997; 

Hutchison and Locke, 1997). Also, there is similar behavior of the imaginary component 

of the indices of refraction of ice and liquid water between this channel and the 1.6 pm 

channel. For this reason, the solar components reflectivity may be used to perform 

similar reflectance tests as those which are planned with the 1.6 pm channel as explained 

above.

Use of the VIIRS Day time Nightime Band (DNB) as a reflectance threshold test 

would be useful for non-polar region cloud detection at night when lunar illumination is 

present. Use of this DNB may also be useful over urban regions where clouds should 

obscure city lights. An imagery resolution cloud detection threshold needs to be 

developed using the DNB reflectance. The methodology for this would be the same
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applied over the other imagery resolution bands. Also contrast tests may be developed 

with this DNB using the 2x2 DNB pixels nested within any radiometric pixel.

The VIIR.S Imagery resolution pixels may be used for contrast using the 2x2 

DNB pixels nested within any radiometric pixel. These tests would be CLAVR in 

heritage and should assist greatly in sub-radiometric resolution pixel cloud detection.

All the tests proposed above for imagery band cloud detection may be used in spatial 

inhomogeneity tests which are CLAVR in heritage (Stowe et a l, 1998).

2.2.1.5 Additional Pixel Level Tests

A non-cloud obstruction test has proven useful by the MCM (King et a l, 1998). 

Detection of non-cloud aerosols are important for the cloud mask, for those sun/sensor 

geometries which create long path-lengths. For long path-lengths, aerosol-laden 

atmospheres may be misinterpreted as clouds by some tests. This is due to the enhanced 

reflectances in the visible bands created by the non-cloud obstructions. This test is 

present primarily for the Imagery Analyst (IA) to assess the presence of aerosols by use 

of an automated indicator. To detect aerosols in the path, simple pixel level tests are 

planned. A quality flag indicating the performance will be output from the cloud mask. 

Presently, the plan is to use tests involving the 11 and 12 pm VERS channels to detect 

the presence of dust storms. Similar tests will identify heavy aerosol using the 2.1 and 

the 0.65 pm bands. In addition, a simple fire detection test will be employed using the 

3.7 and 11 pm channels.

Detection of cloud shadows is a problem which has not been addressed 

adequately in the literature. Some approaches perform a theoretical computation of 

shadows from viewing geometry, solar azimuth and zenith angles, cloud edge 

distribution, and cloud top altitudes. But these approaches require far too much 

computation time to run operationally. The current VCM cloud shadow detection 

approach is the MODIS shadow detection approach (King et a l, 1998). This method of
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shadow detection only works over vegetated regions. Cloud-on-cloud shadows are not 

detected by this algorithm. Topographical shadowing is another form of shadowing 

which exists. Topographical shadowing will not be detected by the VCM. In the future, 

when Digital Elevation Models (DEMs) evolve to include parameters to investigate such 

effects, topographical shadowing detection may be considered for VERS.

A multiple cloud flag is indicated when a test result which is indicative of a high 

and a low cloud is triggered. The reason for these flags is that they may be used by the 

cloud cover/layers EDR to indicate a multi-layered cloud and also by the cloud EDRs 

which follow in the processing architecture. These flags also can aid in cloud phase 

assessment.

Detection of single versus multi-layered clouds is done once all of the cloud mask tests 

have been performed on a pixel. By looking at the cloud tests results one can infer the 

presence of a possible multi-layered clouds presence. This is due to some cloud tests 

detecting the presence of high clouds only, while others are sensitive to the presence of 

low clouds. The results of this test are useful to an analyst and will benefit the Cloud 

Cover Imagery EDR.

Sun glint pixels possess glitter contamination. Consequently, the pixels in which 

possible sun glint is occurring need to be identified. Solar channel threshold values need 

to be adjusted for these pixels. Sun glint will not prevent a cloud mask from being 

generated. In the case of sun glint the solar tests performance may be inhibited, but the 

thermal channel tests will still be done to generate the equivalent of a nighttime cloud 

mask. Knowledge of sea surface winds may be included in the sun glint test; surface 

winds can narrow the region in which sun glint may occur. There is a justifiable concern 

that cloud detection will not be as reliable in glitter-contaminated regions. A 

classification as clear is probably correct, but a classification as cloudy may actually be 

due to the glitter effect as opposed to a cloud. Sun glint will be considered over both 

land and ■water areas. Land regions are included because spatially unresolved water 

bodies, snow, or recent rainfall can also cause sun glint.
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Sun glint may occur when the reflected sun angle 0r, is 0° to 36°, where:

cos0r = sin0sin0o cossj) + cos0cos0o (2 -1)

where 0O is the solar zenith angle, 0 is the viewing zenith angle, and $ is the azimuthal 

angle (Ackerman et al., 1997).

Sun glint is also a function of the oceans surface state, which is affected by sea 

surface winds. Two sunglint products are generated; one considering the geometric 

region mentioned above in Eq. (2.1) and another taking into account input wind fields; 

this output will be used by the ocean and aerosol EDRs to identify sunglint regions.

The VARS Cloud Phase (VCP) algorithm determines if a pixel, which has been 

classified as cloudy by the VCM, contains a cloud which is composed of predominantly 

liquid water or ice. This processing is done in the VCM algorithm. A detailed 

description of the VCP algorithm is included in the Appendix C of this thesis.

2 3  Cloud Mask Over Varying Surface Types

Cloud masking over varying surface types requires the use of different thresholds 

to be applied over the different surfaces. The pixels are classified within a specific 

region based upon their geolocation, day/night, land/water, and other categories. The 

pixel level thresholds being applied over the regions presently considered are shown in 

Table 2.6. As the VCM evolves, additional regions may be added to improve the results 

of the cloud mask. New thresholds for specific regions will be developed.

A conceptual flow of the cloud mask algorithm performed over land surfaces is 

illustrated in Figure 2.9. After a pixel has been identified to be within a land region, it is 

first classified as day or night. For the purposes of the cloud mask, “day” is defined as 

when the solar zenith angle of the pixel is less than 85 degrees. Larger solar zenith 

angles are considered as “night”. After designation of day land or night land, the
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snow/ice detection is applied. Presently, the land type is only subdivided into vegetated 

land and desert ecosystems. In the future, it is expected that the number of different 

ecosystems considered will increase. Table 2.6 displays the cloud tests which are 

performed over the vegetated land surface type and the thresholds presently being 

applied.

Figure 2.9: Conceptual flow of the VCM over land regions.

Pixels in regions between the land and open ocean are classified as coastal 

regions. As was described previously, the classification is subdivided into day and night. 

Then the scene is further classified into either day snow, day coastal, night snow, or 

night coastal. The coastal region is designated as a separate subregion due to cloud 

classification problems which are likely to occur over coastal areas. Within coastal 

regions, the confidence of the cloud mask will be assumed to be lower than for other 

regions. Presently the coastal region thresholds have not been developed for the VCM.

In the future the MCM approach will be reviewed to determine if the MCM thresholds 

can be used in the VCM.

Pixels which are designated as water follow the conceptual flow shown in Figure

2.10. The water surface region is subdivided into day and night cases, and then further

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



77

subdivided into snow/ice covered surfaces. Water surface reflectances are low across the 

Visible Near-Infrared (VNIR) spectral regions. The reflectance is uniformly low across 

the spectrum. As a result of this low reflectance for a water surface, the detection of 

highly reflective clouds is expected to be very successful. Another beneficial property of 

water surfaces is that the temperature of water must be greater than 270 K. This allows 

BT tests to also be more successful. The thresholds for cloud detection over water are 

shown in Table 2.6.

Figure 2.10; Conceptual flow of the VCM over water regions.

Regions which are located north of 36 degrees latitude in the Northern 

hemisphere, or south of 50 degrees latitude in the Southern hemisphere, are designated 

as polar regions. The reason for the lower latitude, 36 degrees, in the northern 

hemisphere is to cover the Great Lakes Region. For pixels in the polar region a 

conceptual flow is shown in Figure 2.11. The latitudinal extent of the polar regions is 

defined based on the historical range that sea ice is found in the ocean, or where ice 

covers land. The complexity of the classifications for polar regions is displayed in the 

conceptual flow diagram. Another aspect of the polar regions is the decreased amount of 

atmospheric water vapor present, relative to other regions of the Earth. This will require
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modified thresholds to be applied to the R1.38 tests, which are sensitive to the amount of 

atmospheric water vapor.
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Figure 2*11; Conceptual flow of the VCM over polar regions.

Cloud detection over snow/ice covered regions is the most difficult. Each of 

these surfaces has a high reflectance in the visible combined with a low surface 

temperature. These traits lead to common con&sion/misclassification in the presence of 

clouds, so cloud detection can be difficult. The confidence of cloud detection in such 

regions will be low. The thresholds applied across snow/ice covered regions are shown 

in Table 2.6. As is apparent from this table, the number of tests done in the case of a 

snow/ice covered region is quite limited. This is a direct result of the reflectance and 

temperature traits of snow and ice.
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2A Error Budget and Flowdown Results

Based on error budget and stratification studies, detailed in Appendix D, key 

error sources for the VCM were identified and discussed. These studies provided a 

guide to instrument and algorithm developers to areas where improvements will have the 

greatest impact. Ultimately good error budgets lead to tighter specifications when 

margin can be tightened due to risk reduction based on reliable error estimation. The 

design process used was a spiral process in which the specifications and performance of 

the sensor and algorithm design were improved iteratively. After the initial flowdown 

activity the algorithm data definitions provided requirements from each EDR to the 

sensor. The most stressing of these requirements became the first iteration for the sensor 

model.

The errors are assumed to be independent so that the total error is the square root 

of the sum of the squared errors, also called the Root Sums Squared (RSS). This 

assumption is made for both precision and accuracy. An exception are the error budgets 

based on probabilities. In those cases the total probability is either the product of its 

factors (for typing probability), or, for misclassification, the product of all 

misclassification probabilities.

There are three categories of error sources. These error sources being sensor, 

ancillary and auxiiliary data, and intrinsic algorithm error sources. The sensor error 

components are the sensor noise, which is determined by the noise components of the 

baseline sensor model and Modulation Transfer Function (MTF) model. A band-to-band 

mis-registrafion study has been performed in which the radiance of all bands used by the 

VCM were mis-reglstered horizontally and vertically. This study shows that gross errors 

in the VCM occur when band-to-band mis-registration exceeds 20%. This study is
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detailed in chapter 3. A discussion of the error budget and flowdown process employed 

is contained in the Appendix D of this thesis.

2.4.1 Sensor Noise Flowdown

Thus far, cloud detection does not appear to be a major VIIRS sensor driver, for 

sensor noise. The sensor noise flowdown is detailed in Appendix E. For sensor noise 

flowdown cirrus cases were analyzed. Cirrus cloud cases are considered to be the most 

challenging cases for cloud detection, stressing the cloud detection capabilities of 

algorithms under development. The sensor noise flowdown employed scenarios used in 

the radiative transfer cloud scene generation, and modeling assumptions and 

approximations made within the testbed environment.

2.4.2 Cloud Cover Flowdown Analysis

The VCM algorithm has been employed to determine the cloud cover for several 

cloud scenarios, outlined in Appendix E, in which representative results of that 

flowdown analysis for a cirrus cloud case is considered.

The SNR tests addressed in Appendix E consider the impact of SNR on both 

pixel-level retrievals and retrievals when the pixel-level retrievals are aggregated 

(averaged) to VIIRS SRD horizontal cell size (HCS). The required HCS is a function of 

EDR parameter; threshold and objective values are stated. For the study aggregations 

are done at the cloud cover HCS threshold (25 km) and HCS objective (5 km). The 

VCM test results are presented separately for the daytime and nighttime cases.

Analyses done show for the 25 km threshold HCS during day and night the cloud cover’s 

objective precision and accuracy is attainable for the thin cirrus case over land at nadir 

out to sensor noise model five, defined in Kealy (2000). Flowdown also indicates that
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for the 2 km  HCS cloud cover the daytime cases are good out to noise model five, 

exceeding objective for the accuracy and attaining objective for the precision. However, 

for the nightime case the cloud cover does not meet threshold. When the cloud detection 

thresholds are more precisely set in the developmental stage of the VCM, the accuracy of 

the cloud cover retrieval will be between threshold and objective.

2.5 Cloud Mask Validation

The VCM algorithm validation has been based on the comparison of cloud radiances 

computed using radiative transfer codes for the true cloud scenes and real cloud 

radiances from MODIS Airborne Simulator (MAS) cloud scenes. The synthetic cloud 

imagery generation process and validation of the cases simulated are addressed in 

Appendix F.

2.5.1 VCM Retrieval Examples on MAS Data

In addition to the VIIRS Cloud Mask (VCM) being developed from simulated cloud 

imagery, the VCM has also been tested and validated against MODIS Airborne 

Simulator (MAS) data. In the next chapter Figure 3.1 (right) is an example of the VCM 

applied over a MAS image, taken during the Arctic Radiation Measurment in Column: 

Atmosphere-Surface (ARMCAS) campaign of June 1995, in which a large 

cumulonimbus cloud had formed. In this image on the right is the RGB (Red-Green- 

Blue) composite image of the 2.14,1.60, and the 0.65 pm bands, which are used to 

demonstrate the multispectral capabilities of the VIIRS bands. The MAS bands are 

spectrally quite similar to the analogous VIIRS bands. The image on the left 

demonstrates the present VCM being applied over a MAS image. The benefit of testing 

the VCM against MAS data lies in the great variety of cloud types, optical thicknesses, 

and underlying surface types these data provide. Also due to the VIIRS bandset being
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veiy ‘MODIS/MAS -  like5 in band positions, the MAS data represent effectively a 

‘realistic5 synthetic VIIRS dataset.

Development of the VCM for application to challenging imagery with snow/ice 

surfaces has been done. The VCM has been applied over sea/ice MAS data to develop 

its masking capabilities. Figure 2.12 is an example of an application of the VCM over 

the sea ice in the Bering Sea from the MAS ARMCAS campaign. The panel to the left 

is an Red-Green-Blue (RGB) (Red = 1.88 pm, Green=T.6 pm, Blue= 0.55 pm) 

composite which demonstrates the multi-spectral capabilities of the VCM, in which the 

1.88 pm band is analogous in behavior to the 1.38 pm band of the VCM and the 0.55 pm 

band is analogous to the 0.65 pm band. In the image one can see the stratus deck quite 

clearly and the thin cirrus is bright in the 1.88 pm band, depicted as red in this RGB. 

The image to the right in this figure depicts the VCM results applied over this scene. 

The capability of the cloud mask to detect thin cirrus clouds, near the bottom of the 

scene, is noteworthy.
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Figure 2.12: VCM over sea ice. An RGB composite of MAS imagery and VCM 
sea ice. The data were taken during the MAS ARMCAS campaign.
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2.5.2 Predicted Performance of the Cloud Mask

The probability of correct typing of the cloud mask is shown in Table 2.7 (a-b). 

These values are based upon the assessed performances of the MCM, which the VCM is 

expected to equal or exceed, and upon the Cloud Scene Simulation Model (CSSM) and 

the University of California Los Angeles (UCLA) radiative transfer code simulated 

scenes used in the VCM development. The assessment of the MCM was performed by a 

cloud imagery analyst, and the MCM performances are shown in Table 2.7 (a-b).

The probability of correct typing performance of the MCM and thus the VCM 

was assessed by considering MAS scenes with ice and water clouds, of varying optical 

thickness. Optical thickness was known for the simulated data, and for MAS scenes it 

was assessed by the analyst. The probability of correct typing performance of the VCM 

is in general 99.99% for very thick clouds, of greater than 10.0 optical thickness. The 

lowest probability of correct typing occur for optically thin clouds at night, being 

approximately 82%. From Table 2.7 (a-b) one can infer that the performance for the 

cloud mask for optically thick clouds, of greater than 5.0 optical depth is greater than 

99%, while for thin clouds, of less than 0.5 optical depth, the performance range is 

between 82 and 89%. In general the performance of the cloud mask increases towards 

Edge of Scan (EOS), and is better at day than at night due to the wealth of spectral 

information available during day vs. night. Also, over snow/ice and desert surfaces the 

cloud detection is less reliable than over water and land surfaces.
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Table 2.7 (a): Daytime probability of correct typing of the VCM.

Day PttfatMMy of C arte l Typing
Cloud
Type

Optical Depth Nadir EOS Vegetated land Hater Owen Snoirtc#

Water 0.03-0.5 X 87.00 92.00 87.00 88.00
Water 0.03-0.5 X 88.00 92.00 88.00 89.00
Water 0.5-10 X 99.90 98.90 97.00 95.00
Water 0.5-1.0 X 99.90 99.10 98.85 96.00
Water

oo
1

o

X 99.96 99.99 98.90 96.00
Water

oo
I

©■

X 99.97 99.99 99.50 96.00
Water > 10.0 X 99.99 99.99 99.99 99.50
Water >10.0 X 99.99 99.99 99.99 99.50
Ice 0.03-0.1 X 88.00 92.00 90.00 85.00
Ice 0.03-0.1 X 89.00 95.00 92.00 88.00
Ice 0.1-10 X 99.20 97.50 95.00 93.00
Ice p * o X 99.25 98.50 96.00 94.50
Ice

oo
e

Oit
- X 99.90 99.94 97.50 95.00

Ice 1.0-10.0 X 99.90 99.96 98.50 95.50
tee >10.0 X 99.99 99.99 98.40 96.00
Ice >10.0 X 99.99 99.99 98.50 96.50

The greatest potential for increase in performance, and enhanced probability of 

correct typing, is expected to occur in the optically thin cloud cases and over the desert 

and snow/ice surface types. It is expected that these values will improve with the proper 

setting of the cloud detection thresholds and with additional tests being performed by the 

VCM beyond those done by the MCM. Subpixel cloud detection using the imagery 

bands is also expected to assist greatly in the detection of clouds, and thus enhance the 

performance of the VCM.
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Table 2.7 (b): Nighttime probability of correct typing of the VCM.

ifgtrt Probability of Correct Typing
Cloud
Type

Optical Depth Nadir EOS Vegetated Land WwttlT Desert SnowAce

Water 0.03 - 0.5 X 87.00 90.00 86.00 85.00
Water 0.03-0.5 X 88.00 9100 87.00 86.00

Water 0 .5 -10 X 97.50 96.50 94.00 90.00
Water 0 .5 -10 X 98.00 97.50 95.00 91.00
Water 10-5.0 X 98.50 99.50 96.50 92.00
Water 10-5.0 X 98.75 99.50 97.00 93.50
Water 5.0-10.0 X 99.99 99.99 97.50 96.00
Water 5.0-10.0 X 99.99 99.99 98.00 97.00
Water >10.0 X 99.99 99.99 98.50 98.50
Water >10.0 X 99.99 99.99 99.00 99.50
Ice 0.03-0.1 X 87.00 90.00 86.00 85.00
Ice 0.03-0.1 X 88.00 91.00 87.00 86.00
Ice 0.1-1.0 X 93.00 94.00 89.00 87.00
Ice 0.1-1.0 X 94.00 95.00 90.00 88.00
Ice 10-5.0 X 96.00 96.00 94.00 90.00
Ice 10-5.0 X 96.50 97.50 95.00 9100
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The background required to derive the Environmental Data Requirement (EDR) 

of the VIIRS Cloud Mask (VCM) has been explained in this chapter. In explaining the 

VCM, a review of the processing done by the algorithm has been done, along with 

necessary data inputs to and outputs from the algorithm. The error budget of the VCM 

has been discussed by doing a flowdown analysis of error sources and their magnitude. 

Additionally, the accuracy and precision of the generated binary cloudy/not cloudy result 

have been studied with both simulated cloud multispectral VIIRS imagery, and with 

MAS data. The cloud mask described in this chapter is part of the Cloud Cover/Layers 

EDR developed for the National Polar Orbiting Environmental Satellite System 

(NPOESS)ATIRS software package of EDRs.

2.6 Summary
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Chapter 3
Effect of Band-to-Band Mis-registration on Cloud Detection

3.0 Band^o-Baad Mis-registratioit Flowdown Study

Band-to-Band Ms-registration (BBM) is a phenomenon which, occurs is imagery 

when pixels from multiple bands are not completely co-registered to the same location 

on the earth. The BBM is either a result o f the sensor imaging optical array defects, 

focal plane mis-alignment, or a result of errors in geolocation processing. Because the 

VIIRS Cloud Mask algorithm employs multiple bands which may be mis-registered, it is 

considered sensitive to BBM. An assessment of the effects of BBM on the VCM is 

presented in this chapter.

To assess the effects of BBM a flowdown study was done using a set of multi- 

spectral imagery bands analogous to those used by the VCM. This multi-spectral 

imagery was a representative MODIS Airborne Sensor (MAS) scene, illustrated in 

Figure 3.1. This scene contains a variety of cloud types (cumulus, cumulonimbus, and 

cirrus) over a uniformly vegetated land surface. All of the multi-spectral bands used by 

the VCM were mis-registered at two magnitudes, 0-30% and 0-60%. This MAS scene 

was selected because it is an example of an easy cloud detection case over a uniform 

surface, in which, clouds should be correctly flagged in well registered imagery. For mis­

registration by the algorithm every band has been randomly shifted by different amounts 

and the Root Mean Square (RMS) mis-registration determined The IM S mis­

registration is used to quantify the the total mis-registration of all the bands for a given 

cloud-mask generation. A total of 800 of these mis-registered masks were performed, 

producing a large statistical ensemble of simulations of the VCM to assess the effect of 

BBM on both the cloud mask misclassification and the cloud cover accuracy and 

precision.
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Figure 3.1: MAS scene used in BBM study. Figure on left an RGB of the scene. 
Figure on right is the VCM results overlaid on the 0.645 pm band.
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The flowdown of this BBM study was performed with, one cloudy MAS scene at 

a resolution of 50 m (at nadir). Cloud mask truth was computed by aggregation of all the 

multi-spectral imagery used to a horizontal size of 1.3 km. the TOA radiances in seven 

MAS bands were used by the VCM to determine cloudy pixels. The solar zenith angle 

was taken from the MAS data. The MAS scene is shown as Figure 3.1 (left image), at a 

resolution of 50 m, at nadir. Figure 3.1 (right image) shows the cloud mask truth at 1.25 

km horizontal cell size.

The effect of BBM was simulated by displacing the 50 m multi-spectral MAS 

imagery for each band by a random number of integer steps in both cross-track (X) and 

along-track (Y) directions. Simulated mis-registrations are therefore quantized by 50 m, 

equivalent to 1/13 of a Ground Sample Distance (GSD) for a GSD = 0.65 km, and i/25 

of a GSD for a GSD = 1.25 km. The quantization limit was set by the inherent 

resolution of the original MAS scene. There were 800 simulated mis-registrations 

generated, to represent a spectrum of mis-registrations over a range of +1- 0.5 GSD in 

each direction. As mentioned above, all of the multi-spectral bands used by the VCM 

were mis-registered at two magnitudes, 0-30% and 0-60%.

Each randomly mis-registered MAS image then had the multi-spectral radiances 

converted to reflectances or Brightness Temperatures (BT), for input to the VCM 

algorithm. These reflectances and BT-values were used in the VCM for cloud detection.

The VCM was then applied to retrieve cloudy/clear results. The misclassification 

of the mis-registered images cloud mask was then determined from the cloud mask truth, 

at the 1.3 km horizontal cell size. 800 computed misclassifications were derived, 

corresponding to 5600 random band mis-registrations. The misclassification of the 

scene versus the RMS mis-registration is shown in Figures in this chapter, where the 

RMS mis-registration is given by:

RMS mis-registration = SQRT( SAX 2+ SAY2) (3.1)

3.1 Analysis
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where AX and AY are the random distributions in the vertical and horizontal directions

respectively. Note that X and Y were considered for both positive and negative shifting. 

The random number generator used is Gaussian with different seeds used for each mis­

registration case. This provides the mean random mis-registration of the masked scene 

considered, which is then plotted against the percent misclassification of the mis- 

registered scene from the to e  cloud mask, as illustrated in Figure 3.2.

3*2 Assumptions

There are a number of assumptions considered in the BBM study that should be 

mentioned. The BBM has been modeled as a random variation in cross-track and along- 

track directions, with the mis-registration of each band uncorrelated with that of any 

other band. A real focal plane/scan design however, will have correlated mis­

registrations. A sensor-design based analysis accounting for correlated mis-registrations 

of known sensor effects would be considered more reliable. However until the sensor is 

operational, the degree of correlated mis-registrations of the multi-spectral bands is 

unknown.

The along-track pixel size is additionally assumed to be equal to the cross-track 

size (square “pixels”), while the actual sensor will have pixel growth towards Edge of

Scan (EOS) and unequal along-track and along-scan pixel size. This leads to the 

assumption that the MAS data pixels could be treated as being 50 m out to the EOS, 

where pixels are approximately 74 m. All pixels within the MAS data scenes are treated 

as being at the same. Another assumption is that the error in MAS data radiances are not 

considered a factor in BBM. As with the correlation of the multi-spectral bands, a 

future sensor-design based analysis is recommended to assess radiance errors.

Also, errors due to Modulation Transfer Function (MIT), the sensitivity of the 

sensor to varying spatial frequencies of imagery, axe not considered in BBM. It is
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desirable to consider both sources of error in the same analysis. This analysis has not 

done so. Non-spatial errors are for this study assumed to be uncorrelated with MTF and 

resultant BBM errors. Additionally, stray light (far field) focal plane errors are assumed 

to be uncorrelated with MTF (near field) errors. No image restoration, MTF repair, has 

been performed upon the multi-spectral imagery prior to the BBM. For a more accurate 

assessment of BBM effects a complete flowdown of spatial errors would need to include 

the multi-spectral bands MTF, and also MTF repair. This is proposed to be included as 

part of future sensor studies for the post-launch VARS system.

3.3 Effect of BBM om Cloud Mask and Cloud Cover

The BBM explained in the Analysis section above was performed in 

order to assess the effects of BBM on VCM misclassification. The RMS mis­

registration given by Eq. (3.1) provided the mean random mis-registration of the multi- 

spectral radiances used in the VCM. When the RMS mis-registration is plotted against 

the percent misclassification of the mis-registered scene from the true cloud mask, 

Figure 3.2 (a-c), the BBM was found to affect the VCM significantly.

The BBM was found to increase the misclassification of the cloud mask, with 

BBM greater than 20% having the greatest effects. Looking at Figure 3.2(a), the BBM 

of greater than 20% created a 4-12% total misclassification of the cloud, with a mean of 

approximately 8%. On the other hand, a mis-registration of less than 20% creates a total 

misclassification of up to 6%, with a mean of approximately 3%.
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A significant finding was that this misclassification of the cloud mask may be 

divided into two components, cloudy-when-clear (Figure 3.2(b)) and clear-when-cloudy 

(Figure 3.2(c)). For mis-registration less than 20% the cloudy-when-clear component 

has a mean of approximately 2%, while the clear-when-cloudy component has a mean of

approximately 1%. For a BBM greater than 20% the cloudy-when-clear component has 

a mean of approximately 7%, while the clear-when-cloudy component has a mean of 

approximately 2%.

From these misclasslfications, illustrated in Figure 3.2(a-c), one infers that the 

effect of a BBM on the cloud mask is significant when the mis-registration Is greater 

than 20%. Also, the ratio of cloudy-when-clear to clear-when-cloudy misclasslfications 

was found to increase as a result of BBM, going from a ratio of 2:1 to a ratio of 7:1 

(producing biased results).

Because the largest misclassification component is the cloudy-when-clear one the 

misclassification caused by BBMs will have the greatest effect on the cloud products, 

causing clear regions to be misclassified as cloudy more often than cloudy regions as 

clear. These errors of omission/commission do not affect the accuracy of other land 

products dependent on the cloud mask, but will cause clear regions not to be considered 

by the land products and in turn adversely affect the accuracy and precision of the cloud 

products.

The cloud masks misclassification as a result of BBMs is summarized in Table 

3.1. Note that the values do not depict the M l ranges of misclasslfications, but seek to 

summarize the overall results.

If no BBMs were assured by the Instrument design the cloud mask could operate 

on a 2x2 aggregate. However running the mask at lower spatial resolution causes 

increased errors In misclassification.
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Table 3.1t Effect of BBM upon cloud mask misclassification.

RMS Mis-registration < 10% 10% -20% 20% - 30% 30% - 40%

Total 2% 4% 7% 10%

Cloudy When Clear 1% 1.5% 2% 2%

Clear When Cloudy 1% 2.5% 5% 8%

The BBM explained in the Analysis section, and the VCM 

misclassification sections above was also considered in the generated cloud cover 

Horizontal Cell Size (HCS) accuracy and precision. This was performed in order to 

assess the effects of BBM on cloud cover accuracy and precision. The cloud cover itself 

is a VIIRS product, as was explained in Chapter 1, which is a result of the VCM. The 

cloud cover is a ratio of the number of cloudy pixels in a scene to the total number of 

pixels in the scene. Misclassification errors in the cloud mask, due to BBMs, would 

therefore propagate into the cloud cover accuracy and precision The RMS mis­

registration given by Eq. (3.1) provided the mean random mis-registration of the multi- 

spectral radiances used in the VCM. Therefore, the RMS mis-registration may be 

plotted against the cloud cover accuracy and precision of the mis-registered scene. As 

illustrated in Figure 3.3 (a-h), BBMs have significant effects upon the cloud cover 

accuracy and precision.

Studies were performed to assess the effect of cloud mask mis-registration upon 

the accuracy and precision of cloud cover as a function of HCS. Figures 3.3(a-h) depict 

the accuracies and precisions for a given HCS for varying degrees of mis-registration.

For cloud cover, cases of mis-registration were unable achieve threshold 

accuracy at a 2 km objective HCS, for all BBMs considered, 10-60%. For HCS greater 

than 6 fan, the cloud cover has an accuracy better than threshold, and in some cases 

better than objective, for BBMs less than 20%.
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For BBMs greater than 20%, there is a severe effect upon the cloud cover. 

Referring to Figures 3.3(a-h) one may assess the performance of the cloud cover due to 

BBMs. At the 2 km objective HCS, the cloud cover accuracy did not reach threshold 

with a mean accuracy of 0.2, twice the objective, and a standard deviation of 

approximately 0.05, based the on 2.5 km HCS BBM results illustrated in Figure 3.3 (g- 

h).

For lower resolution cloud cover BBMs were found to have pronounced effects. 

For a cloud cover assessed over 6.5 km HCS, Figure 3.3(e-f), the mean of the accuracy 

obtained is at the threshold for cloud cover 0.1, with a standard deviation of 

approximately 0.04. At a cloud cover assessed over 13 km HCS, the mean accuracy of 

the cloud cover is below threshold, being 0.08, with a standard deviation of 0.04. At a 

cloud cover assessed over a cloud cover at the 25 km threshold HCS the accuracy has a 

mean of 0.07 with a standard deviation of 0.04. For this latter case, it is worth noting 

that approximately 30% of the results inspected did not make threshold of 0.1 accuracy.

The precision of the cloud cover has also been found sensitive to mis­

registration, illustrated in Figure 3.3(a-h). For all HCSs considered greater than 6 km, 

cloud cover precision reached objective, <0.15, and was better than threshold at a 

threshold HCS of 25 km. At a threshold HCS of 2 km the precision did not reach 

objective. Hie cloud cover was found to have better precision at lower mis-registrations 

and as the cloud cover HCS was increased. In Figure 3.3(a-h) the mean of the 

distributions (solid line) and the standard deviation (dashed lines) are also illustrated..
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Figure 3.3 (a): Cloud cover accuracy for 25 km HCS.
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Figure 3.3 (b): Cloud cover precision for 25 km HCS.
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Figure 3.3 (c): Cloud cover accuracy for 13 km HCS.
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Figure 33 (d): Cloud cover precision for 13 km HCS.
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Figure 3.3 (e): Cloud cover accuracy for 6.5 km HCS.
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Figure 33  (f)t Cloud cover precision for 6.5 km HCS.
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Figure 3.3 (g): Cloud cover accuracy for 2.5 km HCS.
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Figure 3.3 (h)t Cloud cover precision for 2.5 km HCS.
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The conjecture is that a BBM error less than 20% is -sufficient to meet 

requirements down to a HCS of 6.5 km. Larger than 20% mis-registration results in a 

inability to meet accuracy requirements for the Cloud Cover EDR (NPOESS IPO, 

2000a). In addition to the above, BBMs larger than 20% has a significant effect on the 

Cloud Cover EDR performance. Cloud cover is an aggregation of the cloud mask 

results. As a result of this, the misclassification of the cloud mask discussed above has a 

significant impact upon the inferred cloud cover.

The cloud cover misclassification as a result of BBMs discussed above is 

summarized in Table 3.2a-b. Note that the values do not depict the full ranges of 

misclassifications, but seek to summarize the overall results.

Table 3.2 (a); Effect of BBM upon cloud cover accuracy.

RMS Mis-registration < 10% 10% -20% 20% - 30% 30%-40%

25 km HCS Accuracy 0.03 0.05 0.08 0.09

13 km HCS Accuracy 0.03 0.05 0.09 0.10

2.5 km HCS Accuracy 0.15 0.18 0.22 0.25

Table 3.2 (b): Effect of BBM upon cloud cover precision.

RMS Mis-registration < 10% 10% -20% 20% - 30% 30% - 40%

25 km HCS Accuracy 0.02 0.02 0.025 0.03

13 km HCS Accuracy 0.05 0.05 0.05 0.06

2.5 km HCS Accuracy 0.30 0.30 0.30 0.30

For mitigation of this significant BBM effect cloud cover can be produced by 

first aggregating 2x2 pixels. These will then be collected to the relevant HCS level. 

This sum-algorithm-sum technique would mitigate BBM errors. However, this cannot 

be done without introducing additional errors of the type described in the cloud mask
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above. This is considered a possible method to minimize BBM effects. Results of these 

studies have lead to a systems specification for the VIIRS sensor to keep band-to-band 

mis-registration less than 20%.

3.4 Conclusions

A band-to-band mis-registration study has been performed in which the radiance 

of all bands used by the VCM were mis-registered horizontally and vertically. Multi- 

spectral MAS imagery was used as a surrogate for VIIRS. This multi-spectral imagery 

was generated with band-to-band registration errors of different degrees, and automated 

analyses o f simulated imagery were then compared against ground truth cloud masks 

used to generate the synthetic data.

It was found that the misclassification may be divided into two components, 

depicted in Figure 3.2 (b-c). A misclassification of clear when the pixel is cloudy, and a 

misclassification of cloudy when the pixel is clear. The larger term of these two 

misclassifications is the cloudy when clear. This means that the cloud EDRs will be 

affected the greatest by misclassifications o f the cloud mask, while surface EDRs, which 

are retrieved in regions the cloud mask designates as clear, are affected the least. In 

essence a ‘cloud confident’ cloud mask results in misclassification errors more likely to 

classify clear regions as cloudy. This causes misclassified regions to be more likely to 

be passed onto the cloud EDRs than other EDRs.

This behavior is believed to be due to the cloud conservative behavior of the 

cloud mask itself. For example the ratio o f clear when cloudy to cloudy when clear 

misclassifications is roughly equal for BBM less than 20%, but as misclassification

increases beyond 20% results have shown that the ratio goes as high as 7:1. Large 

BBMs have their largest effects upon surface EDRs, which are determined when a cloud 

is not detected. Therefore, it is recommended that BBMs be kept less than 20%.
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The effects of BBMs upon cloud cover of varying HCS were also assessed. The 

conjecture is that a BBM error less than 20% is sufficient to meet requirements down to 

a HCS of 6.5 km. Larger than 20% mis-registration results in an inability to meet 

accuracy requirements for the Cloud Cover EDR (NPOESS IPO, 2000a). In addition to 

the above, BBMs larger than 20% have a significant effect on the Cloud Cover EDR 

performance. Cloud cover is an aggregation of the cloud mask results. As a result of 

this, the misclassification of the cloud mask discussed above has a significant impact 

upon the inferred cloud cover.

These studies of BBM effects have shown that band-to-band RMS mis­

registrations greater than 20% can lead to misclasslfications of greater than 10% in the 

VCM. Also, BBMs affect the clear when cloudy misclassification much more than the 

cloudy when clear misclassification. These studies resulted in a VIIRS sensor 

specification to requirement that BBMs be kept less than 20% (Larsen, 2000b; Kealy 

and Ardanuy, 2000a).
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Chapter 4
Use of Shadows to Retrieve Water Vapor in Hazy Atmospheres

4.0 Introduction

Techniques aimed at retrieving water vapor from satellite data of reflected near- 

infrared solar radiation have progressed significantly in recent years. These techniques 

rely upon observation of water vapor attenuation of near infrared solar radiation reflected 

by the Earth’s surface. Ratios of measured radiances at wavelengths inside and outside 

of water vapor absorbing channels are used for retrieval purposes. These ratios partially 

remove the dependence of surface reflectance on wavelength, and are used to retrieve the 

total column water vapor amount Hazy atmospheric conditions, however, introduce 

errors into this widely used technique. A new method based upon radiance differences 

between clear and nearby shadowed surfaces, combined with ratios between water vapor 

absorbing and window regions, is presented which improves water vapor retrievals under 

hazy atmospheric conditions. Radiative transfer simulations are used to demonstrate the 

advantage offered by this technique. This chapter has been submitted for publication 

(Larsen and Stamms, 2005a).

Water vapor is an important variable constituent of the atmosphere. It plays an 

important role in the redistribution of water and energy within the global atmosphere- 

land-ocean system. The annual average of columnar water vapor varies between 0.25
• 'J  *5g/cm in polar regions, to 5 g/cm in the tropics (Peixoto and Oort, 1992).

Prior to the 1990’s remote sensing of water vapor from space utilized costly 

sensors based on measurements of Infra-Red (IR) and microwave radiation emitted by 

the atmosphere. Methods employing the split window technique in the 11.0 - 13.0 pm 

were developed for the retrieval of total column water vapor amount over the oceans, 

and over land areas covered by green vegetation (Chesters et a l, 1983). For the remote
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sensing of water vapor profiles the IR emission channels have historically been used in 

conjunction with an initial guess of atmospheric temperature and moisture profiles in the 

inversion (Susskind et al, 1984). In addition, passive microwave remote sensing 

techniques were developed that work well over the ocean, but have limitations over land 

surfaces {Prabhakara et a l, 1982; Ferraro et a l, 1996).

Research in the late 1980’s and throughout the 1990’s has led to the development 

of a total column water vapor retrieval algorithm using backscattsred Near-InfraRed 

(NIR) solar radiance near 1 pm (e.g., Cone! et a l, 1988; Gao and Goetz, 1990; Frouin et 

ai„ 1990; Kaufman and Gao, 1992; Bore! et a!., 1996; Bouffies et a l, 1997; Thai and 

Schonermark, 1998; Vesperini et a l, 1999). A major benefit of this approach is that it 

employs channels near 1 pm, which significantly reduces the cost to build sensors. This 

technique has been further developed into an operational tool for total water vapor 

retrieval {Gao et a l, 2003), which is currently used to retrieve the total column water 

vapor amount from the Moderate Resolution Imaging Spectroradiometer (MODIS), 

(Salomonson et a l, 1989) deployed on the NASA Terra and Aqua spacecraft platforms. 

An inherent limitation to this technique is that under hazy atmospheric conditions (with 

visibilities less than 10 fan), or when surface reflectance near 1 pm is small, the derived 

amounts in total column water vapor may be off by as much as 10% if aerosol effects are 

not properly corrected for {Gao and Kaufman, 1998). To compensate for the 

atmospheric aerosol effects an aerosol correction module has been developed. This 

module employs Look Up Tables (LUTs) generated from radiative transfer simulations 

based on DISORT {Stamms et a l , 1988). This chapter presents a method which helps 

eliminate the effects of haze on the retrieved water vapor column by using Top of 

Atmosphere (TOA) radiances from clear as well as nearby shadowed regions.
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41 Overview and Background

As stated above the MR technique for column water vapor retrieval is based on 

measured TOA radiances within the water absorption band located at 945 nm, as 

illustrated in Figure 4.1. This figure as well as all the other computations reported on in 

this chapter are based on MODTRAN {Berk et a l, 1989; Anderson et a!., 2000). The 

retrieval of total column water vapor is based on the use of reflected radiances within 

this water vapor absorption band and in a channel just outside this band. The radiance 

within the absorption band measured by the satellite-deployed sensor is due to sunlight 

that has been attenuated by atmospheric water vapor absorption along its path from the 

TOA to the surface, and after reflection by the surface, attenuated once more along its 

path from the surface to the entrance aperture of the sensor. Sunlight in a nearby 

window region outside the water vapor absorption band follows similar radiometric 

paths except that it is not subject to water vapor absorption.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



109

ingth (microns}

Figure 4.1: Atmospheric transmission across the NIR spectral region. Spectral 
transmission of the midlatitude summer atmosphere (McClatchey et al., 1972; Anderson 
et al, 1986), with rural aerosol extinction (visibility 25 km), an overhead sun and a nadir 
view in the presence of water vapor. The water vapor absorption region, the MODIS 
N ear-Infrared bands, and the spectral reflectance of snow, vegetation, soil, and water 
surfaces are also shown.
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A disadvantage of using the M R region for water vapor retrieval compared to 

longer IR wavelengths is that aerosol scattering can be significant. For clear sky 

conditions, however, atmospheric scattering is small and may not be ignored. This is not 

true for low visibility conditions, and this is the problem addressed in this chapter.

The monochromatic radiance at wavelength k  measured by a downward looking 

spacebome sensor can be approximated {Hansen and Travis, 1974; Thomas and 

Stamms, 1999) as:

= + (4.1)n

where FoX is the extraterrestrial solar irradiance (normal to the solar beam), 0O is the 

solar zenith angle, p a = cos#a 0V is the sensor viewing angle, and A^is the difference 

in azimuth between the sun and the sensor. The amount of attenuated sunlight striking 

the surface in direction 0o that is reflected in direction (0V, A0) of the sensor is

described by p x (0^, 0O ), the Bidirectional Reflection Distribution Function (BRDF).

The second term in Eq. (4.1) is due to radiance that is directly transmitted through the 

atmosphere, first in the downward direction described by the direct transmittance

Ta (0g), and then (after reflection by the surface) in the upward direction towards the

sensor described by the direct transmittance Tx (0y). This term can be evaluated by 

atmospheric transmittance codes such as LOWTRAN (Kneizys et a l, 1988), FASCODE 

(<Clough et a l, 1986) based upon tabulated water vapor absorption cross sections 

(available for example in the HITRAN database {Rothman et a l, 1998)) provided the 

BRDF, p x{Ov,0o,A$) is known.
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The diffuse or scattered radiation due to multiple scattering is described by the 

first term l lM  (0V, 90, h f )  wMch is much more problematic because it involves

scattering by atmospheric aerosols whose optical properties, including absorption and 

scattering coefficients and optical depth (depending on mass loading), are poorly known. 

In fact, these optical properties are known to vary considerably in space and time. 

Moreover, they depend on the chemical composition of the aerosol particles as well as 

their increase in size and resulting change in the index of refraction due to uptake of 

water in response to increased humidity which in turn depends on the atmospheric water 

vapor content (Skettle andFenn, 1976; Tsay and Stephens, 1990; Yan et a!., 2002), the 

column amount of which is desired to measure. Finally this term also depends on the 

surface BRDF, p x (0V, 0O, &$),

Nevertheless, in high visibility situations (low aerosol loading), it may be 

justifiable to ignore this term due to scattering and absorption by aerosols as well as the 

radiance contribution due to scattering by molecules (Rayleigh scattering) which is small 

in the MR spectral range. Then, if one invokes the customary assumption that the

surface is a Lambertian reflector so that the BRDF is isotropic, i.e., px{0v,0o,A f)  s  pKh,

Eq. (4.1) reduces to (.Fraser and Kaufman, 1985; Gao and Kaufman, 2003):

I M A M )  = (4.2)7t

The water vapor absorption feature in the 1 pm M R spectral region is attractive 

for retrievals of water vapor because this technique relies on the assumption that the 

surface reflectance, p xx v is uniform or varies linearly with wavelength across both the

absorption region and the nearby window region used for retrieval. Also, for this 

retrieval algorithm to be reliable the surface reflectance must be greater than 0.1, which

is true for vegetated surfaces, desert regions, and snow, but not for ice or liquid water.
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Figure 4.1 depicts the surface reflectance of four common surface types across this 

spectral region.

If one divides Eq. (4.2) by the incident irradiance, paF0l, one obtains the 

(radiance) reflectance, defined as:

p ,(0  ,0  ,A$) g L & S z M l  -  (4.3)
‘  ’  ° FoFoX *

and if one also multiplies by % one obtains the apparent (radiance) reflectance, defined

as:

(4-4>

having defined the total transmittance, TA  (0V ,&g) = TA (0O )Tz(0v),a s  the product of the

downward direct and upward direct transmittances. Applying Eq. (4.4) to the water 

vapor absorption band (denoted by subscript 1) as well as the nearby window region 

(denoted by subscript 2 ), and taking the ratio produces:

px{8v,0oM ) /
t? a a )  A ±
T‘mA A )  p I A A M ) /

/  Pl,2

Here there is an assumption that the same sun/sensor geometry and surface 

reflectances apply for both bands. Thus, when the scattered radiation can be ignored Eq.

(4.5) shows that if the surface reflectance is independent of wavelength {pui » p L 2). the

ratio of the transmission in the water vapor absorbing channel to that in the non­

absorbing channel is equal to the ratio of the corresponding TOA radiance reflectances.
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Assuming that atmospheric transmission is multiplicative, one may write 

T tot = T^T™. where T™ is due to water vapor and T™ is due to molecular scattering 

as well as attenuation due to aerosol scattering and absorption. With further assumption 

that T™ is approximately constant across the spectral region covering the two 

wavelengths used for water vapor retrieval, Eq. (4.5) may be written as

An important aspect of this retrieval technique is that when the surface BRDF is 

spectrally flat ( p Ll « p LJ2), the water vapor retrieval is independent of the surface

BRDF. The solid line in Figure 4.2 depicts simulated two-channel TOA reflectance

ratios (absorption channel divided by window channel) as a function of precipitable 

water for clear sky conditions. A weakness of this retrieval is that the amount of 

atmospheric haze is unknown. Therefore, the use of clear-sky generated LUTs leads to 

incorrect water vapor retrieval amounts. The ratios for the low visibility haze cases 

depicted are less than the clear sky ratios for all three channels shown in Figure 4.2.

itot

w
(4.6)
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Figure 4.2: Gao method of reflectance ratio vs. precipitable water. The ratio of the 
reflectance in the water vapor channel to that in a nonabsorbing channel (865 mm) for 
clear sky, and hazy conditions as a function of total precipitable water in the atmosphere. 
Ratios depicted are at a weakly absorbing water vapor channel (905 run), a moderately- 
absorbing water vapor channel (940 nm), and a strongly-absorbing water vapor channel 
(935 nm). The solid line is for a clear sky case; the others are for visibilities of 10, 8 , 5, 
3, and 2 km. These calculations were done for a surface albedo = 0.5, a sensor looking 
at nadir, and a solar zenith angle of 45 degrees.

For cases in which the surface reflectance varies linearly with wavelength, an 

empirical expression for T™, based on three channels, one in the water vapor absorption 

band, and the two others in window regions at 865 and 1240 nm, has been developed 

(Gao and Kaufman, 2003). According to this empirical expression, the transmittance in 

the absorbing channel at 945 nm may be written as:
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Tm =  _____________________p\{0v,eoM )   (4 7 )

*  c lP;(0rA , m + c 2p M A ^ S  '

where the empirical coefficients are C\ — 0.8 and € 2  = 0.2. According to Gao and 

Kaufman (2003) the denominator in Eq (4.7) is the estimated 945 nm TOA reflectance in 

the absence of water vapor absorption based on the two atmospheric window channels 

centered at 865 and 1240 nm through linear interpolation. The same assumptions were 

invoked to arrive at Eq. (4.7) as those used to derive (4.6). For the MODIS sensor both 

the two and three channel ratioing techniques in Eqs. (4.6) and (4.7) are used to derive 

the atmospheric transmission of water vapor absorption channels. For this purpose 

radiances from the five MODIS channels centered at 865,905,935, 940, and 1240 nm 

are used to derive water vapor transmittanees at 905, 935, and 940 nm, which are 

inverted to yield water vapor amounts. Because the three channels have very different 

absorption coefficients, they have different sensitivities to water vapor and will yield 

different column amounts for a given atmospheric condition. The band at 935 nm with 

strong absorption is most sensitive under dry atmospheric conditions, while channel at 

905 nm with the weaker absorption is most sensitive under humid atmospheric 

conditions. Therefore, a weighted average of the three retrieved values is used to 

represent the total column water vapor amount, and retrievals are obtained over clear 

areas as well as ocean areas which possess sun glint.

Based on Eqs. (4.6) and (4.7) an atmospheric transmittance code (LOWTRAN7 

(Kneizys et a l, 1988), MODTRAN (Berk et al, 1989; Anderson et a l, 2000), or a line- 

by-line code such as FASCODE (Clough et a l, 1986)) can be used to generate Look Up 

Tables (LUTs) for T™ as a function of the sun/sensor geometry. Figure 42  provides

examples of two channel ratios (the absorbing channel divided by window channel) as a 

function of total column water vapor for a specific sun/sensor geometry. The MODIS 

M R water vapor algorithm searches transmittance LUTs generated by radiative transfer 

simulations to infer T™ which is then used to retrieve the total water vapor amount
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accounting for the appropriate sun/sensor geometry. Sensitivity studies have shown that 

for MODIS an error of 0.01 in the trammittances derived from using the ratio techniques 

based on Eq (4.6) and (4.7) above implies a 2.5% error in the retrieved column water 

vapor amount (Gao and Kaufman, 1998).

The effect of haze on remote sensing of water vapor depends upon the aerosol 

optical depth and the magnitude of the surface reflectance. Under 4non-hazy’ 

atmospheric conditions, with visibilities of 2 0  fan or greater, the impact of aerosols on 

water vapor retrievals is expected to be insignificant for land surfaces with reflectances 

between 0.2 and 0.4 in the 0.8 -1.3 pm spectral range. This is due to the self­

compensation between the aerosol absorption and scattering effects (.Fraser and 

Kaufman, 1985). However under hazy conditions (visibility less than 10 km) or when 

the surface reflectance near 1 pm is small (less than 0 .1 0 ), errors can be 1 0 % or slightly 

greater in the MODIS-retrieved water vapor amounts based upon an atmospheric 

transmission model with no correction for aerosol effects (Gao and Kaufman, 2003).

For level two processing o f water vapor a module aimed at correcting for aerosol 

effects has been developed and implemented in the MODIS retrieval algorithm. This 

correction uses scaling factors that are derived from aerosol optical depths and lookup 

table procedures. The scaling factors are then applied to the water vapor images to 

produce a final aerosol-corrected water vapor image. Two pre-calculated lookup tables 

are used to generate the scaling factors using apparent reflectance at 865 and 940 nm. 

These LUTs are generated using DISORT (Stamms et a l, 1988) with k-distribution 

coefficients as input, in order to properly account for water vapor absorption.

The aerosol-corrected water vapor amounts are retrieved on a pixel-by-pixel 

basis using the Near-IR technique described above. The method presented below based 

upon shadows does not work on a pixel-by-pixel basis, and therefore is not a 

replacement for the MODIS technique. Rather that presented is a method for retrieving 

water vapor using shadowed regions, which removes the effects o f haze on the radiation 

field and thereby improves the accuracy of the retrieval.
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42  Description of t ie  Shadow Algorithm

4.2.1 Basic Equations

The approximations leading to Eqs. (4.6) and (4.7) ignore the term 

I  a dig 5 in Eq. (4.1). This term represents diffuse or scattered radiation due to

light scattering by molecules and particles in the atmosphere and reflection by the

significant component of the total TOA upward radiation field. Thus, leaving out this 

term leads to errors under hazy atmospheric conditions as mentioned above.

To use shadowed regions to improve the accuracy of water vapor retrievals under 

hazy atmospheric conditions one must take a closer look at the term I (<9V, 0o, A$) in

Eq. (4.1). Assuming that the surface is a Lambert reflector and that plane-parallel 

geometry applies, one then has (see e.g. Thomas and Stamnes, 1999, p. 205)

where p ljaadc (#v, G0, A^) is the contribution from the atmosphere for a black surface

iPa /, = 0 ) 5 and the second term is the additional contribution due to the presence of the

surface. The quantities appearing in the second term of Eq. (4.8) may be interpreted as 

follows:

Tx{G0,2n) = the total (direct + diffuse) transmitted radiance in direction 0 O for uniform 

illumination of the atmosphere from above;

T;i(&0,2ft) = the total (direct + diffuse) transmitted radiance in direction 0 V for uniform 

illumination of the atmosphere from below;

underlying surface. Under hazy atmospheric conditions this scattered light is a

Tx(0o,2^r)Tx(0vM ) p z>L (4.8)
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p,A = the spherical albedo of the atmosphere for uniform illumination of the the

atmosphere from below.

If the visibility is high ( p., « 1 )  or the surface albedo is low ( pA L « 1 ) ,  Eq.

(4.8) becomes

(n a  A (a a k X \ t T .  ̂  i@v > ^n )Px,L n \
P i ^ v A M )  =  Pa,Mack { 0 v A M )  + --------------------------------------------------------------------------------------------  ( 4 - 9 )n

Before proceeding, the following observations are noteworthy. Firstly, the first 

term on the right hand side (RHS) of Eq. (4.8) is due entirely to scattering in the 

atmosphere. Secondly, noting the formal similarity between the second term in Eq. (4.9) 

[containing total transmittances], and the RHS of Eq. (4.3) [containing direct 

transmittances]. Thirdly, whereas the direct transmittance in [Eq. (4.3)] is the same for 

illumination (in the same direction) from above and below, the total transmittances are 

different \TA{8,2n) * TA(8,2n)] unless the atmosphere is homogeneous. Fourthly, the 

enhancement of the surface contribution to the TOA radiance due to the factor 

[1 -  pxpKL ]~l in Eq. (4.8) is caused by multiple reflections between the surface and the 

atmosphere (primarily the aerosol layer). This enhancement becomes important when 

the aerosol layer is sufficiently thick ( 0  «  px < l) and the surface reflectance is

sufficiently large (0 «  px± < l}. Finally, noting for completeness that the apparent

reflectance defined in Eq. (4.4) is obtained by simply multiplying Eq. (4.8) by n. Thus,

the total apparent reflectance becomes

„ *  f a  a  a  j,\  /a a  a  a \ , T i  ($o > ^ Y ^ a (@v » ^ ) P i j ,  (A i m

P i, to t  s ~  P A,black (̂ v +  ft ~ 1  (4.10)
\}~ P aPa,l\
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4.2*2 Derivation of the Shadow Algorithm

Figure 4,3 deplete the shadowed and non-shadowed regions which will be 

considered in these derivations. It should be noted that Eq. (4.10) provides a complete 

description of the TOA radiance that will be measured by a downward-looking sensor 

deployed in space when the following assumptions are valid: (i) the atmosphere-surface 

system can be adequately represented by a vertically inhomogeneous slab of scattering 

and absorbing molecules and particles over a flat, homogenous surface; (ii) the surface 

reflects radiation isotropically (Lambert reflector). Thus, so-called “adjacency effects” 

associated with departure from horizontal homogeneity invoked in the above two 

assumptions are neglected. Nevertheless, Eq. (4.10) is expected to be very useful for 

exploring the effects of atmospheric scattering by aerosol particles and reflection by the 

underlying surface, which are ignored in Eq (4.4). Thus, one assumes that Eq. (4.10) 

provides an adequate expression for the apparent TOA radiance reflectance under non­

shadowed hazy atmospheric conditions.
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Partially  R eflecting Surface 

Figure 4.3: Conceptual illustration of the shadow method.

Since the total reflectance is the sum of the direct and diffuse part,

Tx(0O,2it) -  Tx(t9a,2ri)+ tx(0O,2n) = one may rewrite Eq (4.10) as (omitting the

angular dependence):

P  X Jot A M ock
(Tx + txW x + h)P,X,L

PkPxjL
(4.11)

~  ftPxMaA +
(TxK + txTx + TJx +txh)Px,L

' PxPx,L

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



121

For shadowed regions, caused for example by a cloud of finite horizontal extent, 

one assumes that the two terms in the above equation proportional to the direct 

downward transmittance Tx, are negligible. Thus, one obtains

Subtracting the apparent radiance in the shadowed region [Eq. (4.12)], from that in the 

non-shadowed region [Eq. (4.11)], one finds

One has assumed that the atmospheric contribution px black is the same in both

regions, and that the surface reflectance is also the same. Note that the subtraction has 

eliminated the term due to scattered radiation in the atmosphere (pz black) and the term

proportional to the downward scattered transmission or “skyshine” radiance [Eq. (4.12)], 

because they are approximately the same for both shadowed and un-shadowed regions. 

The calculation in Eq. (4.13) above is done for both the band inside the water vapor 

absorbing region (945 nm called band 1) and the band outside the absorption region (865 

nm or band 2). Also, the same surface reflectance and sun/sensor geometry are assumed

A +hh^PA,L (4.12)

a  *    *  *  S f f  _A p x  — pXtot P a ,to t
(T T  + Tt

(4.13)

where

P a,l (4.14)
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to exist in  each band. Then by taking the ratio of the two TOA reflectance Ap\ in the 

water vapor absorbing band and the non-absorbing band 2, one finds

which is o f  the same form as Eq. (4.5). Equation (4.15) shows that when the surface 

reflectance is constant with wavelength, the ratio of the transmission in the water vapor 

absorbing channel to that in the non-absorbing channel is equal to the ratio of the TOA 

reflectance differences. The non-absorbing (window) channel transmission, , can

be accurately computed. Unlike the calculations which led to Eq. (4.5) the radiation due 

to aerosol scattering and surface reflection have been properly included in this 

calculation.

Assuming that atmospheric transmission is multiplicative, one may write 

= T ^ T ™,, where T™ is due to water vapor and T™ is due to molecular scattering as 

well as attenuation due to aerosol scattering and absorption. If one further assume that 

T™ is approximately constant across the spectral region covering the two wavelengths 

used for the water vapor retrieval, Eq. (4.15) may be written as

where in the final step one has assumed that the surface reflectance is independent of 

wavelength.

(4.15)

(4.16)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



123

An important aspect of this shadow differencing water vapor retrieval method is 

that for uniform spectral reflectance the water vapor retrieval is independent of the 

surface reflectance. In addition, this method takes into account all contributions to the

radiance under hazy atmospheric conditions. Thus, it represents an improvement of the 

heritage water vapor retrieval technique relying on Eq. (4.5), which ignored aerosol 

scattering.

4 2 3  Simulations and Comparisons

In Figure 4.4 is shown a plot of simulated ratios o f TOA reflectance differences 

between non-shadowed and shadowed regions under hazy atmospheric conditions as a 

function of the total column water vapor amount.

All three reflectance ratios in Figure 4.4 show little difference between the clear 

sky cases and the low visibility cases for atmospheric water vapor amounts above 3 

g/cm2. Unlike the analogous Figure 4.2, under hazy atmospheric conditions the ratios 

are typically both smaller in magnitude and greater than the clear sky ratios, for total 

precipitable HjO greater than 0.05 g/cm2. To compare the shadow approach (Figure 4.4) 

to the Gao approach (Figure 4.2) the differences between the clear and hazy atmosphere 

ratios (transmission differences) for the Gao and shadow approaches are illustrated in 

Figure 4.5 and Figure 4.6 respectively.
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Figure 4.4: Shadow method of reflectance ratio vs. precipitable water. The ratio of the 
reflectance difference in the water vapor band to that in a nonabsorbing channel (865 
nm) as a function of total precipitable water in the atmosphere [Eq.(4.15)] for clear sky, 
and hazy conditions. Ratios depicted are the clear minus shadow ratios at a weakly 
absorbing water vapor channel (905 nm), a moderately-absorbing water vapor channel 
(940 nm), and a strongly-absorbing water vapor channel (935 nm). The solid line is for a 
clear sky case, whereas the others are for visibilities of 10, 8 , 5, 3. and 2 km. These 
calculations were done for a surface albedo = 0.5, a sensor looking at nadir, and a solar 
zenith angle of 45 degrees.
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Figure 4.5: Gao method reflectance ratio haze and clear sky difference. Difference in 
reflectance ratio (or transmission) of the haze cases minus the clear ratio cases depicted 
in Figure 4.2 (Gao approach) The five ratio difference lines depicted are for visibilities 
of 10, 8 ,5 , 3, and 2 km. The dotted lines are the differences between the clear and the 
hazy conditions for the reflectance ratio 905 nm/865 nm, the dashed lines are for the 
reflectance ratio 940 nm/865 nm, and the dash-dot lines are for the reflectance ratio 935 
nm/865 nm. .
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Figure 4.6: Shadow method reflectance ratio haze and clear sky difference. Difference 
in reflectance ratio (or transmission) of the haze cases minus the clear ratio cases 
depicted in Figure 4.4 (shadow approach). The five ratio difference lines depicted are 
for visibilities of 10, 8 , 5,3, and 2 km. The dotted lines are the differences between the 
clear and hazy conditions for the reflectance ratio 905 nm/865 nm, the dashed lines are 
for the reflectance ratio 940 nm/865 nm, and the dash-dot lines are for the reflectance 
ratio 935 nm/865 nm.

From Figure 4.5, which illustrates the Gao approach, one may note that the 

difference between the clear and low visibility haze conditions is up to 0.04 when the 

total column water vapor in the atmosphere larger than 0.5 g/cm2. Previous research has 

shown that a 0.01 difference in the reflectance ratio contributes a 2.5% error in water 

vapor estimation, which leads to a 10% error under low visibility conditions (Gao and 

Kaufman, 1998). This 10% error is illustrated by the 0.04 differences in Figure 4.5 for 

the hazy cases. Figure 4.6 illustrates that for the shadow approach, the magnitude of the 

difference between the clear and low visibility haze conditions is 0 . 0 1  -  0 . 0 2  for total 

column water vapor amounts larger than 0.5 g/cm2. This is roughly half to a quarter of
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the difference resulting from the Gao approach. This would lead to a 2.5% - 5.0% error 

under low visibility conditions. It is worth noting that with the shadow approach for 

visibilities’down to 5 km the error is less than 2.5%, and for visibilities less than 3 km 

the errors go up to 5%, whereas for the Gao approach an error of 5% - 10% exists for all 

visibilities. For low total column water vapor amounts less than 0.5 g/cm2 the 

differences between the clear and lower visibility hazy atmospheres are greater with the 

shadow method than with the Gao approach. This is because haze is still included in the 

direct transmission curves, and its effect is suppressed in the Gao approach because 

errors In the upward radiance are present in both the numerator and denominator of the 

ratios. Overall though for typical water vapor amounts and low visibilities the shadow 

approach has less error.

43 Practical Considerations

The aerosol-corrected water vapor amounts are retrieved on a pixel-by-pixel for 

MODIS basis by the Near-IR Gao approach. The method presented here based on the 

use of shadows does not work on a pixel-by-pixel basis, and therefore is not a 

replacement for the MODIS technique. Rather that which is presented is a method for

retrieving water vapor using shadowed regions, which by subtraction effectively removes 

the effects of haze and thereby improves the accuracy of the retrieval. In order for the 

shadow approach to be applied however, the detection of shadows and hazy atmospheric 

regions is necessary. The MODIS team has developed algorithms which do both.

To use shadows for water vapor retrievals, the presence of shadows need to be 

detected in the imagery. The detection of shadows is a problem that has not been 

adequately addressed in the literature. For clear sky scenes shadowed regions may 

theoretically be computed given the sensor viewing geometry, solar azimuth and zenith 

angles, cloud/object edges distribution, and cloud/object top altitude. IMs approach, 

however, is computationally intensive, and the height of clouds/objects is generally not
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available to all sensors. For shadow detection, a simple reflectance thresholding shadow 

detection algorithm has been developed by the MODIS team. The shadow detection is 

performed operationally for the MODIS sensor, being output as a pixel level flag in the 

MODIS Cloud Mask (Ackerman et a l, 1997). This algorithm checks for shadows 

whenever a highly confident clear scene has been detected. The shadow detection is 

based upon TOA reflectance at 0.95,0.87, and 0.65 pm. A shadow is identified when 

R0 .9 5  < 0.12 and Ro.8?/Ro.6s >0.9 (King et a l, 1998). This shadow detection has exhibited 

good performance over vegetated surface regions. Regions are identified as vegetated by 

the ecosystem type based on geographical location.

In addition to detecting shadowed regions MODIS team has developed simple 

algorithms to detect if an atmosphere is heavily laden with aerosols. These tests were 

developed to detect if a region has a thick haze layer which might be misinterpreted as a 

cloud. This information is available as an output from the cloud detection algorithms for 

developed for MODIS (Ackerman et a l, 1997). The tests were developed to be 

conservative so that thin aerosol layers are often flagged as clear (King et a l , 1998). The 

technique for the detection of hazy atmospheres is based upon the observation that the 

reflectance at 2.1 pm is largely unaffected by heavy aerosol loadings and can be used to 

detect aerosols over dark surface targets, such as vegetation. Using observed 

correlations between surface reflectances at 0.66 pm and 2.1 pm it was found that the 

reflectance at 0.66pm may be well approximated as half of the reflectance at 2.1 pm 

(Kaufman et a l, 1997). If the R2.1 is larger than 0.2 then no haze is detected because the 

haze detection algorithm works only over dark surfaces. When R.2.1 < 0.2 and R&« > 

(0.04 + Rzi) then a hazy atmosphere is detected.

For sensors with higher spatial resolution, such as LANDSAT and M.ONOS, 

which possess 15 m and 1-4 m resolution respectively, shadowed regions will occur 

more frequently in the imagery, and less of a mixture between shadowed and non­

shadowed pixels will be present. Thus, the shadow method presented here can be used 

to improve the accuracy of the Gao approach under high haze conditions.
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A method has been developed to augment current state-of-the-art total column 

water vapor retrievals. It is based on the use of ratios of reflectances within and outside 

the Near-IR water vapor absorption absorption band. This new method, called the 

‘shadow5 method, improves water vapor retrievals under hazy atmospheric conditions by 

employing radiance differences between non-shadowed and shadowed regions. The 

improvement in water vapor retrieval, achievable by application of the shadow method, 

is obtained by considering all contributions to the reflected radiance in the derivation of 

the total water vapor amounts. By comparison the heritage water vapor retrieval method 

is based on approximations that are avoided in the shadow method. A complete 

derivation of the shadow method has been provided, and supporting radiative transfer 

simulations have been carried out to demonstrate its merit. These simulations show that 

under hazy atmospheric conditions, and for typical column water vapor amounts, the 

shadow method can be used to infer total water vapor amounts with a 2.5% error, while, 

the heritage method yields an error up to 10% in total water vapor amount.

4.4 Conclusions

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



130

Chapter 5
Methane Detection from Space: Use of Sun Glint 

S.# Introduction

Methane seepage is indicative of petroleum or natural gas reserves. Techniques 

aimed at detecting methane seepage with surface based instrumentation have progressed 

significantly in recent years. These instruments rely upon measurement of fight 

attenuation due to methane absorption of Short Wave Infrared (SWIR) radiation. 

Detection of methane seepage over water bodies with electro-optical remote sensing has 

been limited due to the low surface reflectance of water. Also, due to sensor saturation, 

imagery over sun glint is commonly discarded in satellite remote sensing, because the 

glint conditions produce high surface reflectance. However, recent measurements in the 

SWIR of sun glint regions have revealed that the surface reflectance is spectrally flat and 

enhanced without causing saturation. This higher surface reflectance in sun glint regions 

allow for retrieval o f total column methane amount using ratios of measured radiances at 

wavelengths inside and outside of methane absorbing SWIR channels. The methane 

retrieval method presented here, based on short wave infrared ratios in sun glint regions, 

allows for detection of methane seepage over the Earth’s oceans and lakes, and the 

detection of possible petroleum or natural gas reserves. Radiative transfer simulations 

are used to demonstrate the capabilities offered by this technique. This chapter has been 

submitted for publication {Larsen and Stamms, 2005b).

Methane is a colorless and odorless gas which since the pre-industrial era has 

steadily increased in the atmosphere, more than doubling in 'concentration in the last two 

to three hundred years (Rasmussen and Khalil, 1984). Much of the increase in methane 

is caused by human activity. Safley et a l (1992) reported that the atmospheric 

concentration of methane is currently about 1.7 ppm and increasing at a rate of 1% per
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year. Methane is a greenhouse gas, second in Importance to carbon dioxide as a global 

wanning agent. Methane absorbs infrared radiation, converting radiation emitted by the 

Earth to heat, rather than allowing it to escape to space. There is significantly less 

methane in the atmosphere, compared to carbon dioxide, but one molecule of methane 

traps approximately 30 times as much radiant energy as does one molecule of carbon 

dioxide. The global warming due to atmospheric methane increase is approximately half 

that due to carbon dioxide (Dickinson and Cicerone, 1986; Rrnnanathan et a!,, 1985). 

Continued increase in atmospheric methane of 1% a year is believed to be likely to 

contribute more to climate change than any other gas except carbon dioxide {Cicerone 

and Oremland, 1988).

The primary source of atmospheric methane is due to the microbial decay of 

organic matter under anoxic conditions in wetlands. Compared to the natural methane 

emissions, anthropogenic sources are twice as large and includes contributions due to 

rice cultivation, bacterial decay in landfills, sewage, leakage due to the mining of fossil 

foels, leakage from natural gas pipelines, and biomass burning.

5.1 Overview and Background

5.1.1 Methane Sources

The occurrence of hydrocarbon seeps at the Earths surface indicates that there is 

leakage from a hydrocarbon reservoir. These hydrocarbon seep gases are composed of 

80 -  90% methane {Hornqfius, 1999). Seeps play an important role in the exploration of 

new natural gas basins or petroleum producing regions. Petroleum exploration began 

with the search for oil that flowed from surface rocks. Petroleum seeps leaking from 

subsurface reservoirs recorded have been recorded as far back as 3000 B. C. (Tedesco, 

1995), and Drake's historic well near Titusville, Pennsylvania was drilled on the basis of 

a seep in the adjacent creek bed. The importance of seeps has been minimized in an era
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of increased use of sophisticated instrumentation, and decreased use ©f ground surveys. 

Nearly all important oil-producing regions of the world were first discovered by surface 

oil and gas seeps {Hunt, 1981). These seeps can be active, macroseepage, in which there 

is commonly oil and gas seepage which is visible to the human eye. Or they may be 

passive, microseepage, in which there arc temporarily elevated concentrations of 

analytically detectable volatile or semi volatile hydrocarbons, or hydrocarbon-induced 

changes, in soils and sediments overlying a petroleum accumulation. (Link, 1952) was 

the first to separate macroseeps from microseeps, which can only be detectable by 

geochemical means. By the 1920’s nearly all of the visible macroseeps had been drilled 

(Tedesco, 1995). Microseeps are usually detectable only by sensitive instruments, or by 

the visible result of their effect on the near-surface environment These microseeps, 

although perhaps not as obvious or dramatic as macroseeps, are just as valuable for the 

exploration of undiscovered reserves.

5.1.2 Ground-based Methane Remote Sensing Techniques

Hydrocarbons generated and trapped beneath the seafloor seep to the surface in 

varying but detectable quantities. These phenomena occur because processes and 

mechanisms such as diffusion, effusion, and buoyancy allow hydrocarbons to escape 

from reservoirs and migrate to the surface where they may be retained in the sediments 

and soils or diffuse into the atmosphere or water columns (Kinsman, 1993; Schumacher 

and Abrams, 1996). Based upon these assumptions, various techniques have been 

developed to identify the surface or near surface occurrences of hydrocarbons. Surface 

geochemical prospecting for hydrocarbons consists of direct and indirect methods to 

identify hydrocarbon seepage. For environmental and economic reasons, future 

petroleum exploration needs to be both non-invasive and cost-effective. Remote sensing 

can allow for continuous sampling, without the need for permits or direct access to rough
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and hostile environments, and allow large areas to be explored rapidly. For these 

reasons remote sensing is increasingly being used for exploration.

Remote sensing for hydrocarbons has typically focused on the identification of 

indirect evidence of its presence, such as by the identification of minerals associated 

with seeps, fee detection of seeps based on spectral signatures of stressed vegetation 

(Everett et a l, 2002; Yang et a l, 1998), and the identification of favorable petroleum 

reservoir structures (Haihmty, 1976). Additional research has resulted in fee 

development of approaches based on microwave techniques (Goumay et a l, 1979; 

Thompson, 1981) and surface based laser systems. Laser systems have been built to 

measure numerous atmospheric species coincident with seeps. The more recent systems 

have been developed to measure primarily methane and ethane in the atmosphere for 

petroleum exploration by detecting microseeps, and for monitoring leaks in gas 

pipelines.

A newer technique being employed for remote sensing of seeps is Light

Detection and Ranging (LIDAR). LIDAR uses light from a tunable laser to selectively 

detect methane and heavier gases by their absorption (Grant and Menzies, 1983). A 

LIDAR pulses light into the atmosphere where aerosols, liquid droplets, and gaseous 

molecules scatter and absorb the light. Methane absorption features commonly used for 

LIDAR instruments are in the SWIR and MidWave-lnfraRed (MWIR) spectral regions, 

located near 1650,2200, and 3200 nm. A LIDAR works because some of the scattered 

light is backscattered to the sensor and measured. The length o f time between 

transmission and reception indicates from what distance the light was backscattered and 

the light intensity indicates the concentration of the gas encountered. These LIDARs are 

commonly track or airborne mounted systems which are capable of range resolving the 

location and concentrations of atmospheric gas clouds. In addition, surface methane 

detection has been used to identify gas leaks from buried, above ground, and underwater 

pipelines. These LIDARS have been used as a cost-effective way to detect macroseeps 

and microseeps in unexplored regions. Methane surface seepage concentrations have
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been measured at 50-60 ppm over pavement with broken underground gas pipes beneath 

(SRI Int., 2004), at 100 ppm range over seepage regions on the surface of the ocean 

(Ophir Corp., 2003), and at a broad range of surface concentrations, from 6-910 ppm 

(McLaren et a l, 2001).

The final method used in remote sensing of seeps is one which analyzes the 

condensate carbon traces on aerosols carried by the atmosphere in thermals (Barringer, 

1981). Gas bubbles in seeps diffuse to the water surface where a fraction of them 

emerge into the overlying atmosphere and give rise to aerosols through gas-to-particle 

conversion processes. These aerosols are collected from large volumes of air by an 

airborne cyclone sampler carried on board an aircraft which is typically flown at 30 m. 

Subsequently these aerosols are examined by a flame ionization detector for hydrocarbon 

content

5.1,3 Satellite Remote Sensing Potential

Methane is emitted in large amounts from the bottom sediments on the sea floor, 

and is released in the seawater, where it is partly oxidized and consumed by bacterial 

activity. Nevertheless, appreciable amounts of methane are released to the atmosphere at 

the sea surface. Methane from high-intensity seeps that vigorously eject methane into 

the water column is likely to reach the upper part of the water column and to have a 

pronounced effect on atmospheric composition.

Recently spacebome sensors using gas correlation spectroscopy, such as the 

Measurements of Pollution in the Troposphere (MOP1TT) sensor, have been deployed to 

measure total column amounts of methane. However this sensor has coarse spatial 

resolution of 2 2  km at nadir and its use is primarily for studying environmental change, 

rather than for petroleum research.

Some satellite-borne sensors avoid using data in regions of sun glint, e.g., Sea- 

viewing Wide Field-of-view Sensor (SEAWBPS), because no useful retrievals were
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envisaged during its design and due to sensor saturation problems (Gatebe et a l, 2005). 

However, it has been demonstrated that the sun glint in the near-infrared spectral region 

may be useful for aerosol absorption (Kaufman et al., 2002) and for the retrieval of 

precipitable water vapor amounts (Kieidman et a l, 2000). Additionally, one may use 

sun glint for the retrieval of surface methane amounts using the SWIR spectral region.

Use of methane features in the SWIR spectral region for retrieval of atmospheric 

methane amounts over water bodies from spacebome sensors is limited by the low 

surface reflectance of water across this spectral region (approximately 0.02) which is an 

order of magnitude lower than the reflectance due to sun glint. This low reflectance is 

due to absorption by water of the radiation that survives atmospheric attenuation, leading 

to little reflected light reaching the Top of Atmosphere (TOA). However, under 

conditions of sun glint the surface reflectance increases significantly, allowing more 

radiance to reach the sensor, despite the methane absorption. In remote sensing imagery 

sun glint regions possess high reflectance, which is also spectrally flat across the SWIR 

spectral region. Recent measurements with the Cloud Absorption Radiometer (CAR) 

instrument, (King et al., 1986), over sun glint regions have demonstrated high uniform 

surface reflectance in the SWIR spectral region (Gatebe et al., 2002).

5.1.4 Sun Glint Features

The diameter of a sun glint region observed by a satellite at an altitude o f800 km 

often exceeds 100 km, and the reflectance of this spot is greater than 0.2 (Hagotte et al., 

2004). The region of the sun glint depends mainly on the geometrical conditions and on 

the ocean surface roughness, which is controlled mainly by wind speed. Sun glint 

patterns are much wider when the surface winds are strong and the solar zenith angle is 

large, which favors an elliptical shape elongated towards the horizon accompanied by a 

broader reflectance peak. Small solar zenith angles (&o < 20°) seem to favor a circular 

sun glint pattern and a relatively smaller peak, (Gatebe et a l , 2005). Other researchers
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(Cm and Mtmk, 1954a; Cox and Mimk, 1954b) pointed out that the width of the glint 

pattern is an indication of the maximum slope of the sea surface. A calm flat mirror-like 

ocean has a much higher reflectance in the specular direction than a windswept ocean. 

However, the principal effect of an agitated sea is to reflect the direct solar beam into a 

range of angles; the rougher the sea the wider the range (Su et a l , 2002). The overall 

effect of this is that the range of angles from which a sensor may observe the sun glint is 

wider. Sun glint may occur when the reflected sun angle, i.e., the angle 0r between the

sun direction and satellite direction lies between 0° and 36°. This angle is determined by 

the cosine law of spherical geometry (as illustrated in Figure 5.1):

cos(^r) = sm(0r) sin(0o) cos( A^) + cos(#v) cos(#0) (5.1)

where 0o is the solar zenith angle, 0y is the sensor viewing zenith angle, and is the 

difference between the sun and sensor azimuthal angles (Ackerman et a l, 1997).
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Zenith

Figure 5.1: Solar and viewing angles definition.

The overall effect of higher wind speeds is to cause a region of sun glint to 

decrease in size and to be less uniform. With winds of speeds greater than 7 m/s, white 

caps usually appear on the ocean (Koepke, 1984). These white caps can affect surface 

reflectance in sun glint regions, and are to be avoided to have the uniform spatial and 

spectral reflectance in the SWIR across the regions of sun glint. Recently, Hagolle et al. 

(2004) simulated this uniform SWIR spectral reflectance, which agrees with spacebome 

measurements, over sun glint regions for a variety of wind speeds. These simulations of 

spectrally uniform SWIR surface reflectance ranged from 0.55 for 2 m/s winds to 0.15 

for 7 m/s winds. Additionally, measurements taken with the CAR Instrument at 10 m
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resolution have identified spectrally uniform SWIR reflectance across sun glint regions 

within this range (Gatebe et a l, 2005). For simulations, a uniform SWIR reflectance of 

0.15 and 0.55 have been used as estimates of surface reflectance in the sun glint region. 

Additionally, the technique presented should be applied only over oligotrophic open 

ocean regions to limit additional uncertainties which might occur in the uniformities in 

surface reflectance from shallow nutrient and sediment laden littoral water regions.

One may envision this method being used as a survey tool to explore large areas 

for microseeps. Once microseeps are detected, then more advanced and sophisticated 

exploration tools such as 3-D seismic surveys could be applied to the more promising 

seepage areas. An important aspect of this approach is that it directly detects the natural 

resource of interest This is in contrast to many other geochemical or spectral techniques 

(e.g. hyperspectral imaging) in which the measurements represent direct evidence of 

subsurface accumulation.

Retrieving of methane in sun glint region is possible by using technologies 

developed for retrieving water vapor amount in the 1980’s and 1990’s. This approach 

employs backscattered Near-InfraRed (MR) solar radiance near 1000 nm for the 

retrieval of water vapor amounts, and has been further developed into an operational tool 

for total water vapor retrieval (Gao et a l, 2003), which is currently used to retrieve the 

total column water vapor amount from the Moderate Resolution Imaging 

Spectroradiometer (MODIS) (Salomonson et al., 1989) deployed on the NASA Terra 

and Aqua spacecraft platforms. An inherent limitation to this technique is that under 

hazy atmospheric conditions (with visibilities less than 10 km), or when surface 

reflectance near 1000 nm is small, the derived amounts in total column water vapor may 

be off by as much as 10% if aerosol effects are not properly corrected for {Gao and 

Kaufman, 1998). To compensate for the atmospheric aerosol effects, an aerosol 

correction module was developed which employs Look Up Tables (LUTs) generated 

from radiative transfer simulations based on DISORT (Stamms et a l, 1988). The
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method developed for methane retrieval employs the TOA reflectance ratios technique 

developed by (Gao et a l, 2003), but rather than using water vapor absorption regions in 

the NIR, use is made of the methane absorption features in the SWIR located near 2200 

nm- In the SWIR region scattering effects due to atmospheric aerosols are minimal 

(King, 1998), however simulations have shown, that under low visibility atmospheric 

conditions that the error due to haze is Don-negligible in methane retrieval.

5.2 Description of the Algorithm

As was previously stated, the SWIR technique for column methane retrieval is 

based on measured TOA radiances within the methane absorption band, using the SWIR 

region located near 2200 nm, depicted in Figure 5.2. This figure, and all the other 

computations reported on in this paper are based on MODTRAN (Berk et a l, 1989; 

Anderson et al., 2000). The horizontal lines in Figure 5.2 illustrate the bandwidth of the 

window region centered at 2125 nm, and the three absorption regions centered at 2225, 

2275, and 2325 nm. The window centered at 2125 nm is apparent by the lower solid line 

plot being zero throughout a significant wavelength region of this window. Likewise the 

other three absorption bands are nonzero, indicating stronger methane absorption with 

increasing wavelength. The spectral range between 2150 and 2200 nm was not 

considered because absorption features due to both weak methane and water vapor 

absorption occur across this spectral range. Wavelength regions beyond 2350 nm were 

not considered due to water vapor absorption as well. The retrieval of total column 

methane is based on the use of reflected radiances within the methane absorption bands 

and in channels just outside the bands. The radiance within the absorption band 

measured by the satellite-deployed sensor is due to sunlight that has been attenuated by 

atmospheric methane absorption along its path from the TOA to the surface, and after 

reflection by the surface, attenuated once more along its path from the surface to the 

entrance aperture of the sensor. Radiation in a nearby window region outside the
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methane absorption bands follows similar radiometric paths except that it is not subject 

to methane absorption.

1 ,0 |

2 1 0 0 2150 2256 
Woveiength (nm)

2360 2350

Figure 5.2; SWIR atmospheric transmission 2100 - 2350 nm. Upper solid line is for
the total atmospheric transmission of the standard atmosphere with 1.7 ppm methane. 
Lower solid line is the transmission difference between the upper line and the same 
atmosphere with 1000 ppm surface methane. The straight solid lines from left to right 
are the bands considered in simulations, the window region centered at 2125, and 
absorption regions centered at 2225,2275, and 2325 nm.

The monochromatic radiance at wavelength X measured by a downward looking 

spacebome sensor can be approximated as {Hansen and Travis, 1974; Thomas and 

Stamms, 1999):

n
(5-2)
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where Pel is the extraterrestrial solar irradian.ee (normal to the solar beam), 0O is the 

solar zenith angle, p G = cos$ 0 , 0V is the sensor viewing angle, and is the difference 

in azimuth between the sun and the sensor. The amount o f attenuated sunlight striking 

the surface in direction 0O that is reflected in direction (0V,A$)  of the sensor is

described by p k{0v,0O_ A$ ), the bidirectional reflection distribution function (BRDF). 

The second term in Eq. (5.2) is due to radiance that is directly transmitted through the

atmosphere, first in the downward direction described by the direct transmittance 

Tk (0O) , and then (alter reflection by the surface) in the upward direction towards the

sensor described by the direct transmittance Tk (0V) . This term can be evaluated by

atmospheric transmittance codes such as LOWTRAN (Kneizys et al., 1988), FASCODE 

{Clough et a l, 1986) based upon tabulated methane absorption cross sections (available 

for example in the HITRAN database {Rothman et al., 1998)) provided the BRDF, 

p x {0V ,0O, A#), is known.

The diffuse or scattered radiation due to multiple scattering is described by the 

first term l kM {0V, 0O, A $), which is much more problematic because it involves

scattering by atmospheric aerosols whose optical properties, including absorption and

scattering coefficients and optical depth (depending on mass loading), are poorly known. 

In fact, these optical properties are known to vary considerably in space and time. 

Moreover, they depend on the chemical composition of the aerosol particles as well as 

their increase in size and resulting change in the index of refraction due to uptake of 

water in response to increased humidity which in turn depends on the atmospheric water 

vapor content (Shettle and Fenn, 1976; Tsay and Stephens, 1990; Yon e ta l, 2002). 

Finally this term also depends on the surface BRDF, p k {0V, 0O, A $).

Nevertheless, in high visibility situations (low aerosol loading), it may be 

justifiable to ignore this term due to scattering and absorption by aerosols as well as the 

radiance contribution due to scattering by molecules (Rayleigh scattering) which are
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both small in the SWIR spectral range. Then, if one invokes the customary assumption 

that the surface is a Lambertian reflector so that the BRDF is isotropic, i.e., 

pA(0v,0g.A$) s  pKh, Eq. (5.2) reduces to (Fraser and Kaufman, 1985; Gao and

Kaufman, 2003)

I M A M )  = &^TM JTM )pi,L (5-3)n

The methane absorption features in the 2200 nm SWIR spectra! region are attractive for 

retrievals of methane over sun glint regions because the surface r e f l e c t a n c e , , is

constant with wavelength across both the absorption region and the nearby window 

region used for retrieval. Also, for this methane retrieval algorithm to be reliable the

surface reflectance must be greater than 0.1, which is true for sun glint regions across the 

SWIR spectral region (Hagolle et a t, 2004).

If one divides Eq. (5.3) by the incident irradiance, p 0Fol, one obtains the 

(radiance) reflectance, defined as:

P l(0 ,0  ,A$) = Ji M i M  = T̂ 0<>'}T̂ pFL (5.4)
FoK x n

and if one then multiplies by n one obtains the apparent (radiance) reflectance, defined

as:

P;(0 V,&OM ) = s  r  (5.5)

In which the total transmittance is defined, T ^ {0 V,0O) s  TA(0o)TA(0v) , as the product of 

the downward direct and upward direct transmittances. Applying Eq. (5.5) to the
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methane absorption band (denoted by subscript 1) as well as the nearby window region 

(denoted by subscript 2 ), and taking the ratio one finds:

Here one has assumed that the same sun/sensor geometry and surface 

reflectances apply for both bands. Thus, when the scattered radiation can be ignored, as 

it can in the SWIR spectral region, Eq. (5.6) shows that If the surface reflectance is 

independent of wavelength ( p Ll » pL2), the ratio of the transmission in the methane

absorbing channel to that in a non-absorbing channel is equal to the ratio of the 

corresponding TOA radiance reflectances.

Assuming that atmospheric transmission is multiplicative, one may write 

T‘°t _ where T™ is due to methane and T™ is due to molecular scattering as

well as attenuation due to aerosol scattering and absorption. If one further assumes that 

T™ is approximately constant across the spectral region covering the two wavelengths 

used for methane retrieval, Eq. (5.6) may be written as:

An important aspect of this retrieval technique is that when the surface BRDF is 

spectrally flat ( p L,t « p L2) as it is in regions of sun glint {Hagolle et a l, 2004), the

methane retrieval is Independent of the surface BRDF. The solid line In Figure 5.3 

depicts simulated two-channel TOA SWIR reflectance ratios (absorption channel

(5.6)

(5.7)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



144

divided by window channel) around 2200 nm as a function of total methane for dear sky 

conditions. A limitation of the heritage water vapor retrieval method (Gao et al., 2003), 

which the present methane retrieval method builds upon, is the possible impact of haze 

on the retrieval. When the amount of atmospheric haze is unknown there are errors 

introduced into the retrievals. Therefore, for the heritage ratio retrieval algorithms, the 

use of clear-sky generated LUTs may lead to incorrect retrieval amounts under low 

visibility conditions. To assess the sensitivities of total column methane retrievals to 

haze, simulations with low visibility will be considered in addition to clear atmospheric 

conditions.

S3 Radiative Transfer Simulations

Figures 5.3 and 5.4 depict simulations of the TOA reflectance ratios of 

absorption band to window region about 2200 nm. They were done for surface methane 

amounts between a 1.7 ppm normal concentration level and a 1000 ppm, in the first 3 m 

above the surface, and 1.7 ppm above this thin methane layer. These simulations were 

done over sun glint regions with a surface reflectance of 0.15 and 0.55, for varying 

visibilities, and at high and medium solar/sensor viewing zenith angles. In addition to 

the 2 2 0 0  nm methane features being studied for retrievals, the methane features near 

1650 nm were also considered. However the 1650 nm absorption features were found to 

be far weaker than those in the 2200 nm region. Extensive simulations in the 1650 nm 

region revealed no significant change in the TOA reflectance ratios with increasing 

surface methane concentrations, and therefore no sensitivity to methane in this spectral 

region.

Figures 5.3 and 5.4 depict the ratios of the three methane absorption bands and 

the window region depicted in Figure 5.2 for two different sun glint reflectance-values 

(0.15 and 0.55), different atmospheric visibilities, and varying surface methane amounts,
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between 1.75 and 1000 ppm, In the first 3 m above the surface. The most significant 

difference between Fig 5.3 and 5.4 is the differences in the sun/sensor viewing zenith 

angles, from roughly 40° to 75° for both the sun and sensor angles. The simulated 

reflectance ratio decreases with total column methane amount for all three of the ratios. 

Unis, these ratios can be used to generate Look Up Tables (LOT) for retrieval of total 

column methane amounts. There are no significant differences between the ratios for 

different surface reflectance-vaiues, which illustrates their versatility for application 

under a variety of surface reflectance regimes in the glint region due to varying surface 

wind speeds. For the increasing path lengths caused by the 75° sun/sensor view angles 

in Figure 5.4 compared to roughly 40° in Figure 5.3, all of the three ratios are decreased 

in reflectance ratio values, and the rate o f decline of reflectance ratios with increasing 

surface methane amounts is greater. This is indicative of the increased methane retrieval 

capabilities due to longer path lengths resulting from larger solar/sensor zenith angles in 

the sun glint region.

The lower visibility cases, those less than 10 km, introduce the greatest problems

in retrieving the total column methane amount. In simulations, the methane is assumed 

to be located just above the surface, while the haze responsible for the lower visibilities 

is assumed to be located above the methane layer. This haze will backscatter radiation to 

the satellite sensor before it encounters the surface methane layer, which leads to an 

increase in the radiance at the entrance aperture of the sensor accompanied by a 

depression of the ratios for low visibility cases as illustrated in Figures 5.3 and 5.4. The 

effect of haze upon the methane retrievals is to decrease the ratios, which will lead to the 

retrieved methane column amounts retrieved to be higher than they should be, because 

under clear sky conditions a lower ratio corresponds to a higher total column methane 

amount. The impact of haze is therefore an Important Issue, as it is for the heritage MR 

water vapor retrieval techniques. Thus, for the low visibility situations the haze effect 

would need to be quantified and removed. The greatest differences, aside from the hazy 

atmospheric conditions, between Figures 5.3 and 5.4 are the different path lengths due to
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different viewing geometries. Thus, in the absence of haze the LUTs should be 

generated for varying sun/sensor zenith angles, and varying surface methane amounts. 

Minimal sensitivity to surface reflectance (in the absence of haze) implies that it can be 

ignored in the generation of LUTs. Since the typical amount of methane is 1.7 ppm in 

the absence of a seep, one may look at sun glint regions under typical conditions to 

decide if  haze effects are sufficiently large to warrant consideration.

The only modification in the methane atmospheric profiles used in the 

simulations is in the first 3 m above the surface, leaving the rest of the atmospheric 

methane profile unchanged. This allows the reseating of the horizontal axis of Figure

5.3 to be in ppm methane rather than in total column methane. This rescaling has been 

done to generate Figure 5.5, which is a plot of the TOA reflectance of the 2325 nm 

absorbing band and the TOA reflectance of the 2125 nm window band. The ppm 

rescaling allows the direct retrieval of the surface methane amounts from the LUTs.

In the absence of haze a spectrally flat surface reflectance does not affect the 

retrieval, as is evident from Eq. 5.7 and the solid lines in Figures 5.3, 5.4, and 5.5, To 

illustrate the effect of haze on the retrieval two additional cases are included in Figure

5.5 corresponding to visibilities of 10 km and 5 km, respectively, for each of the two 

surface-reflectance values. For these hazy atmospheric conditions there are significant 

differences between the reflectance ratios simulated with different surface reflectance 

values. This is caused by multiple reflections between the surface and haze layer. The 

higher surface reflectance the stronger this multiple reflection effect, as is evident from 

the difference between the 0.15 (dashed lines) and the 0.55 (dotted lines) reflectance 

values depicted in Figure 5.5.
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Totol Column Met hone (trim cm)

Figure 53: Reflectance ratios versus total column methane for a short path length. The 
ratio of the reflectance in the methane absorption channel to that in a nonabsorbing 
channel (2125 nm) for clear sky, and hazy conditions as a function of total column 
methane in the atmosphere. Ratios depicted are at a weakly absorbing methane channel 
(2225 nm), a moderately-absorbing methane channel (2275 nm), and a strongly- 
absorbing methane channel (2325 nm). The solid line is for a clear sky case; the others 
are for visibilities of 10 and 5 km. The vertical dash-dot-dot lines are from left to right 
for a 3 m thick surface layer 1.7, 50, 100, 500, and 1000 ppm in concentration. These 
calculations were done for a sun glint reflectance of 0.15 and 0.55, and a sun/sensor
configuration Qo = 40°, By = 43.5°, = 114 .
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Total Column Methane ( a im  cm)

Figure 5.4: Reflectance ratios versus total column methane for a long path length. The 
ratio of the reflectance in the methane absorption channel to that in a nonabsorbing 
channel (2125 nm) for clear sky, and hazy conditions as a function of total column 
methane in the atmosphere. Ratios depicted are at a weakly absorbing methane channel 
(2225 nm), a moderately-absorbing methane channel (2275 nm), and a strongly- 
absorbing methane channel (2325 nm). The solid line is for a clear sky case; the others 
are for visibilities of 10 and 5 km. The vertical dash-dot-dot lines are from left to right 
for a 3 m thick surface layer 1.7, 50,100, 500, and 1000 ppm in concentration. These 
calculations were done for a sun glint reflectance of 0.15 and 0.55, and a sun/sensor 
configuration Q0 = 75°, 0V = 75°, = 174° .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



149

Surface Methane (ppm)

Figure 5.5: Reflectance ratios versus surface methane for a short path length. The ratio 
of the TOA reflectance in the methane absorption channel at 2325 nm to that in the non­
absorbing window region 2125 nm for clear sky, and hazy conditions as a function of the 
methane concentration (in ppm) of a 3 m thick surface layer. The solid line is for a clear 
sky case; the others are for visibilities of 10, and 5 km. These simulations were done for 
a sun glint reflectance of 0.15 (dashed lines) and 0.55 (dotted lines), for a sun/sensor
viewing configuration 0o = 40° ,6V = 43.5° ,A^ = 174°-
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The methane amounts over sun glint regions can be retrieved on a pixel-by-pixel 

basis using the SWIR technique described above. However the methane retrieval 

technique Is limited in that it can only do retrievals in regions where the sun/sensor 

geometry and wind speed allow sun glint to occur. Sensors would need to be developed 

to do glint-looks, in which a sensor looks in specific sun/sensor geometries into likely 

glint regions over water. To find regions of possible sun glint one may use light at 

wavelengths shorter than the SWIR, where sun glint leads to saturation of visible and 

MR sensors. The method developed here can be used to similarly detect atmospheric 

amounts of other gaseous species with specific absorption features. Therefore this 

technique may have applications beyond the retrieval of methane amount

Clouds are a significant issue for the retrieval of methane in regions of sun glint. 

The reflectance of clouds across the SWIR spectral region is similar to that of sun glint 

water regions, in being higher than over non-glint water regions. The clouds however 

are located at varying heights above the water surface. Thus it would be necessary to do 

a cloud screening or detection of the sun glint regions to discriminate cloud from glint 

regions. However, the sun glint reflectance is spectrally flat across the SWIR, whereas 

there is a decrease in TOA cloud reflectance spectrally from 850 to 1600 to 2200 nm. 

This can be used to help reject the regions of the sun glint from being used for methane 

retrievals when clouds are present to eliminate them as an error source.

Atmospheric haze is the most significant issue in using this method for retrieving 

surface methane amounts. In simulations, it was found that low visibility conditions lead 

to an overestimation of surface methane amounts unless one corrects for the haze effect. 

To compensate for the atmospheric aerosol effects in analogous total column water 

vapor retrieval algorithms an aerosol correction module was developed which employs 

Look Up Tables (LUTs) generated from radiative transfer. A similar module can be

5.4 Practical Considerations
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developed to account for the atmospheric aerosol effects on surface methane retrievals. 

Methods for aerosol corrections, similar to those developed and used for atmospheric 

correction of MODIS and SeaWiFS data, could be used to deal with the aerosol

correction issues.

5.5 Conclusions

A method has been developed to retrieve total column methane amount using a 

technique similar to that currently employed to retrieve total column water vapor. It is 

based on the use of ratios of reflectances within and outside the SWIR methane 

absorption bands. This new method allows for total column methane retrieval under 

conditions of sun glint from water bodies including oceans, lakes and rivers. A complete 

derivation of the method has been provided, and supporting radiative transfer 

simulations have been carried out to demonstrate its merit. These simulations show this 

retrieval method can be used to infer total methane amounts under clear atmospheric 

conditions. Under lower visibility hazy atmospheric conditions the effect of the haze 

must be taken into account in the methane retrieval. Methane amounts over sun glint 

regions can retrieved on a pixel-by-pixel basis using this SWIR technique. It is 

envisioned that this method can be used as a survey tool to explore large areas for 

microseeps. Once microseeps are detected, then more costly exploration tools such as 3­

D seismic surveys could be applied to the most promising source areas. An important 

aspect of this approach is that it directly detects the natural resource of interest This is 

in contrast to many other geochemical or spectral techniques (e.g. hyperspectral imaging) 

in which the measurements represent direct evidence of subsurface accumulation.
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Chapter 6 
Summary and Discussion

The main contributions of this thesis are summarized as follows:

(1) Cloud detection algorithms constitute an Initial step in satellite remote 

sensing processing. Such algorithms discriminate cloudy from clear regions and enable 

additional processing to be done upon the discriminated regions. To this end a cloud 

detection algorithm has been developed for the VIIRS sensor. In the development of the 

VIIRS cloud detection algorithm the theoretical background required to derive the 

Environmental Data Requirement (EDR) of the VIIRS Cloud Mask (VCM) was 

explained. Also, a review of the processing developed for the algorithm was provided, 

along with necessary data input and outputs. A description of the cloud mask error 

budget was provided including a flowdown analysis of error sources and their 

magnitudes. In addition, the accuracy and precision of the binary cloudy/not cloudy flag, 

generated in this manner, have been studied with both simulated cloud multispectral 

VIIRS imagery, and with MAS data. The cloud mask developed in Chapter 2 of this 

thesis is part of the Cloud Cover/Layers EDR required for the National Polar Orbiting 

Environmental Satellite System (NPOESS)ATIRS software package of EDRs, to be 

launched in 2008.

(2) A study has been conducted of the effects of Band-to-Band Mis-Registration 

(BBM) upon the multi-spectral VIIRS cloud detection algorithm. The BBM occurs in 

imagery when pixels from multiple bands are not completely co-tegistered to the same 

location on the Earth. Because the VERS Cloud Mask algorithm employs multiple 

bands which may be mis-registered, such mis-registration could possibly affect the cloud 

detection. The study of the sensitivity of the of cloud detection to BBMs is presented 

Chapter 3. Errors in the VCM leading to misclassifications greater than 10% were found 

to occur when BBMs exceed 20%. Additionally the BBM was found to affect the clear-
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when-cloudy classifications much more than the cloudy-when-clear classifications, by a 

factor o f 7:1, beyond 20% BBM. These studies resulted in a recommendation to the

VIIRS sensor developers that BBMs be kept less than 20% in sensor development and 

design.

Once cloud detection is accomplished, using a multi-spectral algorithm such as 

the one developed for MODIS or VIIRS, additional algorithms may be used to retrieve 

other data products. Two new techniques of retrieving atmospheric information, which 

may be applied to sensors deployed on future satellite remote sensing platforms, have 

been developed. Both of these new techniques have been developed as part of this 

thesis. The results and conclusions of these efforts are expanded upon in items 3 and 4 

below.

(3) An algorithm has been developed to use cloud shadows to improve upon 

water vapor retrievals under hazy atmospheric conditions. This method has been 

developed to augment current state-of-the-art total column water vapor retrievals. It is 

based on the use of ratios of reflectances within and outside the Near-IR water vapor 

absorption band. This new method, called the ‘shadow’ method, improves water vapor 

retrievals under hazy atmospheric conditions by employing radiance differences between 

Eton-shadowed and shadowed regions. The improvement in water vapor retrieval, 

achievable by application of the shadow method, is obtained by considering all 

contributions to the reflected radiance in the derivation of the total water vapor amounts. 

By comparison, the heritage water vapor retrieval method is based on approximations 

that are avoided in the shadow method. A complete derivation of the shadow method 

has been provided, and supporting radiative transfer simulations have been carried out to 

demonstrate its merit. These simulations show that under hazy atmospheric conditions, 

and for typical column water vapor amounts, the shadow method can be used to infer 

total water vapor amounts with a 2.5% error, while the heritage method yields an error 

up to 1 0 % in total water vapor amount.
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(4) A method has been developed to retrieve total column methane amount using 

a technique similar to that currently employed by MODIS to retrieve total column water 

vapor. This technique is based on the use of ratios of reflectances within and outside the 

methane absorption bands around 2.2 microns. This new method allows for total 

column methane retrieval under conditions of sun glint from water bodies including 

oceans, lakes and rivers. A complete derivation of the method has been provided, and 

supporting radiative transfer simulations have been carried out to demonstrate its merit. 

These simulations show that this retrieval method can be used to infer total methane 

m ounts under clear atmospheric conditions. Under lower visibility hazy atmospheric 

conditions the effect of the haze must be taken into account in the methane retrieval. 

Methane amounts over sun glint regions can retrieved on a pixel-by-pixel basis using 

this technique. It is envisioned that this method can be used as a survey tool to explore 

large areas for microseeps. Once microseeps are detected, then more costly exploration 

tools such as 3-D seismic surveys could be applied to the most promising source areas. 

An important aspect of this approach is that it directly detects the natural resource of 

interest in contrast to geochemical or spectral techniques (e.g. hyperspectral imaging) in 

which the measurements represent evidence of subsurface accumulation.

The VIIRS cloud detection algorithm developed in this thesis, with its supporting 

studies, is part of a future operational satellite system for use globally to assist in 

monitoring the Earth’s environment, and it is a prerequisite for the retrieval of numerous 

environmental data products. The shadow method can enhance algorithms currently 

used on operational satellites to retrieve atmospheric trace gas measurements globally 

under hazy atmospheric conditions. Finally, the methane retrieval method can be 

applied to previously discarded sun glint imagery data to reduce costly exploration for 

petroleum resources globally.
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Appendix A

Ancillary Data of Future Use to VIIRS

In addition to several input data sources described above, other non-VIIRS data 

that may prove useful for the VCM is summarized in Table A -l. These data are not 

required by the VCM for operation; however, if they were to be available to the VCM, 

improvements in the VCM’s performance would be expected.

Table A -l; Ancillary non-VIIRS data useful for the VCM.

Input ia ta Source of Date
OMPS radiances OMPS
OMPS EDRs OMPS
CRIS radiances CRIS
CRIS vertical EDRs CRIS
CMIS radiances CMIS
CMIS EDRs CMIS

Radiances from the Ozone Mapping Profiling Suite (OMPS) (NPOESS IPO, 

1999a) instrument may improve cloud detection. At the time of the writing of this 

thesis, the bands for the OMPS instrument are as yet To Be Determined (TBD). The 

OMPS bands will be located in the ultraviolet (UV) spectral region. The use of OMPS 

bands needs to be investigated to determine their utility in the detection of high Polar 

Stratospheric Clouds (PSC). Hie PSC are sub-visual and are not detectable with VIIRS 

bands. Both the nadir and limb scanning instruments of the OMPS may be useful for 

cloud detection.

OMPS EDR and Sensor Data Records (SDRs) may be useful for cloud detection 

in the VCM. The OMPS EDR/SDRs of Total Ozone, Ozone Profile, Tropospheric 

Ozone, Ozone Profile, and Aerosol Absorptance Index could be used to adjust the 

thresholds of UV cloud detection techniques reliant upon OMPS UV radiance

measurements.
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Cross Track Infrared Sounder (CMS) (NPOESS IPO, 1999b) radiance data may 

be useful for cloud detection in the VCM. These data might be used whenever a CRIS

and a VIIRS instrument coexist The use of the CRIS radiance data (for all three bands), 

needs to be investigated for the potential to improve cloud detection techniques. The 

nighttime cloud detection capabilities might benefit most from the CRIS data. MODIS 

investigations are presently underway with MODIS Airborne Simulator (MAS) data. 

Richard Frey, at the University of Wisconsin (UW), has in the past used the 13 pm 

channel in the MODIS Cloud Mask to demonstrate the utility of the radiances in the 

CRIS channels.

Measurements of vertical temperature, pressure, and water vapor may improve 

the capabilities of the VCM. These profiles are modified in the presence of a cloud. 

Knowledge of water vapor profiles may assist in setting cloud detection thresholds for 

thin cirrus cloud detection tests at 1.375 pm, and other cloud detection tests. Knowledge 

of the amount of liquid water and ice in the atmosphere may assist cloud phase 

determination as well.

Use of Conical Scanning Microwave Image/Sounder (CMIS) (NPOESS IPO, 

2001) radiance data may improve cloud detection capabilities of the VCM, particularly 

at night. Passive microwave measurements over cloudy areas differ from those over 

clear regions. The amount of liquid water and ice in the atmosphere may be determined 

with CMIS data. This would directly assist in cloud detection. The value of 

atmospheric profiles has been mentioned previously for the CRIS vertical EDRs. Use of 

CMIS atmospheric profiles may improve cloud detection.
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Appendix B 

Cloud Mask Software Architecture

This appendix demonstrates the VCM component level software architecture, 

which deals with the module-level data flows in the context of the VIIRS system data 

processing chain. Further details on the module-level data flows across the interfaces, 

both input data and output data, their formats and the relationships which exist between 

them are provided in the VCM Component Level Software Architecture Document 

{Larsen, 2000c) which forms the basis for the detailed design of the Cloud Mask SDR 

algorithm code. For a summary of the overall software structure of the VIIRS system the 

reader is directed to Kuin (2000). Two illustrations in Figure B-l and B-2 demonstrate 

the division of the cloud mask into its major software architecture sublevels. These are 

the cloud mask context level and the component level data flow diagrams.

The context data flow diagram shown in Figure B-l is the Level 1 data flow 

diagram for the cloud mask component. It identifies the major data flows, sources and 

sinks. Sources are considered to be the data input, while sinks are considered to be the 

data output. The data flows will map to the interfaces named in the Chapter 2. In this 

Level 1 data flow diagram the cloud mask output is considered an Intermediate Product 

(IP) to other VIIRS data products.

The component level data flow diagrams are the first level of decomposition of 

the context level diagram. In the component diagram (Figure B-2) major data flows for 

the VCM algorithm are broken down into their constituent flows. Further 

decomposition of the VCM may be done for the individual modules, but the VCM will 

not be broken down to tWs level of detail.
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Figure B -l: VIIRS Cloud Mask context level data flow diagram.

Similar to the discussion and figures presented earlier in this appendix, the 

component diagram shows the flow of the VCM algorithm. In addition it contains the 

data which are transferred from module to module within the VCM. Initially the

ancillary data, which have previously been formatted into Supplemental Data Records 

(SDRs) format, are read into the VCM algorithm. Then the internal arrays of the code 

are populated with the data which are used by the VCM with a Logical Flag Array 

(LFA), containing all of the results of the logical decisions arrived at in the cloud 

detection process. This internal LFA array is updated throughout the VCM code 

processing, until for every pixel of the VCM the LFA is populated with cloud detection 

results. The VCM is designed to consider an entire image, moving along the image pixel 

by pixel. Within each pixel, or context region, a logical sequence of steps is performed. 

These steps are shown in Figure B-2. Once the cloud detection results are done for an
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image the output is packed into an SDR output file. The structure of this output file is 

shown in Chapter 2.
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Figure B-2; VIIRS Cloud Mask component level data flow diagram.
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Appendix C
The VIIRS Cloud Phase Product

The VIIRS Cloud Phase (VCP) product is developed from a hybrid of the 

MODIS, AVRRR, and Geostationary Operational Environmental Satellite (GOES)

Cloud Phase detection techniques. In being a hybrid algorithm, it utilizes the best cloud 

phase determination features from all of these cloud phase assessment techniques. The 

overall processing structure is a direct result of a modularized flow which is expected to 

decrease both necessary processing time and efficiently determine cloud phase.

Generation of the cloud phase occurs routinely within the VCM as part of the 

first level of EDR processing. The cloud phase pixel level results are then used at a 

pixel level by the other cloud EDRs. The results of the cloud phase algorithm will 

define the pixel as containing a cloud which is predominantly liquid water, ice, or 

undetermined. Figure C-l illustrates the VCP algorithm and a discussion follows.

The first pre-processing step, which is depicted in the VCP algorithm, in Figure 

C-l, is the determination by the VCM of a presence of a cloud. For clear pixels, the 

VCP algorithm will not be executed. In addition to the pixel being detected as cloudy, 

knowledge of the underlying surface type, sun/sensor geometry, if the pixel is in the day 

or night regime, and the reflectances and BTs of bands used by the VCP are required as 

input.

Following the indication by the VCM of a cloud’s presence in the pixel region 

the first three thresholding tests are the confident indicators of cloud particle phase. If a 

pixel’s cloud phase is indicated by one of these first three tests then its phase will not be 

changed as a result of tests which are performed later in the VCP algorithm. Only those 

pixels whose phase is undetermined by the first three tests will be considered by tests 

done afterwards in the VCP algorithm. These first three tests are the R1.38, BT11, and 

visible/NIR reflectance thresholding tests. These tests are as follows:
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Figure C-l: VERS Cloud Phase Algorithm.

The reflectance at 1.38 pm being greater than 2% is indicative of a high cirrus 

being present. The basis for this is that the large water vapor absorption in this band 

causes light reflected below the high cirrus cloud to be heavily absorbed, leaving the 

light measured by the sensor to consist predominantly of light reflected from high cirrus 

clouds. This phase test would only be done during the day, and would indicate ice phase 

only.
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The BT11 jim test is to be done day and night. For BT11 < 233 K the ice particle 

phase is indicated, while for BT > 258.16 K the water phase is indicated.

The RO .86 and R0.645 tests are reflectance tests based upon the reflectance of the 

clouds. For ice clouds the reflectance in both of these bands is less than that for liquid 

water clouds, which have large reflectance in these bands. The 0.645 band will be used 

over land, while the 0 . 8 6  band will be used over water, due to the large reflectance of 

vegetated surfaces at 0.86. Values for the thresholds indicative of phase are presently 

under development, however, there will be ranges of uncertainty and an angular 

dependence for these tests. This is a daytime only test.

In Figure C-l the dashed lines indicate that this is a final decision that the cloud 

phase is designated and the phase classification is complete. However, the pixels thus 

classified are still used in the 15x15 pixel aggregation for Menzel and Strabala’s tests 

(Menzel and Strabala, 1997). This is due to a need for enough pixels of defined distinct 

ice type to allow a well-defined slope for the multiple IFOV classification step. Ice 

clouds which have been classified by preprocessing tests are not reclassified a second 

time by the VCP algorithm, however the results of the multiple tests described below are 

flagged and may be used at a future point to indicate problems with tests performed.

Once the three initial cloud phase tests are performed, and a 15 x 15 matrix of 

determined and undetermined cloud phase pixels are collected then the Menzel and 

Strabala tests will be performed in a two step algorithm scheme.

The first step is a multiple Instantaneous Field of View (IFOV) classification of 

the 15x15 matrix of pixels. This step considers the slope of the BT(8-11) vs. BT(11-12) 

plot and determines the pixels which have dominant clustering about a common slope. 

This is developed from Menzel and Strabala’s MODIS work (.Menzel and Strabala, 

1997). For the slope defined as BT(8~11)/BT(11-12) the pixel phase is defined as ice for 

slopes > 1.0 and water for slopes < 1.0. The results in the pixel matrix are flagged based 

upon their clustered slopes, and those pixels which are not clustered are not flagged.
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The second step is the Single IFOV Characterization of the 15x15 pixel matrix. 

This step uses a threshold approach to define the cloud phase. For BT(11-12) > 1.5 K 

and BT(8-11) < 1.5 K the cloud phase is determined to be ice, while for BT(11-12) < 1.5 

K and BT(8-11)> 1,5 K the cloud phase is ice.

For those pixels which still do not have their phase determined additional tests 

will then be performed. Those tests are the Q ratio test {On et al., 2000) and additional 

thresholding tests which employ the 1. 6  and 3.75 bands, during the day. During the 

night one additional BT(3.75-11) test will be performed to detect ice clouds; this is a 

threshold test and the value is to be set.

Results of the various tests of the multiple IFOV classification, single IFOV 

characterization, and the threshold tests that follow are then all compared, and the 

decision of the final phase distinction is then performed. For cases in which there are 

tests that indicate both ice and liquid water the pixel will be flagged as a possible mixed 

phase, and for pixels with no cloud phase indicated the pixel will be flagged as 

unknown.

Once the cloud phase is determined it is included as part of the VCM output to 

the other EDRs. The knowledge of cloud phase will allow more accurate indexing of the 

Look Up Tables (LUT) used to retrieve the Cloud Optical Thickness and the Cloud 

Effective Particle Size EDRs {On et ah, 2000).
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Appendix D 
E rror Budget and Flowdown Results

The process for establishing the error budget for the VIIRS EDRs is explained in 

The VHRS System Verification Report (Kealy and Ardanuy, 2000b). The detailed 

discussion of errors contributing to the VIIRS EDR’s and tables of error contributions 

are provided for insight into the origin and propagation of errors throughout the VIIRS 

System. Tracing of errors is intimately associated with the VIIRS Data Processing 

Architecture (DPA), which is comprised of a number of modules. Each module contains 

functional units for each of the scientific disciplines stated in the VIIRS SRD (NPOESS 

IPO, 2000). The VIIRS system comprises a sensor which generates scene radiances in a 

certain number of bands making up a Raw Data Record (RDR), and an algorithm 

subsystem which processes the RDR data through a series of interdependent algorithms 

to generate Environmental Data Records (EDRs). Intermediate products (such as 

Surface Reflectance) and Sensor Data Records (SDRs) are generated by algorithms that 

provide functionality more basic than the final EDR.

The accuracy and precision of both EDRs and SDRs depend to a large degree on 

conditions such as the presence of ocean, land, clouds, coastal areas, snow/ice; whether 

it is day or night; scan angle, and other conditions. The results of the tests are reported

in the VERS Verification and Validation Plan (Kealy and Ardanuy, 2000c) in terms of 

system accuracy, precision, and/or uncertainty and/or stability. The VERS Error 

Budgets Document (Kealy and Ardanuy, 2000b) provides a breakout of the contributing 

errors for selected points or sub-areas in the stratified space along with justifications.

The VERS Algorithm Subsystem Specification (Durham, 2000) details the error 

specifications for ancillary and auxiliary data. The errors due to the ancillary and 

auxiliary data in the error budget are based on these specifications. Auxiliary data is 

defined to be all data from non-NPOESS sources, while data from NPOESS instruments, 

including VIIRS, are defined to be ancillary data. Hence, errors inherited from VERS
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SDRs are referred to as resulting from ancillary data. The VIIRS System and Subsystem 

Specifications and their rationales document the EDR and SDR specifications at the 

system level, and the algorithm and sensor subsystem level. The error budget together 

with the VIIRS Validation and Verification Plan allows understanding of the error 

specifications, Based on error budget and stratification studies and analyses key error 

sources are identified. They provide a guide to instrument and algorithm developers to 

areas where improvements will have the greatest impact. Ultimately good error budgets 

lead to tighter specifications when margins can be tightened due to risk reduction based 

on reliable error estimation.

The design process used was a spiral process in which the specifications and 

performance of the sensor and algorithm design were improved iteratively. After the 

initial flowdown activity the algorithm data definitions provided requirements from each 

EDR to the sensor. The most stressing of these requirements became the first iteration 

for the sensor model. A better definition of the sensor model became available as a 

result of Cost As an Independent Variable (CATV) studies, further definition of the 

sensor, and performance analyses of the end-to-end system.

The errors are assumed to be independent so that the total error is the square root 

of the sum of the squared errors, also called the Root Sums Squared (RSS). This 

assumption is made for both precision and accuracy. An exception are the error budgets 

based on probabilities. In those cases the total probability is either the product of its 

factors (for typing probability), or, for misclassification, the product of all 

misclassification probabilities. This is the case in the VCM error budget.

The error budget tables for the VCM (Table D-l (a-d)) are identified by their 

name in the top left comer and by the case considered in the top right hand comer. For 

the case considered, all sensor errors are listed at the bottom with a product of the factors 

for the sensor performance on top of the sensor errors. The algorithm error sources are 

listed above the sensor error breakout. Above the algorithm error sources is the
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algorithm performance, which is the product of the factors of the algorithm errors unless

noted otherwise. The section under the header summarizes the specifications for the 

VCM scenario. The threshold and objective are taken from the VIIRS SRD document 

The system specification is the VIIRS system specification. The system performance is 

the product of all the misclassification probabilities for algorithm and sensor errors. The 

system performance for the case under consideration shows how well the algorithm 

performs compared to the system specification.

Table D-l (a): Cloud mask daytime ocean error budget.

VIIRS CLOUD COVER (Binary Map) OCEAN, DAYTIME
Specification V3 (PDR)

Preliminary Design Review
Inputs Probability of Correct

______Typing
Note that Probabilities do 

not RSS
March 21,2000 Error Unit T < 1 T > 1 References and Notes

Threshold >(TBD)at{TBS)%
confidence level

(NPOESS IPO, 2000)

Objective >{TBD) at(TBS)% 
confidence level

(NPOESS IPO, 2000)

System Specification 92% 99% Cloudy/not doudy, 
(Larsen, 2000a)

System Performance 92% 99%
System Margin 0% 0%

Algorithm Performance 98.0% 99.7% total of algorithm errors
Surface Type misclassification 1 % 99.00% 99.99% (Lamn, 2000a) only 

effects optically thin 
clouds.

Land/water mask 50 In surface 
misclassification

DEM elevation 50 M In surface 
misdassiication

Intrinsic Algorithm Error 99.00% 99.70%
Sensor Performance 93.9% 99.6% total of sensor errt

Geolocation (3 a) 200 M fn surface 
misclassification

NEdT baseline 98.30% 99.90% (Larsen et al., 2000a)

Calibration baseline 99.00% 99.90% (Hoyt, 1999)
MTF baseline 97.50% 99.90% (Kealy and Ardanuy, 

1999)
Band-to-Band Mis-registration 0.2 Pixels (Kealy and Ardanuy, 

2000a) and (Larsen, 
2000b)
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Table D-l (b): Cloud mask nighttime ocean error budget.

VIIRS CLOUD COVER (Binary Mart j JOCEAM, NIGHTTIME
Specification ¥3 (PDR) 
Preliminary Design Review

inputs Probability of Correct 
Typing... ....

Note that Probabilities do
not RSS

March 21,2000 Error Unit T <  1 T > 1 References and Notes
Threshold >{TBD)at(TBS)% 

confidence level
(NPOESS IPO, m o )

Objective >{TBD)atf
confidence

res)%
Bftfl

(NPOESS IPO, 2000)

System Specification 90% 96% Cloudy/not cloudy, 
(Larsen, 2000a)

System Performance 91% 97%
System Margin 1% 1%

Algorithm Performance 88.0% 99.0% total of algorithm errors
Surface Type misclassification 1 % 99.00% 99.99% Only effects optically thin 

clouds. (Larsen, 2000a)
Land/water mask 50 M in surface

misclassification
DEM elevation 50 M in surface

misclassification
Intrinsic Algorithm Error 99.00% 99.00%
Sensor Performance 93.1% 97.8% total of sensor errors
Geolocation (3cr) 200 M in surface 

misdassificafion
NEdT baseline 97.00% 99.33% (Larsen ef a/., 2000a)
Calibration baseline 99.00% 99.91% (Hoyt, 1999)
MTF baseline 97.00% 98.53% (Keaty and Artfanuy,

1999)
Band-to-Band Mis-registration 0.2 pixels (Kealy and Ardanuy,

2000a) and (Larsen, 
2000b)
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Table JM  (c): Cloud mask daytime land error budget.

VIIRS CLOUD COVER (Binary Map) | tSNDTwrrftE
Specification ¥3 (FDR) 
Preliminary Design Review

Inputs Probability of Correct 
Typing

Note that Probabilities do 
not RSS

March 21,2000 Error Unit T < 1 x > 1 References and Notes
Threshold >(TBD) at (TBS)%

confidence level
(NPOESS IPO, 2000)

Objective >{TBD) at f  
confidence

res)%
evel

{NPOESS IPO, 2000)

System Specification 85% 93% Cloudy/not doudy, 
Clause/!, 2000a)

System Performance 90% 97%
System Margin 5% 4%
Algorithm Performance 98.0% 99.0% total of algorithm errors
Surface Type misclassification 1 % 99.00% 99.99% Cloudy/not cloudy,

(Larsen, 2000a)
Land/water mask 50 M in surface

misclassification
DEM elevation 50 M in surface 

misclassification
Intrinsic Algorithm Error 99.00% 99.00%
Sensor Performance 92.2% 98.3% total of sensor errors
Geolocation (3a) 200 M In surface 

misclassification
NEdT baseline 97.00% 99.90% (La/sen et al, 2000a)
Calibration baseline 99.00% 99.00% (Hoyt, 1999)
MTF baseline 97.00% 99.40% (Kealy and Ardanuy, 

1999)
Band-to-Band Mis-registration 0.2 pixels (Kealy and Ardanuy,

2000a) and (Larsen, 
2000b)
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Table D-l (d): Cloud mask nighttime land error budget.

ViiRS CLOUD COVER (Binary Ma3) I IH D jlO T T T iiE - ’
Specification V3 (PDR) 
Preliminary Design Review

Inputs Probability of Correct 
Typing

Note that Probabilities do 
not RSS

March 21,2000 Error Unit T <  1 T >  1 References and Note
Threshold >(TBD) at (TBS)% 

confidence level
{NPOESS IPO, 2000)

Objective >(TBD)atf
confidence 1

1 (NPOESS IPO, 2000)

System Specification 85% 90% Cloudy/not cloudy, 
(Larsen et al., 2000a)

System Performance 90% 91%
System Margin 5% 1%

Algorithm Performance 98.0% 99.0% total of algorithm errors
Surface Type misclassification 1 % 99.00% 99.99% Oily effects optically thin 

clouds. (Larsen et al., 
2000a)

Land/water mask 50 M in surface 
misclassification

DEM elevation 50 M in surface 
misdassication

Intrinsic Algorithm Error 99.00% 99.00%
Sensor Performance 92.2% 92.2% total of sensor errors
Geolocation (3ct) 200 M In surface

misclassification
NEdT baseine 97.00% 97.00% (Larsen ef 3/. ,2000a)
Calibration tasefe 99.00% 99.00% (Hoyt, 1999)
MTF baseline 97.00% 97.00% (Kealy and Ardanuy, 

1999)
Band-io-Band Mis-registration 0.2 pixels (Kealy and Ardanuy, 

2000a) and (Larsen,
2000b)

The system margin is the difference between the system specification and the 

system performance for the case considered in the error budget Since the error budget 

may be for a point, or a sub-range, or some average over the total stratification 

considered, the margin is only an indication of the spread between performance and 

specification. Other points in the stratification will generally have a smaller or larger 

margin.
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The sensor baseline as specified in the VIIRS Sensor Specification {Kealy and 

Ardanuy, 2000d) is used for the derivation of the error budgets.

The sensor errors are:

• Sensor Noise - The error due to sensor noise in each VIIRS radiometric band is used 
by all error budgets.

• The Modulation Transfer Function (MTF) model provides information on how the
sensor spatial sensitivity affects the data.

® Band to Band Registration
• Polarization (instalment)
• Calibration Errors
• Ancillary/Auxiliary Data

Note that the EDRs like the VEERS cloud mask, and the SDR of surface reflectance 

are both dependent on auxiliary and ancillary data and are themselves ancillary data to 

other EDRs, and may as such be regarded as error sources within other EDRs.

The VIIRS cloud mask produces the binary cloudy/not cloudy map, a component of 

the Cloud Cover/Layers EDR. The cloud mask error budget has been stratified over day 

and night considering ocean and land surfaces. A basic assumption is that the setting of 

cloud detection thresholds in the development of the cloud mask employs the full range 

of realistic cloud reflectances and BT values. To minimize this specification error the 

cloud mask has been developed using MAS and VIIRS simulated data. The cloud mask 

errors are expressed as probability of correct typing.

There are three categories of error sources: sensor, ancillary and auxilliary data, 

and intrinsic algorithm. The sensor error component is the sensor noise, which is 

determined by the noise components of the baseline sensor model and Modulation 

Transfer Function (MTF) model. A band-to-band mis-registration study has been 

performed in Chapter 3, in which the radiance of all bands used by the VCM were mis- 

registered horizontally and vertically. This study shows that gross errors in the VCM 

occur when band-to-band mis-registration exceeds 20% {Larsen, 2000b).
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Errors due to sensor noise are discussed in the Signal to Noise Requirements for 

VIIRS Cloud Mask and Cloud Cover (Larsen et a l, 2000a). Simulations of VIIRS 

radiances and imagery were generated with different sensor noise models and automated 

analyses of simulated imagery were then compared against true cloud fields used to 

generate the simulations. The intrinsic error is the error that the algorithm has when all 

other sources are free of error. The VCM algorithms properties are considered to have 

components that contribute to the intrinsic algorithm error.

Errors in surface type affect the VCM error budget. Presently the ecosystem and 

land/sea maps used by the VCM are the same as those used by MODIS. MODIS 

considered these maps to have a 1% error of surface type classification. For the 

assessment of the size of this error it is assumed that surface type misclassification is 

minimal in the large homogeneous surface types of the earth, i.e. minimal over the 

oceans and the vegetated land regions. The effect of surface misclassifications will be 

greatest in regions with snow/ice which is not known to be there. This is considered to 

be a small set of the total pixels which the VCM will map. It is important to note that 

the error in surface types will affect the detection of optically thin clouds, in particular 

those with optical thicknesses less than 0.5. The optically thick clouds are very easy to 

detect, due to their spectral features, so error in surface types are considered to be 

insignificant for thick clouds.

The error sources listed below are actually more clearly defined errors in surface 

type, i.e. snow/ice typing error and land/water map resolution error. These error sources 

have all been merged together to comprise the total error. Due to the low amount of

surface misclassification this error source is assessed as being very small. Details on the 

accuracy of retrieving surface types which the cloud mask uses can be found in the 

works of Hansen et al (2000) and the MODIS Surface Type ATBD (Strahler et a l, 

1996).
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The algorithm first determines the dominant surface type in the pixel. To do this 

both the latitude and longitude of the pixel are used in combination with a global map 

which references the surface type. This is presently done using the Olson map at 10 

minute resolution. A one kilometer spatial resolution map is desired, and for the 

MODIS cloud mask there are plans to develop one. If the surface type determination is 

incorrect, the wrong cloud detection thresholds will be used for cloud detection. This 

error accounts for that probability. Since this error is actually very small it is not 

considered to be a dominant error term. Values have been placed into the VCM error 

specification tables based upon preliminary assessment of the effect of this error upon 

cloud detection.

One of the surface types that the algorithm needs to have knowledge of is 

snow/ice presence within the pixel being masked. This requirement applies for all pixels 

considered, either cloudy or clear. To identify the presence of snow and ice, the most 

recent snow/ice map, updated by VIIRS, will be used in combination with CMIS 

snow/ice detection knowledge if it is available, and a scaled down version of the MODIS 

snow/ice detection test. No dependence on CMIS data is implied. A fallback for this 

test is the use of climatological snow/ice extent. The cloud mask algorithm has included 

preliminary assessments of this typing error in the VCM error specification table.

This error source is a direct error in surface type. The resolution of the 

land/water map employed with the cloud mask affects the degree of misclassification. It 

is believed that the resolution will have the greatest impact in coastal regions and for 

small islands. A land/water map is a MODIS product, generated at 1 km resolution. 

Presently the land/water map used by VIIRS is from the Eros Data Center (EDC). It is 

expected that a Land/Water map will be developed by VIIRS for future use by the 

community.

Also with TOA reflectance values used for daytime cloud detection by the VCM, 

uncertainty in the sun/sensor geometry is a possible error source. For sun/sensor
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geometries which minimize the path length of the sunlight through the atmosphere, this 

error source is the greatest, while for long path atmospheric path lengths this error is 

minimized. This because the greater path lengths increase the effect of the cloud on the 

photon propogation and hence increase the chances of detecting the cloud. Sun/sensor 

geometry is also used in determining regions of possible sunglint. In these regions 

daytime reflectance tests are questionable, however nighttime thermal only cloud 

detection will be done. The angular uncertainty will possibly broaden the sunglint 

regions, which would affect the probability of correct typing capabilities, due to varying 

capability of night and day time cloud detection.

Extraterrestrial properties lead to an additional error category, which combines 

all errors due to extraterrestrial sources. These error sources are shown in Table D-2 

below, which summarizes the error allocated to the inputs to the algorithm and provides 

a reference where the basis for the error allocation to the cloud mask is documented. If 

an error source is not ancillary or auxiliary input the ‘input source uncertainty’ field lists 

“N/A”.

The solar spectral irradiance has uncertainties that could amount to as much as 

several percent at different wavelengths based upon comparison of different published 

spectra. The current assumption is that the Thuillier solar spectrum will be used and it 

has uncertainties of as large as 0.5% {Thuillier et a l,  1997).

The solar spectrum is not constant but varies with solar activity. Since

measurements of the total solar irradiance are not published for between several months 

to several years after they are made, it is assumed that they will not be available to the 

VARS team for inference of changes in the spectral irradiance on an operational basis. 

This will give rise to an unknown random error in the spectral irradiance of about 0.1% 

with greater variability for shorter wavelengths. Because the VCM depends primarily 

upon the longer wavelengths in the visible and near-IR spectrum variations are expected 

to have minimal effects. The Earth-Sun distance is well known and should not be a
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significant error source. The only caveat is that if a simplified formula is used that 

actually gives the Earth-Moon barycenter to sun distance, false monthly and annual

cycles can be introduced into the retrievals.

Table D-2: Error allocation to inputs to the cloud mask module.

Error Sotre# Input Source
Uweertslittf

tefeftnce OoeunMMMon
of Basis for Error AHocaS«j

Recent Snow/Ice Map 
typing Error

10% VIIRS Snow Cover 
requirement (NPOESS 

IPO, 2000)
Land/Water Map 

Misclassification Error
50 m vertical VIIRS Cloud Mask ATBD 

{Larsen, 2000a)1 km 
horizontal

Topographical Map Error 50 m vertical VERS Cloud Mask ATBD 
{Larsen, 2000a)1 km 

horizontal
Error in Surface Type 1% MODIS

Sun/Sensor Geometry 
Angular Uncertainty Error

32 arcsec VIIRS RDR Module Level 
Build Structure {Kuin, 

2000)
Solar Inradiance 

Uncertainty
0.5% {Thuillier et al., 1997)

Solar Activity Variations 0.2% {Hoyt e ta l ,1992)
Sun Glint mask error N/A 6S simulation of orbit

The concept of automated cloud detection in multispectral imagery, used to 

generate the automated cloud mask, is based upon a robust methodology which employs

a series of tests that exploit the spectral signatures of ice and water clouds. This 

methodology is robust because clouds that may not be detected by one single test, 

described in Chapter 2, will generally be detected by another. Often, clouds are detected 

by multiple tests. This redundancy in cloud detection tests provides assurance that cloud 

detection is unlikey to fail, even as the VIIRS sensor or ancillary data become degraded 

with time or circumstances, e.g., ancillary data are not available. However, due to the
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binary nature of a cloud mask, being cloud/no cloud, the terms like accuracy and 

precision cannot readily be used to construct an error budget for the cloud mask. The 

misclassification of the cloud mask is being used to assess the performance of the VCM.

One is unable to assess the performance of the cloud mask in terms of accuracy 

and precision requirements that are defined by the VCM product for the Cloud 

Cover/Layers EDR, misclassification of the cloud mask is thereby used as a merit of 

performance. Misclassification is the percentage of pixels within a given scene that are 

classified as cloudy when clear or clear when cloudy. The rationale behind this 

subdivision of the misclassification is the that each case of misclassification will affect 

various EDRs in different ways. For demonstrations of the misclassifications, refer to 

the cloud mask flowdown performed in this chapter and chapter three. Subdivision into 

the two misclassifications, cloudy when clear and clear when cloudy, is important 

because the misclassification of clear when cloudy will affect VIIRS surface EDRs, 

while the misclassification of cloudy when clear will affect the cloud EDRs. The goal of 

the cloud mask algorithm development is to minimize the amount of misclassification. 

The probability of correct typing of the VCM is one minus the total misclassification.

Because the cloud mask is evaluated based upon misclassification, a plan has 

been devised to evaluate the impact of system-level errors on the automated cloud mask 

product in terms of misclassification in order to determine which, if any, are system 

drivers. The procedure uses numerous simulations of VIIRS imagery under different 

levels of degradation, described below.

Automated analyses of simulated imagery are then compared against ground truth 

cloud masks used to generate the simulations as described in the VIIRS Imagery ATBD 

{Jensen et a l , 2000). These pixel-level comparisons between the automated cloud mask 

and the ground truth cloud mask have proven useful for quantitative error budget 

analyses (Jensen et a l, 2000; Hutchison et al., 1997; Hutchison and Choe, 1996; 

Hutchison and Hardy, 1995; Hutchison et a l , 1995). A theoretical description of the
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errors which will be evaluated is provided. The total misclassification in the cloud mask 

product can be estimated as:

(D-l)

while one can represent the total misclassification as the sum of two terms, cloudy when 

clear (M l) and clear when cloudy (M2), as follows:

At present, the interacting effects of the ensemble of error sources are not yet 

clear and are hence hard to assess. Therefore, the error sources have initially been 

assumed to contribute independently to cloud misclassification. Further studies on this 

topic are necessary. The different error sources will be investigated separately.

The probability of correct typing, which is used in the assessment of the cloud 

mask performance is as follows:

This is a measure of the total probability of correct typing.

Errors due to geolocation/regional misclassification have been considered. 

Simulations of VIIRS radiances and imagery generated for erroneously classified regions 

and automated analyses of simulated imagery are then compared against ground truth 

cloud masks. This is considered to be an error source which contributes directly to the 

error in surface type.

Mtot- Mi + M2 (D-2 )

P «  I - Mtot (D-3)
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Errors due to band-to band mis-registration have been considered. Simulations 

of VIIRS radiances and imagery generated with band-to-band registration errors of 

different amounts of pixel mis-registration, and automated analyses of imagery are then 

compared against ground truth cloud masks used to generate the simulations. The Band- 

to-Band Mis-registration (BBM) study is described in detail in chapter three. As a result 

of this study it was recommended that BBMs be kept less than 20% for the VIIRS 

sensor.

Simulations of VIIRS radiances and imagery were generated with different 

sensor noise models and automated analyses of simulated imagery were then compared 

against true cloud fields used to generate the simulations.

Errors due to surface type misclassification have been considered as well. 

Presently the ecosystem and land/sea maps used by the VCM are the same as those used 

by MODIS. The MODIS team has considered these maps to have an accuracy of 1%.

For the assessment of the size of this error it must be considered that surface type 

misclassification is minimal in the large homogeneous surface types of the earth, i.e. 

minimal, over the oceans and the vegetated land regions. The effect of surface 

misclassifications will be greatest in regions with snow/ice cover which is not known to 

be there. This is considered to be a small set of the total pixels which the VCM will 

map.

For errors of continuity the analysis will have to rely on a future assessment. 

Since many of the VIIRS bands resemble the MODIS bands, continuity with respect to 

the MODIS sensor is straightforward. With respect to bands which resemble AVHRR, 

the spectral and spatial aggregation requires further study.

Errors due to Modulation Transfer Function (MTF) were considered and found to 

be minimal. For the VIIRS system it was found that MTF does not play a large role in 

affecting cloud detection (Kealy and Ardanuy, 1999).

At this time, the sensor is assumed to be a polarization insensitive instrument. If 

true, the errors due to polarization are not significant. It is believed that ocean EDRs are
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more affected by this potential problem. In addition the bands used by the VCM are all 

at wavelengths > 0.60 pm. This is believed to minimize the effects of polarization.

For addressing errors due to out-of-band response the experience with MODIS 

has indicated that some detectors are vulnerable to signals far outside their targeted 

spectral range (out-of-band leakage). Additionally, any detector will have a spectral 

response that will include contributions from the immediately surrounding wavelengths, 

as the bandwidth itself is generally defined by selecting the Full-Width Half-Maximum 

(FWHM) of the spectral response curve. While the VCM will be affected, it is believed 

that these effects will be minimal.

An attempt has been made to assess the cloud mask error budget as defined in 

Eq. (D-l) above. For the various cases, values have been inserted either from flowdown 

results or from experience with the cloud masks capabilities. The error budget is shown 

in Tables D-l (a-d). In this table the performances are the lowest probabilities of correct 

typing for the water and land surface types considered.
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Appendix E

Sensor Noise Flowdown and Cloud Cover Flowdown Analysis

This appendix summarizes the flowdown of the System Requirements Document 

(SRD) requirements for the VIIRS cloud cover to the Signal-to-Noise Ratio (SNR) of 

the VIIRS sensor for the baseline bands indicated in the table below. Background on the 

sensor models considered in this document is provided elsewhere (Kealy, 2000).

Thus far, cloud detection does not appear to be a major VIIRS sensor driver, for 

sensor noise. For sensor noise flowdown cirrus cases were analyzed. Cirrus cloud cases 

are considered to be the most challenging cases for cloud detection, stressing the cloud 

detection capabilities of algorithms under development. For daytime retrievals, noise 

models 1 —5 are suitable for retrieving cloud cover based on channels used by the VCM 

(Kealy, 2000). For nighttime retrievals noise models 1-5 are suitable for cloud cover 

inferred from the thermal VARS channels. Further tests are needed in the future for 

cases of liquid water, and ice clouds over snow/ice and water surfaces in typical arctic 

and typical tropical atmospheres and for off-nadir satellite sensor geometry. It is 

desirable to test scenarios involving off-nadir cases, additional climatological profiles, 

and liquid water and ice clouds at varying heights. In addition, the impact of aggregation 

must be studied for a wider range of cloud types and amounts.

The assumptions made for the cloud flowdown results are briefly described here. 

They relate to model scenarios used in the radiative transfer cloud scene generation, and 

modeling assumptions and approximations made within the testbed environment.
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Table E -l: Scenario list of simulated data for sensor noise flowdown.

Setngffes . ifseripion

Scene #1 Ice Cloud (9-10 km), Midlatitude, Nadir, Solar Z - 3 2

Scene #2 Ice Cloud (9-10 km), Midlatitude, Nadir, Night

Scene #3 Water Cloud (3-4 km), Midlatitude, Nadir, Solar Z = 32

Scene #4 Water Cloud (3-4 km), Midlatitude, Nadir,Night

Scene #22 Ice Cloud (9-10 km), Midlatitude, Edge-of-Scan, Solar Z = 32

Scene #23 Ice Cloud (9-10 km), Midlatitude, Edge-of-Scan, Night

Scene #25 Water Cloud (3-4 km), Midlatitude, Edge-of-Scan, Night

These tests were developed using radiative transfer model results from two 

separate scenarios, a nighttime case and a daytime case, for a listing of the scenarios 

used in the flowdown see Table E-l. A sample description is given below for the cases 

used to demonstrate flowdown:

® Atmosphere: US standard atmosphere profile data
• Haze: rural aerosol and 23 km visibility at surface
® Sensor Geometry: Nadir sensor view
® Sensor Altitude: 833 km
• Solar Geometry {daytime case): 32° local zenith angle (Z)
• Nominal day-of-year/location: 1 May, 40° North
• Cirrus Cloud Height: 9 -  10 km (All tests except Window IR)
• Water Droplet Cloud Height: 3 - 4  km (Window IR tests only)
• Wide range of optical depths and constant effective particle sizes for both 

the cirrus and water droplet clouds
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The subsequent allocation of cloud amount to specific vertical layers is a largely 

subjective process following the execution of the VCM and also relying upon other 

EDRS (e.g., cloud top temperature) to discriminate between vertical layers within the 

same horizontal cell. Comparison of cloud amount assigned to specific layers with 

ground truth layered cloud structure does not yield useful flowdown information 

because the cloud layer allocation algorithm is empirically forced to minimize both 

accuracy and precision type errors.

A flowdown analysis for cloud cover using the VCM was performed. This 

analysis has been employed to determine the cloud cover for several cloud scenarios, 

outlined in Table E-h Representative results of that flowdown analysis for a cirrus 

cloud case is considered.

The SNR tests address the impact of SNR on both pixel-level retrievals and 

retrievals when the pixel-level retrievals are aggregated (averaged) to VIIRS SRD 

horizontal cell size (HCS). The required HCS is a function of the EDR parameter; 

threshold and objective values are stated. For the study aggregations are done at the 

cloud cover HCS threshold (25 km) and HCS objective (5 km). The VCM test results 

are presented separately for the daytime and nighttime cases.

The simulation process used to generate the cloud covered radiance images is 

discussed in Chapter 2. Radiance scenes at all channels used in the VCM were 

generated using MODTRAN, with improved multiple scattering capabilities, (Berk et 

al, 1989; Larsen, 1994) and the UCLA Double-Adding (Ou et a l, 2000) radiative 

transfer codes. For the simulations a cloud effective particle size of 20.7 pm and optical 

thickness ( t)  values 0-8 were adopted. The radiance image constitutes the ‘no noise5 

case. Subsequently, noise was randomly added to the ‘no noise’ radiance bands using 

noise models (Kealy and Ardanuy, 2000e). Precision and accuracy metrics were 

computed using the SRD definitions (NPOESS IPO, 2000). The radiance scenes used 

were 0.4 x 0.4 km pixels; for these pixels a binary cloud mask result 0/1, clear/cloud,
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was determined with the VCM. When aggregated to the 25 km cell size threshold, the 

HCS was composed of 62 x 62 pixels; for the 2 km objective cell size, the HCS was 

composed of 5 x 5 pixels. The threshold and objectives were summarized previously in 

Chapter 2. The VCM binary results were summed up and divided by the total number of 

pixels within the threshold/objective cel! size to determine fractional cloud cover. These 

cloud cover results were then compared to the ‘truth’ which was generated for cloud 

optical thicknesses > 0.03 within a pixel, providing a clear/cloud binary result, which 

was similarly aggregated to provide ‘truth’ cloud scenes at the threshold and objective 

HCS.

0 50 100 150 ZOO

Figure E -l (a-b): Optical thickness and truth case, (a) Optical thickness at 0.65 pm. (b) 
The ‘truth case’ where the optical thickness is greater than 0.03.

Figure E-2 depicts the reflectance and BT scenes for the 8 8 % coverage cirrus 

cloud covered case generated for the VCM retrievals. The radiance fields from which 

these scenes are derived had the noise models applied to them and the cloud mask 

generated from the noise-infected scenes (Figures E-3 and E-4). From these figures it is 

apparent that as the noise level increases the cloud mask begins to give false results. 

Figure E-l shows the optical thickness and the ‘truth case’ pixels in which the optical 

thickness is greater than 0.03, which indicates a clouds presence.
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a) Band 0.65 pm Reflectance b) Band 0.86 pm Reflectance

c) Band 1.375 pm Reflectance d) Band 3.75 pm BT

Figure E-2 (a-l): Simulated reflectances and BT of the VIIRS channels. These 
channels were used in the VIIRS cloud mask algorithm.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



184

a) Optical Depth truth

i t  y \  4 3 ?

b) VCM no noise
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c) VCM Noise Model 1 d) VCM Noise Model 2

e) VCM Noise Model 3
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f) VCM Noise Model 4
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g) VCM Noise Model 5 h) VCM Noise Model 6
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Figure E-3 (a-h): Noise models applied to daytime Cloud Mask. The VIIRS Cloud 
Mask results with no noise and six noise models applied to the radiance fields.
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a) Optical Depth truth b) VCM Baseline (no noise)

c) VCM Noise Model 1 d) VCM Noise Model 2
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e) VCM Noise Model 3
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g) VCM Noise Model 5

f) VCM Noise Model 4
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h) VCM Noise Model 6  

&

Figure E-4 (a~h): Noise models applied to nighttime Cloud Mask. The VIIRS Cloud 
Mask results with no noise and six noise models applied to the radiance fields.
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Figures E-3 and E-4 display the day and night VCM cloud detection results at a 

pixel level for the baseline no noise case and the retrievals using the six noise models.

The seventh was excluded became it was found in all cases to produce an unacceptable 

cloud mask, and hence cloud cover, results.

Figures E-5 and E-6 show the resulting accuracy and precision for the noise 

models at both threshold and objective HCS. The diamonds and triangles depict the 

computed results, while the squares and X’s depict the SRD accuracy threshold (0.1 

cloud fraction) and objective (0.05 cloud fraction) respectively (NPOESS IPO, 2000). 

Two accuracies and two precisions are depicted for each individual figure. The reason 

for this is the behavior of the SRD defined accuracy and precision. The modified 

accuracy and precision are shown as triangles on these figures, while the SRD defined 

accuracy and precision are depicted as squares. In these accuracy figures (a) displays 

accuracies for the noise models compared to the ‘truth case’, from the cloud optical 

thickness > 0.03 in Figure E-l. In order to assess the effect of SNR upon the algorithm 

for flowdown, all o f the results in these figures are relevant. However, the most relevant 

from experience gained is the modified precision and accuracy results. These figures 

demonstrate that for the 25 km threshold HCS during day and night the cloud cover’s 

objective precision and accuracy is attainable for the thin cirrus case over land at nadir 

out to sensor noise model five. Figure E-5 indicates that for the 2 km HCS cloud cover 

the daytime cases are good out to noise model five, exceeding objective for the accuracy 

and attaining objective for the precision. However, for the nightime case the cloud cover 

does not meet threshold. When the cloud detection thresholds are more precisely set in 

the developmental stage of the VCM, the accuracy of the cloud cover retrieval will be 

between threshold and objective.
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Figure E-5: VIIRS Cloud Cover accuracy and precision at 25 km. The VIIRS cloud 
cover day and night accuracy and precision results for the 25 km threshold HCS, with no 
noise and six noise models applied to the radiance fields. Results depict the accuracy 
and precision compared to the optical depth truth.
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Figure E-6 : VIIRS Cloud Cover accuracy and precision at 2 km. The VIIRS cloud 
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noise and six noise models applied to the radiance fields. Results depict the accuracy 
and precision compared to the optical depth truth.
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Appendix F 
Cloud Mask Validation and Simulation

The VCM algorithm validation has been based on the inter-comparison of clouds 

simulated using radiative transfer codes with the true cloud scenes being simulated, and 

using real MODIS Airborne Simulator (MAS) radiance scenes.

The synthetic imagery data sets used for Cloud Mask validation and verification 

were generated using the MODTRAN and UCLA Radiative Transfer (RT) model (Ou et 

a l, 2000), and the Cloud Scene Simulation Model (CSSM) (Apling et a l, 2000). The 

process used to generate synthetic scenes is illustrated in Figure F-2, samples of 

simulated scenes generation are provided in Figure E-2.

The RT model is executed over a wide range of effective particle sizes and optical 

depths, for a specified atmospheric scenario, sensor geometry, solar geometry, VIIRS 

channels, and cloud type, altitude and thickness. The results are stored in the radiance 

Look-up Tables (LUTs). The radiance LUTs are used in conjunction with data from the 

CSSM, which is described in more detail below, to create synthetic radiance images for 

the VIIRS bands. The cloud EDR algorithms are applied to the synthetic imagery and 

retrievals are performed at the pixel-level. The pixel-level retrieval results are 

aggregated to the appropriate Horizontal Cell Size (HCS) for the EDR and compared 

with truth.
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Figure F -l: Synthetic imagery generation diagram. High level diagram of the synthetic 
imagery generation and performance assessment process for the cloud EDRs.

Figure F-2 focuses on the imagery generation box of Figure F -l. CSSM is used 

to generate 3-D fields of cloud liquid water (CLW) or cloud ice water content (IWC) for 

specified cloud type, cloud coverage, etc. In the scene generation process for cloud EDR 

Testing, CSSM is used to generate 3-D synthetic cirrus and water droplet cloud 

distributions over a 1 0 0 x 1 0 0  km area at 0 . 1  km spatial resolution throughout the volume. 

These data are vertically integrated to form grids of Ice Water Path (IWP) or Cloud 

Liquid Water (CLW), depending upon the cloud type, at 0.1 km resolution over the 

100x100 km region. The IWP and CLW data are converted to visible optical depth 

using standard relationships for each cloud type (water or ice). In addition, a scaling 

factor is used to tune the resultant optical depth grids, such that all values fall within a 

specified range, e.g to support stratification tests. The optical depth grids are used in 

conjunction with the radiance LUTs to create 100x100 km radiance images at 0.1 km 

resolution for each VIIRS cloud channel. Within each image, cloud top height, cloud 

thickness, and cloud effective particle size are set to nominal values over the entire 

image, consistent with the radiance data. Cloud optical thickness, however, varies 

considerably over the image. At this stage of the processing, sensor characteristics such 

as MTF, BBM, calibration, and geolocation errors are introduced, as necessary. The 0.1 

km radiances are aggregated to the appropriate VIIRS pixel size, which varies according
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to sensor viewing geometry. Pixel-level sensor noise is then introduced, resulting in 

synthetic imagery which include sensor effects.

Because VIIRS pixel level radiances are generated from higher resolution data, 

the resultant simulated VIIRS imagery contains cloud edge effects (mixture of clear and 

cloudy radiances) and variation of optical depth even within the pixel. This yields a very 

challenging retrieval environment to test the cloud mask algorithm.

Figure F-2: The process for imagery generation. Imagery generation process using 
CSSM data, radiance LUTs, and sensor data.

For the simulated scenes discussed above, cloudy scenes were generated for 

varying cloud optical properties, height, phase, atmospheric type, and underlying 

surfaces. The number of possible scenes which might be used for cloud mask validation 

is overwhelming to consider. Therefore only a limited number of scenes will be 

presented in this appendix. The scenes considered are illustrated in Table F-l. Of these
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scenes Scene #1 and Scene #3 will be presented as examples of multispectrai cloud 

scene simulations.

Table F -l: Scenario list of simulated scene data used for the VCM.

Scenarios D«jeffpS©» SttffteeTfpe

Scene #1 Ice cloud (9-10 km), Midlatitude, Nadir, Solar Z = 32 Vegetative
Scene #2 Ice cloud (9-10 km), Midlatitude, Nadir, Night Vegetative
Scene #3 Water cloud (1-2 km), Midlatitude, Nadir, Solar Z = 

32
Vegetative

Scene #4 Water cloud (1-2 km), Midlatitude, Nadir, Night Vegetative
Scene #26 Ice cloud (9-10 km), Midlatitude, Nadir, Solar Z = 32 Ocean
Scene #27 Ice cloud (9-10 km), Midlatitude, Nadir, Night Ocean
Scene #28 Water cloud (1-2 km), Midlatitude, Nadir, Solar Z = 

32
Ocean

Scene #29 Water cloud (1-2 km), Midlatitude, Nadir, Night Ocean

The first simulation will be a retrieval example will be the water cloud over 

vegetated land. The reflectances for the solar bands, and BTs for the thermal bands, are 

shown in Figure F-3. In this figure, the amount of multi-spectral information in the 

scene is displayed. Over different spectral bands, the underlying surface reflectance 

varies from that of the water clouds. In the BT images, the underlying surface is 

predominantly warmer than the water clouds in the scene.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



193

Figure F-3 (a); Reflectance for water cloud scene at 0.65 and 0.86 pm.

Figure F-3 (b): Reflectance for water cloud scene at 1.24 and 1.38 pm

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



194

8T375 BTS 50

I'*

i f - -

r A

Figure F-3 (d): BT for water cloud scene at 3.75 and 8.5 ^m.
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Figure F-3 (e): BT for water cloud scene at 10.8 and 12.0 fim.
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TRUTH DAY NIGHT

Figure F-4: VCM results for a simulated water cloud scene. VCM results for water 
cloud scene for ‘Tau-Truth’, day, and night cases.

Using tests discussed in Chapter 2, the VCM generates cloud mask results, which 

are displayed in Figure F-4. In this figure, the cloud mask is shown in gray, while black 

represents a negative cloud detection result. The three images in Figure F-4 display the 

cloud mask for three cases. The image on the left displays what is referred to as “Tau- 

Truth.” This represents cases where the optical thickness of the cloud displayed is 

greater than 0.03 at 0.65 pm. This definition of a cloud comes directly from the 

definitions section of the VIIRS Sensor Requirements Document (SRD) (NPOESS IPO, 

2000). The middle image is of the cloud mask results in the daytime. The far right 

image is the cloud mask results at night. The image shows that the cloud mask 

performance is very good for this scene. Note that this case (water clouds over land) is 

considered, due to the reflective and BT properties of land versus clouds. This case 

depicts a less difficult scene for the VCM, a more difficult scene is considered the 

below.

The next retrieval example is for a thin cirrus cloud over vegetated land. The 

reflectances for the solar bands and BTs for the thermal bands are shown in Figure F-5.
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The cloud mask results are displayed in Figure F-6 . This case is significantly more 

challenging than the water cloud case considered above.

Figure F-5 (b): Reflectances for cirrus cloud scene at 1.24 and 1.38 pm.
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Figure F-5 (e): Reflectances for cirrus cloud scene at 1.61 and 2.14 pm.
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Figure F-5 (d): BT for cirrus cloud scene at 3.75 and 8.5 pm.
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BT120

Figure F-5 (e): BT for cirrus cloud scene at 10.8 and 12.0 jam.

TRUTH DAY NIGHT

Figure F-6 : VCM results for a simulated cirrus cloud. VCM cloud mask results for 
cirrus cloud ‘Tau-Truth’, day, and night cases.
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Appendix G 
GLOSSARY OF ACRONYMS

Table G -l: Table of acronyms.

ADEOS2 Advanced Earth Observing Satellite-2
ARMCAS Arctic Radiation Measurment in Column: Atmosphere-

Surface
ATBD Algorithm Theoretical Basis Document
AVHRR Advanced Very High Resolution Radiometer

BBM Band-to-Band Mis-registration
BRDF Bidirectional Reflection Distribution Function
BT Brightness Temperature
BW Bandwidth
CATV Cost as an Independent Variable
CAR Cloud Absorption Radiometer
CLAVR Clouds from AVHRR
CLW Cloud Liquid Water
CMIS Conical Scanning Microwave Imager/Sounder

CRIS Cross-track Infrared Sounder
CSSM Cloud Scene Simulation Model
DEM Digital Elevation Model
DMSP Defense Meteorological Satellite Program
DNB Daytime Nighttime Band

DOC Department of Commerce
DoD Department of Defense
DP Data Product
DPA Data Processing Architecture

EDC EROS Data Center
EDR Environmental Data Requirement
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EDR Environmental Data Record
EOS Earth Observing System
EOS Edge of Scan
ER-2 Experimental Research. Plane
EROS Earth Research Observation System
EUMETSAT European Organization for the Exploitation of Meteorlogieal

Satellites
FOV Field of View
FWHM Full-width Half-maximum
GFM Global Forecast Model
GEFOV Ground Instantaneous Field of View
GLI Global Imager
GOES Geostationary Operational Environmental Satellite
GPSOS Global Positioning System Occupation Sensor
GSD Ground Sample Distance

HCS Horizontal Cell Size
HSR Horizontal Spatial Resolution
IA Imagery Analyst

IABP International Arctic Buoy Program
IFOV Instantaneous Field of View
IP Intermediate Product

IPO Integrated Project Office
IR Infra-Red

IWC Ice Water Content ■
IWP Ice Water Path

K Kelvin
L Spectral Radiance
LFA Logical Flag Array
LIDAR Light Detection and Ranging
LLLS Low-Level Light Sensor
LWIR Long Wave Infra-Red
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LUT Look Up Table

MAS MODIS Airborne Sensor
MCM MODIS Cloud Mask

METOP Meteorlogical Operational
MODIS Moderate Resolution Imaging Spectroradiometer
MOPITT Measurements of Pollution in the Troposphere
MTF Modulation Transfer Function
MWIR Mid-Wave-Inffa-Red

NASA National Aeronautics and Space Administration.

ND1I Normalized Differential Ice Index
NDVI Normalized Differential Vegetation Index
NIR Near-InfraRed
NOAA National Oceanic and Atmosphere Administration
NPOESS National Polar-orbiting Operational Environmental Satellite 

System
OLS Operational Linescan System
OMPS Ozone Mapping Profiling Suite
PDR Preliminary Design Review
POES Polar Orbiting Environmental Satellite

PSC Polar Stratospheric Clouds
R Reflectance

RDQI Radiometric Data Quality Indicator
RDR Raw Data Record
RGB Red-Green-Blue
RHS Right Hand Side
RSS Root Sum Squared
RT Radiative Transfer
SBRS Santa Barbara Remote Sensing
SDI Snow Differential Index
SDR Sensor Data Record
SDR Supplemental Data Record
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SEAWIFS Sea-Viewing Wide FieW-of-View Sensor
SESS Space Environmental Sensor Suite
SNR Signal-to-Noise Ratio

SRD Sensor Requirements Document
SRR Systems Requirements Review
SSI Sea Surface Temperature
SWIR Short Wave Infra-Red

TBD To Be Determined
TBR To Be Resolved
TIROS-N Television Infrared Observation Satellite
TOA Top of Atmosphere

UCLA University of California Los Angeles
US United States
USGS United States Geological Survey
u v Ultraviolet
u w University of Wisconsin

VCM VIIRS Cloud Mask
VCP VIIRS Cloud Phase
VIIRS Visible/Infrared Imager/Radiometer Suite
VNIR Visible-Near-Infrared

W Watts

z Zenith
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