238 research outputs found

    Estimation of Translation, Rotation, and Scaling between Noisy Images Using the Fourier–Mellin Transform

    Get PDF
    In this paper we focus on extended Euclidean registration of a set of noisy images. We provide an appropriate statistical model for this kind of registration problems, and a new criterion based on Fourier-type transforms is proposed to estimate the translation, rotation and scaling parameters to align a set of images. This criterion is a two step procedure which does not require the use of a reference template onto which aligning all the images. Our approach is based on M-estimation and we prove the consistency of the resulting estimators. A small scale simulation study and real examples are used to illustrate the numerical performances of our procedure

    Multi-Reference Frame Image Registration for Rotation, Translation, and Scale

    Get PDF
    This thesis investigates applications of multi-reference frame image registration for image sets with various translation, rotation, and scale combinations. It focuses on registration accuracy improvement over traditional pairwise registration, and also compares the quality of scene estimation from frame averaging. Three experiments are developed which use cross-correlation to estimate translation, the Radon transform to estimate translation and rotation, and the Fourier-Mellin transform to estimate translation, rotation, and scale. Results from applying multi-reference frame registration in these experiments show distinct improvements in both registration accuracy and quality of frame averaging compared to single-reference frame registration. Furthermore, it is shown that the new registration technique is equivalent to the optimal Gauss-Markov estimator of the relative shifts given all pairwise shifts

    Spread spectrum-based video watermarking algorithms for copyright protection

    Get PDF
    Merged with duplicate record 10026.1/2263 on 14.03.2017 by CS (TIS)Digital technologies know an unprecedented expansion in the last years. The consumer can now benefit from hardware and software which was considered state-of-the-art several years ago. The advantages offered by the digital technologies are major but the same digital technology opens the door for unlimited piracy. Copying an analogue VCR tape was certainly possible and relatively easy, in spite of various forms of protection, but due to the analogue environment, the subsequent copies had an inherent loss in quality. This was a natural way of limiting the multiple copying of a video material. With digital technology, this barrier disappears, being possible to make as many copies as desired, without any loss in quality whatsoever. Digital watermarking is one of the best available tools for fighting this threat. The aim of the present work was to develop a digital watermarking system compliant with the recommendations drawn by the EBU, for video broadcast monitoring. Since the watermark can be inserted in either spatial domain or transform domain, this aspect was investigated and led to the conclusion that wavelet transform is one of the best solutions available. Since watermarking is not an easy task, especially considering the robustness under various attacks several techniques were employed in order to increase the capacity/robustness of the system: spread-spectrum and modulation techniques to cast the watermark, powerful error correction to protect the mark, human visual models to insert a robust mark and to ensure its invisibility. The combination of these methods led to a major improvement, but yet the system wasn't robust to several important geometrical attacks. In order to achieve this last milestone, the system uses two distinct watermarks: a spatial domain reference watermark and the main watermark embedded in the wavelet domain. By using this reference watermark and techniques specific to image registration, the system is able to determine the parameters of the attack and revert it. Once the attack was reverted, the main watermark is recovered. The final result is a high capacity, blind DWr-based video watermarking system, robust to a wide range of attacks.BBC Research & Developmen

    Fourier–Mellin registration of two hyperspectral images

    Get PDF
    Hyperspectral images contain a great amount of information which can be used to more robustly register such images. In this article, we present a phase correlation method to register two hyperspectral images that takes into account their multiband structure. The proposed method is based on principal component analysis, the multilayer fractional Fourier transform, a combination of log-polar maps, and peak processing. The combination of maps is aimed at highlighting some peaks in the log-polar map using information from different bands. The method is robust and has been successfully tested for any rotation angle with commonly used hyperspectral scenes in remote sensing for scales of up to 7.5× and with pairs of hyperspectral images taken on different dates by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor for scales of up to 6.0×This work was supported in part by the Consellería de Cultura, Educación e Ordenación Universitaria [grant numbers GRC2014/008 and ED431G/08] and Ministry of Education, Culture and Sport, Government of Spain [grant numbers TIN2013-41129-P and TIN2016-76373-P] both are co-funded by the European Regional Development Fund (ERDF)S

    The generalization of the R-transform for invariant pattern representation

    Get PDF
    International audienceThe beneficial properties of the Radon transform make it an useful intermediate representation for the extraction of invariant features from pattern images for the purpose of indexing/matching. This paper revisits the problem of Radon image utilization with a generic view on a popular Radon transform-based transform and pattern descriptor, the R-transform and R-signature, bringing in a class of transforms and descriptors spatially describing patterns at all directions and at different levels, while maintaining the beneficial properties of the conventional R-transform and R-signature. The domain of this class, which is delimited due to the existence of singularities and the effect of sampling/quantization and additive noise, is examined. Moreover, the ability of the generic R-transform to encode the dominant directions of pattern is also discussed, adding to the robustness to additive noise of the generic R-signature. The stability of dominant direction encoding by the generic R-transform and the superiority of the generic R-signature over existing invariant pattern descriptors on grayscale and binary noisy datasets have been confirmed by experiments
    corecore