
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800



22 

Automatic Stabilization of Infrared Images 
Using Frequency Domain Methods 

J. R. Martínez de Dios and A. Ollero 
Robotics, Vision and Control Research Group, University of Seville 

Spain 

1. Introduction 

In the last decade the decrease in the cost of infrared camera technology has boosted the use 
of infrared images in a growing number of applications. Traditional uses of infrared images, 
such as thermal analyses (Carvajal et al., 2011), nondestructive testing and predictive 
maintenance (Maldague, 2001), have been extended to new fields in which infrared cameras 
are mounted on vehicles and mobile robots and are used in applications such as border 
surveillance, building inspection, infrastructure maintenance, wildlife monitoring, search and 
rescue and surveillance, among many others. Image vibrations are harmful disturbances that 
perturb the performance of image-processing algorithms. Many of the aforementioned 
applications require having stabilized sequences of images before applying automatic image-
processing techniques. Also, in cases where humans visualize the images, image vibrations 
induce significant stress and decrease the attention capacity of the operator. 

Two main approaches for image stabilization have been developed. The first one aims at 

stabilizing the camera vibrations using different devices ranging from simple mechanical 

systems for handheld camcorders to high-performance inertial gyro-stabilized platforms. 

The first ones usually have low accuracy and perform “vibrations reduction” instead of 

“vibrations cancellation”. The high size, weight and cost of gyro-stabilized platforms 

constrain their use in a good number of applications. 

The second main approach aims at correcting the images by applying image-processing 

techniques. Classical image-processing methods for image stabilization are based on 

detecting a set of local features –e.g. corners, lines and high-gradient points- in one image 

and tracking them along the images of the sequence. The relative motion of features from 

one image to another is used to model the motion between both images. Once the motion 

between images has been estimated, the second image is compensated such that no 

vibration can be perceived between both images. These methods have demonstrated very 

good performance with images with high contrast and low noise level, where a number of 

local features can be robustly detected. However, they do not perform well in images where 

these features cannot be robustly identified. This is the case of infrared images, which often 

have low contrast and resolution and high noise levels. 

This chapter describes an automatic image-processing technique for the stabilization of 
sequences of images using frequency domain image representations obtained by means of 
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the Fourier transform. In particular, the method described in this chapter uses Fourier-
Mellin transforms (FMT) and the Symmetric Phase Only Matched Filtering (SPOMF). This 
frequency domain representation provides advantages when stabilizing images with low 
contrast and high noise levels: the described method does not rely on local features but on 
the global structure of the image. The proposed method can correct translations, rotations 
and scalings between images, which is sufficient for a high number of stabilization 
problems. This chapter presents the main principles of the method, gives implementation 
details and describes its adaptation to different image stabilization applications. 

The method was implemented efficiently for real-time execution with low computing 

resources. Several versions were tested and validated in different applications. The 

proposed method has also been validated with visual images but it is with infrared images 

where the advantages with respect to feature-based methods are more evident. 

The main strengths of the proposed technique are the following:  

1. it relies on the global structure of the image and thus, it is suitable for images with low 

contrast and resolution and high noise levels;  

2. the method can be tuned balancing the stabilization accuracy and the computational 

burden, allowing adaptation to specific image stabilization needs. 

This chapter is structured as follows: 

- Section 2 introduces the problem of stabilization of sequences of infrared images. 

- Section 3 presents the principles of image matching using Fourier-Mellin transform and 

Symmetric Phase Only Matched Filtering. 

- Section 4 shows examples that illustrate the operation of the proposed method. 

- Section 5 proposes some practical aspects to increase the robustness, accuracy and 

efficiency of the method. 

- Section 6 presents various implementations in different applications. 

Finally, Section 7 is devoted to the final discussions and conclusions. 

2. Stabilization of infrared images 

2.1 Infrared images 

Infrared cameras generate images of the scene that contain the radiation intensity field 

within the infrared band. Infrared cameras can "see" in pitch black conditions and through 

smoke. They can transform radiation measurements in temperature estimations and can also 

generate thermograms containing temperature of the objects in the scene (Hudson, 1969). In 

the last decade infrared camera technology has evolved significantly. While in the decade of 

the 90’s most infrared cameras weighted several kilograms, consumed hundreds of watts 

and their cryogenic cooling systems required frequent maintenance, now it is possible to 

find radiometric infrared cameras that weight less than 150 gr, consume less than 1,5 W and 

require no maintenance since they have no cooling system. These advances together with a 

remarkable cost decrease have motivated their use in a growing number of applications. 

Two infrared cameras are shown in Fig. 1, one Mitsubishi IR-M300 (left) and one Indigo 

Omega micro-camera (right). 
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Fig. 1. Left) Mitsubishi IR-M300 infrared camera. Right) Indigo Omega infrared micro-camera 

However, despite these advances the quality of the images from infrared cameras is 
significantly lower than that of visual images due to several physical and technological 
reasons. Infrared camera detectors are highly affected by different types of noise including 
thermal noise, shot noise and flicker noise (Hudson, 1969). In fact, many cameras, 
particularly those operating in the mid-infrared spectral window [3-5] μm, use cooling 
systems -often cryogenic- to ensure that the detector operates at low and constant 
temperatures. Noise is crucial in infrared technology. In fact, infrared cameras usually use 
several characteristics to measure the influence of noise in the images, such as the Noise 
Equivalent Temperature (NET) or the Noise Equivalent Temperature Difference (NETD), among 
others (Maldague, 2001).  

Also, infrared detectors usually have significantly lower sensitivity than CMOS and CCD 
detectors commonly used in visual cameras. This lack of sensitivity originates images with 
low contrast levels. Many infrared cameras compensate this lack of sensitivity by increasing 
camera exposure times, which originate image blurring if the camera is under vibrations. 
Also, infrared detectors usually have lower resolution than visual cameras. Thus, infrared 
images usually have lower resolutions –and details- than visual images. 

Two images of the same scene are shown in Fig. 2: one taken with a visual camera (left) and 
one taken with a FLIR ThermaCam P20 infrared camera (right). The differences in contrast, 
noise levels and detail levels are noticeable. 

2.2 Brief description of image stabilization methods 

Assume that we have a sequence of images taken by one camera under vibrations. Each 
image is represented by Imt(x,y), where t is the time when the image was captured. The 
camera vibrations cause relative motions between the images in the sequence. Assume 
image Im0(x,y) is considered the reference image. Stabilization of image Imt(x,y) consists of 
detecting and cancelling the motion between Imt(x,y) and Im0(x,y), such that there is no 
apparent motion between Im0(x,y) and the stabilized version of Imt(x,y). The process of 
detecting the relative motion between two images is called image matching. 

There are two main groups of image-matching methods: spatial domain and frequency 
domain methods. Other techniques such as invariant moments (Abu-Mostafa & Psaltis, 
1984) have poorer matching performance. A detailed survey can be found in (Zitová & 
Flusser, 2003). 
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Fig. 2. Two images of the same scene but taken with different cameras one visual camera 
(left) and one FLIR ThermaCam P20 infrared camera (right) 

Spatial domain matching methods are based on local features that can be detected in both 
images Im0(x,y) and Imt(x,y). Assume that both images contain enough and sufficiently 
distributed features perceptible in both images. These feature-based methods usually have 
four steps. The first step is to detect local features in both images. These features are 
typically selected as corners (Tomasi, 1991), high-contrast points or local patterns with 
invariant properties, (Bay et al., 2008). The feature detector is applied to both images. The 
second step is to associate features detected in Im0(x,y) with features detected in Imt(x,y). 
Maximum likelihood criteria are often used for feature association. This step provides 
associations between features in both images, which can be used to estimate the relative 
motion between them. 

The third step is to determine the motion between Im0(x,y) and Imt(x,y) using the 
aforementioned associations. The homography matrix is often used to model the motion 
between two images since it allows describing the transformations originated by changes on 
the location and orientation of the camera when the scene can be approximated by a plane 
(Hartley & Zisserman, 2004). Methods such as Least Median of Squares and RANSAC 
(Fischler & Bolles, 1981) are used to increase the robustness of the motion estimation. Once 
m0i, the motion from Im0(x,y) to Imt(x,y), has been estimated, the fourth step is to apply 
image-processing methods to induce in Imt(x,y) a motion inverse to m0i.  

Spatial domain techniques have good performance if both images contain clear and robust 
local features but are not suitable for infrared images since a low number of local features 
can be robustly detected in infrared images. 

On the other hand, frequency domain image-matching methods exploit the properties of 
images in the frequency domain. Normalized cross-correlation, see e.g. (Barnea & Silverman, 
1972) and (Segeman, 1992), has been a common approach to match images with relative 
translations. In this case, the location of the maximum peak of the cross-correlation function 
between Im0(x,y) and Imt(x,y) corresponds to the relative translation between Im0(x,y) and 
Imt(x,y). Cross-correlation is commonly applied using the Fourier transform due to significant 
computational savings. This method does not have good performance if Im0(x,y) and Imt(x,y) 
have high noise levels: it produces broad peaks, which originate inaccuracies when 
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determining the location of the maximum peak. Some alternatives, such as the Symmetric 
Phase-Only Matched Filtering (SPOMF) (Ersoy & Zeng, 1989) produce significantly sharper 
peaks and are more resilient to noise, partial occlusions in the images and other defects.  

Another disadvantage of Fourier transform methods is that they can only match translated 
images. The Fourier-Mellin transform (FMT) improves also this disadvantage since FMT 
methods can match translated, rotated and scaled images, (Chen et al., 1994). 

2.3 Proposed frequency domain image stabilization method 

The method proposed in this chapter uses image-matching methods based on frequency 
domain transformations. The method relies on the global structure of the image and not on 
local features. This fact provides significant robustness to noise and to the lack of contrast 
and resolution. Moreover, the proposed method is capable of stabilizing sequences which 
images are related through translations, rotations and scalings.  

The proposed stabilization method adopts an incremental approach: the first image of the 
sequence, Im0(x,y), is considered reference and each of the remaining images in the 
sequence, Imt(x,y), is matched and corrected with respect to the stabilized version of the 
previous image, ImSt-1(x,y). Section 3 briefly describes the principles of the proposed method. 
Section 4 illustrates the method with some examples. 

Image matching can originate small -sub-pixel- errors. The accumulation of these errors in 
an incremental stabilization approach can originate drifts. To avoid drifts we developed 
another absolute stabilization approach in which all the images of the sequence are matched 
and corrected with respect to the same reference image Im0(x,y). This and other practical 
issues are discussed in Section 5. 

The proposed method was customized to several problems with different stabilization 
requirements. In all cases the method was implemented and validated. This is described in 
Section 6. 

3. Image matching using the Fourier-Mellin transform and Symmetric Phase-Only 
Matched Filtering 

Assume that ImSt-1(x,y) is the stabilized version of the image gathered at time t-1. In the 
incremental stabilization approach adopted ImSt-1(x,y) is considered the reference image for 
stabilization of Imt(x,y) at time t. Assume that Imt(x,y) is a rotated, scaled and translated 
replica of ImSt-1(x,y). The proposed stabilization method consists of two steps. The first one 
detects and corrects the rotation and scaling between ImSt-1(x,y) and Imt(x,y). ImRt(x,y) is the 
rotation and scaling corrected version of Imt(x,y). The second step detects and corrects the 
translation in axes x and y between ImSt-1(x,y) and ImRt(x,y). The stabilized version of Imt(x,y), 
i.e. the translation-corrected version of ImRt(x,y), is denoted ImSt(x,y). 

Assume that s(x,y) and r(x,y) are the central rectangular regions of Imt(x,y) and ImSt-1(x,y), 

respectively. Thus, s(x,y) is a replica of r(x,y) rotated with an angle α, scaled with a factor σ 
and translated with translational offsets (x0, y0): 

  - - -0 0( , ) ( cos sin ) ,   ( sin cos )s x y r x y x x y y         (1) 
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The proposed method uses Symmetric Phase-Only Matched Filtering to match translated 
images. Below the Symmetric Phase-Only Matched Filtering and the two aforementioned 
steps in the algorithm are summarized. 

3.1 Symmetric Phase-Only Matched Filtering 

Assume that b(x,y) is replica of c(x,y) translated (x0,y0) in a noisy scene,                       
b(x,y)=c(x-x0,y-y0)+n(x,y), where n(x,y) represents a white zero mean random noise. A 
traditional matched filter for b(x,y) has the following transfer function: 

 
2

1
( , ) * ( , )MF

w

H u v C u v
n

 , (2) 

where C*(u,v) is the complex conjugate of the Fourier transform of c(x,y) and |nw| is the 
noise intensity. The output of the matched filter in (2) has a maximum peak at (x0,y0). The 
location of this peak determines the translational offset (x0,y0). 

One of the main limitations of traditional matched filters is that the output is affected by the 
energy of the image while translation between images only influences the spectral phase. To 
minimize this dependence the alternative adopted in our method is to use Symmetric Phase-
Only Matched Filtering (SPOMF) to determine translations between images. The SPOMF 
between b(x,y) and c(x,y) is as follows: 

  ( , ) * ( , )
( , ) exp ( , )- ( , )

( , ) ( , )
SPOMF B C

B u v C u v
Q u v j u v j u v

B u v C u v
   , (3) 

where φB(u,v) and φC(u,v) are the spectral phases of b(x,y) and c(x,y), respectively. In the 
absence of noise QSPOMF(u,v)=exp[-j2π(ux0+vy0)] and the inverse Fourier transform of 
QSPOMF(u,v) is a Dirac delta located at (x0,y0). SPOMF yields to a sharp peak, significantly 
sharper than in case the matched filters in (2). The location of the maximum is easier to 
estimate and more tolerant to noise, which, as previously mentioned, is a significant 
advantage when dealing with infrared images. 

3.2 Rotation and scaling correction step 

This step aims to detect and correct the rotation and scaling between s(x,y) and r(x,y). The 
corrected version will be called sR(x,y). From (1) the Fourier transform of s(x,y), 
S(u,v)=Fourier{s(x,y)}, can be expressed by the following expression: 

    - - -
- -

2 1 1( , ) ( cos sin ),   ( sin cos )  exp ( , )SS u v R u v u v j u v          , (4) 

where R(u,v)=Fourier{r(x,y)} and φS(u,v) is the phase of S(u,v). From (4) it is easy to notice 
that |S(u,v)| is affected by rotations and scalings but is invariant to translations: 

  - - -
-

2 1 1( , ) ( cos sin ),   ( sin cos )  S u v R u v u v          (5) 

The rotation and the scaling can be decoupled by converting |R(u,v)| and |S(u,v)| to polar 
coordinates. Let rp(θ,ρ) and sp(θ,ρ) be |R(u,v)| and |S(u,v)| in polar co-ordinates (θ,ρ): 
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 ( , ) ( cos , sin ) pr R       (6) 

 ( , ) ( cos , sin )ps S       (7) 

Thus, it is easy to check that: 

    -
-

1 cos sin cosu v
    


   (8) 

    -
- -

1 sin cos sinu v
    


   (9) 

Hence, from (5), sp(θ,ρ) can be expressed as: 

 -
-

2( , )  ( , )p ps r        (10) 

Thus, the rotation of an angle α has been transformed into a translation in the θ axis. Scaling 
can be also transformed into a translation by applying a logarithimc scale on ρ axis, i.e. 
λ=log(ρ). In log-polar coordinates (5) can be expressed as: 

 -
- -

2( , ) ( , log( ))  ( , log( ))pl pl pls s r          , (11) 

where spl(θ,λ) and rpl(θ,λ) are the log-polar versions of |S(u,v)| and |R(u,v)|. Thus, in (11) 
the rotation and scaling have been transformed into translations. Let Spl(υ,ω) and Rpl(υ,ω) be 
the Fourier transforms of spl(θ,λ) and rpl(θ,λ), respectively. Using shift properties of the 
Fourier transform, (11) can be rewritten as: 

    ( , ) exp - ( , ) ( , ) exp - ( , )-2 log( )pl Spl pl SplS j R j                  (12) 

Thus, |Spl(υ,ω)|=|Rpl(υ,ω)|. In (12) the rotation and the scaling appear as shifts between 
φSpl(υ,ω) and φRpl(υ,ω), the phases of Spl(υ,ω) and Rpl(υ,ω), respectively. The phase shift is: 

  ( , )- ( , ) 2 log( )Spl Rpl              (13) 

Then, if we apply a SPOMF, the location of the peak of qr(θ,λ), (θmax,λmax), represents the 
rotation angle α =θmax and the scaling factor λmax=log(σ) between s(x,y) and r(x,y): 

   -
-1( , ) exprq Fourier j   , (14) 

where Fourier-1 stands for the inverse Fourier transform. The corrected image, ImRt(x,y), is 
obtained by rotating Imt(x,y) an angle -θmax and scaling by factor exp(λmax). The central 
rectangular part of ImRt(x,y), sR(x,y), is used for the translation correction step of the 
algorithm. 

3.3 Translation correction step 

Once the rotation and scaling have been corrected, sR(x,y) and r(x,y) are related only by 
translations in axes x and y. This step detects and corrects the translational offsets between 
sR(x,y) and r(x,y). The SPOMF can be used to determine the translations between them:  
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  - ( ) - ( )( , ) exp ( , , )t SR RQ u v j u v u v  , (15) 

where φSR(u,v) and φR(u,v) are respectively the phases of SR(u,v) and R(u,v), the Fourier 
transforms of sR(x,y) and r(x,y). The translational offset between sR(x,y) and r(x,y) can be 
obtained by computing: 

  ( )
-1( , )  ,t tq x y Fourier Q u v  (16) 

The peak of qt(x,y) is located at x=xmax and y=ymax. Thus, the translations between sR(x,y) and 
r(x,y) in axes x and y are x0=xmax and y0=ymax. The stabilized image, ImSt(x,y), is computed by 
shifting ImRt(x,y) by -x0 in axis x and by -y0 in axis y, respectively.  

4. Experiments 

This section presents some experiments that illustrate the proposed method. Two infrared 
images gathered from an infrared camera under vibrations are shown in Fig.3. The image at 
the left will be consider stabilized, ImSt-1(x,y), and will be used as reference to stabilize the 
image at the right, Imt(x,y). The method determined and corrected the relative rotation 
angle, scaling factor and translations of Imt(x,y) with respect to ImSt-1(x,y). 

 

   

Fig. 3. Two infrared images from a sequence of images under vibrations. The image at the 
left is taken as reference 

First, the central parts of both images, r(x,y) and s(x,y), are selected, see Fig. 4. Their size  
is chosen to be power of two in order to optimize the computational burden of the Fourier 
Transform FFT algorithm. The original images are 640x480 and the central parts are 
256x256. 

The first step of the algorithm described in Section 3 starts. First, R(u,v) and S(u,v), the 
Fourier transforms of r(x,y) and s(x,y) are computed. |R(u,v)| and |S(u,v)| are shown in 
Fig. 5. It can be noticed that rotation between r(x,y) and s(x,y) results in a rotation between 
|R(u,v)| and |S(u,v)| as predicted by (5).  
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Fig. 4. r(x,y) and s(x,y) for images in Fig. 3 

 

     

Fig. 5. Left) 3D view of |R(u,v)|; Center) and Right) 2D views |R(u,v)| and |S(u,v)|, 
respectively 

Then, rp(θ,λ) and sp(θ,λ), the versions of |R(u,v)| and |S(u,v)| in log-polar co-ordinates are 
computed. rp(θ,λ) and sp(θ,λ) are shown in Fig. 6. The colour represents the magnitude. As 
predicted by (11) the rotation between |R(u,v)| and |S(u,v)| has been transformed into a 
shift in the θ axis between rp(θ,λ) and sp(θ,λ). The value of the shift corresponds to the 
rotation angle between ImSt-1(x,y) and Imt(x,y).  

Next, we apply the SPOMF between rp(θ,λ) and sp(θ,λ) using (13) and (14). The resulting 
qr(θ,λ) is shown in Fig. 7left. The maximum peak in qr(θ,λ) is sharp. It is located at θmax=-
9.14º, λmax=0. The second peak is 50% lower in magnitude and is located at high distance 
from the maximum peak, which facilitates the identification of the maximum peak. Notice 
that λmax=log(σmax)=0 involves σmax=1, i.e. there is no scaling between both images. The 
rotation between both images is θmax=-9.14º. Next, Imt(x,y) is corrected: Imt(x,y) is rotated an 
angle - α =9.14º. ImRt(x,y), the rotated-corrected version of Imt(x,y), is shown in Fig. 7right. 
The central rectangular part of ImRt(x,y), sR(x,y), is selected for the second part of the 
method. 
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Fig. 6. Resulting rp(θ,λ) (left) and sp(θ,λ) (right) 

   

Fig. 7. Left) Resulting qr(θ,λ). Right) ImRt(x,y), i.e. Imt(x,y) after rotation correction 

Once the rotation and scaling between ImSt-1(x,y) and Imt(x,y) have been cancelled, the 
following step is to compute the translations between sR(x,y) and r(x,y). The SPOMF is 
computed using (15) and (16). The resulting qt(x,y) is in Fig. 8left. The peak was very sharp. 
The maximum peak was located at xmax=-4 and ymax=7. Thus, sR(x,y) and r(x,y) are translated   
x0=-4 in axis x and y0=7 in axis y. Next, ImRt(x,y) is shifted by -x0 and -y0 in axes x and y 
respectively in order to compensate the vibration. Fig. 8right shows ImSt(x,y), the stabilized 
version of Imt(x,y), i.e. the translation-corrected version of ImRt(x,y). 

5. Practical issues 

This section presents practical aspects that have been developed to increase the robustness, 
accuracy and efficiency of the proposed method. 

5.1 Image enhance 

Preliminary experiments revealed that applying preprocessing image enhance methods 
improved significantly the performance of the proposed method. An efficient histogram 
stretching method was used. The objective is to transform the image levels such that the 
enhanced image has desired mean intensity -MIref- and contrast -Cref- values. The histogram 
stretching implements the following linear transformation function: 
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  ( , ) ( , )-
ref

E ref

C
Im x y Im x y MI MI

C
  , (17) 

where C and MI are the contrast and mean values before the histogram stretching. Im(x,y) 
and ImE(x,y) are respectively the images before and after applying image enhance methods. 
Image enhance increases the level of noise in the images. Although higher noise levels have 
harmful effects in feature-based matching methods, the high robustness to noise of SPOMF 
avoids the degradation in our case. In images with very low contrast levels it is interesting 
to apply edge detectors. Fig. 9 shows the resulting images after applying Sobel edge detector 
to r(x,y) and s(x,y) in Fig. 4. 

   

Fig. 8. Left) Resulting qt(x,y). Right) ImSt(x,y), stabilized version of Imt(x,y) 

 

   

Fig. 9. Resulting images after applying Sobel edge detector to r(x,y) and s(x,y) in Fig. 4 

5.2 Drift correction 

Constrained resolutions of digital images generate small sub-pixel errors in image matching. 
These errors have no perceptible consequences unless they accumulate originating drifts in 
incremental stabilization schemes. The simplest way to avoid drifts is to adopt an absolute 
stabilization approach, in which images are stabilized with respect to the same reference 
image Im0(x,y). Different schemes were analysed to update the reference images depending 
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on the application. The reference image is considered valid if the overlapping between 
Imt(x,y) and Im0(x,y) is above a certain threshold. Otherwise, a new reference image is 
needed. 

5.3 Operating modes 

The resolution in the computation of σ, α, x0 and y0 is highly dependent on the size of the 
images. Although it is not easy to establish mathematically this dependence in real noisy 
images, it is possible to analytically obtain some qualitative conclusions. 

Assume that the size of r(x,y) and s(x,y) is MxM and that the size of sp(θ,λ) and rp(θ,λ) is 
WxW. The resolution of the rotation angle depends on the size of Sp(υ,ω) and Rp(υ,ω), i.e. 

WxW. The minimum detectable rotation angle is αmin2/W. The value of W also has 
influence on the errors in the computation of the rotation angle. The higher W, the higher 
accuracy in the computation of the rotation angle. SPOMF produces broader peaks in qr(θ,λ) 
in case of using smaller W. The value of W depends on the number of different radius values 
considered in the polar conversion, which is constrained by the size of S(u,v) and R(υ,ω), 
which size is MxM. 

The size of r(x,y) and s(x,y), i.e. M, has influence on the resolution and errors in the 
computation of the translations. Low values of M involve broader peaks in qt(x,y), which 
involves poorer peak detection. 

To deal with different stabilization accuracies and computer burden, two operation modes 
have been selected: Mode1 and Mode2. Mode1 uses low values of M and W. Mode1 has 
moderate stabilization capability. Mode2 uses high values of M and W. Mode2 stabilizes more 
accurately at the expense of higher computer burden. Mode2 is applied when high accuracy 
is required or in case of vibrations of high magnitude. 

5.4 Increase accuracy through sub-pixel resolution 

As described in the above sub-section the resolutions in the computation of σ, α, x0 and y0 
are limited by sizes of qr(θ,λ) and qt(x,y) and thus, by the sizes of the images. Noise broadens 
the peaks of the SPOMF. A sub-pixel estimation method is used to determine with accuracy 
and robustness the location of the peak in qr(θ,λ) or qt(x,y). This sub-pixel method detects the 
maximum of qr(θ,λ) or qt(x,y) and defines a neighborhood around it. The centroid in the 
neighborhood around the maximum peak is considered as the location of the peak. This 
simple method allows incrementing the accuracy in peak localization. It also increases the 
robustness of the maximum peak detection in case qr(θ,λ) and qt(x,y) have secondary peaks 
near the maximum peak. 

6. Implementation 

The proposed method has been implemented in various problems illustrating its flexibility. 

6.1 Stabilization of images from a hovering UAV 

The proposed technique has been tested with the HERO3 helicopter, see Fig. 10 developed 
by the Group of Robotics, Vision and Control (GRVC) at the University of Seville (Spain). 
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The application is to perform building inspection and particularly the detection of thermal 
heat losses on the building envelope. The main perception sensors on board HERO3 are an 
Indigo Omega infrared micro-camera and a visual camera. The Indigo Omega use infrared un-
cooled detectors, with low sensitivity and high noise levels. The helicopter is equipped with 
an onboard PC-104 computer for stabilizing the infrared images and applying heat losses 
detection. 

   

Fig. 10. HERO3 during building inspection experiments carried out at the School of 
Engineering of Seville (Spain) 

The vibrations in the images have diverse origins. When the UAV is hovering, the images 
can be affected by low-frequency oscillations originated by the compensations of the UAV 
control systems. Also, images are affected by high-frequency vibrations induced by the UAV 
engine. When the helicopter is hovering at certain position and orientation, the low-
magnitude distortions between consecutive images can be approximated by translations and 
rotations. 

The method was customized for the application. It was assumed that there is no change in the 
scaling factor between images: it only corrected rotations and translations. The onboard 
infrared micro-camera weights 120 gr. and has a resolution of 160x120 pixels. r(x,y) and s(x,y) 
were selected of size 64x64. During the inspection the objective is to stabilize images when 
regions of interest are present in the images. An automatic function was developed to detect 
when an object of interest -windows in this problem- is present. At that moment the image 
stabilization method is triggered and this image is used to initialize the stabilization method. 

Fig. 11 shows consecutive infrared images taken from an infrared camera onboard HERO3 
in an experiment carried out in December 2005. The image noise level is rather high. The 
translations between the images can be observed. The stabilized images are in Fig. 12. The 
image stabilization time was 12,6 ms in a PC-104 with computing power similar to a 
Pentium III 800 MHz. 

6.2 Stabilization of infrared images from a ship 

The proposed method has been used for stabilization of images from an infrared camera on 
a ship. The objective was to detect other ships and obstacles using automatic computer 
vision methods. The stabilization method should keep the images stable despite the sea 
condition and ship motion. This application required a high-performance infrared camera 
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and optical system with high resolution and low noise level. Infrared images have some 
difficulties in sea scenes. Water absorbs infrared radiation: water appears in images with 
low radiation levels. Sky also appears in infrared images with low radiation levels. The 
horizon line can be well perceived in infrared images. 

   

   

Fig. 11. Sequence of consecutive images from an Indigo Omega onboard HERO3 
 

   

   

Fig. 12. Stabilized sequence of images 
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In images with no ships or objects, the stabilization method should greatly rely on the 
horizon line, what is useful to compensate rotations and translations in the vertical axis but is 
not enough to correct translations in the horizontal axis. If the image contains objects the 
method can correct also translations in the horizontal axis. Fortunately, in this application the 
method had to operate only if some threats for the ship navigation were found. An automatic 
tool was used to detect the presence of objects and to trigger the stabilization method. 

The implemented version included the image enhance methods to deal with the lack of 
contrast. The resolution of the cameras used was 512x512. Hence, r(x,y) and s(x,y), input of 
the algorithm, were selected of size 256x256 in Mode1 and 512x512 in Mode2. A short video 
showing the performance of the method can be found in (web1). In this video the ship was 
in the port and the camera was pointing at nearby forested area. Only very low magnitude 
vibrations can be observed. The method corrects the vibrations except the sub-pixel errors 
described in Section 5. The translational offsets x0 (left) and y0 (right) computed along one 
sequence of images are shown in Fig. 13. The time to stabilize one image was 102,1 ms in 
Mode1 and 346,6 ms in Mode2 in a computer with processing power similar to a Pentium III t 
800 MHz. 
 

   

Fig. 13. Values of x0 (left) and y0 (right) obtained in the stabilization of a sequence of 1000 
images from an infrared camera mounted on a ship 

6.3 Stabilization of images from a ground vehicle in motion 

The infrared camera is mounted on a ground vehicle. The camera is located on a pole at 
certain height and pointing such that it has a general view of an area. The vehicle can be 
static or moving on the ground. If the vehicle is static the method employed is similar to that 
used in Section 6.2. If the vehicle is moving, the stabilization method compensates rotations 
and vertical translations but do not cancel horizontal translations. When the vehicle is 
moving on the horizontal plane, even in the absence of vibrations, the images have 
horizontal translations. Without using any other sensors but the camera itself, it is not 
possible to differentiate if a horizontal translation is originated by the vehicle motion or by 
vibrations. 

Fig. 14 shows 6 consecutive images taken from one camera under vibrations. The camera 
moves on the horizontal plane along the image sequence. The images resulting from the 
complete stabilization version of the method -taking the first image as reference- are in Fig. 
15. The objects appear static along the sequence. The reduction in the overlapping between 
the images generates black patches of increasing size on the corrected images. The resulting 
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images after partial stabilization, i.e. without correcting the horizontal translations, are 
shown in Fig. 16. The scene appears static except for the horizontal axis. 

   

   

Fig. 14. Consecutive images taken from a camera under vibrations and moving on the 
horizontal plane 

.   

   

Fig. 15. Images resulting from the complete stabilization version of the method 

Both versions, complete and partial stabilization, were developed, each of them with two 
modes: Mode1 -image size is 256x256- and Mode2 -image size is 512x512. An operator can 
change the option (complete or partial stabilization) and mode during operation. In both 
cases the stabilization times were similar to those in Section 6.2. 
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Fig. 16. Images resulting from partial stabilization. The scene appears static except for the 
horizontal axis 

7. Conclusions 

This chapter presents a technique for stabilization of sequences of infrared images using 
frequency domain methods. The work is motivated by the lack of local features and high 
noise levels commonly present in infrared images, which hampers stabilization methods 
based on feature matching. Instead, the proposed method relies on the global structure of 
the image. The described method makes extensive use of Fourier-Mellin transforms and 
Symmetric Phase Only Matched Filtering. The Fourier-Mellin transform allows determining 
the rotation, scaling and rotation between two images by converting the images to log-polar 
coordinates. Symmetric Phase Only Matched Filtering enhances the performance of image 
matching in the presence of noise.  

The main strength of the proposed method is the capability to deal with images in which it 
is difficult to find clear and repeatable features. Its flexibility and capability for balancing 
between stabilization accuracy and computational cost is also remarkable and allows its 
customization to applications with different requirements. 

The chapter also concerns several practical aspects that have been considered to increase its 
robustness and accuracy including image contrast enhance and the definition of modes with 
different performance and computer burden. The method was implemented for real-time 
execution with low computing resources. Different versions were implemented and 
validated in several applications. Three of them are briefly summarized in the chapter. 

Software implementation and real-time execution have been two main requirements in the 
design of the methods. They originated the development of stabilization modes to balance 
between accuracy and computer cost. The implementation of the stabilization method in 
FPGA is interesting to reduce the computer burden of the main processor. In this case, 
Mode2, with better stabilization performance, could be used in all conditions. 
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The combination of visual and infrared images provides interesting synergies in a growing 
number of problems. The differences between images from cameras in different spectral 
bands would also hamper the application of feature-based methods. The use of the 
proposed method for matching images in different spectral bands is object of current work. 
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