7,340 research outputs found

    No-reference image quality assessment through the von Mises distribution

    Get PDF
    An innovative way of calculating the von Mises distribution (VMD) of image entropy is introduced in this paper. The VMD's concentration parameter and some fitness parameter that will be later defined, have been analyzed in the experimental part for determining their suitability as a image quality assessment measure in some particular distortions such as Gaussian blur or additive Gaussian noise. To achieve such measure, the local R\'{e}nyi entropy is calculated in four equally spaced orientations and used to determine the parameters of the von Mises distribution of the image entropy. Considering contextual images, experimental results after applying this model show that the best-in-focus noise-free images are associated with the highest values for the von Mises distribution concentration parameter and the highest approximation of image data to the von Mises distribution model. Our defined von Misses fitness parameter experimentally appears also as a suitable no-reference image quality assessment indicator for no-contextual images.Comment: 29 pages, 11 figure

    Tsallis non-extensive statistics, intermittent turbulence, SOC and chaos in the solar plasma. Part one: Sunspot dynamics

    Full text link
    In this study, the nonlinear analysis of the sunspot index is embedded in the non-extensive statistical theory of Tsallis. The triplet of Tsallis, as well as the correlation dimension and the Lyapunov exponent spectrum were estimated for the SVD components of the sunspot index timeseries. Also the multifractal scaling exponent spectrum, the generalized Renyi dimension spectrum and the spectrum of the structure function exponents were estimated experimentally and theoretically by using the entropy principle included in Tsallis non extensive statistical theory, following Arimitsu and Arimitsu. Our analysis showed clearly the following: a) a phase transition process in the solar dynamics from high dimensional non Gaussian SOC state to a low dimensional non Gaussian chaotic state, b) strong intermittent solar turbulence and anomalous (multifractal) diffusion solar process, which is strengthened as the solar dynamics makes phase transition to low dimensional chaos in accordance to Ruzmaikin, Zeleny and Milovanov studies c) faithful agreement of Tsallis non equilibrium statistical theory with the experimental estimations of i) non-Gaussian probability distribution function, ii) multifractal scaling exponent spectrum and generalized Renyi dimension spectrum, iii) exponent spectrum of the structure functions estimated for the sunspot index and its underlying non equilibrium solar dynamics.Comment: 40 pages, 11 figure

    Calculation of Generalized Polynomial-Chaos Basis Functions and Gauss Quadrature Rules in Hierarchical Uncertainty Quantification

    Get PDF
    Stochastic spectral methods are efficient techniques for uncertainty quantification. Recently they have shown excellent performance in the statistical analysis of integrated circuits. In stochastic spectral methods, one needs to determine a set of orthonormal polynomials and a proper numerical quadrature rule. The former are used as the basis functions in a generalized polynomial chaos expansion. The latter is used to compute the integrals involved in stochastic spectral methods. Obtaining such information requires knowing the density function of the random input {\it a-priori}. However, individual system components are often described by surrogate models rather than density functions. In order to apply stochastic spectral methods in hierarchical uncertainty quantification, we first propose to construct physically consistent closed-form density functions by two monotone interpolation schemes. Then, by exploiting the special forms of the obtained density functions, we determine the generalized polynomial-chaos basis functions and the Gauss quadrature rules that are required by a stochastic spectral simulator. The effectiveness of our proposed algorithm is verified by both synthetic and practical circuit examples.Comment: Published by IEEE Trans CAD in May 201

    World Modeling for Intelligent Autonomous Systems

    Get PDF
    The functioning of intelligent autonomous systems requires constant situation awareness and cognition analysis. Thus, it needs a memory structure that contains a description of the surrounding environment (world model) and serves as a central information hub. This book presents a row of theoretical and experimental results in the field of world modeling. This includes areas of dynamic and prior knowledge modeling, information fusion, management and qualitative/quantitative information analysis

    Multiscale Discriminant Saliency for Visual Attention

    Full text link
    The bottom-up saliency, an early stage of humans' visual attention, can be considered as a binary classification problem between center and surround classes. Discriminant power of features for the classification is measured as mutual information between features and two classes distribution. The estimated discrepancy of two feature classes very much depends on considered scale levels; then, multi-scale structure and discriminant power are integrated by employing discrete wavelet features and Hidden markov tree (HMT). With wavelet coefficients and Hidden Markov Tree parameters, quad-tree like label structures are constructed and utilized in maximum a posterior probability (MAP) of hidden class variables at corresponding dyadic sub-squares. Then, saliency value for each dyadic square at each scale level is computed with discriminant power principle and the MAP. Finally, across multiple scales is integrated the final saliency map by an information maximization rule. Both standard quantitative tools such as NSS, LCC, AUC and qualitative assessments are used for evaluating the proposed multiscale discriminant saliency method (MDIS) against the well-know information-based saliency method AIM on its Bruce Database wity eye-tracking data. Simulation results are presented and analyzed to verify the validity of MDIS as well as point out its disadvantages for further research direction.Comment: 16 pages, ICCSA 2013 - BIOCA sessio

    World Modeling for Intelligent Autonomous Systems

    Get PDF
    The functioning of intelligent autonomous systems requires constant situation awareness and cognition analysis. Thus, it needs a memory structure that contains a description of the surrounding environment (world model) and serves as a central information hub. This book presents a row of theoretical and experimental results in the field of world modeling. This includes areas of dynamic and prior knowledge modeling, information fusion, management and qualitative/quantitative information analysis
    • …
    corecore