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An innovative way of calculating the von Mises distribution of image entropy is introduced in this paper. The von
Mises distribution’s concentration parameter and some fitness parameter that will be defined later have been ana-
lyzed in the experimental part for determining their suitability as an image quality assessment measure in some
particular distortions such as Gaussian blur or additive Gaussian noise. To achieve such measure, the local Rényi
entropy is calculated in four equally spaced orientations and used to determine the parameters of the von Mises
distribution of the image entropy. Considering contextual images, experimental results after applying this model
show that the best-in-focus noise-free images are associated with the highest values for the von Mises distribution
concentration parameter and the highest approximation of image data to the von Mises distribution model.
Our defined von Mises fitness parameter experimentally appears also as a suitable no-reference image quality
assessment indicator for no-contextual images. © 2012 Optical Society of America

OCIS codes: 110.3000, 100.2000, 330.6180, 180.0180.

1. INTRODUCTION
Digital images can suffer a number of different operations that
take into account, e.g., acquisition, coding, compression,
transmission, and many others before their final use. In such
processes, digital images might be affected by many kinds of
degradations revealed by different types of visual distortions.
A list of different possible types of degradations has been con-
sidered in the image database TID2008 by Ponomarenko et al.

[1]. A key feature about images is their quality. However, im-
age quality is a concept difficult to define. In many situations it
is defined through the degree in which some requirements are
fulfilled. In a semantic approximation, image quality is

understood as the subjective impression of how well image
content is rendered or reproduced [2]. This definition yields
to the concept of image quality assessment. In practice, such
assessment can be achieved by two means: one is by psycho-
physical subjective experiments with human observers, and
the other one is by objective metrics applied directly to digital
images [3]. Image quality assessment is a very active research
area with many contributions, techniques, and models [4].
Typically, image quality can be measured by comparison with
a reference, but unfortunately such a reference is not avail-
able in many applications. Hence, no-reference image quality
assessment methods are required, and they have been the
subject of very active research during the last years. However,
a universal method for estimating the overall image quality
is still a challenging open issue. Customarily, existing no-
reference methods deal with simple specific degradations
such as Gaussian blur or additive white noise. A good survey
about existing no-reference sharpness metrics may be found
in Ferzli and Karam [5], where their metric is compared to
others with good results. Ferzli and Karam introduced the no-
tion of just noticeable blur (JNB). It is an edge-based sharp-
ness metric based on a human visual system model. Other

metrics have been developed including blur and noise simul-
taneously, such as the one by Zhu and Milanfar [6], introdu-
cing a new concept called true image content. Their measure
is correlated with noise, sharpness, and intensity contrast,
manifested in visually salient geometric features such as
edges, showing that such a measure correlates well with sub-
jective quality evaluation for both blur and noise distortions.
However, the Zhu and Milanfar technique has been designed to
compare images within the same context (images covering the
same area but having different quality attributes), while the
sharpness metric of Ferzli and Karam has been developed to
predict the relative amount of blurriness in images regardless
of their context (note that, in what follows, we will consider
that images resulting from distorting a given original enclose
the same context and we will use the term different context
for degraded or distorted images resulting from different
originals). According to Zhu, the JNB technique fails to capture
the trend of quality change in block-matching and three-
dimensional (BM3D) [6] denoising experiments, since it cannot
handle noise well. Later on, Narvekar and Karam [7] proposed
an improved algorithm based on the JNB paradigm for a no-
reference objective image sharpnessmetric, introducing a tech-
nique they called the cumulative probability of blur detection

(CPBD). In this work, the sharpnessmetric converges to a finite
number of quality classes. They used the LIVE [8] database to
validate the performance of their metric. A training-basedmeth-
od determines the centroids of the quality classes that repre-
sent the perceived quality levels. Classification is based on
assigning the image to one of the quality classes and then using
the index of the corresponding quality class as the metric value
for that image. They include measuring experiments for Gauss-
ian blur and JPEG2000-compressed images, and they show that
this metric performs better than other known metrics.

In summary, diverse reference and no-reference classifica-
tions of metrics can be considered. According to the type of
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distortion they measure, specific metrics (only one type)
versus universal metrics (all types) could be considered. Con-
cerning its contextual character, we can find contextual me-

trics when comparing images within the same context or
no-contextual metrics when they provide a measure regard-
less of the image context. In addition to the previous schemes,
supervised and unsupervised approaches may be considered
in the image quality framework.

This paper is a step forward from the approach introduced
by Gabarda and Cristóbal [9] that links image directional en-
tropy with image quality assessment. In [9], the variance of the
directional entropy of the image was introduced as a quality
assessment parameter, presenting the highest value when
the image is free of Gaussian blur or Gaussian noise and
decreases monotonously with blur and noise increments.
Gabarda and Cristóbal’s method may be classified as a con-
textual, no-reference, specific, and unsupervised metric. In
this paper, we extend this methodology for image quality as-
sessment to both contextual and no-contextual applications
by introducing the von Mises distribution of the directional
image entropy as the cornerstone of a new image quality me-
tric for blur and noise. We provide a Matlab implementation of
the von Mises distribution-based no-reference quality measure
that can be downloaded from [10].

This paper is organized as follows. Section 2 gives the math-
ematical background required to understand our methodol-
ogy. Section 3 presents some applications of the von Mises
distribution for image quality measurement, along with the
performances of this method against the mean opinion score
(MOS) of the TID2008 image database and the differential
mean opinion score (DMOS) of the LIVE image database.
Results are compared with scores from other no-reference
quality assessment existing methods. Finally, conclusions
are drawn in Section 4.

2. DESCRIPTION OF THE METHOD
A. Directional Entropy
The information content of images can be measured in differ-
ent ways. One of the most popular is the entropy. Generally
speaking, the measurement of entropy was initially proposed
by Shannon [11] as a measure of the information content per
symbol, coming from a stochastic information source. It can
be considered as a quantifier of the uncertainty or random-
ness of a signal or, in other words, a measure of the informa-
tion content of the signal. Given a discrete random variable
X � fx1; x2;…; xIg, the Shannon entropy of this discrete
random variable can be computed as

H�X� � −
XI
i�1

P�xi� log P�xi�; (1)

where P�xi� is the probability of event xi.
Later, Rényi [12] extended this notion to yield the general-

ized entropy, whose representation for discrete random
variables is

Rα�X� �
1

1 − α
log2

�XI
i�1

Pα�xi�
�
. (2)

Here α is a real-positive number. It can be shown that the
Rényi entropy, as a generalization of the Shannon entropy,
reverts to the Shannon entropy when α → 1.

Measures of entropy may be global, affecting the whole im-
age, or may be localized in each pixel by the use of a sliding
window, centered in each pixel, that gathers the neighbor-
hood of that pixel with the desired geometry.

Our proposal is to use a linear array of pixel values, cen-
tered in the interest pixel and oriented in a set of desired
directions, in order to have a directional measure of entropy
at pixel level. To do so, an operational sliding window L is
defined, containing the N � 1 pixels that better fit the ideal
line centered in the interest pixel and directed by angle θ.
N is required to be an even number to preserve the symmetry
of the window.

Better than considering the gray values of the image as in-
put to the entropy calculation, we prefer considering the
space-frequency information of the image. Space-frequency
representations of a signal open up the possibility of exploring
the image information taking into account the position and the
local frequency content of the image. One of these space-
frequency representations is the Wigner distribution (WD)
[13]. A common analytical framework of space-frequency
representations was introduced by Cohen [14]. The WD has
been selected due to its excellent properties and because it
can be regarded as a masterform distribution function from
which the other existing representations can be derived as fil-
tered versions of it [15]. The WD approximation for discrete
signals is better known as pseudo-Wigner distribution (PWD).
To calculate a local PWD, we will use the following equation:

W�n; k� � 2
XN2−1
m�−N

2

z�n�m�z��n −m�e−i2πk
�

2m
N

�
. (3)

This approximation of the PWD is due to Claasen and
Mecklenbräuker [16] and is similar to Brenner’s expression
[17]. In Eq. (3) the variable z�n� represents the gray value
of pixel n in a given image z. A directional PWD may be cal-
culated by using Eq. (3) along with a pixel-by-pixel sliding win-
dow Dθ to pick up the values z� z�−N ∕ 2�;…; z�0�;…; z�N ∕ 2�.
The central position of the window matches exactly pixel n
on the image. Equation (3) can be interpreted as the discrete
Fourier transform (DFT) of the product r�n;m� �
z�n�m�z��n −m�. Here z� indicates the complex-conjugate
of signal z (note that z � z� for real-valued images). The sum
is limited to the N terms whose values are taken in the spatial
interval (−N ∕ 2, N ∕ 2 − 1). In Eq. (3), n and k represent the
space and frequency discrete variables, respectively, and m

is a shifting parameter, which is also discrete. By shifting
the window to all possible positions over the image, the full
pixelwise PWD of the image is produced.

In what follows, we will take the PWD in Eq. (3) as the dis-
tribution to be used as input to Eq. (2). Consequently, each
spatial position n will receive a certain value of entropy.

Diverse measures of entropy may be defined upon the kind
of distribution and normalization used with the formulation
due to Rényi. Although the Rényi measures in time-frequency
distributions formally resemble the original entropies, they do
not have the same properties, conclusions, and results derived
in classical information theory. The positivity, P�n; k� ≥ 0, will
not be always preserved, along with the unity energy condi-
tion

P
kP�n; k� � 1 for a given pixel n. In order to reduce a

distribution to the unity signal energy case, some kind of
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normalization should be applied. The normalization can be
performed in various ways, leading to a variety of possible
measurement definitions [18–22].

The Rényi entropy measure applied to a discrete space-
frequency distribution, as the PWD denoted by W�n; k�, can
be written as

R�n� � −
1
2
log2

�X
k

W3�n; k�
�
. (4)

In [20], it is stated that α � 3 is the first value to yield a well-
defined, useful information measure for time-frequency repre-
sentations. Along with all Rényi entropies of odd orders, α � 3
possesses an asymptotic invariance to cross-components in
the time-frequency plane that neutralize the contribution of
such components in the resulting entropy. Other odd numbers
can be used to calculate Rényi entropy, but here α � 3 has
been selected for simplicity, giving Eq. (4). The summation
is restricted to the one-dimensional (1D) neighborhood of
pixel n, as described above. Again k is the frequency discrete
variable. In order to reduce the distribution W�n; k� to the
unity signal energy case, some kind of normalization must
be done [18]. To do so, the PWD given by Eq. (3) is normalized
by applying the following normalizing law, as a previous step
to the Rényi entropy measure:

~W�n; k� � W�n; k�W��n; k�P
k

�W�n; k�W��n; k�� �
W2�n; k�P
k

W2�n; k� . (5)

SquaringW is a straightforward method for converting it in
a probability distribution, provided that the PWD is a real-
valued time-frequency representation (only real-positive or
real-negative values are possible), and then negative values
are converted in positive by squaring. We have tested other
normalizations and our experiments have shown that this nor-
malization outperforms the results due to other known nor-
malizations [22]. The normalizing step affects exclusively
index k, when the window operation in Eq. (4) is applied
to pixel n; hence the condition

P
k
~W�n; k� � 1 in such posi-

tion is fulfilled.
It can be shown that the Rényi entropy meets the constraint

0 ≤ Rα�n� ≤ log2 N [23,24]. Hence, the measure can be normal-
ized to the interval [0,1] by applying R�n� � R�n� ∕ log2 N
in Eq. (4).

The 1D window used to measure entropy by this method
may be oriented in any desired direction θ, as indicated above,
and entropy is now denoted by R�n; θ�. This local pixelwise
directional entropy can be constrained to a scalar value
for the whole image by averaging all the R�n; θ� values by
means of

R̄�θ� � hR�n; θ�i � 1
M

X
n

R�n; θ� (6)

provided that M is the number of pixels in the image.

B. Von Mises Distribution
The vonMises distribution belongs to probability theory and is
used to handle directional statistics for continuous probability
distribution on a circular basis. It appears, in many respects,

analogous to the normal distributions for a scalar variable. It
was proposed by von Mises [25] to study deviations of atomic
weights from integer values. This distribution has also been
applied to diverse applications in many fields and has become
an important tool in the statistical theory of directional
data [26].

The von Mises probability density function for the angular
variable θ is given by

f �θjμ; κ� � 1
2πI0�κ�

eκ cos�θ−μ�; (7)

where I0�κ� is the modified Bessel function of order 0, and θ is
defined in the interval �−π; π�. The parameter κ is responsible
for how concentrated the distribution is around the mean di-
rection μ. Larger values of the concentration parameter κ in-
dicate that the distribution is more closely grouped around the
mean direction. When κ � 0, this distribution is equivalent to
the uniform distribution. This fact happens when directions in
the image are endowed with equal probability. The uniform
circular distribution is, for example, a good model for
Gaussian noise.

Different authors have dedicated some research to the link
between images and the von Mises distribution. For instance,
Vo and Oraintara [27] proposed a new statistical modeling of
natural images in the wavelet transform domain. They claimed
that the von Mises distribution fits accurately the behaviors of
relative phases in the complex directional wavelet sub-band
from different natural images, and introduced a new image
feature based on the von Mises model for image texture retrie-
val applications. Palacios et al. [28] presented what they called
new tools for color image processing, based on the circularity
of the hue variable of a color image. They gave a definition of
the median and the range of angular data and applied their
results to detect hue edges. Feng [29] presents an image local
orientation estimation method, which is based on a combina-
tion of two well-known techniques: the principal component
analysis (PCA) and the multiscale pyramid decomposition.
Grana et al. [30] described a new approach to texture charac-
terization for document analysis. By considering the auto-
correlation matrix, they described image texture through a
mixture of von Mises distributions.

C. Von Mises Distribution of Image Entropy
As a further contribution to the applications cited in the pre-
vious section, we propose to use the vonMises distribution for
modeling the directional distribution of the image entropy,
calculated by means of Eq. (6). The measure defined for
the image by Eq. (6) requires the use of a bimodal von Mises
distribution, provided that R̄�θ� � R̄�θ� π�, as will be shown
later in this section. This requirement is fulfilled when we take
a � 1 ∕ 2 and μ2 � μ1 � π in the following bimodal expression
of the von Mises distribution:

f �θjμ; κ� � a

2πI0�κ�
eκ cos�θ−μ1� � 1 − a

2πI0�κ�
eκ cos�θ−μ2�; (8)

from which we arrive to [31]

f �θjμ; κ� � 1
2πI0�κ�

cosh�κ cos�θ − μ��. (9)

2060 J. Opt. Soc. Am. A / Vol. 29, No. 10 / October 2012 S. Gabarda and G. Cristóbal



Equation. (9) can be considered as the basis for modeling
directional statistics of image entropy. One of the features
to take into account in the discrete directional model for image
entropy based on Eq. (6) is the number of axes that can be
defined in the image. Two requirements must to be fulfilled
in order to consider that the directional measures, based on
Eq. (6), are completely comparable. First, all directions must
be measured through windows consisting of the same number
of pixels, and second, the span of the windows in all possible
directionsmust have the same length. These twoconstrains are
only possible when using four directions along the axes of a
regular octagon, i.e., π ∕ 8, 3π ∕ 8, 5π ∕ 8, 7π ∕ 8. This assertion is
based first on the fact that the PWD of a given array as, for ex-
ample, �x1;…; xN �, is the same as that of its reverse array
�xN;…; x1� (note that the orientation of these two arrays differ
in π). This feature determines that the angular periodicity of the
Rényi entropy is π. Secondly, the discrete character of the im-
age, represented by pixels, determines some constrains in the
topology of pixel arrays across the image. For all this, we have
to restrict our calculations to 1D windows directed by axes
along an octogonal arrangement of angles. Figure 1 graphically
shows the topological equivalence of the four directions
proposed in this paper.

The four directionalities θi ∈ fπ ∕ 8; 3π ∕ 8; 5π ∕ 8; 7π ∕ 8g that
we have defined are used to calculate four values R̄�θi� of en-
tropy by means of Eq. (6) that will be referred to as vectors
Ri � �Ri; θi�. These directional entropies can also be repre-
sented by means of Cartesian vectors by Ri � �xi; yi�T �
�Ri cos θi; Ri sin θi�T .

Some definitions for a resultant vector and a mean angular
direction in von Mises distribution have been given by [32] and
one analysis for modeling circular data may be found in [33].

In our approximation, we first perform a preliminary esti-
mation of μ by a single value decomposition (SVD) of the di-
rectional vectors Ri, according to [29], that tackles the image
orientation estimation problem through the local image gradi-
ent. The singular vector vi of the matrix

X �

0
BBBBB@

RT
1

RT
2

RT
3

RT
4

1
CCCCCA

�

0
BBBBB@

R1 cos θ1 R1 sin θ1
R2 cos θ2 R2 sin θ2
R3 cos θ3 R3 sin θ3
R4 cos θ4 R4 sin θ4

1
CCCCCA

(10)

corresponding to its largest singular value gives an estimation
of the parameter μ̂ � arg�v1�.

Also, an initial estimation of κ can be achieved by the fol-
lowing approximation due to Dhillon [34]: κ̂ � 1 ∕ 2�1 − R̄�,
where R̄ � ‖

P
4
i�1 Ri‖ ∕ 4.

The second step is a gradient descent algorithm to find a
better estimation for κ. Also, the value of μ is updated by

determining the angular position of the maximum of the en-
tropy function, after each iteration of κ. The set of values
f f �θi�; Rig, for θi � π ∕ 8; 3π ∕ 8; 5π ∕ 8; 7π ∕ 8, with i � 1, 2, 3, 4,
respectively, is matched by a minimum square error estima-
tion method to find the coefficients A and B that fit the equa-
tion Ri � Af �θi� � B. An exact fitting is attained if A � 1 and
B � 0. An error function ε�κ� � ‖�A�κ�; B�κ�� − �1; 0�‖ is de-
fined to control the κ increments, in order to find a minimum
for this error function. The algorithm runs by means of a re-
cursive law κi�1 � �1� C� × κi, C � 0.01 for updating the va-
lues of κ. The algorithm stops when the error value reaches a
minimum. A Matlab implementation of this algorithm may be
found in [35].

The accuracy of the estimated distribution f̂ �θ� to a true von
Mises distribution is measured by defining a fitness function
φ�ε� � e−ε. This function has to be considered here as a
measure of the probability that an individual solution survives
in the iterative algorithm, as a general law applied in evolution-
ary computation [36]. Functionφ�ε� has been defined bymeans
of an exponential law, in such a way that 0 ≤ φ ≤ 1, increasing
monotonously with decreasing values of ε. The value of φ will
be 1 for the best fitting and 0 for the worst. The resulting value
of φ when the iterative algorithm ends is taken as the fitness
parameter of the resulting approximation of the von Mises dis-
tribution of the image entropy. An example of estimation of the
von Mises distribution for a given image is shown in Fig. 2.
Triangles indicate the directional entropy values �Ri; θi� used
as input to the algorithm that estimates the von Mises distribu-
tion, f̂ �θ�, of the image.

To characterize the behavior of κ and φ, the algorithm has
been tested with the images in the image database TID2008
due to Ponomarenko et al. [1]. This database contains 25
reference color images and 1700 distorted images (25 refer-
ence images × 17 types of distortion × 4 levels of distortion)
in bitmap format without any compression. Images are 512 ×
284 pixels in size. The test has been performed taking the 25
reference images, excluding image 25, provided that this last
one is artificial and has been considered inappropriate for
our study.

Fig. 1. Different configuration of pixels to define directional win-
dows Dθ , with N � 9 pixels and four equally spaced orientations
π ∕ 8, 3π ∕ 8, 5π ∕ 8, 7π ∕ 8. Note that periodicity is π, provided that θ
and θ� π originates pixel arrays with the same PWD.

Fig. 2. (Color online) Von Mises distribution of the directional entro-
py for image I21 contained in the database TID2008 [1]. Triangles in-
dicate the value of directional entropy for the target image after four
different axes. κ � −0.36, μ � −78.75 deg (twin pick at 101.25°).
Fitness parameter: φ � 0.89.
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Reference images have been first degraded by adding blur
in iterative manner by means of a rotationally symmetric
Gaussian lowpass filter of size 5 × 5 pixels with standard de-
viation σ � 1, and in a second instance by adding Gaussian
noise, also iteratively, with standard deviation σ � 0.01. Con-
sidering the 24 originals and nine iterations for each original
image, we produced a test set of 240 images. Figures 3 and 4
show the average values of κ and φ for all these images, having
the degradation level, denoted by Λ, as abscissa. Measure-
ments indicated that φ � 0.88� 0.02 as the expected value
of the fitness parameter for the 24 originals (originals are re-
presented by Λ � 0 in images 3 to 8), indicating that the fit-
ness parameter φ of the von Mises distribution converges to a
common value for good-quality images. In general, when more
blur or Gaussian noise is added, fitness decreases, and the var-
iance of φ increases, indicating that, for severe degradation,
the von Mises entropy paradigm for image modeling does not
hold anymore.

Figures 3–6 show the behavior of the parameters κ and φ by
averaging the values from the outcome of our algorithm for
the 24 images in the TID2008 database. A hybrid blur-noise
situation has been experimented by adding blur and noise
simultaneously to the images in the TID2008 database (see
Figs. 7 and 8).

Two main consequences are derived from the previous ob-
servations. First, the fitness parameter has a low value
(φ ≪ 0.88) for blurred images or very noisy images, and a
high value (φ ≅ 0.88) for undegraded images. The second con-
sequence is that quality of the images is maximum when κ
reaches a maximum in the series of diversely degraded images
from a given original.

3. APPLICATION OF VON MISES
DISTRIBUTION TO IMAGE QUALITY
ASSESSMENT
A. Von Mises Distribution and Image Quality
Assessment of Contextual Images
The behavior of the κ parameter of the von Mises distribution
suggests that it can be considered as an image quality assess-
ment index, when dealing with Gaussian blur or Gaussian

noise. In order to have a quantitative evaluation of this
statement, we compare the classification after this parameter
versus the MOS for two specified distortion types in database
TID2008.

The image database TID2008 includes 17 different degrada-
tion types with one to four strength levels. The image database
includes information about the MOS for each distorted image.
The degraded images labeled as Gaussian noise and Gaussian
blur have been scored by means the κ value determined by our
von Mises algorithm. Later on, we used the Kendall, Spear-
man, and Pearson correlation coefficients to evaluate the
similarity between the MOS values and the κ parameter calcu-
lated by means of our method for Gaussian noise and image
blur from the TID2008 database. Results are shown in Table 1.
Figures in Table 1 must be understood as representing
measures in a contextual, specialized, no-reference, and no-
learning metric.

In order to put figures in Table 1 in line with other ex-
isting no-reference methods, we include Table 2, where our

Fig. 3. (Color online) Averaged variation of κ (concentration param-
eter) against increasing amount of Gaussian blur for reference images
in the TID2008 database. Λ values represent the number of iterations
of the blur kernel over the original image.

Fig. 4. (Color online) Averaged variation of φ (fitness) against
increasing amount of Gaussian blur for reference images in the
TID2008 database. Λ values represent the number of iterations of
the blur kernel over the original image.

Fig. 5. (Color online) Averaged variation of κ (concentration param-
eter) against increasing amount of Gaussian noise for reference
images in the TID2008 database. Λ values represent the number of
iterations of the noise kernel over the original image.
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measures are compared to the results published by Zhu and
Milanfar [6] using the same image database and the Spearman
correlation coefficient.

Figures in Table 2 reveal that the κ parameter of von Mises
distribution has a strong correlation with Zhu and Milanfar
measures for Gaussian blur and Gaussian noise distortions.

B. Autofocusing Example
A short depth of field is an inherent limitation in optical mi-
croscopy. Basically, the focal plane of the microscope needs
to be critically located to observe the sharper image. Hence,
autofocusing techniques must be included in automatized op-
tical microscope systems. Relevant examples of images from
bright field microscopy may be found in Valdecasas [37].

The behavior of the κ parameter of the von Mises distribu-
tion suggests that it can be considered as an image quality as-
sessment index, when dealing with Gaussian blur or Gaussian

noise. After the above quantitative evaluation of this param-
eter through the TID2008 database, we present a real-life
example to illustrate one of the possible applications of this
no-reference image quality assessment method for contextual
images. In this example, a sequence of 100 images from an
optical microscope has been processed by our algorithm to
determine their κ values. Images are 256 × 256 pixels in
size. Images 10, 30, 50, and 70 of the stack are shown in Fig. 9.
The best image according to our algorithm is number 57 in the
sequence, which can be seen in Fig. 10. Figure 11 plots the
values of κ for the whole sequence of images.

C. Von Mises Distribution and Image Quality
Assessment of No-Contextual Images
One of the objectives of this paper consists in determining
whether the von Mises distribution can be used to construct
a no-reference quality metric in the no-contextual case. The
definition of a metric for image quality assessment based
on the von Mises distribution for no-contextual images re-
quires some kind of normalization, to assure independence
of the measure from the image context. To do so, we have
designed two possible measures taking into account the re-
sults in the previous section. Following these results, we pos-
tulate that both, the concentration parameter, κ, and the
fitness parameter, φ, decrease exponentially with increasing
amount of degradation (e.g., Gaussian blur), which can be
modeled by expressions like κ � κ0 exp�−βD� or φ �
φ0 exp�−βD�, where D is the degradation and β is a shape fac-
tor exclusive for each image. Empirically, we have found con-
vergence at the origin for φ0 to 0.88, although there is not a
similar convergence for κ0. The second of these expressions is

Fig. 6. (Color online) Averaged variation of φ (fitness) against
increasing amount of Gaussian noise for reference images in the
TID2008 database. Λ values represent the number of iterations of
the noise kernel over the original image.

Fig. 7. (Color online) Averaged variation of κ (concentration param-
eter) against increasing amounts of Gaussian blur plus Gaussian noise
for reference images in the TID2008 database. Λ values represent
the number of iterations of the Blur� noise kernel over the
original image.

Fig. 8. (Color online) Averaged variation of φ (fitness) against in-
creasing amounts of Gaussian blur plus Gaussian noise for reference
images in the TID2008 database. Λ values represent the number of
iterations of the Blur� noise kernel over the original image.

Table 1. Similarity between κ and MOS Values for

Images in TID2008, Measured by Kendall, Pearson,

and Spearman Coefficients

Type of degradation Kendall Pearson Spearman

Gaussian noise 0.7778 0.8052 0.8083
Gaussian blur 1.0000 0.9600 1.0000
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simpler to calculate, provided that κ0 is an unknown param-
eter, while φ0 has been experimentally determined as φ0 �
0.88� 0.02 (for Gaussian blur). The exponential variation
of φ can be written in a logarithmic way as

log φ � log φ0 − βD. (11)

The derivative of Eq. (11) gives d�log φ� ∕ dD � −β, and β can
be approximated by

β � −Δ�log φ� ∕ΔD (12)

for small increments, ΔD.
Now, let us suppose that an arbitrary image Ii produces an

outcome parameter φi. By convolving the image with an ap-
propriate kernel, g (i.e., a PSF of 5 × 5 pixels and σ � 1.5), a
controlled amount of blur may be added to the image. Then,
Ii�1 � Ii � g is a little more degraded image than Ii. Suppos-
ing that the fitness parameter for Ii�1 is φi�1, and making
ΔD � 1 for a given measuring scale, we can say, from
Eq. (12), that β ≃ log�φi ∕φi�1�, and introducing this value in
Eq. (11),

Di � −�log φi − log φ0� ∕ β. (13)

Equation (13) defines in this way a new no-contextual mea-
sure for image quality assessment for the Gaussian blur case.
The measure requires the estimation of the decay constant β
for each specific image as indicated in Eq. (12). This new
measure will be referred hereafter as von Mises degradation

measure (VMDM) and D will be expressed in von Mises
degradation units.

In order to evaluate the performance of the VMDM, we have
applied our algorithm to the Gaussian blur images in the LIVE
image database. This group is composed of 144 degraded
images plus 29 originals. For our validation test, we have se-
lected a group of 29 images (20% of the degraded subgroup),
i.e., from image number 117 to 145. Then we have correlated
our quality scores with the DMOS scores of this group. Con-
sidering that the observations are positive quantities varying
over many orders of magnitude, it is plausible to assume that
the noise of the observations will be Gaussian, and the data

will be well modeled as a Gaussian process. In this context, it
is standard practice in the statistics literature to take the log of
the data [38]. Then, we have used log�1� Di� instead of Di for
correlation. Results for the Pearson and Spearman coeffi-
cients are shown in Table 3.

As expected, Table 3 presents good performance results,
but is still far from a perfect matching with the DMOS scores.
An objective measure must necessarily have some differences
when compared with recordings from subjective human ob-
servers. Even more, DMOS values will change if the database
is created using different methodologies and environmental
settings; hence, subjective scores are not comparable [39],
while the objective test will remain the same. However, the
scores in Table 3 can be improved by applying some weighting
transformation to the VMDM scores by incorporating to these
scores some learning process that mimics the specific human
preferences existing in the DMOS recordings accompanying
the LIVE database. To do so, the logarithmic VMDMmeasures
and the transformed VMDM measures may be related, for
example, through a function f [38] given by

D̂ � f �D;Ψ� � D�
XI
i�1

ai tanh�bi�D� ci��

ai; bi ≥ 0 ∀ i;

(14)

where Ψ � fa; b; cg.
Taking I � 5, the values for the ai, bi, ci coefficients have

been determined by a Monte Carlo process that maximizes the
Pearson� Spearman correlation with the DMOS scores. We
have used images 1 to 116 (the 80% of the 145 blurred images)
in the LIVE database as the learning set and we have used the
former set of 29 images for crossvalidating the measures. Our
results are shown in Table 4. The table includes also the re-
sults from Narvekar and Karam’s method for the same group
of distortion.

Comparative results indicate that this method based on the
φ parameter of the von Mises distribution is highly matching
the DMOS scores for the Gaussian blur set of images in the
LIVE database. Our results are comparable with the results
given by Narvekar and Karam’s method, which is based on
a sharpness metric for Gaussian blurring when applied to
no-contextual images. Our method has the advantage of being
self-contained and its performance can be even improved by
adding a learning step.

The degradation measure D defined in this section is an al-
ternative method to determine the relative quality of images
with different context. Bearing in mind that images with
the same context are a special case of images of different
context, with context difference equal to zero, the algorithm
used in Subsection 3.C is able to work as well for the cases

Table 2. Spearman Correlation Coefficients for κ and
Zhu and Milanfar Algorithms [6] Referred to MOS

Values in TID2008 Image Database

Method Gaussian blur Gaussian noise Blur� noise

Zhu and Milanfar 1.0000 0.9760 0.9210
κ 1.0000 0.8083 0.8083

Fig. 9. From left to right, capture 10, 30, 50, and 70 from a sequence of 100 light microscope images.
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considered in Subsections 3.A and 3.B, but the measures will
be according with the results obtained in Subsection 3.C. That
means that the algorithm used in Subsections 3.A and 3.B
should be preferred for such a case and hence, we have de-
clined the evaluation of the VMDM for contextual images.
Conversely, the method in Subsections 3.A and 3.B cannot
be extended to no-contextual images, and this has been the
reason to define measure D. The suitability of the exponential
relationship between φ andD is an ad-hoc conjecture that is in

agreement with the experiments, but other feasible better ap-
proximation through a different function is possible. This is a
mathematical optimization problem that is out of the scope of
the present paper and that will be considered in future
research.

4. CONCLUSIONS
In this paper, we have introduced a new way of determining
the von Mises distribution of the image information. The
possible applications of the von Mises distribution for image
quality assessment have been experimentally tested and a set
of parameters, κ, φ, andD, have been defined as quality assess-
ment indicators for individual images. The κ parameter of the
von Mises distribution has experimentally shown that it can be
considered as a suitable no-reference quality indicator when
dealing with contextual images. Significative results have
been presented for the Gaussian blur and Gaussian noise
cases. Also, the defined von Mises distribution fitness param-
eter, φ, has shown its suitability as a no-reference quality
indicator in the no-contextual case, but restricted only to
Gaussian blur. Not enough significance has been found be-
tween κ or the fitness parameter φ and other types of degra-
dation when dealing with no-contextual images. However,
given the strong relationship of the von Mises distribution
to the image quality assessment that has been shown in this
paper, it is expected that this methodology will provide new
applications of the von Mises distribution of image entropy
for image processing, and that will be the subject of our
further work.
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