971,227 research outputs found

    Estimating the Maximum Expected Value: An Analysis of (Nested) Cross Validation and the Maximum Sample Average

    Full text link
    We investigate the accuracy of the two most common estimators for the maximum expected value of a general set of random variables: a generalization of the maximum sample average, and cross validation. No unbiased estimator exists and we show that it is non-trivial to select a good estimator without knowledge about the distributions of the random variables. We investigate and bound the bias and variance of the aforementioned estimators and prove consistency. The variance of cross validation can be significantly reduced, but not without risking a large bias. The bias and variance of different variants of cross validation are shown to be very problem-dependent, and a wrong choice can lead to very inaccurate estimates

    Estimating the GARCH Diffusion: Simulated Maximum Likelihood in Continuous Time

    Get PDF

    Estimating the Maximum Information Leakage

    Get PDF
    none2noopenAldini, Alessandro; DI PIERRO, A.Aldini, Alessandro; DI PIERRO, A

    Estimating the GARCH Diffusion: Simulated Maximum Likelihood in Continuous Time

    Get PDF
    A new algorithm is developed to provide a simulated maximum likelihood estimation of the GARCH diffusion model of Nelson (1990) based on return data only. The method combines two accurate approximation procedures, namely, the polynomial expansion of Aït-Sahalia (2008) to approximate the transition probability density of return and volatility, and the Efficient Importance Sampler (EIS) of Richard and Zhang (2007) to integrate out the volatility. The first and second order terms in the polynomial expansion are used to generate a base-line importance density for an EIS algorithm. The higher order terms are included when evaluating the importance weights. Monte Carlo experiments show that the new method works well and the discretization error is well controlled by the polynomial expansion. In the empirical application, we fit the GARCH diffusion to equity data, perform diagnostics on the model fit, and test the finiteness of the importance weights.Ecient importance sampling; GARCH diusion model; Simulated Maximum likelihood; Stochastic volatility

    Estimation of pulse heights and arrival times

    Get PDF
    The problem is studied of estimating the arrival times and heights of pulses of known shape observed with white additive noise. The main difficulty is estimating the number of pulses. When a maximum likelihood formulation is employed for the estimation problem, difficulties similar to the problem of estimating the order of an unknown system arise. The problem may be overcome using Rissanen's shortest data description approach. An estimation algorithm is described, and its consistency is proved. The results are illustrated by a simulation study using an example from seismic data processing also studied by Mendel

    Sublinear Estimation of Weighted Matchings in Dynamic Data Streams

    Full text link
    This paper presents an algorithm for estimating the weight of a maximum weighted matching by augmenting any estimation routine for the size of an unweighted matching. The algorithm is implementable in any streaming model including dynamic graph streams. We also give the first constant estimation for the maximum matching size in a dynamic graph stream for planar graphs (or any graph with bounded arboricity) using O~(n4/5)\tilde{O}(n^{4/5}) space which also extends to weighted matching. Using previous results by Kapralov, Khanna, and Sudan (2014) we obtain a polylog(n)\mathrm{polylog}(n) approximation for general graphs using polylog(n)\mathrm{polylog}(n) space in random order streams, respectively. In addition, we give a space lower bound of Ω(n1−ε)\Omega(n^{1-\varepsilon}) for any randomized algorithm estimating the size of a maximum matching up to a 1+O(ε)1+O(\varepsilon) factor for adversarial streams

    Estimating the maximum possible earthquake magnitude using extreme value methodology: the Groningen case

    Get PDF
    The area-characteristic, maximum possible earthquake magnitude TMT_M is required by the earthquake engineering community, disaster management agencies and the insurance industry. The Gutenberg-Richter law predicts that earthquake magnitudes MM follow a truncated exponential distribution. In the geophysical literature several estimation procedures were proposed, see for instance Kijko and Singh (Acta Geophys., 2011) and the references therein. Estimation of TMT_M is of course an extreme value problem to which the classical methods for endpoint estimation could be applied. We argue that recent methods on truncated tails at high levels (Beirlant et al., Extremes, 2016; Electron. J. Stat., 2017) constitute a more appropriate setting for this estimation problem. We present upper confidence bounds to quantify uncertainty of the point estimates. We also compare methods from the extreme value and geophysical literature through simulations. Finally, the different methods are applied to the magnitude data for the earthquakes induced by gas extraction in the Groningen province of the Netherlands

    Estimating the maximum rise in temperature according to climate models using abstract interpretation

    Get PDF
    Current climate models are complex computer programs that are typically iterated time-step by time-step to predict the next set of values of the climate-related variables. Since these iterative methods are necessarily computed only for a fixed number of iterations, they are unable to answer the natural question whether there is a limit to the rise of global temperature. In order to answer that question we propose to combine climate models with software verification techniques that can find invariant conditions for the set of program variables. In particular, we apply the constraint database approach to software verification to find that the rise in global temperature is bounded according to the common Java Climate Model that implements the Wigely/Raper Upwelling-Diffusion Energy Balance Model climate model
    • …
    corecore