
University of Nebraska - Lincoln University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

CSE Journal Articles Computer Science and Engineering, Department
of

January 2020

Estimating the maximum rise in temperature according to climate Estimating the maximum rise in temperature according to climate

models using abstract interpretation models using abstract interpretation

Peter Revesz
University of Nebraska- Lincoln, revesz@cse.unl.edu

Robert J. Woodward
University of Nebraska - Lincoln, rwoodwar@cse.unl.edu

Follow this and additional works at: https://digitalcommons.unl.edu/csearticles

Revesz, Peter and Woodward, Robert J., "Estimating the maximum rise in temperature according to
climate models using abstract interpretation" (2020). CSE Journal Articles. 213.
https://digitalcommons.unl.edu/csearticles/213

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in CSE Journal Articles by an
authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@University of Nebraska

https://core.ac.uk/display/286730217?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/csearticles
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/csearticles?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F213&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/csearticles/213?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F213&utm_medium=PDF&utm_campaign=PDFCoverPages

Acta Univ. Sapientiae, Informatica 11, 1 (2019) 5–23

DOI: 10.2478/ausi-2019-0001

Estimating the maximum rise in

temperature according to climate models

using abstract interpretation

Peter Z. REVESZ
University of Nebraska–Lincoln

Department of Computer Science &
Engineering

Lincoln NE 68588-0115, USA
email: revesz@cse.unl.edu

Robert J. WOODWARD
University of Nebraska–Lincoln

Department of Computer Science &
Engineering

Lincoln NE 68588-0115, USA
email: rwoodwar@cse.unl.edu

Abstract. Current climate models are complex computer programs that
are typically iterated time-step by time-step to predict the next set of
values of the climate-related variables. Since these iterative methods are
necessarily computed only for a fixed number of iterations, they are un-
able to answer the natural question whether there is a limit to the rise of
global temperature. In order to answer that question we propose to com-
bine climate models with software verification techniques that can find
invariant conditions for the set of program variables. In particular, we ap-
ply the constraint database approach to software verification to find that
the rise in global temperature is bounded according to the common Java
Climate Model that implements the Wigley/Raper Upwelling-Diffusion
Energy Balance Model climate model.

1 Introduction

The ability to predict climate change, which has potentially a huge impact on
life on earth, is affecting the legislation of countries and their mitigation efforts

Computing Classification System 1998: G.2.2
Mathematics Subject Classification 2010: 68R15
Key words and phrases: constraint database, Datalog, climate model, invariant, MLPQ
system, software verification

5

Bereitgestellt von University of Nebraska - Lincoln | Heruntergeladen 10.09.19 13:25 UTC

http://cse.unl.edu/~revesz/
https://www.unl.edu/
https://cse.unl.edu/
https://cse.unl.edu/
mailto:revesz@cse.unl.edu
http://cse.unl.edu/~rwoodwar/
https://www.unl.edu/
https://cse.unl.edu/
https://cse.unl.edu/
mailto:rwoodwar@cse.unl.edu

6 P. Z. Revesz, R. J. Woodward

around the world [8]. The predictions of the impacts of climate change rely
heavily on the simulations of global climate models. Regional climate models
offer a finer level of detail than the global climate models, and are sometimes
used to determine the impact of climate on smaller regions. Climate models are
calibrated using historical weather data. The model scenarios have been stan-
dardized by the Intergovernmental Panel on Climate Change (IPCC), which
was established in 1988 by the World Meteorological Organization and the
United Nations Environment Programme.

The IPCC used several global climate models in its Third Assessment Report
(TAR) [8] and its successor the Fourth Assessment Report (AR4) [2]. The
TAR and AR4 assessment reports continue to be updated to include new
information and research conducted since their dates. Chapter 9 of [8] defines
that climate change simulations are to be assessed over the period from 1990
to 2100.

Current climate models, including the ones in TAR and AR4 [8, 2], are com-
puter programs that use iterative methods to compute the values of climate
variables, such as the rise in global average temperature above a baseline year,
one year at a time for a fixed number of iterations. The computer programs
become nonterminating when we drop the restriction of a fixed number of
iterations. Nevertheless, we need to drop the restriction of a fixed number of
iterations if we want to ask some of the most basic questions about climate
change, such as ”Will the global average temperature rise without a bound?”
Saying that under a certain scenario of carbon emissions, the global aver-
age temperature will rise only one degree during the next twenty-five, fifty or
seventy-five years is not satisfying. Our generation cannot claim to have found
a sustainable, long-term solution, even a model of a solution, to the problem of
climate change if the global average temperature rise cannot be bounded. The
goal of this paper is to determine if there is a maximum invariant value for the
global average temperature change from a baseline using software verification
techniques.

This paper is organized as follows. Section 2 reviews some basic concepts,
including the constraint database approach to software verification and the
Java Climate Model used by the IPCC. Section 3 describes the climate model’s
implementation in the MLPQ constraint database system. Section 4 discusses
the implications of the results. Section 5 summarizes related work. Finally,
Section 6 gives some conclusions and future work.

Bereitgestellt von University of Nebraska - Lincoln | Heruntergeladen 10.09.19 13:25 UTC

Estimating the maximum rise in temperature 7

2 Basic concepts

Next we review some concepts of the constraint database approach to software
verification [16] and on climate models [8, 2].

2.1 Addition-bound matrixes or ABMs

Addition-bound matrixes, or ABMs, are designed to represent a set or con-
junction of addition constraints and (lower and upper) bound constraints.
The following definitions are based on the standard textbook description by
Revesz [17].

Any set of addition, lower bound and upper bound constraints over the
variables V = {x1, . . . , xn} is representable by a set of difference constraints
over variables V+ = {x+1 , x

−
1 , . . . , x

+
n , x

−
n }. Note that in the difference constraint

representation each variable xi has two forms, namely a positive one, which
is denoted by x+i and a negative one, which is denoted by x−i . Here the first
form is equivalent to xi, while the second form is equivalent to −xi. The logical
equivalences shown below explain the rewriting of the constraints over V into
constraints over V+.

−x ≥ b ≡ x− − x+ ≥ 2b

x ≥ b ≡ x+ − x− ≥ 2b

x− y ≥ b ≡ x+ − y+ ≥ b

x+ y ≥ b ≡ x+ − y− ≥ b

−x− y ≥ b ≡ x− − y+ ≥ b

−x+ y ≥ b ≡ x− − y− ≥ b

After applying the above rewriting rules, it may happen that we have two
constraints x − y ≥ b and x − y ≥ c. Suppose without loss of generality that
b > c. Then x − y ≥ c can be deleted because it is implied by x − y ≥ b.
After similarly deleting all constraints that are implied by other constraints,
for each pair of variables x and y, there can be only one difference constraint
with x− y on the left side.

Therefore any set of addition, lower bound and upper bound constraints
over V is representable by an ABM A with rows and columns labeled by the
elements of V+. Further, the A[i, j] entry of this ABM contains the right side
constant of the difference constraint associated with the ith row and the jth
column labels.

Next we show on an example set of constraints how it can be rewritten into
an ABM. Suppose we have:

−x ≥ −25, y ≥ 3, x− y ≥ 4, x+ y ≥ 10, − x− y ≥ −40

Bereitgestellt von University of Nebraska - Lincoln | Heruntergeladen 10.09.19 13:25 UTC

8 P. Z. Revesz, R. J. Woodward

then by using the above rewriting rules and simplifications, it can be repre-
sented by the following set of difference constraints:

x− − x+ ≥ −50, y+ − y− ≥ 6, x+ − y+ ≥ 4, x+ − y− ≥ 10, x− − y+ ≥ −40

Finally, the ABM A below can represent the above set of difference constraints.

x+ x− y+ y−

x+ −∞ −∞ 4 10

x− −50 −∞ −40 −∞
y+ −∞ −∞ −∞ 6

y− −∞ −∞ −∞ −∞
2.2 Operations on ABMs

Below we review the main ABM operators [17] that are used in later sections.

Definition 1 Given two ABMs A and B, the minimum of A and B, denoted
by A∨ B, is:

[A∨ B] [i, j] =

{
A[i, j] if A[i, j] ≤ B[i, j]
B[i, j] if B[i, j] < A[i, j]

}
Definition 2 Given two ABMs A and B, the widening of A and B, denoted
by AOB, is:

[AOB] [i, j] =

{
A[i, j] if A[i, j] ≤ B[i, j]
−∞ if B[i, j] < A[i, j]

}
Definition 3 D is a domain of an ABM A if each entry A[i, j] ∈ D. When
for some integer constants l and u each A[i, j] is greater than or equal to l and
less than or equal to u or is equivalent to −∞, then {−∞}∪{l, l+1, . . . , u−1, u}

is a domain of A.

Definition 4 Let l < 0 and u > 0 be two integer numbers and let A be an
ABM with domain {−∞}∪ {l, l+ 1, . . . , u− 1, u}. Given also another ABM B,
the l-u-widening of A by B, denoted by A♦l,uB, is:

[A♦l,uB] [i, j] =

A[i, j] if A[i, j] ≤ B[i, j]
B[i, j] if l ≤ B[i, j] < A[i, j]
−∞ if B[i, j] < l ≤ A[i, j]

Bereitgestellt von University of Nebraska - Lincoln | Heruntergeladen 10.09.19 13:25 UTC

Estimating the maximum rise in temperature 9

Example 5 (Revesz [17]) Consider again A at the end of Section 2.1 and
also the following ABM B:

x+ x− y+ y−

x+ −∞ −∞ 15 10

x− −60 −∞ −∞ −∞
y+ −∞ 7 −∞ 2

y− −∞ −∞ −∞ −∞
Here A∨ B is:

x+ x− y+ y−

x+ −∞ −∞ 4 10

x− −60 −∞ −∞ −∞
y+ −∞ −∞ −∞ 2

y− −∞ −∞ −∞ −∞
and AOB is:

x+ x− y+ y−

x+ −∞ −∞ 4 10

x− −∞ −∞ −∞ −∞
y+ −∞ −∞ −∞ −∞
y− −∞ −∞ −∞ −∞

Finally, A♦−50,50B, that is when l = −50 and u = 50, gives:

x+ x− y+ y−

x+ −∞ −∞ 4 10

x− −∞ −∞ −∞ −∞
y+ −∞ −∞ −∞ 2

y− −∞ −∞ −∞ −∞
In addition to the above operators, we also consider the union operator
∪ of two ABMs. When A and B are AMBs, then the union operator A ∪ B

simply returns the set of constraints that either A or B contains. The following
theorem from [17] shows the relationship among the different AMB operators.

Theorem 6 (Revesz [17]) Let S be the set of assignments to the variables
that satisfy all the constraints of an ABM or union of ABMs. For any l < 0

and u > 0, the following holds:

S(A ∪ B) ⊆ S(A∨ B) ⊆ S(A♦l,uB) ⊆ S(AOB).

Bereitgestellt von University of Nebraska - Lincoln | Heruntergeladen 10.09.19 13:25 UTC

10 P. Z. Revesz, R. J. Woodward

2.3 Abstract fixed point semantics

Each procedural program has a collecting semantics, which consists of a set
of em invariants. Each invariant is associated with a line l in the procedural
program and is intended to describe all possible values of all the variables
when the program enters line l. Software verification is based on finding an
over-approximation of the collecting semantics.

A general method to compute an over-approximation is called abstract in-
terpretation. Abstract interpretation evaluates the procedural program by an
abstract execution that starts with some abstract representation of the input
data. The abstract execution at each entry of line l generalizes the invariant
associated with l using a widening operator until the line invariant cannot be
further widened.

A widening operator generalizes at a program location an invariant con-
straint A with some constraint B that describes an additional set of possible
values of the program variables at that location. There are different types of
widening operators proposed by various authors.

When we use the widening operator A♦l,uB, then it always leads to a termi-
nating program execution. Note that A∪B is not a suitable widening operator
because it may lead to a non-terminating abstract program execution.

Theorem 7 Let P be a program with n integer (or rational) variables, only
addition bound constraints on these variables, and k lines. Let l and u be
two constants, and let an addition-bound matrix Ai be assigned to each line
1 ≤ i ≤ k of the program. Let each Ai contain no constraints initially, and as
we execute line i of program P, widen Ai by the constraints B implied in line
i using the widening operator Ai♦l,uB. Then the abstract program execution
will terminate.

Programs with integer and rational variables, if statements, go to state-
ments, while statements, and assignment statements, where a variable is as-
signed the value of a linear arithmetic expression, can be represented as a
Datalog program with constraints [9, 15]. The abstract program execution
finds an abstract fixed point semantics, which will contain the least fixed point
semantics [17]. The containment allows us to answer some questions about the
possible values that variables in the program could take.

One can compute an abstract fixed point semantics of any climate change
model that is equivalent to a complex computer program that would not ter-
minate under normal program execution. If the abstract fixed point semantics
of that computer program does not contain the possibility that the global

Bereitgestellt von University of Nebraska - Lincoln | Heruntergeladen 10.09.19 13:25 UTC

Estimating the maximum rise in temperature 11

temperature reaches x degrees Fahrenheit, then we can conclude that accord-
ing to that model the global temperature will not reach x degrees Fahrenheit.
However, if the abstract fixed point semantics contains x as a possibility, then
we cannot conclude anything definite because the abstract fixed point seman-
tics may be an over-approximation of the least fixed point semantics, which
actually does not contain x as a possibility.

The constraint database approach to software verification [16], which is a
novel way to perform an abstract interpretation [4], uses the above idea to
verify that a program functions correctly on a valid input by avoiding certain
program states, where a program state is the values assigned to the variables in
the program at a specific line of the program code [1, 16]. The Management of
Linear Programming Queries (MLPQ) database [19, 1] is a constraint database
that implements the above described widening operator and can be applied
to Datalog programs with addition constraints. Hence we need to convert any
computer program to a Datalog with addition constraint program as part of
the constraint database approach to software verification.

2.4 Climate models

A climate system is a physical system that consists of five major components.
The first component is the atmosphere, which is the air and space surround-
ing the earth. The second component is the hydrosphere, which is the water
surrounding the earth. The hydrosphere is an important component because
oceans form about two-third of the earth’s surface. The third component is
the cryosphere, which consists of the parts of the earth where water is frozen.
This needs to be tracked separately from the oceans because the oceans and
the cryosphere have very different physical properties in terms of absorption
and reflection of sun light. The fourth component is the land surface, which is
the part of the earth that is covered by land. The fifth and final component is
the biosphere, which is the parts of the earth covered by living organisms.

Climate models try to model the climate system and predict some values
for the climate, such as the following:

1. Land-surface temperature and land-surface air temperature.

2. Sea-surface temperature and ocean air temperature.

3. Land and sea combined temperature.

4. Sub-surface ocean temperature.

5. Upper air temperature.

6. Snow cover, including snowfall.

Bereitgestellt von University of Nebraska - Lincoln | Heruntergeladen 10.09.19 13:25 UTC

12 P. Z. Revesz, R. J. Woodward

7. Sea-ice extent and thickness.

A good model considers all the possible types of interactions among the
components. For example, the biosphere affects the concentration of carbon
dioxide in the atmosphere [8]. Figure 1 shows a schematic diagram of a climate
model.

Figure 1: Some elements of a climate model from the Wikipedia entry ”General
Circulation Model.”

A report of the UN’s Intergovernmental Panel on Climate Change (IPCC)
outlines some of the ways to accurately predict the above values [8]. The
Wigley/Raper Upwelling-Diffusion Energy Balance Model (UD/EBM) climate
model is a simple climate model that differentiates the hemispheres, and the
land and ocean regions in each hemisphere [12]. The model uses heat flux
equations to model the transfer from one year to the next and from one re-

Bereitgestellt von University of Nebraska - Lincoln | Heruntergeladen 10.09.19 13:25 UTC

Estimating the maximum rise in temperature 13

gion to another. The UD/EBM climate model must be tuned to simulate an
atmosphere-ocean coupled general circulation model (AOGCM), without which
it is not a complete model [8]. This combined model can iteratively compute
each year’s value, and the computation can be repeated without any termina-
tion.

The Java Climate Model (JCM)1 implements the UD/EBM and was prop-
erly tuned to match a AOGCM [11]. Rather than using direct integration to
compute the values for the heat fluxes, the JCM uses an eigenvector calculation
method. This method finds the exact analytical solution, given the assumption
that the non-linear fluxes change linearly within one time-step of a year [11].

Figure 2: The global average temperature change given by the Java Climate
Model.

The JCM was downloaded from http://jcm.climatemodel.info/. The SVN
code repository for JCM was not operational, however, the source code was
included inside of the distributed Java Archive (JAR) file. After extracting
the source folders from the JAR file, a new project was created in NetBeans
IDE 7.0.1 (http://netbeans.org/) and the source folders were imported. We
needed to set up the following libraries:

• substance.jar – included in the JCM JAR.

• lucdata.jar – included in the JCM JAR.

• labdoc.jar – included in the JCM JAR.

1http://jcm.climatemodel.info/

Bereitgestellt von University of Nebraska - Lincoln | Heruntergeladen 10.09.19 13:25 UTC

http://jcm.climatemodel.info/
http://netbeans.org/
http://jcm.climatemodel.info/

14 P. Z. Revesz, R. J. Woodward

• match-emitdata.jar – included in the JCM JAR.

• JCM.jar – included in the JCM JAR.

• javaws.jar – included in the Jave Runtime Environment (JRE) library
folder.

• Jama-1.0.2.jar – downloaded from http://math.nist.gov/javanumerics/

jama/.

The method that computes the average temperature change iteratively, one
year at time, for the JCM is the Adjust method, inside ‘udebclimod.java,’ and
is shown in Algorithm 1. Line 1 of Algorithm 1 contains a for-loop to compute
the global average temperature change for each year. The initial values of the
variables used in Adjust are set up in the SetupFluxes method, which
is not shown here as their computation is not relevant. These intitial values
were used as constants in our approach, which is discussed in more detail in
Section 3.1. Figure 2 shows the predicted global average temperature change
for each year given by the Java Climate Model until 2150. Note that the model
seems to level off at a value around 2. However, there is no guarantee that the
value is will leveled off at 2 or will spark later according to the model. Hence
it is an important open question whether 2 is the maximum value. We will try
to determine that in the rest of this paper.

3 The climate model’s implementation in the MLPQ
system

The goal of the experiment is to determine an invariant value on the average
temperature change above a baseline year. Typically the value of the aver-
age temperature change above a baseline year is computed between 1990 and
2100 [8]. Instead, in our experiment the variant average temperature change
above a baseline year will not depend on any year but will be an abstract
fixed-point semantics upper-bound that will apply to all future years.

In this section, we first give an overview of how we will convert the Adjust
method from the Java Climate Model (JCM) code into Datalog to use with
the MLPQ system, which can compute the abstract fixed point semantics
to find all the possible values of the average climate temperature change.
Second, we present the conversion process, showing the difference and gap-
order constraints [13, 14]. Finally, we describe our implementation of the code
using Datalog with constraints.

Bereitgestellt von University of Nebraska - Lincoln | Heruntergeladen 10.09.19 13:25 UTC

http://math.nist.gov/javanumerics/jama/
http://math.nist.gov/javanumerics/jama/

Estimating the maximum rise in temperature 15

Algorithm 1: Adjust

Input: numYears: Number of years in the future to compute the weather for
Output: The global temperature change computed for each year

1 for year = 0;year < numYears;year = year+ 1 do
2 guess = nstd+ (nstd− nstdold);
3 nstd = guess;
4 nstdold = nstd;
5 for o = 0;o < 2;o = o+ 1 do
6 for n = 0;n < nhb;n = n+ 1 do
7 hiq[o][n] = hpropf[o][n] ∗ hiq[o][n] + shicML[o][n] ∗ qinold[o];
8 qinbase[o] = rf[o+ 1];
9 qinbase[o]+ = rf[o∗3]∗(frac[o∗3]/frac[o+1])∗klo/(kls∗frac[o∗3]+klo);

10 qinbase[o]+ = spaceflux[o] ∗ qpt ∗ tstart;
11 nit = 0;
12 while |diff| > 0.01 && nit < 10 do
13 for o = 0;o < 2;o = o+ 1 do
14 qin[o] = qinbase[o] + (o == 0? − 1.0 : 1.0) ∗ nstd ∗ kns/frac[o+ 1];
15 dqin = qin[o] − qinold[o];
16 mlt[o] = 0;
17 for n = 0;n < nhb;n = n+ 1 do
18 hiqi[o][n] = hiq[o][n] + rhicML[o][n] ∗ dqin;mlt[o]+ =

hrML[o][n] ∗ hiqi[o][n];
19 mlt[o]/ = qpt;

20 diff = (mlt[0] −mlt[1]) ∗ cice− nstd;nstd+ = diff;
21 nit = nit+ 1;

22 hiq = hiqi;
23 qinold = qin;
24 for o = 0;o < 2;o = o+ 1 do mlt[o]− = tstart;
25 bt[0][year] = mlt[0] ∗ cice ∗ klo+ frac[0] ∗ rf[0])/(kls ∗ frac[0] + klo);
26 bt[3][year] = mlt[1] ∗ cice ∗ klo+ frac[3] ∗ rf[3])/(kls ∗ frac[3] + klo);
27 bt[1][year] = mlt[0] ∗ cice;
28 bt[2][year] = mlt[1] ∗ cice;
29 globavtemp[year] = bt[0].get(year) ∗ frac[0] + bt[1].get(year) ∗ frac[1] +

bt[2].get(year) ∗ frac[2] + bt[3].get(year) ∗ frac[3];

3.1 The experimental design

The code was examined to determine the constant values that do not change
between iterations of the program (e.g., year-to-year). For the JCM, these val-
ues are typically the flux equations, or values that are specified by the user

Bereitgestellt von University of Nebraska - Lincoln | Heruntergeladen 10.09.19 13:25 UTC

16 P. Z. Revesz, R. J. Woodward

to adjust the model to match an AOGCM. The default values were taken in
this conversion to Datalog. Once these values were identified, because of the
assumptions made by JCM to use the eigenvector calculation method instead
of integration, all of the resulting equations were linear. Having linear equa-
tions was the goal of the model to study because MLPQ is a linear constraint
database.

In the converted Datalog code, we refer to “linei” as the values of the vari-
ables at the start of line i of the program. Each line of the code was converted
to Datalog to represent the change of values. These conversions are easy be-
cause we have only linear equations, For example, line 2 states the following:

guess=n+(n-nold)

and can be converted to Datalog:

line3(n,ndold,guess):- line2(n,ndold), guess=n+(n-ndold).

This Datalog code states that at the start of line 3, we are taking the same
state as the start of line 2, except that we updated guess to have the value
that is the value of the arithmetic expression on the right hand side of the
equation in line 2 of the computer program.

The computer program we are converting from JCM contains two for-loops.
The iterations of the two for-loops are independent from one-another. Since
the method in JCM is called once for each year, after computing the last line
in Datalog, we create a rule for the first line that propagates the values from
the last line back as input. This creates the loop in the code that can then
compute the abstract fixed point semantics. After the MLPQ system finished
computing the values, we can look at the relation of the last line and see the
possible values of the global average temperature change.

3.2 The coversion process

To give more details about the conversion process, we focus on the 29 lines of
the Adjust method in the JCM code (Algorithm 1), which was written in Java
and consists of linear equations. The problem is that these linear equations
are embedded in non-terminating for loops when we drop the condition which
limits the numbers of years. In order to guarantee termination and execution
in our Datalog with constraints program, we need to simplify the some parts
of the computer program, where it contains either (1) global variables, or (2)
large arrays. Lines 6 and 7 of the code offers a good example of these two
types of simplifications:

Bereitgestellt von University of Nebraska - Lincoln | Heruntergeladen 10.09.19 13:25 UTC

Estimating the maximum rise in temperature 17

for n← 0;n < nhb;n← n+ 1 do
hiq[o][n]← hpropf[o][n] ∗ hiq[o][n] + shicML[o][n] ∗ qinold[o];

Global variables: The hpropf and shicML variables are both global vari-
ables, which are set from a different method call. These values are abstracted
out as constants and loaded directly into the constraint database.

Large arrays: The for loop will iterate 40 times (nhb = 40, a constant)
and thus the array for hiq[o] will have 40 entries. Having that many variables
seems too prohibitive as a first-step towards modeling the program. Therefore,
we restrict nhb = 3, and only have three values in the hiq[o] array.

Table 1 gives the gap-order constraints for Algorithm 1. In the table, the
variable var previous denotes the value of var from the previous line or pre-
vious iteration. Variables in all capital letters are treated as constants.

In a further simplification, we assumed that the ocean and the land areas
for each the hemispheres took the same values. This simplification allowed
the for-loops on line 5 and line 11 to be removed. However, this simplification
was later removed by unrolling the content in the for-loops, once for each
loop of the for-loop. The reason this simplification could be made was because
the loops were independent from one another, which allowed the code to be
unrolled.

Another simplification made, that is still in place, simplifies the for-loops of
line 6 and 15 to only compute the first three values. Normally, these for-loops
iterate over 40 values. All of the implementation details are in-place to remove
this simplification.

3.3 A Datalog implementation

The simplified code was implemented in Datalog with the following steps:
1) allowing the insertion of constants into the Datalog program, 2) convert
equations for MLPQ compatibility, and 3) allow more complicated arithmetic
operations on constants (i.e., multiplication).

Prior to using the converter, we inserted constants into the Datalog program
by fixing the variable assignment. For example, consider the constant x = 123:

CONST_X(x) :- 123

We found that using constants in this fashion over-complicated the program
and caused significant overhead. Therefore, we wrote the converter such that

Bereitgestellt von University of Nebraska - Lincoln | Heruntergeladen 10.09.19 13:25 UTC

18 P. Z. Revesz, R. J. Woodward

Line Gap-Order Constraints

1 initialize rf, nstd, hiq, nstdold, qin, qinold
2 guess − nstd − (nstd − nstdold) = 0
3 nstd − guess = 0
4 nstdold − nstd = 0
5,6 For loop is unrolled
7 hiq[o][n] − HPROPF[o][n] ∗

hiq previous[o][n] − SHICML[o][n] ∗
qinold[o] = 0

8 qinbase[o] − rf[o + 1] = 0
9 qinbase[o] − qinbase previous[o] −

(FRAC[o ∗ 3]/FRAC[o + 1]) ∗ KLO/(KLS ∗
FRAC[o ∗ 3] + KLO) ∗ rf[o ∗ 3] = 0

10 qinbase[o] − qinbase previous[o] ∗
SPACEFLUX[o] ∗QPT ∗ TSTART

11 Not computed
12 Constraint posted on line 17
13 For loop is unrolled
14 qin[o] − qinbase[o] − (o == 0? − 1.0 :

1.0) ∗ KNS/FRAC[o + 1] ∗ nstd = 0
15 dqin − qin[o] + qinold[o] = 0
16 mlt[o] = 0
17 For loop is unrolled
18 hiqi[o][n] − hiq[o][n] − RHICML[o][n] ∗

dqin ∧ mlt[o] − mlt previous[o] −
HRML[o][n] ∗ hiqi[o][n]

19 [1/QPT]mlt[o] = 0
20 diff − (mlt[0] −mlt[1]) ∗ CICE + nstd =

0 ∧ nstd − nstd previous − diff = 0 ∧

diff > 0.001
21 [not required]
22 hiq − hiqi = 0
23 qinold − qin = 0
24 mlt[o] −mlt previous[o] = TSTART
25 bt[0] − ((CICE ∗ KLO)/(KLS ∗ FRAC[0] +

KLO))mlt[0] − (FRAC0/(KLS ∗ FRAC[0] +
KLO))rf = 0

26 bt[3] − ((CICE ∗ KLO)/(KLS ∗ FRAC[3] +
KLO))mlt[1] − (FRAC3/(KLS ∗ FRAC[3] +
KLO))rf = 0

27 bt[1] − CICEmlt[0] = 0
28 bt[2] − CICEmlt[1] = 0
29 globavtemp−FRAC[0]∗bt[0]−FRAC[1]∗

bt[1]−FRAC[2]∗bt[2]−FRAC[3]∗bt[3] = 0

Table 1: Conversion of Algorithm 1 to gap-order constraints.

it inserts the constants directly into the Datalog code. Note that we could
have put the constants into the original Datalog program directly, but using
a converter increases the readability of the code and gives us the ability to
change the constants if required.

Bereitgestellt von University of Nebraska - Lincoln | Heruntergeladen 10.09.19 13:25 UTC

Estimating the maximum rise in temperature 19

To accomplish multiplication, we tried to generalize an approach of mul-
tiplying two integer variables (See page 240 of [17]) to using floating point
numbers, and first attempted to create a more general multiplication in Dat-
alog as follows:

mult(x, y, z) :- y = 0, z = 0.

mult(x, y, z) :- y - y1 = 1, z - z0 - x = 0, mult(x, y1, z0).

However, in the above multiplication, where x × y = z, the value of x is
allowed to be a floating point number, but y is still required to be an integer.
Since in some calculations both x and y need to be floating point numbers,
we utilized the converter because all of our multiplications are on constants.

The converter has three parts:

1. A set of assignments used to convert constants to floating-point numbers.
These assignments are stored in the ‘ASSIGNMENTS’ variable in the
form ‘VARIABLE=NUMBER’. VARIABLE is the text to search for, and
NUMBER is a floating-point number that can be positive or negative.
All fractions of numbers must have a leading ‘0’ prior to the decimal
point.

2. Converts double negation into a plus, for MLPQ compatibility. (E.g.,
2−−2 becomes 2+ 2.)

3. Evaluates arithmetic operations on numbers that are included in square
brackets []. This functionality allows more advanced arithmetic opera-
tions to be applied on constants (e.g., multiplication, division).

The steps in the converter could have been manually done when creating
the Datalog file. However, the automated converter allows for more flexability
when writing the Datalog code.

The converter script was created to work as a UNIX shell script. The script
assumes a file named ‘datalog.txt’ is in the same working directory as the
script, and will output a file named ‘datalog convert.txt’ in the same working
directory as the script. To run the script, simply type ‘./convert.sh’. Note,
the script requires the proper permissions set (e.g., chmod 700). Note: When
using a Windows computer, the script might need to be converted not to have
the Windows line returns (e.g., dos2unix convert.sh).

Bereitgestellt von University of Nebraska - Lincoln | Heruntergeladen 10.09.19 13:25 UTC

20 P. Z. Revesz, R. J. Woodward

Figure 3: The relations loaded into MLPQ (left) and the resulting output of
the global average temperature change above baseline of value one (right).

4 Discussion of the results

One of the problems we had early on when writing the Datalog code was not
always determining when we had a typing error in one of the variable names
in our code. MLPQ would then, correctly, interpret in the code the mistyped
variable as a ‘free-variable,’ one that does not have any constraints on it.
This problem caused errors early on in values not being computed properly.
One way around this issue would be to use the Datalog Mode for Eclipse2,
which allows syntax highlighting for Datalog programs (but is not a Datalog
interpreter).

2http://suif.stanford.edu/~livshits/work/datalogeditor/

Bereitgestellt von University of Nebraska - Lincoln | Heruntergeladen 10.09.19 13:25 UTC

http://suif.stanford.edu/~livshits/work/datalogeditor/

Estimating the maximum rise in temperature 21

Another struggle was getting MLPQ to properly load the relations. Some
relations would take a huge amount of time for MLPQ to compute the value
of the relation, which caused the program to look like it crashed. However,
after waiting patiently, the program would load the relation. In order to get
around this issue, we tweaked the order of the relations that were loaded and
optimized the code by factoring out common code fragments and creating
smaller relations.

In our tests, MLPQ returned the value of 1 for the bound on the global
average temperature change as shown in Figure 3 for the results of the MLPQ
system execution of the Datalog program. Although the idea of testing the
long-range predictions of climate models using software verification is an intu-
itive and valid idea, the value of 1 should not be taken as conclusive because
of the possible errors in the translation process from Java to Datalog and
some simplifications we had to make to the original code. We need further
tests of the algorithm to achieve confidence in its correctness and conclusions.
Nevertheless, our experiment shows the soundness of the constraint database
approach to being able to compute invariants for climate models.

5 Related work

There are a growing number of climate models. For example, the Intermedi-
ate Global Circulation Model (IGCM) (http://www.met.rdg.ac.uk/~mike/
dyn_models/igcm/) implementing the baroclinic model of Hoskins and Sim-
mons [7] and the Earth System Modeling Framework (ESMF) [3, 6] (http:
//www.earthsystemmodeling.org) are other climate models that are more
complex than JCM.

A preliminary version of this paper was presented at [20]. To the best of
our knowledge, no other researcher has previously attempted to compute an
invariant value for any climate model. In fact, the calculation of invariants is
not even considered in Chapter 9 of [8], where all simulations arbitrarily end
at year 2100.

6 Conclusions and future work

This paper made the first attempt to investigate whether the climate mod-
els contain any inherent bounds. The paper combined climate modeling and
software verification techniques, in particular software verification using the
constraint database approach [1, 16]. Software verification techniques are able

Bereitgestellt von University of Nebraska - Lincoln | Heruntergeladen 10.09.19 13:25 UTC

http://www.met.rdg.ac.uk/~mike/dyn_models/igcm/
http://www.met.rdg.ac.uk/~mike/dyn_models/igcm/
http://www.earthsystemmodeling.org
http://www.earthsystemmodeling.org

22 P. Z. Revesz, R. J. Woodward

to answer for even nonterminating computer programs what are the minimum
and the maximum bounds on the variables.

The idea of combining climate models with abstract interpretation software
verification techniques is a general contribution that is applicable to other
climate models and other software verification techniques. Since the primary
aim of our paper was only to show the feasibility of applying software verifi-
cation techniques to testing the long-range implications of climate models, we
started with the simpler JCM model. It remains a future work to investigate
other combinations, for example using the IGCM or the ESMF climate mod-
els. Instead of being globally oriented like the JCM, some of the other climate
models predict the future climate at a set of specific locations. These more
refined climate models with values at specific locations at specific times may
be also combined with spatio-temporal interpolation methods [5, 10, 18, 21]
to generate temperature surface equations over each point of the globe.

References

[1] S. Anderson, P. Z. Revesz, CDB-PV: A constraint database-based program ver-
ifier, Proc. of the 7th International Symposium on Abstraction, Reformulation
and Approximation, LNCS 4612, Springer, 2007, pp. 35–49. ⇒11, 21

[2] L. Bernstein et al., Climate Change 2007: Synthesis Report, Cambridge Univer-
sity Press, 2007. ⇒6, 7

[3] N. Collins et al., Design and implementation of components in the Earth System
Modeling Framework, International Journal of High Performance Computing
Applications, Fall/Winter 2005. DOI= 10.1177/1094342005056120. ⇒21

[4] P. Cousot, R. Cousot, Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints, Proce. ACM
Principles on Programming Languages, ACM Press, 1977, pp. 238–252. ⇒11

[5] S. Haesevoets, B. Kuijpers, P. Z. Revesz, Affine-invariant triangulation of spatio-
temporal data with an application to image retrieval, ISPRS International Jour-
nal of Geo-Information 6, 4 (2017) 100. 37 pp. ⇒22

[6] C. Hill et al., Architecture of the Earth System Modeling Framework, Computing
in Science and Engineering 6 2004, Fall/Winter 2005. DOI= 10.1109/MCISE.

2004.1255817. ⇒21
[7] B. J. Hoskins, A. J. Simmons, A multi-layer spectral model and the semi-implicit

method, Quarterly Journal of the Royal Meteorological Society 101, 429 (1975)
637–655. ⇒21

[8] J. T. Houghton et al. (editors), Climate Change 2001: The Scientific Basis,
Cambridge University Press, 2001. ⇒6, 7, 12, 13, 14, 21

[9] P. C Kanellakis, G. M. Kuper, P. Z. Revesz, Constraint query languages, Journal
of Computer and System Sciences 51, 1 (1995) 26–52. ⇒10

Bereitgestellt von University of Nebraska - Lincoln | Heruntergeladen 10.09.19 13:25 UTC

https://www.researchgate.net/profile/Scot_Anderson2
https://scholar.google.com/citations?user=dDwXNpYAAAAJ&hl=en
10.1177/1094342005056120
https://en.wikipedia.org/wiki/Patrick_Cousot
http://alpha.uhasselt.be/bart.kuijpers/
https://doi.org/10.3390/ijgi6040100
https://doi.org/10.3390/ijgi6040100
https://eapsweb.mit.edu/people/cnh
10.1109/MCISE.2004.1255817
10.1109/MCISE.2004.1255817
https://en.wikipedia.org/wiki/Paris_Kanellakis

Estimating the maximum rise in temperature 23

[10] L. Li, P. Z. Revesz, Interpolation methods for spatio-temporal geographic data,
Computers, Environment and Urban Systems, 28, 3 (2004) 201–227. ⇒22

[11] B. Matthews, Java Climate Model, 2011. [Online]. Available: http://jcm.

climatemodel.info/ ⇒13
[12] S. C. B. Raper, J. M. Gregory, T. J. Osborn, Use of an upwelling-diffusion en-

ergy balance climate model to simulate and diagnose A/OGCM results, Climate
Dynamics, 17 (2001) 601–613. ⇒12

[13] P. Z. Revesz, A closed form evaluation for Datalog queries with integer (gap)-
order constraints, Theoretical Computer Science, 116, 1 (1993) 117–149. ⇒
14

[14] P. Z. Revesz, Safe query languages for constraint databases, ACM Transactions
on Database Systems, 23, 1 (1998) 117–149. ⇒14

[15] P. Z. Revesz, Introduction to Constraint Databases, Springer, 2002. ⇒10
[16] P. Z. Revesz, The constraint database approach to software verification, Proc.

8th International Conference on Verification, Model Checking, and Abstract In-
terpretation, LNCS 4349, Springer, 2007, pp. 329–345. ⇒7, 11, 21

[17] P. Z. Revesz, Introduction to Databases: From Biological to Spatio-Temporal,
Springer, 2010. ⇒7, 8, 9, 10, 19

[18] P. Z. Revesz, A recurrence equation-based solution for the cubic spline interpo-
lation problem, International Journal of Mathematical Models and Methods in
Applied Sciences 9 (2015) 446–452. ⇒22

[19] P. Z. Revesz, R. Chen, P. Kanjamala, Y. Li, Y. Liu, Y. Wang, The MLPQ/GIS
constraint database system, ACM SIGMOD Record, 29, 2 (2000) p. 601. ⇒11

[20] P. Z. Revesz, R. J. Woodward, Variable bounds analysis of a climate model
using software verification techniques, Proc. 13th International Conference on
Software Engineering, Parallel and Distributed Systems, Gdansk, Poland, 2014,
pp. 31–36. ⇒21

[21] P. Z. Revesz, S. Wu, Spatiotemporal reasoning about epidemiological data, Ar-
tificial Intelligence in Medicine, 38, 2 (2006) 157–170. ⇒22

Received: December 5, 2018 • Revised: April 10, 2019

Bereitgestellt von University of Nebraska - Lincoln | Heruntergeladen 10.09.19 13:25 UTC

http://jcm.climatemodel.info/
http://jcm.climatemodel.info/
http://cse.unl.edu/~revesz/

	Estimating the maximum rise in temperature according to climate models using abstract interpretation
	

	1 Introduction
	2 Basic concepts
	2.1 Addition-bound matrixes or ABMs
	2.2 Operations on ABMs
	2.3 Abstract fixed point semantics
	2.4 Climate models

	3 The climate model's implementation in the MLPQ system
	3.1 The experimental design
	3.2 The coversion process
	3.3 A Datalog implementation

	4 Discussion of the results
	5 Related work
	6 Conclusions and future work

