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Abstract

A new algorithm is developed to provide a simulated maximum likelihood estimation of the
GARCH di�usion model of Nelson (1990) based on return data only. The method combines two
accurate approximation procedures, namely, the polynomial expansion of Aït-Sahalia (2008)
to approximate the transition probability density of return and volatility, and the E�cient
Importance Sampler (EIS) of Richard and Zhang (2007) to integrate out the volatility. The
�rst and second order terms in the polynomial expansion are used to generate a base-line
importance density for an EIS algorithm. The higher order terms are included when evaluating
the importance weights. Monte Carlo experiments show that the new method works well
and the discretization error is well controlled by the polynomial expansion. In the empirical
application, we �t the GARCH di�usion to equity data, perform diagnostics on the model �t,
and test the �niteness of the importance weights.

JEL classi�cation: C11, C15, G12
Keywords: E�cient importance sampling; GARCH di�usion model; Simulated Maximum likeli-
hood; Stochastic volatility

1 Introduction

Inference for stochastic volatility (SV) models using simulated maximum likelihood (SML) estima-

tion has attracted extensive attention in recent years. Important works include Danielsson and

∗Kleppe gratefully acknowledges the hospitality during his research visit to Sim Kee Boon Institute for Financial
Economics at Singapore Management University. Yu gratefully acknowledges support from the Singapore Ministry
of Education AcRF Tier 2 fund under Grant No. T206B4301-RS.
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Richard (1993), Danielsson (1994), Shephard and Pitt (1997), Sandmann and Koopman (1998),

Liesenfeld and Richard (2003, 2006), Durham (2006, 2007), and Richard and Zhang (2007). Yu

(2010) reviewed various SML algorithms proposed in the literature. With few exceptions,1 these

studies deal with the discrete-time log-normal SV model of Taylor (1982) and its extensions. On

the other hand, in the theoretical �nance literature, much attention has been paid to continuous-

time SV models (see e.g. Hull and White (1987); Stein and Stein (1991); Heston (1993); Lewis

(2000); Aït-Sahalia and Kimmel (2007)) in the form of di�usion models. One reason for favoring

continuous-time models is that they allow for a rich and convenient option pricing theory. For

instance, the no-arbitrage-condition is characterized by a Martingale-measure, and a large class

of options may be priced by solving the partial di�erential equations corresponding to conditional

expectations of given functionals under this measure.

The most well known continuous time SV model is Heston's model (Heston, 1993). Much of

its popularity is due to the fact that a nearly-closed-form expression for European option prices

is available for this model. As a result, a number of parameter estimation procedures have been

proposed for this speci�cation based on return data only, including generalized method of moments

(GMM) (Chacko and Viceira, 2003), Bayesian Markov Chain Monte Carlo (MCMC) (Eraker et al.,

2003; Jones, 2003), e�cient method of moments (Chernov and Ghysels, 2000), SML (Durham,

2006), and methods based on the empirical characteristic function (ECF) (e.g. Singleton (2001)).

However, several studies have found strong empirical evidence against Heston's speci�cation; see,

e.g. Andersen et al. (2002), Jones (2003), and Aït-Sahalia and Kimmel (2007).2

The main contribution of this paper is to develop a SML procedure to estimate the GARCH

di�usion model of Nelson (1990) based on return data only. There are several important reasons why

we choose to estimate the GARCH di�usion. First, although the GARCH di�usion model is not the

most widely used continuous time SV model in the option pricing literature, its discrete time ARCH

model, GARCH(1,1), has been one of the most popular speci�cations in the discrete time literature

1For example, the Euler-Maruyama-based discretized Heston's model in Durham (2006) and the inverted gamma
model of Richard and Zhang (2007) belong to these exceptions.

2While we focus on the estimation of the physical measure, there are studies in the literature on estimating the
Heston model using options data only to learn about the risk neutral measure (Bakshi et al., 1997) and using both
options and return data to learn about the physical and the risk neutral measures Aït-Sahalia and Kimmel (2007).
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and received the most empirical applications within the ARCH family. As a consequence, not

surprisingly, some recent studies have found that the GARCH di�usion model is able to capture

the dynamics of stock prices better than Heston's model; see, for example, Jones (2003) where

Bayesian MCMC was used for the empirical analysis. Moreover, the GARCH di�usion model o�ers

highly accurate approximations to real option prices (Barone-Adesi et al., 2005).

Second, contrary to a common belief, the maximum likelihood (ML) estimates obtained under

the GARCH model are not asymptotically equivalent to those obtained under the GARCH di�usion.

As shown in Nelson (1990), GARCH(1,1) converges weakly to the GARCH di�usion process. This

property implies that GARCH di�usion will share a similar empirical success to the discrete time

GARCH(1,1) model. Although it is attempting to suggest the idea of estimating the GARCH

di�usion using a discrete time GARCH(1,1) model, as done in several studies (e.g. Lewis (2000),

App. 1.1 and Javaheri (2005)), unfortunately, this suggestion is not theoretically correct because

the two models are not asymptotically equivalent in terms of Le Cam's de�ciency distance (Wang,

2002).

Third, to the best of our knowledge, there is no signi�cant development of the estimation

technique for the GARCH di�usion based on return data only. This is a challenging task for

at least three reasons. First, unlike the Heston model, the GARCH di�usion does not have a

closed form expression for the characteristic function, making the ECF based approach infeasible.3

This feature is obviously shared by model speci�cations outside of the a�ne family (Du�e et al.,

2000). Second, unlike the discrete time SV models, the GARCH di�usion does not have a closed

form expression for the joint transition probability density (TPD) of the return and the volatility.

The lack of analytical expression for the joint TPD is generally true for continuous time models.

Third, even if the joint TPD is available, ML is still not straightforward because the volatility is an

unobservable state variable and has to be integrated out from the joint density. It is well known that

such an integration is of high dimension and numerical techniques are required (see e.g. Danielsson

(1994); Shephard and Pitt (1997); Sandmann and Koopman (1998)). To develop the ML procedure

for the GARCH di�usion, obviously the last two di�culties cannot be circumvented.

3However, as shown in Meddahi (2002), the moments of GARCH di�usion is available and hence a GMM procedure
may be developed.
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The algorithm developed in the present paper combines two accurate approximation procedures,

namely, the polynomial expansions of Aït-Sahalia (2008) to approximate the transition density of

the return and the volatility, and the E�cient Importance Sampler (EIS) of Richard and Zhang

(2007) to integrate out the volatility. The �rst and second order terms in the polynomial expansion

are used to generate a base-line importance density for an EIS algorithm.

There are two state-of-the-art techniques to approximate the TPD of the return and the volatil-

ity of a continuous time model � in-�ll simulations and series expansions. The in-�ll simulation

approach was proposed and re�ned in Pedersen (1995), Elerian et al. (2001) and Durham and

Gallant (2002) in the case of discretely observed processes. For the series expansions, seminal

contributions include Aït-Sahalia (2002b, 2008) and Aït-Sahalia and Yu (2006). The expansions

proposed by Aït-Sahalia (2002b, 2008) are based on Hermite polynomials and Taylor-like polynomi-

als respectively while Aït-Sahalia and Yu (2006) propose the saddlepoint approximation. We shall

follow the series expansion approach and apply a bi-variate polynomial expansion for irreducible

di�usions (from now on polynomial expansion) as described in Aït-Sahalia (2008) to approximate

to arbitrary precision the transition TPD. These expansions are of closed form, are highly accurate

and allow for fast repeated evaluation. Aït-Sahalia (2002a) compared the improved in-�ll simula-

tion method of Durham and Gallant (2002) to the Hermite expansions for the TPD and found that

the Hermite expansions can obtain more accurate evaluations in much shorter CPU time. It will

be made clear soon that the computational cost at this stage is essential because the evaluation of

the TPD is used in combination with the EIS methods.

Our work is related to the earlier work by Aït-Sahalia and Kimmel (2007) where the polynomial

expansions were used to provide ML estimation of continuous time SV models and Jones (2003)

where a Bayesian MCMC method was used to estimate in-�lled Euler-Maruyama (EM) discretized

continuous time SV models. However, in Aït-Sahalia and Kimmel (2007) and Jones (2003) the

estimation was performed based on the assumption that both the return and the volatility are

observed. In their empirical applications, the volatility was assumed to be the same as the implied

volatility. Our approach does not require the volatility be observed and we integrate out the latent

volatility using the EIS algorithm. To account for the non-Gaussianity in the polynomial expansion,
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some further adjustments must be made to the existing EIS algorithm.

Our work is also related to Eraker (2001) and Durham and Gallant (2002) where certain con-

tinuous time SV models were estimated without using the EM discretization. Their techniques are

based on in-�ll simulation approach while our technique is based on the series expansion. Moreover,

Eraker (2001) uses a Bayesian MCMC method whereas ours is a ML approach.

Although we only estimate the GARCH di�usion model in the paper, we need to point out that

our method is not limited to any particular continuous time SV model. Neither the polynomial

expansion nor the EIS require a linear function form in the drift function or the di�usion function.

The rest of the paper is organized as follows. Section 2 reviews the GARCH-di�usion model

and introduces the SML algorithm for approximating the log likelihood function. In Section 3, we

perform a Monte Carlo study to check the statistical performance of the proposed SML. In Section

4, SML is applied to a real data set, and some diagnostic tests are performed. Finally, Section 5

provides some discussion.

2 Model and Methodology

Let St denote the log-price of some asset, and Vt the volatility of this asset. Then the GARCH

di�usion is given as the solution to the Itô stochastic di�erential equation (SDE)

d

 St

Vt

 =

 a

α+ βVt

 dt+

 √(1− ρ2)Vt ρ
√
Vt

0 σVt


 dBt,1

dBt,2

 ,
where Bt,1 and Bt,2 denotes a pair of independent canonical Brownian motions. Here, θ =

[α, β, σ, ρ, a] are the parameters to be determined. Provided that β < 0, the volatility process

Vt is mean reverting with long run mean equal to −α/β. The stationary distribution is the inverse

Gamma with shape parameter α̃ = 1 − 2β/σ2 and scale parameter β̃ = 2α/σ2 (see e.g. Nelson

(1990) and Barone-Adesi et al. (2005)).

For convenience, we follow Aït-Sahalia (2002b) or Durham and Gallant (2002) and apply the

variance stabilizing transformation to the volatility. More precisely, we de�ne Zt = log(Vt) and
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apply Ito's lemma to �nd the joint dynamics of St and Zt to be

d

 St

Zt

 =

 a

(β − 1
2σ

2) + α exp(−Zt)

 dt+

 √(1− ρ2) exp
(

1
2Zt
)

ρ exp
(

1
2Zt
)

0 σ


 dBt,1

dBt,2

 .
(1)

Clearly, the resulting latent process Zt is a non-linear Ornstein-Uhlenbec process.

In the rest of this paper, we assume that observations of the log-price process are only available

at discrete times, and that the volatility is unobserved. Namely, only discrete observations on return

are available. More precisely, we assume that we are given n+ 1 regularly spaced observations s =

[s0, s1, s2, . . . , sn] = [S0, S∆, S2∆, . . . , Sn∆], but the equal spacing assumption can easily be relaxed.

Correspondingly, we use the notation z = [z0, z1, . . . , zn] for (unobserved) discretely sampled log-

volatilities at times corresponding to those of s. In the following, we suppress all dependencies on

the parameter vector θ and the time step ∆ to keep the notation simple.

2.1 TPDs, joint densities and their approximations

Let p(si, zi|si−1, zi−1) denote the TPD of solution process of the SDE (1). Due to the Markov

property (Øksendal, 2003) of the solution process of (1), the joint density of s and z is given as

p(s, z) = p(s0, z0)

n∏
i=1

pi(si, zi|si−1, zi−1). (2)

Given the special structure of the model (1), the log-price enters the TPD only through the log-

return denoted by xi := si − si−1. We shall use the short hand notation pi(si, zi|si−1, zi−1) =

pi(xi, zi|zi−1) and let x denote the n-vector of log-returns [x1, . . . , xn] = [s1 − s0, . . . , sn − sn−1].

This, in turn, implies that we need only to specify an initial density for the stationary Zt at t = 0,

and the joint density of (x, z) takes the form

p(x, z) = p0(z0)

n∏
i=1

pi(xi, zi|zi−1). (3)
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Unfortunately, the TPD of the GARCH-di�usion is not known in closed form, and in general we need

to approximate the joint density p(x, z). This is done by simply substituting each pi, i = 0, . . . , n

with generic approximations p̄i.

Two classes of approximate TPDs are employed for p̄i, namely EM-TPDs (p̄
(E)
i ) and the poly-

nomial expansions for non-reducible di�usions of order K given in Aït-Sahalia (2008), denoted by

p̄
(K)
i . Though the EM-TPDs are conceptually simple and have some good properties when con-

structing the importance sampler (Kleppe et al., 2009), their �xed accuracy for �xed ∆ may lead

to an unacceptable bias in the resulting approximate integrated ML procedure (relative to the use

of exact TPDs). Though more cumbersome to derive and having somewhat higher computational

cost, the polynomial expansions of Aït-Sahalia are attractive in that they have closed form but

still adjustable accuracy for varying order K. This enables us to study the error resulting from the

EM-TPDs by considering a sequence of Aït-Sahalia expansions of increasing order.

The EM-TPDs p̄i(xi, zi|zi−1) are bivariate Gaussian densities characterized by the mean vector

and covariance matrix ∆a

zi−1 + ∆((β − 1
2σ

2) + α exp(−zi−1))

 and ∆

 exp(zi−1) σρ exp
(

1
2zi−1

)
σρ exp

(
1
2zi−1

)
σ2

 (4)

respectively. In the special case of the GARCH di�usion model with state variables (St, Zt), the

Aït-Sahalia expansions of order K have the form

log p̄
(K)
i (xi, zi|zi−1) = − log(2π∆)− 1

2

(
zi + log(σ2(1− ρ2))

)
+
C−1(xi, zi, zi−1)

∆
+

K∑
k=0

Ck(xi, zi, zi−1)
∆k

k!
. (5)

Clearly, the expansion has the interpretation as a functional power series in ∆ (plus some additional

terms). The form of the coe�cients Ck are found by solving both the Forward- and Backward Kol-

mogorov partial di�erential equations to the appropriate orders in ∆ using the algorithms outlined

in Aït-Sahalia (2008). The actual expressions for Ck are in general complicated, and we obtained
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these using Maple. Their exact speci�cation is available upon request in computer form from the

�rst author. It is worth noticing that the polynomial expansions are not proper densities as they

do not integrate to exactly one. However, in our experience the expansions are very accurate for

the GARCH di�usion model so that re-normalization is unnecessary.

The initial density p0 does have a closed form, namely the density of the logarithm of inverse

Gamma variate, but we take p̄0 to be the Gaussian Laplace approximation to p0, i.e. the Gaussian

density with the same mode and same second derivative as p0 at the common mode. The mean

and standard deviation characterizing this Gaussian approximation are given as

µ00
= − log

(
σ2 − 2β

2α

)
, (6)

Σ00
=

σ2

σ2 − 2β
. (7)

This simpli�cation is mainly done for convenience when constructing the importance sampler, and

the errors committed are asymptotically small when n increases.

2.2 Simulated maximum likelihood for the GARCH di�usion model

As explained in the introduction, the second obstacle for the likelihood analysis in the GARCH-

di�usion is that the volatility is unobserved, and needs to be integrated out of the joint likelihood

(3). In this work, we adapt the EIS procedure outlined in Kleppe et al. (2009) to work with the

approximate TPDs described above. The EIS is chosen as it does not rely on a global near-Gaussian

assumption on p(z|x) which is required by the Laplace importance sampler (Shephard and Pitt,

1997). We �rst review the EIS procedure originally proposed by Liesenfeld and Richard (2003) and

further explained in Richard and Zhang (2007).
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2.2.1 An e�cient importance sampling procedure

The idea behind importance sampling for calculating the marginalization integral is choose an

auxiliary importance density m(z) so that

p(x) =

∫
p(x, z)dz =

∫
p(x, z)

m(z)
m(z)dz. (8)

For M →∞, (8) can be approximated by the Monte Carlo estimate

p(x) ≈ l̃(θ|x) =
1

M

M∑
j=1

p(x, z̃(j))

m(z̃(j))
, (9)

where z̃(j) ∼ m(z) for j = 1, . . . ,M . The importance weights p(x, z̃(j))/m(z̃(j)) are denoted by

w(z̃(j)). We shall refer to the approximate ML estimator,

θ̂ = arg max
θ

log l̃(θ|x), (10)

as the SML estimator.

The EIS algorithm of Richard and Zhang (2007) provides a method for choosing an optimal

importance density m(z) = m(z|â) within a prescribed class of auxiliary importance densities

indexed by a n + 1× 2 dimensional parameter a. The optimality is in the sense that the variance

of l̃(θ|x), for a �xed number of importance draws M , is minimized within the class of admissible

values of a. We refer to Richard and Zhang (2007) for a more detailed description of the EIS and

its optimality properties, as a full recapture of their work is beyond the scope of this paper.

The EIS algorithm sampler employed here is derived as follows. Firstly, we introduce the

base-line importance density m(z|0) where a = 0 is taken element wise. The base-line importance

density is derived from the approximate joint density of (x, z) and plays an important role as the full

auxiliary importance density will be expanded around it. Secondly, we add the �exibility indexed

by the parameter a by parametrically extending the base-line importance density at each dimension

within the Gaussian class of densities. Finally, we derive the linear least-squares regressions that
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are used to locate the optimal parameter a in an iterative manner.

2.2.2 The Base-line importance density

In most earlier applications of EIS (see e.g. Liesenfeld and Richard (2003, 2006); Richard and

Zhang (2007); Bauwens and Galli (2009)), the base-line importance density m(z|0) is taken to be

the natural sampler, i.e. the marginal density of the latent process p(z). In this work we follow

Kleppe et al. (2009) and use the product of Gaussian approximations (exact for EM-TPDs) to the

conditional transition density, given the observed return xi. Clearly, taking m(z|0) = p(z|x) would

result in an importance sampler with zero variance. However, conditioning on the whole x is as hard

as the initial problem, and we shall therefore only condition on individual elements xi, as all the

resulting formulae are of closed form. Conditioning on larger portions of x forward in time would

typically result in even smaller variance, but this is not practical as it would involve numerical

integration. We refer to Kleppe and Skaug (2009) for more details on constructing importance

samplers around products of conditional-on-data transition densities.

The Gaussian approximations to the conditional (on data) TPDs are derived by factoring the ap-

proximate zi-variation of the p̄i into a constant part, a �Gaussian part� and some residual variation.

More precisely, we write

p̄(xi, zi|zi−1) = Ai(zi−1, xi)Bi(zi, zi−1, xi)Ri(zi, zi−1, xi) (11)

where Ai(zi−1, xi) does not depend on zi,

Bi(zi, zi−1, xi) = exp

(
− (zi − µ0i(zi−1, xi))

2

2Σ2
0i

(zi−1, xi)

)
(12)

is a Gaussian kernel in zi and R(zi, zi−1, xi) is a slowly varying function that we shall refer to as

the residual variation.4 We will choose µ0i(zi−1, xi) and Σ0i(zi−1, xi) so that as much as possible

of the zi-variation is accounted for in Bi. Consequently, this makes Ri close to constant. Hence

AiBi has the interpretation of being an un-normalized Gaussian approximation to the conditional

4Here the subscript 0i should be read as the ith row of a with the elements set to zero.

10



on xi transition density of zi from zi−1.

In particular for the bi-variate Gaussian p̄
(E)
i , Bi represents the exact shape of the conditional

density p̄
(E)
i (zi|zi−1, xi) and Ri = 1. In accordance with Kleppe et al. (2009), the expressions for

µ0i , Σ0i and Ai under the EM discretization are given as

µ0i,(E)(zi−1, xi) = zi−1 + ∆((β − 1

2
σ2) + α exp(−zi−1)) + σρ(xi −∆a) exp(−zi−1

2
), (13)

Σ0i,(E)(zi−1, xi) = σ
√

∆(1− ρ2), (14)

Ai,(E)(zi−1, xi) =
1√

2πΣ2
0i,(E)

, (15)

and thus have we fully characterized the factorization (11) of the EM-TPDs.

For the expansions of Aït-Sahalia, Ck, k = −1, . . . ,K are polynomials in xi and zi − zi−1 of

order 2(K−k) 5, but the polynomial coe�cients generally depend on zi−1 in a non-polynomial way.

Thus is p̄
(K)
i (zi|zi−1, xi) not exactly Gaussian and we derive the factors (11) using the following

Taylor series argument: Since log p̄
(K)
i (xi, zi|zi−1) is a polynomial in zi 7→ (zi − zi−1), we may

rearrange the terms according to their order in (zi− zi−1) rather than ∆. This may be done as the

Taylor series in zi around the old state zi−1:

log p̄
(K)
i (xi, zi|zi−1) =

L∑
l=0

Dl,(K)(xi, zi−1)(zi − zi−1)l (16)

where L = 2(K + 1) is the highest order of the polynomials used. Notice that the approximate

log-TPD is a polynomial in zi, so no additional error is committed by introducing the Taylor series

representation. Another rearrangement by keeping all the terms up to the second order gives us

log p̄
(K)
i (xi, zi|zi−1) = D′0,(K)(xi, zi−1)︸ ︷︷ ︸

logAi,(K)

−
(zi − µ0i,(K))

2

2Σ2
0i,(K)︸ ︷︷ ︸

logBi,(K)

+

L∑
l=3

Dl,(K)(xi, zi−1)(zi − zi−1)l︸ ︷︷ ︸
logRi,(K)

(17)

5We follow Aït-Sahalia and Kimmel (2007)s 2(K − k) rather than Aït-Sahalia (2008)s 2(K +1− k) on the choice
of polynomial order for computational convenience.
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where

D′0,(K) = D0,(K) +
D2

1,(K)

4D2,(K)
(18)

µ0i,(K) = zi−1 −
D1,(K)

2D2,(K)
(19)

Σ0i,(K) =
1√

−2D2,(K)

(20)

Notice that this Taylor series argument would have produced the same results as in (13 - 15) if

it was applied to the EM-TPDs. However, for the non-Gaussian Aït-Sahalia expansions there is

in general no guarantee that this argument would produce a valid Gaussian approximation. Still,

due to the fact that we are working with the log-volatility with near-Gaussian conditional-on-data

TPDs, the second order series logAi + logBi provides a precise approximation, and in practice has

non-valid Gaussian approximations not been a problem for this model.

For both the EM-TPDs and the polynomial expansions, we use the Gaussian approximation p̄0 to

the stationary density. Analogously to the above introduced notation, we write p̄0(z0) = A0B0(z0)

where

A0 =
1√

2πΣ2
00

, logB0(z0) = − (z0 − µ00)2

2Σ2
00

(21)

With this generic notation in place, we may de�ne the locally Gaussian base-line importance

density as the product of Gaussian approximations to conditional-on-data TPDs

m(z|0) = m0(z0|00)

n∏
i=1

mi(zi|zi−1, xi,0i) (22)

where

m0(z0|00) =
B0(z0)√

2πΣ2
00

and mi(zi|zi−1, xi,0i) =
Bi(zi, zi−1, xi)√

2πΣ2
0i

, for i = 1, . . . , n. (23)

Notice in particular that m(z|0) contain information from the data, and thus should its shape be

closer to posterior density of the log-volatility given the data, i.e p(z|x), than the natural sampler.
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2.2.3 The parametrically extended importance density

Let {ai}ni=0 denote the rows of a, and let ai,1 and ai,2 denote the elements of ai. Following the

earlier literature on EIS, we extend each element mi of the (22) within the family of Gaussian

densities. In practice, this is done by multiplying the elements with ψi(zi|ai) = exp(ai,1zi + ai,2z
2
i )

and compensating with the appropriate normalization factor. Thus we get the representation

m0(zi|a0) =
B0(zi) exp(a0,1zi + a0,2z

2
i )

χ0(a0)
, (24)

mi(zi|zi−1, xi,ai) =
Bi(zi|zi−1, xi) exp(ai,1zi + ai,2z

2
i )

χi(zi−1, xi,ai)
, (25)

where

χ0(a0) =

∫
R
B0(z0)ψ0(z0|a0)dz0, (26)

χi(zi−1, xi,ai) =

∫
R
Bi(zi|zi−1, xi)ψi(zi|ai)dzi. (27)

The explicit expression for logχi is given in Appendix A. Simple calculations yields that the mis

are the Gaussian with means and standard deviations given as,

µa0
=
µ00

+ a0,1Σ2
00

1− 2a0,2Σ2
00

, µai(zi−1, xi) =
µ0i(zi−1, xi) + ai,1Σ2

0i(zi−1, xi)

1− 2ai,2Σ2
0i

(zi−1, xi)
, i = 1, . . . , n, (28)

Σa0
=

Σ00√
1− 2a0,2Σ2

00

, Σai(zi−1, xi) =
Σ0i(zi−1, xi)√

1− 2ai,2Σ2
0i

(zi−1, xi)
, i = 1, . . . , n. (29)

Inspection of these expressions suggest that m(z|a) also has a Markov structure (conditionally on

x and a) with Gaussian transition densities, and that sampling from the importance density using

(28) and (29) is therefore fast and conceptually simple. For the conditional standard errors to be

�nite, it is required that ai,2 < 1/(2Σ2
0i). In practice, the âi,2s are typically negative. Heuristically,

this is reasonable as p(z|x) carries more information regarding z than m(z|0) does. As m(z|â) may

be viewed upon as an (un-normalized) approximation to p(z|x), it is reasonable that the optimal

EIS parameter â will shrink the transition standard deviations by attaining negative ai,2 values.
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2.2.4 Collecting factors and the EIS regressions

Recall that our aim using the EIS is to minimize the variance of the importance sampler weights

w(z) under the importance law on z. The product of Gaussian kernels
∏n
i=0Bi cancels in the

weights, and thus do not contribute to the weight variance. The remaining factors may be written

as (see Appendix A for details)

w(z) =
p(x, z)

m(z|a)
= χ0(a0)A0

[
χ1(z0, x1,a1)A1(z0, x1)

ψ0(z0|a0)

] [
Rn(zn, zn−1, xn)

ψn(zn|an)

]
×

n−1∏
i=1

[
χi+1(zi, xi+1,ai+1)Ai+1(zi, xi+1)Ri(zi, zi−1, xi)

ψi(zi,ai)

]
. (30)

Notice that we have collected the factors so that variation within each bracket is mainly for each

zi, i = 0, . . . , n. Still, the Ris prevents us from obtaining a perfect factorization in the general case.

Let z̃(j) = [z̃
(j)
0 , . . . , z̃

(j)
n ], j = 1, . . . ,M be draws fromm(z|a). To minimize the variation of w(z)

where m(z|a) has signi�cant mass, we follow the EIS strategy and introduce the regression models

corresponding to the log of each of the bracketed factors in (30) (using that logψi = ai,1zi+ai,2z
2
i ):

logχ1(z̃
(j)
0 , x1,a1) + logA1(z̃

(j)
0 , x1) = c0 + a0,1z̃

(j)
0 + a0,2(z̃

(j)
0 )2 + ε

(j)
0 (31)

logχi+1(z̃
(j)
i , xi+1,ai+1) + logAi+1(z̃

(j)
i , xi+1) + logRi(z̃

(j)
i , z̃

(j)
i−1, xi)

= ci + ai,1z̃
(j)
i + ai,2(z̃

(j)
i )2 + ε

(j)
i (32)

logRn(z̃(j)
n , z̃

(j)
n−1, xn) = cn + an,1z̃

(j)
n + an,2(z̃(j)

n )2 + ε(j)
n (33)

where (32) applies for i = 1, . . . , n− 1. Here ε
(j)
i are residuals and ci are constant terms that may

be included without contributing the variance of w. Notice that the right hand sides in (31 - 33) are

linear in (ci, ai,1, ai,2), and may thus be estimated using computationally cheap linear least squares

routines. The constant factor χ0(a0)A0 is kept out of regressions, as it does not result in added

variance.
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As mentioned above, for the EM-TPDs, logRi = 0 for i = 1, . . . , n, and thus we set an = (0, 0)

when using these TPD approximations. The Monte Carlo (MC) variance stems from that the left

hand sides of the regressions are non-linear functions in zi, and thus does the quadratic right hand

side models not capture completely the variation. In addition, the logRi cannot be split completely

into terms that vary only with zi and zi−1. Still, since the draws from the importance density are

highly located, the quadratic models performs very well as will be apparent when we discuss the

numerical accuracy of the procedure.

2.2.5 Iterative EIS and implementation

Upon inspection of the EIS regressions above, and the fact that z̃(j) themselves depend on a, it is

clear that (31 - 33) must be regarded as a �x-point condition satis�ed by the optimal EIS parameter

â. We generate a convergent sequence {a(k)}k towards â in the following manner:

1. Set a(0) = 0, k = 0 and letWi,j , i = 0, . . . , n, j = 1 . . . ,M be (n+1)M independent standard

Gaussian variates.

2. Sample z̃(j), j = 1, . . . ,M from m(z|a(k)) forward in time using

z̃
(j)
i = µ

a
(k)
i

(z̃
(j)
i−1, xi) + Σ

a
(k)
i

(z̃
(j)
i−1, xi)wi,j (34)

for i = 0, . . . , n, j = 1, . . . ,M .

3. Calculate a
(k+1)
i using the regression models (31 - 33) backwards in time (i.e. i = n → 0)

based on z̃(j) and a
(k+1)
i+1 in the logχi+1 terms (with obvious alterations for the �rst regression).

4. Set k ← k + 1 and return to step 2.

We follow Richard and Zhang (2007) and use the same set of standard normal variates for each

iteration and for each evaluation of the simulated likelihood to ensure a smooth surface for the

log-likelihood function. A total of 8 iterations are performed for each function evaluation. If the

simulated likelihood based on the polynomial expansions is computed, we do the 4 �rst iterations

using EM-TPDs, as this is computationally faster and more stable. A small amount of parameter
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shrinkage on ai,2 (0.001 added to the corresponding diagonal element of the normal equations

matrix) is introduced to make the computations more stable, but this small bias does not a�ect the

numerical accuracy to any signi�cant extent.

The algorithm is implemented in FORTRAN90. Following Skaug (2002) and Bastani and Guerrieri

(2008), we use a algorithmic di�erentiation (AD) tool to generate code for the exact gradient of

the simulated likelihood function. Speci�cally, we used Tapenade (Hascoët and Pascual, 2004) in

multidirectional forward mode to complete a gradient in one forward sweep.

Finally, a line searching BFGS-quasi-Newton optimizer (Nocedal and Wright, 1999) is applied to

maximize the simulated likelihood function using function values and the AD-generated gradients.

None of the estimation replica presented in the next two sections failed to converge.

3 A Monte Carlo Study

To study the statistical properties of the proposed methods on daily data (where ∆ = 1/252), we

conduct a Monte Carlo experiment. We shall consistently use the acronyms EUL for SML based on

EM-TPDs and AS1, AS2 and AS3 for SML based on the polynomial expansions of order K = 1, 2

and 3. For the SML, we consistently use M = 32 draws both for the MC study and the application

to real data.

The setup for the study is as follows. We use two sample sizes � n = 2022 (matching the

sample size of the real data discussed shortly) and n = 5000, corresponding to roughly 8 and 20

years of data respectively. For each of the sample sizes, we simulate 1000 data sets using the EM

scheme with time step ∆/256. The resulting data on the ∆-grid should thus have very similar

statistical properties to data from a discretely observed GARCH di�usion. Estimators for the

relevant parameters are then obtained both with observed volatility and with unobserved volatility.

This simulation study setup is designed to attempt to heuristically disentangle the three main

sources of statistical bias involved in this problem.

• The error committed when using the approximate TPDs comparing with applying the exact

TPDs. As we employ a sequence of polynomial expansions in addition to the EM discretiza-
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method α β σ ρ a
True parameters 0.2231 -8.4650 2.7059 -0.3047 0.0955

n = 2022 observed log-volatility
EUL 0.0009 -0.2547 -0.0657 0.0003 -0.0010

(0.0300) (1.8389) (0.0423) (0.0198) (0.0482)
AS1 0.0056 -0.3294 0.0014 -0.0009 -0.0028

(0.0312) (1.8816) (0.0435) (0.0199) (0.0479)
AS2 0.0075 -0.4404 0.0008 -0.0013 -0.0009

(0.0314) (1.8988) (0.0435) (0.0199) (0.0482)
AS3 0.0082 -0.4756 0.0009 -0.0013 -0.0010

(0.0316) (1.9095) (0.0435) (0.0199) (0.0482)
n = 2022 unobserved log-volatility

EUL 0.0140 -0.8182 -0.0464 0.0288 0.0073
(0.0740) (3.3553) (0.4282) (0.0997) 0.0513

AS1 0.0034 -0.2168 -0.0608 0.0003 -0.0038
(0.0658) (2.9505) (0.4065) (0.1014) (0.0520)

AS2 0.0149 -0.6748 0.0134 -0.0057 -0.0027
(0.0716) (3.1933) (0.4324) (0.1014) (0.0520)

AS3 0.0212 -0.9348 0.0476 -0.0048 -0.0029
(0.0793) (3.5065) (0.4621) (0.1013) (0.0520)
n = 5000 observed log-volatility

EUL -0.0046 0.0525 -0.0650 0.0010 -0.0008
(0.0185) (1.1443) (0.0267) (0.0127) (0.0305)

AS1 -0.0001 -0.0127 0.0004 -0.0003 -0.0025
(0.0192) (1.1671) (0.0276) (0.0128) (0.0303)

AS2 0.0017 -0.1209 -0.0001 -0.0006 -0.0007
(0.0193) (1.1775) (0.0276) (0.0128) (0.0305)

AS3 0.0024 -0.1538 -0.0000 -0.0006 -0.0008
(0.0194) (1.1839) (0.0276) (0.0128) (0.0305)
n = 5000 unobserved log-volatility

EUL -0.0003 -0.1809 -0.0862 0.0290 0.0082
(0.0399) (1.8212) (0.2513) (0.0616) (0.0324)

AS1 -0.0082 0.2913 -0.0902 0.0003 -0.0026
(0.0367) (1.6593) (0.2461) (0.0625) (0.0330)

AS2 0.0017 -0.1019 -0.0235 -0.0050 -0.0016
(0.0399) (1.7933) (0.2601) (0.0625) 0.0330

AS3 0.0054 -0.2525 -0.0016 -0.0043 -0.0018
(0.0422) (1.8907) (0.2702) (0.0625) (0.0330)

Table 1: Results from the Monte Carlo experiment. All results are taken over 1000 synthetic
data sets simulated under the parameters given in the �True parameters� row. Estimated bias (no
parenthesis) is calculated as estimated parameters minus the true parameter. Statistical standard
errors are given in parenthesizes.
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tion, this source of error may be assessed quite rigorously by comparing the di�erent TPD

approximations. In particular, a convergence of the estimates obtained for the higher order

polynomial expansions suggests that we have su�cient precision in the TPDs.

• The �nite sample bias of using the integrated likelihood function. It is well known that ML

tends to produce a �nite sample bias for the mean reversion parameter for observed di�usion

processes. In particular, Phillips and Yu (2009) show that ML estimates tend to be biased

towards a faster mean reversion. This claim may be checked in our ML estimates of β when

the volatility is observed or unobserved.

• The errors committed by using MC methods, in place of exact integration, to compute the

integrated likelihood function. Comparison of estimators based on observed and unobserved

volatility gives us some clues as to whether faith should be put into the importance sampler.

This source of error will also be addressed in Section 4.1.2, where we test the �niteness of the

variance of the importance sampling weights, and thus assess the convergence properties of

the proposed importance sampling algorithm.

The parameter estimates obtained under AS2 for the real data discussed in section 4 are used as

the �true parameters� throughout the complete experiment. These parameters, along with results

from the MC study are summarized in Table 1. The mean computing times for locating the SML

estimates ranges from 14 seconds (EUL, n = 2022) to 185 seconds (AS3 n = 5000) on a typical

modern desktop computer.

Table 1 reports the bias and the standard error of each estimate obtained from 1000 replications.

From �rst and third panels where volatility is observed, we see that there is some di�erences in

the estimates obtained using the di�erent TPD approximations. The most striking di�erence is the

underestimation of the σ parameter under the EM-TPDs, whereas these biases are much smaller

for the polynomial expansions. This result seems to be consistent with what has been found in Aït-

Sahalia (1999). The expected bias towards faster mean reversion is also seen as an underestimation

of the β parameter for all the TPDs. The bias gets smaller when the sample size is increased, as one

would expect. The estimates obtained using AS2 and AS3 are consistently more similar than the
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others, suggesting these approximations represent su�ciently precise approximations to the true

TPDs for our needs.

Comparing the estimators obtained with and without observed volatility (i.e. panel 1 with panel

2 and panel 3 with panel 4), we see that the loss of statistical precision is most signi�cant for the

σ parameter where a ten-fold increase in the standard error is seen. The parameters governing the

linear drift of the volatility, α and β, are subject to about a doubling of the statistical standard

errors when the log-volatility is integrated out.

4 Empirical Application to Equity Data

In the empirical application, we employ the Standard & Poor 500 data previously used in Jacquier

et al. (1994) and Yu (2005)6 and later applied in Kleppe et al. (2009). The time-series of log-returns

covers the period January 1980 to December 1987 and consists of a total of n = 2022 observations.

In particular, the data covers the October 1987 crash.

Parameter estimates for the data using the four di�erent estimation procedures are presented in

Table 2. For the SML methods, the estimates are calculated as the mean across 100 estimates with

di�erent random number seeds in the importance sampler. In addition to parameter estimates and

statistical standard errors taken from Table 1, we present standard errors due to the application of

Monte Carlo methods for calculating the marginalization integrals. Consistently, the Monte Carlo

standard errors are small comparing with statistical standard errors. As additional references for

the Monte Carlo standard errors, we may mention that Liesenfeld and Richard (2006) obtains a

standard error of 0.11 ( 0.0120 % of a log-likelihood value of 918) under the log-normal SV model

using 30 draws using the EIS and that Durham (2006) obtains a standard error of 2.49 (0.0135 %

of a log-likelihood value of 18473) under an EM discretized Heston's model using 1024 draws in a

Laplace importance sampler. The corresponding value under the AS2 procedure presented here is

0.0751 (0.0011 % of 6540.9) and must be said to be quite impressing considering the non-linear and

non-Gaussian nature of the model and the relatively modest number of draws in the importance

6We multiply the data of Yu (2005) with 0.01
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method α β σ ρ a log-likelihood
EUL 0.2417 -9.3401 2.8072 -0.2914 0.1042 6541.1

(0.0740) (3.3553) (0.4282) (0.0997) (0.0513)
[0.0023] [0.0986] [0.0127] [0.0006] [0.0001] [0.0849]

AS1 0.2096 -7.9072 2.6283 -0.2989 0.0942 6540.5
(0.0658) (2.9505) (0.4065) (0.1014) (0.0520)
[0.0012] [0.0495] [0.0073] [0.0006] [0.0001] [0.0685]

AS2 0.2231 -8.4650 2.7059 -0.3047 0.0955 6540.9
(0.0716) (3.1933) (0.4324) (0.1014) (0.0520)
[0.0028] [0.1180] [0.0142] [0.0008] [0.0001] [0.0751]

AS3 0.2280 -8.6695 2.7313 -0.3045 0.0954 6541.0
(0.0793) (3.5065) (0.4621) (0.1013) (0.0520)
[0.0033] [0.1396] [0.0167] [0.0008] [0.0001] [0.0782]

Table 2: Parameter estimates and log-likelihood values for the S&P500 data using the four di�erent
estimation procedures. The parameter estimates are taken as the mean over 100 replications using
di�erent random number seeds in the importance sampler. Statistical standard errors taken from
Table 1 with n = 2022 and unobserved log-volatility, and are presented in parenthesizes. The
estimates of the standard errors due to the EIS MC variation are included in square parenthesizes.

sampler. Much of this improved accuracy (comparing with earlier EIS application such as Liesenfeld

and Richard (2003)) comes from the fact that we use the product of conditional-on-data TPDs as

our base-line importance density rather than the marginal density of the latent process.

From the Table, we see that the parameter estimates for the four SML methods are fairly

consistent. The SML estimates for ρ are very much in accordance with the leverage parameter found

in Yu (2005) (posterior mean = -0.3179) using the log-normal model and Bayesian estimation. In

particular, we see that the parameter estimates for AS2 and AS3 are more similar than comparing

say AS1 and AS2. This suggests that K = 2 is a su�cient order in the polynomial expansions for

most practical applications under these ranges of parameters and time-steps.

4.1 Diagnostics

In addition to estimating parameters, we have also considered two forms of diagnostics for the above

presented parameter estimation procedures. Firstly, we perform a battery of test to the residuals

to assess the model �t. Secondly, we follow Koopman et al. (2009) and perform some tests on a

�nite variance of importance weights assumption in SML procedures.
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4.1.1 Model �t: tests on residuals

Residuals for stochastic volatility models are not as standard as in the discrete time GARCH case,

but some work has been done in Kim et al. (1998), Liesenfeld and Richard (2003) and Durham

(2006). Here we propose to use a very simple estimator

yi =
xi −∆â√
∆ exp(ẑi)

(35)

for the standardized Brownian increments involved in the price process as the basis for the residual

analysis. Here â is the SML estimate of a and we take ẑ to be the empirical Bayes smoothing

estimator (Carlin and Louis, 1996), i.e. ẑ = Eθ=θ̂[z|x], of the log-volatility. Under a severely

miss-speci�ed model, one would expect that y should deviate from being a vector of i.i.d. standard

Gaussian variates.

The empirical Bayes estimator is particularly attractive from a computational perspective, as

only minor adjustments to the EIS-SML code is needed to obtain an Independent Metropolis-

Hastings (IMH) MCMC algorithm for computing the posterior mean ẑ (or any other desired mo-

ment). See, for example Robert and Casella (2004) p. 276 for a general treatment of IMH and

Liesenfeld and Richard (2006) and Liesenfeld and Richard (2008) for IMH in the context of pro-

posal distributions located using EIS. For each of the four SML procedures, we �rst locate an EIS

importance density and then draw i.i.d. proposals zp from the importance density. The acceptance

probability, given the current state zc, has the form

paccept = min

(
w(zp)

w(zc)
, 1

)
(36)

The posterior means used here are based on chains of length 10000 and the acceptance rate for all

four SML methods are between 0.7 and 0.8.

Normal QQ-plots for the residuals (35) are given in Figure 1 for the four SML procedures

described above. None of the QQ-plots suggest any severe model-miss-speci�cation. In addition,

we have performed the standard battery of tests for temporal independence and normality of the
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method L-B(10) L-B(15) L-B(20) J-B K-S M(2n1/3) M(4n1/3)
EUL 0.0322 0.1262 0.3116 0.0409 0.0547 -6.4814 -9.2376
AS1 0.0287 0.1162 0.2906 0.1424 0.0698 -6.8556 -9.8941
AS2 0.0287 0.1158 0.2891 0.1467 0.0719 -6.4089 -8.8807
AS3 0.0286 0.1155 0.2886 0.1469 0.0719 -6.3747 -8.7028

Table 3: Various test-statistics. L-B(lags) contains the p-values for the Ljung-Box temporal de-
pendence test for lags 10,15 and 20. J-B and K-S contains the p-values for the Jarque-Bera and
Kolmogorov-Smirnov normality tests respectively. M(k) denotes the Monahan test with trunca-
tion k. The test statistics are asymptotically standard normal under the null-hypothesis that the
importance weights have borderline in�nite variance, and large negative values suggest a rejection
towards �nite variance.

residuals. The relevant test-statistics are summarized in Table 3. The Ljung-Box tests show that

there may be some unexplained dependence for small numbers of lags. The EUL residuals yield

borderline Jarque-Bera and Kolmogorv-Smirnov test-statistics for normality, whereas a suspicion

of miss-speci�cation cannot be supported by these normality tests when the polynomial expansions

are used.

4.1.2 Tests for the importance weight variance

Recall that to have
√
M convergence and asymptotic normality of the integral estimate (9), a

�nite variance of the importance weights is required. Recently, Koopman et al. (2009) proposed

several tests for �nite variance based on extreme value theory, and we shall apply some of their

suggested methods here. Throughout this section, we consider the scaled importance weights w′ =

exp(logw−6540) as the values of w are too large for the �oating point numerics used. This re-scaling

does not a�ect the results presented, as the test statistics are invariant under re-scaling.

The tests are based on N = 1000M = 32000 importance weights obtained by evaluation of the

EIS procedures 1000 times on the real data at the parameter estimated obtained for AS2. The

100 largest scaled weights, along with a histogram of the scaled weights are presented in Figures 2

and 3 for each of the four SML procedures. These preliminary diagnostics do not suggest in�nite

variance problems under any of the SML procedures.

More formal tests can be based on the peak over threshold methodology for i.i.d. observations.
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Figure 1: QQ-plot of the residuals (35).
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Figure 2: Finite variance diagnostics for EUL and AS1. The left hand side panels present the 100
largest scaled weights. The middle panels are histograms of all the scaled weights. The right hand
side panel plots the maximum likelihood estimates of ξ (solid) along with 95% con�dence bands
(dashed) for di�erent values of the truncation parameter k.

24



1 2 3

x 10
4

5

6

7

8

9

10

11
Max 100 scaled weights

Index

Sc
al

ed
 w

ei
gh

t

0 5 10 15
0

500

1000

1500

2000

2500

3000

3500

4000
Scaled weights

Scaled weight

Fr
eq

ue
nc

y

0 5000 10000 15000
−0.1

−0.05

0

0.05

0.1

0.15
MLEs of ξ

k

Es
tim

at
ed

 ξ

AS2

1 2 3

x 10
4

6

7

8

9

10

11

12

13
Max 100 scaled weights

Index

Sc
al

ed
 w

ei
gh

t

0 5 10 15
0

500

1000

1500

2000

2500

3000

3500

4000
Scaled weights

Scaled weight

Fr
eq

ue
nc

y

0 5000 10000 15000
−0.1

−0.05

0

0.05

0.1

0.15
MLEs of ξ

k

Es
tim

at
ed

 ξ
AS3

Figure 3: Finite variance diagnostics for AS2 and AS3. The left hand side panels present the 100
largest scaled weights. The middle panels are histograms of all the scaled weights. The right hand
side panel plots the maximum likelihood estimates of ξ (solid) along with 95% con�dence bands
(dashed) for di�erent values of the truncation parameter k.
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A caveat here is that the importance weights are not exactly independent when they stem from the

same EIS evaluation. Still, since the tests are invariant to a reordering of the data, we disregard this

fact and proceed as if the data were i.i.d. Let {w′(j)} denote the scaled weights sorted in descending

order. We de�ne the �over threshold� weights (OTW) as ui = w′(i)−w
′
(N−k), i = 1, . . . , k where k is a

tuning parameter. Our aim is to measure the tail thickness of the OTWs as only the tails determine

the �niteness of variance. The central tool for inference is the generalized Pareto distribution with

density

f(u; ξ, b) =
1

b

(
1− ξ u

b

)− 1
ξ−1

(37)

for which we �t to {ui}Ni=1 using two di�erent methods. The parameter ξ determines the tail

thickness, and in particular does ξ < 1/2 correspond to a �nite variance. For ξ < 0, the Generalized

Pareto distribution has �nite support, and thus trivially �nite variance. The parameter b is a scale

parameter, whose actual value is of little interest for our application.

ML estimates of ξ are plotted in the rightmost plots of Figures 2 and 3 along with 95% con�dence

bands for values of k ranging from [0.01N ] to [0.5N ] where [·] denotes the integer part.7 From the

Figures, we see that the MLEs of ξ stay consistently below 1/2 for any reasonable truncation

parameter k.

In addition to the ML estimation of ξ, we apply Hill's estimator (see Hill (1975) or Phillips et al.

(1996)) for ξ in the Generalized Pareto distribution. This estimator is given as

ξH =
1

k

k∑
j=1

logw′(N−j+1) − logw′(N−k), (38)

and has a known asymptotically normal limit under some conditions on the relative growth of N and

K. We follow Monahan (1993) and Koopman et al. (2009) and use k = [2N1/3] and k = [4N1/3] for

this test. The last two columns of Table 3 gives us test-statistics that are asymptotically standard

normal under null-hypothesis that the true ξ = 1/2, i.e. borderline in�nite variance in the weights.

Large (comparing with the standard normal distribution) negative test-statistics suggest rejection

towards smaller values of ξ and �nite variance. From the Table, we see strong evidence against the

7Obtained using the gpfit-function in MATLAB.
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null-hypothesis and towards �nite variance. All in all, the tests for �nite variance of the importance

weights conclusively points towards �nite variance.

5 Conclusion

In this paper, we have introduced a methodology for computing SML estimates under the GARCH

di�usion model where the discretization errors are controlled by applying a sequence of TPD approx-

imations. The SML procedure performs numerically very well and there is no evidence of in�nite

variance issues in the importance sampler. For the progressively precise TPD-approximations, we

see that there is a decreasing di�erence in the resulting SML estimates, suggesting that arbitrary

accurate approximations to the exact continuous time likelihood based on discrete data can be pro-

duced in this manner. Of course, there is a tradeo� here, as the cost of reducing the discretization

error corresponds to increasing cost of evaluation of the polynomial expansions of higher order.

This trade-o� arises because the latent variable has to be integrated out. As a reference, the AS2

expansion requires about 100 lines of machine generated FORTRAN90 code to be evaluated, whereas

the corresponding �gure for AS3 is about 550.

There is a scope for the other applications of our method. The polynomial expansions are

by no means restricted to the GARCH di�usion model, and there should obviously be scope for

applying the current methodology within a broader class of models. However, the sampling rate

∆ and the degree of deviation from the normality of the latent process are important parameters

for whether this would be successful. It is well known that for Brownian motion driven stochastic

di�erential equations, the TPD converges to a normal distribution as ∆→ 0, and thus should the

above proposed methodology produce precise results for su�ciently small ∆. However, this limit

argument may not be of practical interest as data may be available only for larger ∆. If this is

the case, one may wish to consider exchange the locally Gaussian importance density with a more

problem speci�c non-Gaussian importance density. Alternatively, the saddlepoint approximation,

that makes use of a non-Gaussian distribution as the leading term, may be useful.

Another possible direction for future research may be to employ the here described Independent
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Metropolis-Hastings EIS algorithm to update z in a Gibbs sampler-based MCMC algorithm. This

was done under the log-normal model in Liesenfeld and Richard (2006). However, due to the

complicated form (in the parameters) of the coe�cients in the polynomial expansions, a Metropolis-

Hastings algorithm will generally also be needed to update the parameter vector.

Another direction for possible research is to allow for jumps either in the volatility or in the

price process or both. Yu (2007) provides the corresponding TPD-expansions for jump-di�usions.

Coping with jumps in the EIS framework can be done by introducing latent process consisting of

jump counts (such as a binomial or Poisson). By alternating between iterating the EIS algorithm on

the volatility (conditionally on the jump counts) and the count process, another EIS approximation

to p(z|x) is obtained.
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A Explicit expressions

The explicit expression for logχi is given as

logχi(zi−1, xi,ai) =
1

2
log(π)− 1

2
log

(
1

2Σ0i(zi−1)2
− ai,2

)
− µ0i(zi−1, xi)

2

2Σ0i(zi−1)2
−

(
µ0i

(zi−1,xi)

Σ0i
(zi−1)2 + ai,1

)2

4
(
ai,2 − 1

Σ0i
(zi−1)2

) .
(39)

where obvious alterations apply for i = 0. The details for (30) are given as

p(x, z)

m(z|a)
=

p(z0)
∏n
i=1 pi(zi|zi−1, xi)

m0(z0|a0)
∏n
i=1mi(zi|zi−1, xi,ai)

=
A0B0(z0)

∏n
i=1Ai(zi−1, xi)Bi(zi, zi−1, xi)Ri(zi, zi−1, xi)

B0(z0)ψ0(z0|a0)
χ0(a0)

∏n
i=1

Bi(zi,zi−1,xi)ψi(zi|ai)
χi(zi−1,xi,ai)

=
χ0(a0)A0

∏n
i=1 χi(zi−1, xi,ai)Ai(zi−1, xi)Ri(zi, zi−1, xi)

ψ0(z0|a0)
∏n
i=1 ψi(zi|ai)

= χ0(a0)A0

[
χ1(z0, x1,a1)A1(z0, x1)

ψ0(z0|a0)

] [
Rn(zn, zn−1, xn)

ψn(zn|an)

]
×

n−1∏
i=1

[
χi+1(zi, xi+1,ai+1)Ai+1(zi, xi+1)Ri(zi, zi−1, xi)

ψi(zi,ai)

]
(40)
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