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Abstract

The area-characteristic, maximum possible earthquake magnitude TM
is required by the earthquake engineering community, disaster man-
agement agencies and the insurance industry. The Gutenberg-Richter
law predicts that earthquake magnitudes M follow a truncated expo-
nential distribution. In the geophysical literature several estimation
procedures were proposed, see for instance Kijko and Singh (Acta
Geophys., 2011) and the references therein. Estimation of TM is of
course an extreme value problem to which the classical methods for
endpoint estimation could be applied. We argue that recent meth-
ods on truncated tails at high levels (Beirlant et al., Extremes, 2016;
Electron. J. Stat., 2017) constitute a more appropriate setting for this
estimation problem. We present upper confidence bounds to quantify
uncertainty of the point estimates. We also compare methods from
the extreme value and geophysical literature through simulations. Fi-
nally, the different methods are applied to the magnitude data for the
earthquakes induced by gas extraction in the Groningen province of
the Netherlands.

Keywords: Anthropogenic seismicity, endpoint estimation, extreme value
theory, truncation
Mathematics Subject Classification (2010): 62G32
JEL codes: C13, C14
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1 Introduction

Under the Dutch province of Groningen lies one of the largest gas fields in
the world. The reservoir lies at a depth of 3 km in Rotliegend sandstone
and contains an estimated 2800 billion cubic metres of gas. Since production
started in 1963, around 2000 billion cubic metres of gas has been produced
up to 2012 by the NAM (Nederlandse Aardolie Maatschappij), a partnership
between Shell and ExxonMobil. As a result of taxes and its participation in
NAM, the Dutch government typically receives 70% of the profit from the
Groningen Gas Field (GGF), although in some periods this can be even as
high as 90% (van der Voort and Vanclay, 2015).

Despite the economic advantages of the gas extraction on the Dutch gov-
ernment finances, there is also a serious drawback. Since 1986, anthropogenic
(man-made) seismicity is observed in the, otherwise mostly aseismic, north-
ern part of the Netherlands, and especially in the province of Groningen.
When the gas is extracted, the porous layer of sandstone, in which it is con-
tained, compacts. Normally, this happens gradually, and the surface subsides
without causing any problem. However, when this process happens e.g. close
to fault lines, the sandstone layers can locally compact differently which
causes seismic activity (van Eck et al., 2006; van der Voort and Vanclay,
2015). Because of this anthropogenic seismicity, houses have been damaged
and the NAM has paid around 200 million euro of compensation up to 2014.
Moreover, several thousands of houses need to be reinforced to avoid serious
damage caused by future potential seismic activity. van Eck et al. (2006)
also mentions other social impacts of the seismic activity including declining
house prices and concerns about breaching of the dykes in the gas field area
in case of a large seismic event.

One of the obvious parameters responsible for the damage caused by
seismic activity is the magnitude of the seismic event, which is directly linked
to the energy released by the seismic event. So far, the largest (local) seismic
event magnitude observed in the GGF is M = 3.6 which occurred on 16
August 2012 near the village of Huizinge, municipality of Loppersum. A
Modified Mercalli Intensity of VI was observed less than 4 km from the event
epicentre (Dost and Kraaijpoel, 2013). The event caused significant damage
to the infrastructure.

A natural question arises: what is the maximum possible seismic event
magnitude TM which can be generated by the GGF? Knowledge of this pa-
rameter is required by the local authorities, the engineering community, dis-
aster management agencies, environmentalists, and the insurance industry.
Its value depends on the regional tectonic setting of the area, the presence
of active (capable) tectonic faults and, up to certain extent, the production
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regime. According to a comprehensive study of anthropogenic seismicity
since 1929, the largest observed seismic event magnitude caused by oil and
gas extraction is 7.3 (Davies et al., 2013). This event and another event
of magnitude ∼7.0 took place near Gazli in Uzbekistan, in an area that is
known to be aseismic. At the Lacq gas field in France, an event of magni-
tude ∼6.0 was recorded (Bardainne et al., 2008). It is uncertain that the
events were indeed of anthropogenic origin, but several factors suggest that
these are examples of the strongest seismic events related to gas extraction
from the gas fields. Seismicity generated by groundwater extraction has a
similar character. On 11 May 2011, in Lorca, Spain, extensive groundwater
extraction caused the occurrence of a shallow (2-4 km) seismic event of mag-
nitude 5.1, leading to nine casualties and significant damage to infrastructure
(González et al., 2012).

The purpose of this research is to assess the maximum possible seismic
event magnitude TM , based on the available seismic event catalogue of an-
thropogenic seismicity generated by the GGF. Several such estimates for the
area have been made by the KNMI (Koninklijk Nederlands Meteorologisch In-
stituut): 3.3 in 1995, 3.8 in 1998 and 3.9 in 2004. In March 2016, a workshop
was held in Amsterdam to provide an estimate for the maximum possible
seismic event magnitude, which can be generated by the GGF (see NAM
(2016) for an overview of the results). The range of TM estimates, provided
by the experts, is 3.8 to 5.0. So far, the epicentres of all occurred seismic
events are within the areas of the gas extraction or not more than 500 m
outside of the extraction area. This indicates that the observed seismicity
can be classified as anthropogenic. However, it cannot be excluded that in
the future the stresses generated by the gas extraction will be able to trigger
tectonic origin stresses, resulting in significantly stronger events outside of
the gas field. As a rule, such events can be significantly stronger than purely
induced (see e.g. Gibowicz and Kijko, 1994). So far, experts have found no
evidence that the Groningen gas fields are capable of triggering significantly
stronger seismicity than already observed. However, if such events would oc-
cur, the experts believe that an event of magnitude at most 7.25 is possible
(NAM, 2016).

The estimation of TM can be done in many different ways. For a re-
view of different methods applicable for the assessment of TM , see e.g. Kijko
and Graham (1998); Kijko (2004); Wheeler (2009); Kijko and Singh (2011);
Vermeulen and Kijko (2017). A comprehensive discussion of TM assessment
techniques, mainly related and applicable to fluid injection, is provided in
Yeck et al. (2015). Unlike Shapiro et al. (2010) and Hallo et al. (2014), Yeck
et al. (2015) assumed that the parameters describing the anthropogenic seis-
mic regime (seismic activity rate, the b-value of Gutenberg-Richter and an
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upper limit of magnitude TM) are subject to significant spatial and tempo-
ral variation. Especially prone to time-space fluctuation is the value of TM .
Yeck et al. (2015) suggests two different approaches for the assessment of
this parameter. The first one is based on the observation (see e.g. McGarr,
1976, 2014; McGarr et al., 2002; Nicol et al., 2011) that the maximum seismic
event magnitude is linearly proportional to the logarithm of the cumulative
volume of fluid injected/extraction. However, Yeck et al. (2015) is not an-
swering the question about the saturation of such a time dependence plot.
Since fault sizes are limited, and the seismic event magnitude is linked to the
fault size, the magnitudes also need to have an upper limit. Based on this
simple physical consideration, the TM value must reach this certain upper
limit. The second approach to assess TM , which is explored in Yeck et al.
(2015), is based on the relationship between the size of the fault rupture and
the seismic event magnitude (see e.g. Wells and Coppersmith, 1994; Stirling
et al., 2013). A similar approach, extended by application of the logic tree
formalism, is suggested in Bommer and van Elk (2017). The drawback of the
proposed method is the fact that anthropogenic seismicity often takes place
in previously inactive areas with unknown and unmapped faults.

Clearly, assessment of the upper limit of magnitude TM can be done using
statistical tools, in particular extreme value theory (EVT). In this work, the
EVT formalism is applied for assessment of the maximum possible seismic
event magnitude in the GGF, by application of two different parameter es-
timation techniques, as developed in Beirlant et al. (2016, 2017). Our work
also includes analyses of the confidence bounds of the upper limit of the mag-
nitude distribution. For this purpose, we applied the asymptotic techniques
as developed in Beirlant et al. (2016, 2017). Other EVT-based estimators us-
ing the moment estimator (Dekkers et al., 1989) or the peaks-over-threshold
maximum likelihood (POT-ML) approach have also been applied (see e.g.
Beirlant et al., 2004; de Haan and Ferreira, 2006). However, comprehensive
tests based on simulated data show that moment and POT-ML based estima-
tors perform worse for truncated distributions than the estimators developed
in Beirlant et al. (2016, 2017). For this reason, the moment and the POT-
ML endpoint estimators are not discussed in this work. Recently, another
endpoint estimator based on EVT was proposed in Fraga Alves et al. (2017).
It is however not suitable to estimate the endpoint when the distribution is
truncated, as is for example the case for the Gutenberg-Richter distribution
we discuss later. When applying the estimator to simulated data or the GGF
data example, which we consider later in this paper, the method of Fraga
Alves et al. (2017) yields very volatile estimates. Therefore, it is not included
in this paper.
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The EVT-based estimators of the upper limit of the earthquake mag-
nitudes, or equivalently the endpoint of the magnitude distribution, have
received rather limited attention in the respectable seismological literature.
Pisarenko et al. (2008, 2014); Pisarenko and Rodkin (2017); Vermeulen and
Kijko (2017) are notable exceptions.

Based on empirical evidence, it is often assumed that earthquake magni-
tudes follow the so-called Gutenberg-Richter (GR) distribution (Gutenberg
and Richter, 1956). The original GR magnitude distribution has no upper
limit. After right truncation of the GR distribution, or physically speaking,
after introducing the upper limit of seismic event magnitude (Hamilton, 1967;
Page, 1968), the cumulative distribution function (CDF) takes the form

FM(m) = P(M ≤ m) =


0 if m ≤ tM
exp(−βtM )−exp(−βm)
exp(−βTM )−exp(−βm)

if tM < m < TM

1 if m ≥ TM ,

where tM > 0 is the level of completeness of the seismic event catalogue, TM
is the maximum possible magnitude, i.e. the upper limit (truncation point) of
the magnitude distribution, and β > 0 the distribution parameter. Note that
the Gutenberg-Richter distribution is not only derived empirically. There
are several attempts (see e.g. Scholz, 1968, 2015; Rundle, 1989) to derive
the GR relation based on the physical principles of earthquake occurrence
or by application of the universal concept of entropy (see e.g. Berril and
Davis, 1980). Several parametric estimators of TM have been derived, which
are based on the GR magnitude distribution (see e.g. Pisarenko et al., 1996,
2008; Raschke, 2012). Here, we only look at one parametric estimator of
TM : the Kijko-Sellevoll estimator (Kijko and Sellevoll, 1989; Kijko, 2004).
Moreover, we are also analysing a parametric upper confidence bound for TM
based on the truncated GR distribution (Pisarenko, 1991). This technique is
applied in Zöller and Holschneider (2016b) to assess the maximum possible
seismic event magnitude in the GGF. Note that Bayesian estimators for the
maximum earthquake magnitude have also been considered, see e.g. Cornell
(1994); Holschneider et al. (2011); Kijko (2012).

Another parametric model for earthquake magnitudes is the tapered Pareto
distribution a.k.a. the modified GR distribution (see e.g. Kagan and Jackson,
2000; Kagan and Schoenberg, 2001). However, unlike the truncated GR dis-
tribution, this model does not provide an upper bound for the magnitudes,
which makes it unrealistic from a physical point of view.

Zöller and Holschneider (2016b) like e.g. Pisarenko and Rodkin (2017)
provides estimates for the maximum expected seismic event magnitude to
occur, for different time intervals (time horizons). It is important to note

5



that in our work, we do not try to estimate that quantity, but we only
look at estimates for the time-independent maximum possible seismic event
magnitude.

In the next section, we discuss the different endpoint estimators that can
be applied to estimate the maximum possible seismic magnitude TM . In
Section 3, we apply these methods to estimate TM for the GGF. Moreover,
we also discuss upper confidence bounds for TM . Afterwards, we compare the
performance of the EVT-based estimators with some discussed in Kijko and
Singh (2011) using simulations, assuming that the seismic event magnitude
is distributed according to the truncated GR distribution.

2 Overview of applied estimators

We now discuss several different types of endpoint estimators: the EVT-
based estimators are presented in Section 2.1, the non-parametric estimators
as discussed in Kijko and Singh (2011) are described in Section 2.2 and the
parametric Kijko-Sellevoll estimator in Section 2.3. We provide only very
few details for the estimators already in use for assessment of the upper limit
of the seismic event magnitude. More details can be found in Kijko (2004);
Kijko and Singh (2011). In all cases where order statistics are used, the
ordered sample of magnitudes is denoted as M1,n ≤ . . . ≤Mn,n.

2.1 EVT-based estimators

We consider two EVT-based estimators of the endpoint: the truncated gen-
eralised Pareto distribution (GPD) estimator using the framework from Beir-
lant et al. (2017) and the truncated Pareto estimator of Beirlant et al. (2016).

The methodology for modelling the upper tail of the distribution of a
random variable Y relies on the fact that the maximum of independent mea-
surements Yi, i = 1, . . . , n, can be approximated by the generalised extreme
value distribution: as n→∞

P

 max
i=1,...,n

Yi − bn

an
≤ y

→ Gξ(y) = exp
(
−(1 + ξy)−1/ξ

)
, 1 + ξy > 0, (1)

where bn ∈ R, an > 0 and ξ ∈ R are the location, scale and shape parameters,
respectively. For ξ = 0, G0(y) has to be read as exp (− exp(−y)). In fact, (1)
represents the only possible non-degenerate limits for maxima of independent
and identically distributed sequences Yi. Let FY (y) = P(Y ≤ y) denote
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the CDF, F̄Y (y) = 1 − FY (y) the right tail function (RTF), and QY (p) =
inf{y |FY (y) ≥ p} (0 < p < 1) the quantile function of a random variable Y .

Condition (1) is equivalent to the convergence of the distribution of ex-
cesses (or peaks) over high thresholds t to the generalised Pareto distribution
(GPD): as t tends to the endpoint of the distribution of Y , then,

P
(
Y − t
σt

> y

∣∣∣∣Y > t

)
=
F̄Y (t+ yσt)

F̄Y (t)
→ Hξ(y) = − lnGξ(y) = (1 + ξy)−1/ξ ,

(2)
where σt > 0. The shape parameter ξ is often called the extreme value
index (EVI). The specific case ξ > 0 consists of the Pareto-type distributions
defined through

QY (1− 1
vy

)

QY (1− 1
y
)
→y→∞ vξ and P

(
Y

t
> y

∣∣∣∣Y > t

)
=
F̄Y (ty)

F̄Y (t)
→t→∞ y−1/ξ.

(3)
The max-domain of attraction (MDA) in case ξ = 0 is called the Gumbel
domain to which exponentially decreasing tails belong. Finally, the domain
corresponding to negative values of the EVI have finite right endpoints.

Right truncation models for X based on a parent variable Y satisfying
the above extreme value assumptions, are obtained from

X =d (Y |Y < T ), (4)

for some T > 0. The odds of the truncated probability mass under the
untruncated distribution Y are denoted by DT = F̄Y (T )/FY (T ).

Truncation with the threshold t = tn → ∞ is defined through the as-
sumption

T − t
σt
→ κ > 0, (5)

which then entails that for x ∈ (0, κ)

P
(
X − t
σt

> x

∣∣∣∣X > t

)
→ (1 + ξx)−1/ξ − (1 + ξκ)−1/ξ

1− (1 + ξκ)−1/ξ
. (6)

This corresponds to situations where the deviation from the GPD behaviour
due to truncation at a high value T will be visible in the data from t on, and
the approximation of the peaks-over-threshold (POT) distribution using the
limit distribution in (6) appears more appropriate than with a simple GPD.

In the specific case of Pareto-type distributions (i.e. ξ > 0) condition (6)
can be simplified to

P
(
X

t
> x

∣∣∣∣X > t

)
→ x−1/ξ − ρ−1/ξ

1− ρ−1/ξ
, 1 < x < ρ, (7)
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assuming that T/t→ ρ > 1.
In practice, one has to choose a certain threshold t. Often, one takes it

equal to the (k + 1)-th largest observation Xn−k,n and then computes the
estimator for many values of k.

2.1.1 Truncated GPD estimator

We can estimate the endpoint of the magnitude distribution using the tech-
niques developed in Beirlant et al. (2017). Its estimator for the truncation
point TM is based on condition (6) for the variable M where ξ is the EVI of
Y , the parent variable of M , see Table 1. The corresponding estimator for
the endpoint is then given by

T̂Mk = Mn−k,n +
1

τ̂k

( 1− 1
k

(1 + τ̂k(Mn,n −Mn−k,n))−1/ξ̂k − 1
k

)ξ̂k

− 1

 , (8)

with ξ̂k and τ̂k the estimates for ξ and τ = ξ/σt obtained by application of
the maximum likelihood principle. See Beirlant et al. (2017) for more details
on estimation and testing. We will call this estimator the Truncated GPD.

Using Theorem 2 in Beirlant et al. (2017) with p = 0, we obtain an
approximate 100(1− α)% upper confidence bound for TM :

T̂Mk − (lnα + 1)

k+1

(n+1)D̂T,k

k + 1

(
1 +

k + 1

(n+ 1)D̂T,k

)ξ̂k
ξ̂k
τ̂k
. (9)

One has to note that in (9), second order terms have been omitted, and D̂T,k

denote the estimates for the truncation odds DT , see Beirlant et al. (2017).

Variable EVI Endpoint Parent variable EVI of parent variable
Magnitude M ξM TM Y with M =d (Y |Y < TM) ξ

Energy E ξE TE YE with E =d (YE |YE < TE) ξYE

Table 1: Magnitude and energy: overview of notation.

2.1.2 Truncated Pareto estimator

The endpoint estimator of Beirlant et al. (2016) is based on condition (7)
and is hence only suitable for truncated Pareto-type tails. Since the (trun-
cated) GR magnitude distribution is a truncated exponential distribution, we
expect that this estimator cannot be applied to the magnitudes directly. In-
stead, we use following empirical relationship between the (local) earthquake
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magnitude M and the energy released by earthquakes (Lay and Wallace,
1995)

E = 2× 101.5(M−1) = exp(ln 2 + (M − 1)1.5 ln 10), (10)

or reversely

M =
log10

(
E
2

)
1.5

+ 1 =
ln
(
E
2

)
1.5 ln 10

+ 1, (11)

where the energy is expressed in megajoules (MJ). We thus expect the en-
ergy to follow a truncated Pareto-type distribution. Therefore, we apply the
estimator of Beirlant et al. (2016) to the energy and transform the endpoint
back to the magnitudes using (11). By denoting the parent variable of E
by YE, we have E =d (YE |YE < TE), where TE is the endpoint for E, see
Table 1.

Using the approach of Beirlant et al. (2016) applied to the variable E,
the endpoint for the energy is then estimated as

T̂E,+k = 2× 101.5(Mn−k,n−1)


(

2×101.5(Mn−k,n−1)

2×101.5(Mn,n−1)

)1/ξ̂YE,+

k − 1
k+1

1− 1
k+1


−ξ̂YE,+

k

. (12)

Here, ξ̂YE ,+k are the estimates for ξYE , the extreme value index of YE. See
Beirlant et al. (2016) for more details on estimation and testing. Note that
ρ (see (7)) is estimated by En,n/En−k,n.

Transforming the estimated endpoints for the energy gives the following
endpoint estimates for the magnitudes:

T̂M,+
k =

log10

(
T̂E,+
k

2

)
1.5

+ 1. (13)

We denote this estimator by Truncated Pareto.
Using the asymptotic results in Beirlant et al. (2016), an approximate

100(1−α)% upper confidence bound for TE can be constructed. Application
of Theorem 2 in Beirlant et al. (2016), after omitting second-order terms
again, gives the following approximate 100(1− α)% upper confidence bound
for TE:

exp

ln T̂E,+k −
k+1

(n+1)D̂E,+
T,k

ξ̂YE ,+k

k + 1
(lnα + 1)

 .

Here, D̂E,+
T,k are the truncated Pareto estimates for the truncation odds DE

T =

F̄YE(TE)/FYE(TE), see Beirlant et al. (2016). This upper bound can then be
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transformed back to the magnitude level as before to get an approximate
100(1− α)% upper confidence bound for TM :

ln
(
T̂E,+
k

2

)
1.5 ln 10

+ 1−

k+1

(n+1)D̂
E,+
T,k

ξ̂
YE,+

k

k+1
(lnα + 1)

1.5 ln 10
= T̂M,+

k −

k+1

(n+1)D̂
E,+
T,k

ξ̂
YE,+

k

k+1
(lnα + 1)

1.5 ln 10
.

(14)

2.2 Non-parametric estimators

The next estimators are all based on the fact that

E(Mn,n) =

∫ TM

tM

mdF n
M(m) = TM −

∫ TM

tM

F n
M(m) dm, (15)

see Kijko and Singh (2011). Hence, TM can be estimated by

T̂M = Mn,n + ∆

with ∆ an estimator for
∫ TM
tM

F n
M(m) dm.

2.2.1 Non-parametric with Gaussian kernel

The CDF in (15) can be estimated using a Gaussian kernel. The estimator
for the endpoint is then obtained as the iterative solution of the equation

TM = Mn,n + ∆

with

∆ =

∫ TM

tM

( ∑n
i=1 Φ

(
m−Mi

h

)
− Φ

(
tM−Mi

h

)∑n
i=1 Φ

(
TM−Mi

h

)
− Φ

(
tM−Mi

h

))n

dm (16)

and Φ the standard normal CDF. The bandwidth h is chosen using unbiased
cross-validation. We denote this estimator by N-P-G. For more details we
refer to Kijko et al. (2001) and Equations 28 and 29 in Kijko and Singh
(2011).

2.2.2 Non-parametric based on order statistics

Cooke (1979) proposes to approximate the CDF in (15) with the empirical
CDF. The corresponding endpoint estimator, see Equation 33 in Kijko and
Singh (2011), is given by

T̂M,N−P−OS
n = Mn,n +

[
Mn,n − (1− exp(−1))

n−1∑
i=0

exp(−i)Mn−i,n

]
. (17)
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We denote this estimator by N-P-OS.
Cooke (1979) also constructed an approximate 100(1− α)% upper confi-

dence bound for TM :

Mn,n +
Mn,n −Mn−1,n

(1− α)−ν − 1
, (18)

where the parameter ν is determined by

lim
y↑0

1− FM(TM + cy)

1− FM(TM + y)
= c1/ν

for every constant c > 0.
Note that ν = 1 for upper truncated distributions which can be proved by

application of the mean value theorem. Since it is often assumed that mag-
nitude data come from an upper truncated distribution, e.g. the truncated
Gutenberg-Richter distribution, we use ν = 1 in the remainder.

2.2.3 Few largest observations

Later, Cooke (1980) proposed a simple estimator that only uses the maximum
and the (k + 1)-th largest magnitude. This estimator, see Equation 38 in
Kijko and Singh (2011), is equal to

T̂M,FL
k = Mn,n +

[
1

k
(Mn,n −Mn−k+1,n)

]
. (19)

We denote this estimator by FL.

2.2.4 Extended FL

The previous estimator only uses two observations. It can be extended as

T̂M,EFL
k = Mn,n +

[
1

k

(
Mn,n −

1

k − 1

k∑
i=2

Mn−i+1,n

)]
, (20)

see Equation 40 in Kijko and Singh (2011). We denote this estimator by
EFL.

2.2.5 Robson – Whitlock

Robson and Whitlock (1964) proposes the following simple estimator:

T̂M,R−W
2 = Mn,n + [Mn,n −Mn−1,n] , (21)
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see Equation 42 in Kijko and Singh (2011). We denote this estimator by
R-W.

Another approximate 100(1 − α)% upper confidence bound for TM was
derived in Robson and Whitlock (1964):

Mn,n +
1− α
α

(Mn,n −Mn−1,n) . (22)

Note that this corresponds to the upper confidence bound (18) of Cooke
(1979) (with ν = 1).

2.2.6 Robson – Whitlock – Cooke

The previous estimator can be improved, in terms of MSE, as shown in Cooke
(1979). The improved estimator is obtained as

T̂M,R−W−C
2 = Mn,n +

[
1

2ν
(Mn,n −Mn−1,n)

]
, (23)

see Equation 46 in Kijko and Singh (2011). As before, we take ν equal to 1.
We denote this estimator by R-W-C. Note that this estimator corresponds
to the FL estimator for k = 2.

2.3 Parametric estimator: Kijko – Sellevol

Kijko and Sellevoll (1989) introduced the equation (see Equation 13 in Kijko
and Singh (2011))

TM = Mn,n +

[
E1(n2)− E1(n1)

β exp(−n2)
+ tM exp(−n)

]
(24)

with

n1 =
n

1− exp(−β(TM − tM))
, n2 = n1 exp(−β(TM − tM)),

and E1(z) =
∫∞
z

exp(−s)/s ds the exponential integral function. Since these
expressions depend on TM , we obtain TM using an iterative procedure. The
parameter β is estimated based on the Gutenberg-Richter law using max-
imum likelihood, see Page (1968) and Chapter 12 in Gibowicz and Kijko
(1994). It is estimated iteratively using the equation

1

β
= Mn − tM +

(TM − tM) exp(−β(TM − tM))

1− exp(−β(TM − tM))
,
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where Mn = 1/n
∑n

i=1Mi is the sample mean of M1, . . . ,Mn. Using a Taylor
expansion, this becomes

β̂ = β̂0

(
1− β̂0

(TM − tM) exp(−β̂0(TM − tM))

1− exp(−β̂0(TM − tM))

)
(25)

where β̂0 = 1
Mn−tM

is the Aki-Utsu (Aki, 1965; Utsu, 1965) estimator for β.

This approach does not use iterations and is thus preferred for computational
reasons. In each iteration step (for TM), we first update the estimate of β
using (25), and then improve the estimate of TM . We denote this estimator
of the maximum magnitude by K-S. Note that of all discussed estimators,
this is the only one that uses the Gutenberg-Richter law directly.

Based on the Gutenberg-Richter law, a parametric 100(1 − α)% upper
confidence bound for TM can be constructed (see Equation 19 in Pisarenko
(1991)):

tM −
1

β
ln

(
exp(−β(Mn,n − tM))− 1

α1/n
+ 1

)
, (26)

where we estimate β using the K-S method. Holschneider et al. (2011);
Zöller and Holschneider (2016a) noted that the upper confidence bound as
defined in Pisarenko (1991) is infinite if the maximum observed seismic event
magnitude is larger than tM − 1

β
ln(1−α1/n). For the GGF magnitude data,

this happens when α ≤ 0.061. Therefore, we consider α = 0.1 in the data
example and the simulations. A comprehensive discussion on this subject,
including a condition on the existence of Pisarenko’s original TM estimator,
can be found in Vermeulen and Kijko (2017).

3 Estimation of the maximum possible seis-

mic event magnitude generated by the GGF

In this section, we attempt to estimate the maximum possible seismic event
magnitude which can be generated by gas extraction in the GGF. The database
of the seismicity of anthropogenic origin in the area is downloaded from
the website of the KNMI: https://www.knmi.nl/kennis-en-datacentrum/
dataset/aardbevingscatalogus. The database contains (local) magni-
tudes M of seismic events of anthropogenic origin in the Netherlands. We
only consider events from the database that are located within the rectan-
gle determined by (53.1°N, 6.5°E), (53.1°N, 7°E), (53.5°N, 7°E) and (53.5°N,
6.5°E), see Figure 1a. The selected area is almost the same as the area that
was considered in Zöller and Holschneider (2016b). The extracted database
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contains 286 seismic events with magnitudes at least 1.5, which have been
recorded between December 1986 and 31 December 2016. The events, to-
gether with the boundaries of the selected area and approximate contours of
the whole GGF (green), are shown in Figure 1b. The time plot of the selected
events is shown in Figure 1c. The dataset was tested for serial correlation,
and no significant correlation could be detected.
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Figure 1: Locations of anthropogenic seismicity in (a) the Netherlands and
(b) Groningen between December 1986 and 31 December 2016 with magni-
tudes at least 1.5, and (c) time plot of anthropogenic seismicity in the GGF
with magnitudes at least 1.5 in the considered area.
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Figure 2: Groningen gas field anthropogenic seismicity: (a) Pareto QQ-plot
of energy data, (b) exponential QQ-plot of magnitude data (c) mean excess
plot of magnitude data and (d) exponential QQ-plot of magnitude data with
fit based on the k = 125 largest magnitudes.

The magnitudes in the database are rounded to one decimal digit, and
hence there are several ties in the dataset. Therefore, we smoothed the data
by adding independent uniform random numbers within the range [-0.05;
0.05] to all magnitudes that occur more than once. This ensures that all
observations are unique. We then retain the 250 magnitudes larger than or
equal to tM = 1.5. The choice of 1.5 as threshold in the Groningen case is
standard in the geological literature, see e.g. Dost et al. (2013). The expo-
nential QQ-plot in Figure 2b indicates that an exponential distribution is
indeed suitable for the magnitudes, but the bending off at the largest ob-
servations suggests a possible upper truncated tail. The same behaviour is
seen in the mean excess plot (see e.g. Chapter 1 in Beirlant et al., 2004)
in Figure 2c: the first horizontal part suggests that the data come from an
exponential-like distribution, whereas the downward trend at the end indi-
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Figure 3: GGF anthropogenic seismicity: (a) estimates of ξ (full line) and
ξYE (dashed line), (b) estimates of the truncation odds DT and (c) P-values
of a test for truncation based on the truncated GPD and (d) P-values of a
test for truncation based on the truncated Pareto.

cates an upper truncation point. Note that the Pareto QQ-plot of the energy
in Figure 2a suggests that the energy follows a truncated Pareto distribution
as discussed in Section 2.1.2. When applying the truncated GPD estima-
tor to the magnitudes, a value of ξ around 0 is found suggesting again an
exponential-like distribution, see Figure 3a. The parameter ξYE is estimated
by the truncated Pareto estimator to be around 1.8. The estimators for DT

based on the truncated GPD and truncated Pareto estimators for ξ and ξYE ,
respectively, suggest that the truncation odds are around 1%, see Figure 3b.
Next, we test (directly and via the energy) if the data come indeed from an
upper truncated distribution. Under the null hypotheses of both tests, the
data come from an unbounded, hence not upper truncated, distribution. The
P-values of a test for truncation based on the truncated GPD (Beirlant et al.,
2017) in Figure 3c indicate, for larger values of k, that the magnitude data
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come from an upper truncated distribution. Similarly, P-values of a test for
truncation based on the truncated Pareto (Aban et al., 2006; Beirlant et al.,
2016) in Figure 3d indicate that, for values of k above 75, the distribution of
the energy is upper truncated. Note that the significance level of the tests,
10%, is indicated by the horizontal lines in Figure 3c and 3d. Finally, the fit
provided by the truncated GPD with k = 125, and hence ξ̂125 ≈ 0, models
the data well, see Figure 2d. All these elements suggest that the truncated
Gutenberg-Richter distribution, i.e. a doubly truncated exponential distribu-
tion, might indeed be a suitable model for the GGF magnitude data.
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Figure 4: GGF anthropogenic seismicity: (a) estimates of the maximum
possible earthquake magnitude TM and (b) 90% upper confidence bounds for
TM .
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Next, we compute all discussed estimates for the maximum possible earth-
quake magnitude (Figure 4a). For estimators where no value of k needs to
be chosen, the dot indicates how many observations are used: 2 or n. All es-
timators suggest that the endpoint lies between 3.61 and 3.80 on the Richter
scale. Note however, that for the estimators of the endpoint based on EVT,
we need to look at larger values of k where a more stable pattern emerges
as the test for truncation was only significant for k ≥ 75. For k around 125,
the EVT-based methods estimate the endpoint around 3.76. Note that the
EVT estimates for k = n are close to the estimates of the N-P-G and K-S
methods which use all n observations above 1.5. All other methods lead to
estimates for the endpoint that are lower than the EVT results.

Additionally, we look at 90% upper confidence bounds for the endpoint
as discussed above. The endpoint estimators are given by the full orange
(truncated GPD), dashed blue (truncated Pareto), purple long dashed (N-
P-OS) and grey dash-dotted (K-S) lines in Figure 4b. The corresponding
90% upper bounds are added as dash-dotted lines in the same colour. The
upper bounds using the truncated GPD (9) and truncated Pareto (14) take
values of 4.04 and 3.98, respectively, for k = 125. The 90% upper bound
(18) takes a value of 4.50, and the parametric 90% upper bound (26) is equal
to 4.32 (grey point). Note that the latter two confidence bounds are based
on n magnitudes and should hence be compared with the EVT-based upper
bounds for k = n (4.03 and 4.04).

We summarised the obtained estimates and 90% confidence bounds for
the maximum possible earthquake magnitude in Table 2. Note that for the
estimators where k needs to be chosen, we indicate the chosen value of k in
the last column. Fixed values of k, e.g. 2 for the R-W estimator, are indicated
in the last column in italics.

Estimator Estimated TM 90% upper confidence bound k
Truncated GPD 3.77 4.04 125
Truncated Pareto 3.75 3.98 125
Non-parametric Gaussian (N-P-G) 3.78 / n =250
Non-parametric order statistics (N-P-OS) 3.68 4.50 n =250
Few largest observations (FL) 3.61 / 250
Extended few largest observations (EFL) 3.61 / 250
Robson – Whitlock (R-W) 3.70 / 2
Robson – Whitlock – Cooke (R-W-C) 3.65 / 2
Kijko – Sellevoll (K-S) 3.77 4.32 n =250

Table 2: Summary of estimates and 90% confidence bounds for the maximum
possible earthquake magnitude in the GGF.
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4 Simulations

The performance of the nine applied estimators of the upper limit of the
magnitude distribution was tested using simulations. We generated 5000
magnitude samples of size 250 from the truncated Gutenberg-Richter distri-
bution with level of completeness tM = 1.5, rate parameter β = 2.1203 and
three different endpoints: TM = 3.75, 4.0 and 4.5. The parameter β was
estimated from the GGF data by application of (25) (Gibowicz and Kijko,
1994). Note that these endpoints correspond to the 99.2%, 99.5% and 99.8%
quantiles of the shifted exponential distribution with β = 2.1203 and level of
completeness tM = 1.5. For each of these simulations, we plot the relative
mean, the relative mean squared error (MSE) and the coverage percentage
of the upper confidence bounds over the 5000 simulations. These plots can
be found in Appendix A.

The simulations show that the truncated GPD and truncated Pareto es-
timators have the lowest bias, over all three considered truncation points.
However, their MSE is among the highest which indicates that these esti-
mators have the largest variances. As expected, the bias and MSE of all
nine analysed estimators increases when the endpoint gets larger. For simu-
lations with endpoint 3.75 and 4.0 (which seem to be realistic scenarios), on
average, the EVT estimators slightly overestimate the true endpoint. When
TM = 4.5, all estimates of TM , except K-S, are on average too low.

The coverage percentages of the upper confidence bounds are defined as
the percentage of times that the obtained upper bounds are larger than the
true endpoint. In theory, these percentages should be equal to 90%. When
the endpoint gets larger, the observed coverage percentages decrease. The
coverage percentage for the upper bound (18) of Cooke (1979) is closer to
90% than the ones for the upper bounds of the EVT-based estimators. The
performance of the first two EVT-based estimators is rather similar with a
slight advantage for the truncated Pareto. Since second-order bias terms
were not taken into account for the upper bounds (9) and (14), developing
bias reduced methods can improve these upper bounds. The parametric
upper confidence bound (26), which uses all n = 250 observations, performs
similarly to the one using the truncated Pareto for k large when the endpoint
is 3.75. For higher endpoints, this upper confidence bound performs much
worse than the other ones.

It is important to note that the parametric K-S estimator is designed
specifically for the truncated Gutenberg-Richter distribution, which we con-
sider in these simulations, whereas the EVT-based estimators are also suit-
able for other upper truncated distributions. The good performance of the
EVT-based estimators on different upper truncated distributions, e.g. a trun-
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cated lognormal distribution, is shown through simulations in Beirlant et al.
(2016, 2017).

5 Conclusions

In our work, we investigated the performance of nine different estimators
of the endpoint of the distribution, and applied it to the estimation of the
maximum possible seismic event magnitude generated by gas production in
the Groningen gas field. The analysis includes a comparison of EVT-based
estimators, non-parametric estimators and a parametric estimator. Since the
available database contains only a few large magnitude events, all estimates
provide the assessment of the upper limit of magnitude with significant un-
certainty. The quantification of the uncertainty is a problem on its own,
which requires careful consideration and effort, not less than the assessment
of the upper limit of magnitude itself.

Based on the application of the nine different techniques, the maximum
possible anthropogenic origin seismic event magnitude in the Groningen gas
field is estimated to be in the range 3.61 to 3.80. The 90% upper confidence
bounds vary from 3.85 to 4.50. In addition, the extreme value analysis in
Section 3 suggests that the widely used truncated Gutenberg-Richter dis-
tribution might indeed be appropriate to model the distribution of seismic
event magnitudes in the Groningen gas field. However, the EVT-based and
non-parametric estimators do not require knowledge of the magnitude dis-
tribution, which gives them more flexibility compared to their parametric
counterparts.

Based on simulations from the truncated GR distribution, it is clear that
the EVT-based methods perform well when estimating the endpoint. It is
important to note that these methods usually provide an assessment with a
positive bias, which means that, on average, the true endpoint is overesti-
mated, whereas the other estimators (except K-S and N-P-G), on average,
are too low. The upper confidence bounds based on these two estimators are
sharper than the other ones. However, the simulations point out that they
are too sharp indicating the need for bias reduction.

In general, the presence of bias is not an obstacle leading to disqualifi-
cation of any of the applied endpoint assessment procedures. It would be
very useful to study the bias in detail. If we knew the bias, it could be used
to correct the endpoint estimator (Lasocki and Urban, 2011), and poten-
tially lead to improvement of any of the discussed procedures. Moreover, if
additional, independent high-quality information is available, the Bayesian
formalism provides a powerful tool, capable of both improving the endpoint
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estimates and providing a more reliable assessment of its confidence bounds.
Overall, we can conclude that the EVT-based estimators of Beirlant et al.

(2016, 2017) are a valuable addition to the already existing methods for es-
timation of the area characteristic, maximum possible seismic event magni-
tude.
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Figure 5: GR(β = 2.1203, tM = 1.5, TM = 3.75): relative means of endpoint
estimates (top), relative MSE of endpoint estimates (middle) and coverage
percentage of 90% upper confidence bounds for the endpoint (bottom).
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Figure 6: GR(β = 2.1203, tM = 1.5, TM = 4): relative means of endpoint
estimates (top), relative MSE of endpoint estimates (middle) and coverage
percentage of 90% upper confidence bounds for the endpoint (bottom).
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Figure 7: GR(β = 2.1203, tM = 1.5, TM = 4.5): relative means of endpoint
estimates (top), relative MSE of endpoint estimates (middle) and coverage
percentage of 90% upper confidence bounds for the endpoint (bottom).
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