500 research outputs found

    Reliability models for dataflow computer systems

    Get PDF
    The demands for concurrent operation within a computer system and the representation of parallelism in programming languages have yielded a new form of program representation known as data flow (DENN 74, DENN 75, TREL 82a). A new model based on data flow principles for parallel computations and parallel computer systems is presented. Necessary conditions for liveness and deadlock freeness in data flow graphs are derived. The data flow graph is used as a model to represent asynchronous concurrent computer architectures including data flow computers

    List of requirements on formalisms and selection of appropriate tools

    Get PDF
    This deliverable reports on the activities for the set-up of the modelling environments for the evaluation activities of WP5. To this objective, it reports on the identified modelling peculiarities of the electric power infrastructure and the information infrastructures and of their interdependencies, recalls the tools that have been considered and concentrates on the tools that are, and will be, used in the project: DrawNET, DEEM and EPSys which have been developed before and during the project by the partners, and M\uf6bius and PRISM, developed respectively at the University of Illinois at Urbana Champaign and at the University of Birmingham (and recently at the University of Oxford)

    34th Midwest Symposium on Circuits and Systems-Final Program

    Get PDF
    Organized by the Naval Postgraduate School Monterey California. Cosponsored by the IEEE Circuits and Systems Society. Symposium Organizing Committee: General Chairman-Sherif Michael, Technical Program-Roberto Cristi, Publications-Michael Soderstrand, Special Sessions- Charles W. Therrien, Publicity: Jeffrey Burl, Finance: Ralph Hippenstiel, and Local Arrangements: Barbara Cristi

    Cyber-Physical Power System (CPPS): A Review on Modelling, Simulation, and Analysis with Cyber Security Applications

    Get PDF
    Cyber-Physical System (CPS) is a new kind of digital technology that increases its attention across academia, government, and industry sectors and covers a wide range of applications like agriculture, energy, medical, transportation, etc. The traditional power systems with physical equipment as a core element are more integrated with information and communication technology, which evolves into the Cyber-Physical Power System (CPPS). The CPPS consists of a physical system tightly integrated with cyber systems (control, computing, and communication functions) and allows the two-way flows of electricity and information for enabling smart grid technologies. Even though the digital technologies monitoring and controlling the electric power grid more efficiently and reliably, the power grid is vulnerable to cybersecurity risk and involves the complex interdependency between cyber and physical systems. Analyzing and resolving the problems in CPPS needs the modelling methods and systematic investigation of a complex interaction between cyber and physical systems. The conventional way of modelling, simulation, and analysis involves the separation of physical domain and cyber domain, which is not suitable for the modern CPPS. Therefore, an integrated framework needed to analyze the practical scenario of the unification of physical and cyber systems. A comprehensive review of different modelling, simulation, and analysis methods and different types of cyber-attacks, cybersecurity measures for modern CPPS is explored in this paper. A review of different types of cyber-attack detection and mitigation control schemes for the practical power system is presented in this paper. The status of the research in CPPS around the world and a new path for recommendations and research directions for the researchers working in the CPPS are finally presented.publishedVersio

    Extended Abstracts: PMCCS3: Third International Workshop on Performability Modeling of Computer and Communication Systems

    Get PDF
    Coordinated Science Laboratory was formerly known as Control Systems LaboratoryThe pages of the front matter that are missing from the PDF were blank

    Perfomance Analysis and Resource Optimisation of Critical Systems Modelled by Petri Nets

    Get PDF
    Un sistema crítico debe cumplir con su misión a pesar de la presencia de problemas de seguridad. Este tipo de sistemas se suele desplegar en entornos heterogéneos, donde pueden ser objeto de intentos de intrusión, robo de información confidencial u otro tipo de ataques. Los sistemas, en general, tienen que ser rediseñados después de que ocurra un incidente de seguridad, lo que puede conducir a consecuencias graves, como el enorme costo de reimplementar o reprogramar todo el sistema, así como las posibles pérdidas económicas. Así, la seguridad ha de ser concebida como una parte integral del desarrollo de sistemas y como una necesidad singular de lo que el sistema debe realizar (es decir, un requisito no funcional del sistema). Así pues, al diseñar sistemas críticos es fundamental estudiar los ataques que se pueden producir y planificar cómo reaccionar frente a ellos, con el fin de mantener el cumplimiento de requerimientos funcionales y no funcionales del sistema. A pesar de que los problemas de seguridad se consideren, también es necesario tener en cuenta los costes incurridos para garantizar un determinado nivel de seguridad en sistemas críticos. De hecho, los costes de seguridad puede ser un factor muy relevante ya que puede abarcar diferentes dimensiones, como el presupuesto, el rendimiento y la fiabilidad. Muchos de estos sistemas críticos que incorporan técnicas de tolerancia a fallos (sistemas FT) para hacer frente a las cuestiones de seguridad son sistemas complejos, que utilizan recursos que pueden estar comprometidos (es decir, pueden fallar) por la activación de los fallos y/o errores provocados por posibles ataques. Estos sistemas pueden ser modelados como sistemas de eventos discretos donde los recursos son compartidos, también llamados sistemas de asignación de recursos. Esta tesis se centra en los sistemas FT con recursos compartidos modelados mediante redes de Petri (Petri nets, PN). Estos sistemas son generalmente tan grandes que el cálculo exacto de su rendimiento se convierte en una tarea de cálculo muy compleja, debido al problema de la explosión del espacio de estados. Como resultado de ello, una tarea que requiere una exploración exhaustiva en el espacio de estados es incomputable (en un plazo prudencial) para sistemas grandes. Las principales aportaciones de esta tesis son tres. Primero, se ofrecen diferentes modelos, usando el Lenguaje Unificado de Modelado (Unified Modelling Language, UML) y las redes de Petri, que ayudan a incorporar las cuestiones de seguridad y tolerancia a fallos en primer plano durante la fase de diseño de los sistemas, permitiendo así, por ejemplo, el análisis del compromiso entre seguridad y rendimiento. En segundo lugar, se proporcionan varios algoritmos para calcular el rendimiento (también bajo condiciones de fallo) mediante el cálculo de cotas de rendimiento superiores, evitando así el problema de la explosión del espacio de estados. Por último, se proporcionan algoritmos para calcular cómo compensar la degradación de rendimiento que se produce ante una situación inesperada en un sistema con tolerancia a fallos

    MACHS: Mitigating the Achilles Heel of the Cloud through High Availability and Performance-aware Solutions

    Get PDF
    Cloud computing is continuously growing as a business model for hosting information and communication technology applications. However, many concerns arise regarding the quality of service (QoS) offered by the cloud. One major challenge is the high availability (HA) of cloud-based applications. The key to achieving availability requirements is to develop an approach that is immune to cloud failures while minimizing the service level agreement (SLA) violations. To this end, this thesis addresses the HA of cloud-based applications from different perspectives. First, the thesis proposes a component’s HA-ware scheduler (CHASE) to manage the deployments of carrier-grade cloud applications while maximizing their HA and satisfying the QoS requirements. Second, a Stochastic Petri Net (SPN) model is proposed to capture the stochastic characteristics of cloud services and quantify the expected availability offered by an application deployment. The SPN model is then associated with an extensible policy-driven cloud scoring system that integrates other cloud challenges (i.e. green and cost concerns) with HA objectives. The proposed HA-aware solutions are extended to include a live virtual machine migration model that provides a trade-off between the migration time and the downtime while maintaining HA objective. Furthermore, the thesis proposes a generic input template for cloud simulators, GITS, to facilitate the creation of cloud scenarios while ensuring reusability, simplicity, and portability. Finally, an availability-aware CloudSim extension, ACE, is proposed. ACE extends CloudSim simulator with failure injection, computational paths, repair, failover, load balancing, and other availability-based modules

    Understanding multidimensional verification: Where functional meets non-functional

    Get PDF
    Abstract Advancements in electronic systems' design have a notable impact on design verification technologies. The recent paradigms of Internet-of-Things (IoT) and Cyber-Physical Systems (CPS) assume devices immersed in physical environments, significantly constrained in resources and expected to provide levels of security, privacy, reliability, performance and low-power features. In recent years, numerous extra-functional aspects of electronic systems were brought to the front and imply verification of hardware design models in multidimensional space along with the functional concerns of the target system. However, different from the software domain such a holistic approach remains underdeveloped. The contributions of this paper are a taxonomy for multidimensional hardware verification aspects, a state-of-the-art survey of related research works and trends enabling the multidimensional verification concept. Further, an initial approach to perform multidimensional verification based on machine learning techniques is evaluated. The importance and challenge of performing multidimensional verification is illustrated by an example case study

    Methodology for the Accelerated Reliability Analysis and Prognosis of Underground Cables based on FPGA

    Get PDF
    Dependable electrical power distribution systems demand high reliability levels that cause increased maintenance costs to the utilities. Often, the extra costs are the result of unnecessary maintenance procedures, which can be avoided by monitoring the equipment and predicting the future system evolution by means of statistical methods (prognostics). The present thesis aims at designing accurate methods for predicting the degradation of high and medium voltage underground Cross-Linked Polyethylene (XLPE) cables within an electrical power distribution grid, and predicting their remaining useful life, in order inform maintenance procedures. However, electric power distribution grids are large, components interact with each other, and they degrade with time and use. Solving the statistics of the predictive models of the power grids currently requires long numerical simulations that demand large computational resources and long simulation times even when using advanced parallel architectures. Often, approximate models are used in order to reduce the simulation time and the required resources. In this context, Field Programmable Gate Arrays (FPGAs) can be employed to accelerate the simulation of these stochastic processes. However, the adaptation of the physicsbased degradation models of underground cables for FPGA simulation can be complex. Accordingly, this thesis proposes an FPGA-based framework for the on-line monitoring and prognosis of underground cables based on an electro-thermal degradation model that is adapted for its accelerated simulation in the programmable logic of an FPGA.Energia elektrikoaren banaketa-sare konfidagarriek fidagarritasun maila altuak eskatzen dituzte, eta honek beraien mantenketa kostuen igoera dakar. Kostu hauen arrazoia beraien bizitzan goizegi egiten diren mantenketa prozesuei dagokie askotan, eta hauek eragoztea posible da, ekipamenduaren monitorizazioa eginez eta sistemaren etorkizuneko eboluzioa aurrez estimatuz (prognosia). Tesi honen helburua lurpeko tentsio altu eta ertaineko Cross-Linked Polyethylene (XLPE) kable sistemen eboluzioa eta geratzen zaien bizitza aurreikusiko duten metodo egokiak definitzea izango da, banaketa-sare elektriko baten barruan, ondoren mantenketa prozesu optimo bat ahalbidetuko duena. Hala ere, sistema hauek oso jokaera dinamikoa daukate. Konponente ezberdinek beraien artean elkar eragiten dute eta degradatu egiten dira denboran eta erabileraren ondorioz. Estatistika hauen soluzio analitikoa lortzea ezinezkoa da gaur egun, eta errekurtso asko eskatzen dituen simulazio luzeak behar ditu zenbakizko erantzun bat lortzeko, arkitektura paralelo aurreratuak erabili arren. Field Programmable Gate Array (FPGA)k prozesu estokastiko hauen simulazioa azkartzeko erabil daitezke, baina lurpeko kableen degradazio prozesuen modelo fisikoak FPGA exekuziorako egokitzea konplexua izan daiteke. Beraz, tesi honek FPGA baten logika programagarrian azeleratu ahal izateko egokitua izan den degradazio elektrotermiko modelo baten oinarritutako monitorizazio eta prognosi metodologia bat proposatzen du.Las redes de distribución de energía eléctrica confiables requieren de altos niveles de fiabilidad, que causan un mayor coste de mantenimiento a las empresas distribuidoras. Frecuentemente los costes adicionales son el resultado de procedimientos de mantenimiento innecesarios, que se pueden evitar por medio de la monitorización de los equipos y la predicción de la evolución futura del sistema, por medio de métodos estadísticos (prognosis). La presente tesis pretende desarrollar métodos adecuados para la predicción de la degradación futura de cables de alta y media tensión Cross-Linked Polyethylene (XLPE) soterrados, dentro de una red de distribución eléctrica, y predecir su tiempo de vida restante, para definir una secuencia de mantenimiento óptima. Sin embargo, las redes de distribución eléctrica son grandes, y compuestas por componentes que interactúan entre sí y se degradan con el tiempo y el uso. En la actualidad, resolver estas estadísticas predictivas requieren grandes simulaciones numéricas que requieren de grandes recursos computacionales y largos tiempos de simulación, incluso utilizando arquitecturas paralelas avanzadas. Las Field Programmable Gate Array (FPGA) pueden ser utilizadas para acelerar las simulaciones de estos procesos estocásticos, pero la adaptación de los modelos físicos de degradación de cables soterrados para su simulación en una FPGA puede ser complejo. Así, esta tesis propone el desarrollo de una metodología de monitorización y prognosis cables soterrados, basado en un modelo de degradación electro-térmico que está adaptado para su simulación acelerada en la lógica programable de una FPGA
    corecore