
2013 52

Ricardo Julio Rodríguez Fernández

Perfomance Analysis and
Resource Optimisation of
Critical Systems Modelled

by Petri Nets

Departamento

Director/es

Informática e Ingeniería de Sistemas

Merseguer Hernáiz, José Javier
Júlvez Bueno, Jorge Emilio

Director/es

Tesis Doctoral

Autor

Repositorio de la Universidad de Zaragoza – Zaguan http://zaguan.unizar.es

UNIVERSIDAD DE ZARAGOZA

Departamento

Director/es

Ricardo Julio Rodríguez Fernández

PERFOMANCE ANALYSIS AND
RESOURCE OPTIMISATION OF

CRITICAL SYSTEMS MODELLED BY
PETRI NETS

Director/es

Informática e Ingeniería de Sistemas

Merseguer Hernáiz, José Javier
Júlvez Bueno, Jorge Emilio

Tesis Doctoral

Autor

2013

Repositorio de la Universidad de Zaragoza – Zaguan http://zaguan.unizar.es

UNIVERSIDAD DE ZARAGOZA

Departamento

Director/es

Director/es

Tesis Doctoral

Autor

Repositorio de la Universidad de Zaragoza – Zaguan http://zaguan.unizar.es

UNIVERSIDAD DE ZARAGOZA

Performance Analysis and Resource Optimisation of Critical

Systems Modelled by Petri Nets

Ricardo Julio Rodŕıguez Fernández

Ph.D. DISSERTATION

Dpto. de Informática e Ingenieŕıa de Sistemas
Universidad de Zaragoza

Advisors: Dr. Jorge Emilio Júlvez Bueno
Dr. José Javier Merseguer Hernáiz

Junio de 2013

A Maŕıa y su paciencia infinita. ¸

Mi locura es sagrada. No me toquen.
(Iliana Godoy)

Quod quisque possit, nisi tentando nesciat.
(No se puede saber de lo que cada uno es capaz si no se pone a prueba)

(Publilius Syrus)

Agradecimientos

Mis primeras palabras de agradecimiento son para Jorge Júlvez y José Merseguer, grandes
profesionales – muy grandes – y mejores personas, que me han sabido guiar a buen puerto
en todo momento en esta carrera de fondo llena de desniveles. Me han dejado mi libertad
de cŕıtica, pensamiento y acción, siempre aderezada con unos toques de advertencia cuando
me descarriaba demasiado del objetivo. Gran parte de este trabajo es gracias a ellos, aśı
que chicos, una vez más, muchas gracias!

No me puedo olvidar de Javi, mi padrino cient́ıfico, quien también met́ıa en vereda a
la cabra cuando tiraba demasiado para el monte, y con quien he disfrutado buenos mo-
mentos tanto profesionales como personales. Tampoco al resto de gente – y algunos an-
tiguos compañeros de promoción – con quien he tenido el gusto de compartir laboratorio
durante este peŕıodo (Irina, Est́ıbaliz, Jorge, Roberto, Guillermo, Juan. . .), sobremesas y
discusiones bizarras (Javier, Jorge, Diego, Nacho, Roberto), compartido horas de trabajo
en común, tanto en España como en otros lugares (Simona, Rafa, Catia), y, compartido
también, sobre todo, muchas horas de cantina y otros menesteres (Ritu, Jesús, Diego).

Tampoco puedo olvidarme de esas grandes personas y buenos amigos que he tenido el
gusto de conocer y trabajar con ellos durante mis estancias en Cardiff, como Omer, Yaser,
Ioan o Raquel, con quienes he compartido muy buenos momentos que han hecho que me
sintiera como en casa.

Por último, a mi familia (gracias por apoyarme siempre, dejarme estudiar lo que quise,
y pagarme una educación en una universidad pública), amigos y ex-compañeros y amigos de
promoción (Fergus, Jacobo), quienes han tenido el gusto – o la desgracia, según el d́ıa. . . –
de soportar mis idas y venidas, mis cambios de humor, mis frustaciones y alegŕıas, durante
este largo peŕıodo.

En resumen, a todos aquellos con los que en algún momento me he cruzado durante este
periplo de cuatro años, que hoy llega a su final, y que me han tenido que sufrir de un modo
u otro. Gracias.

Performance Analysis and Resource Optimisation of Critical
Systems Modelled by Petri Nets

Resumen

Un sistema cŕıtico debe cumplir con su misión a pesar de la presencia de problemas
de seguridad. Este tipo de sistemas se suele desplegar en entornos heterogéneos, donde
pueden ser objeto de intentos de intrusión, robo de información confidencial u otro tipo
de ataques. Los sistemas, en general, tienen que ser rediseñados después de que ocurra un
incidente de seguridad, lo que puede conducir a consecuencias graves, como el enorme costo
de reimplementar o reprogramar todo el sistema, aśı como las posibles pérdidas económicas.
Aśı, la seguridad ha de ser concebida como una parte integral del desarrollo de sistemas y
como una necesidad singular de lo que el sistema debe realizar (es decir, un requisito no
funcional del sistema). Aśı pues, al diseñar sistemas cŕıticos es fundamental estudiar los
ataques que se pueden producir y planificar cómo reaccionar frente a ellos, con el fin de
mantener el cumplimiento de requerimientos funcionales y no funcionales del sistema.

A pesar de que los problemas de seguridad se consideren, también es necesario tener en
cuenta los costes incurridos para garantizar un determinado nivel de seguridad en sistemas
cŕıticos. De hecho, los costes de seguridad puede ser un factor muy relevante ya que puede
abarcar diferentes dimensiones, como el presupuesto, el rendimiento y la fiabilidad.

Muchos de estos sistemas cŕıticos que incorporan técnicas de tolerancia a fallos (sistemas
FT) para hacer frente a las cuestiones de seguridad son sistemas complejos, que utilizan
recursos que pueden estar comprometidos (es decir, pueden fallar) por la activación de los
fallos y/o errores provocados por posibles ataques. Estos sistemas pueden ser modelados
como sistemas de eventos discretos donde los recursos son compartidos, también llamados
sistemas de asignación de recursos. Esta tesis se centra en los sistemas FT con recursos
compartidos modelados mediante redes de Petri (Petri nets, PN). Estos sistemas son gen-
eralmente tan grandes que el cálculo exacto de su rendimiento se convierte en una tarea de
cálculo muy compleja, debido al problema de la explosión del espacio de estados. Como re-
sultado de ello, una tarea que requiere una exploración exhaustiva en el espacio de estados
es incomputable (en un plazo prudencial) para sistemas grandes.

Las principales aportaciones de esta tesis son tres. Primero, se ofrecen diferentes mode-
los, usando el Lenguaje Unificado de Modelado (Unified Modelling Language, UML) y las
redes de Petri, que ayudan a incorporar las cuestiones de seguridad y tolerancia a fallos
en primer plano durante la fase de diseño de los sistemas, permitiendo aśı, por ejemplo, el
análisis del compromiso entre seguridad y rendimiento. En segundo lugar, se proporcionan
varios algoritmos para calcular el rendimiento (también bajo condiciones de fallo) mediante
el cálculo de cotas de rendimiento superiores, evitando aśı el problema de la explosión del
espacio de estados. Por último, se proporcionan algoritmos para calcular cómo compensar
la degradación de rendimiento que se produce ante una situación inesperada en un sistema
con tolerancia a fallos.

Preface

A critical system must fulfil its mission despite the presence of security issues. These
systems are usually deployed in heterogeneous environments, where they are subject to
suffer security issues, such as intrusion attempts, confidential data theft or other type of
attacks. Systems usually need to be redesigned after a security disaster, which can lead
to severe consequences, such as the huge cost of reimplementing or redeploying all the
system, as well as economic losses. Security has to be conceived as an integral part of the
development process and as a singular need of what the system should perform (i.e., a
non-functional requirement). Thus, when designing critical systems it is fundamental to
study the attacks that may occur and plan how to react to them, in order to keep fulfilling
the system functional and non-functional requirements.

Despite considering security issues, it is also necessary to consider the costs incurred
to guarantee a certain security level in critical systems. In fact, security costs can be very
relevant and may span along different dimensions, such as budgeting, performance and
reliability.

Many of these critical systems that incorporate Fault-Tolerant (FT) techniques to deal
with security issues are complex systems using resources that are compromised (i.e., they
fail) by the activation of faults. These systems can be naturally modelled as Discrete Event
Systems (DES) where resources are shared, also called Resource Allocation Systems (RAS).
In this dissertation, we focus on FT systems using shared resources modelled as Petri nets
(PNs) as formal model language. These systems are usually so large that make the exact
computation of their performance a highly complex computational task, due to the well-
known state explosion problem. As a result, a task that requires an exhaustive state space
exploration becomes unachievable in reasonable time for large systems.

The main contribution of this dissertation is threefold. Firstly, we provide different
models, expressed by means of the Unified Modelling Language (UML) and Petri nets
(PNs), to bring security and FT issues into foreground while designing, then allowing
the analysis of security-performance trade-off. Secondly, we provide several algorithms to
compute the performance (also performability – i.e., performance under failure conditions)
by means of upper throughput bounds, then avoiding the state space explosion problem.
Lastly, we provide algorithms to compensate the throughput degradation produced by an
unexpected situation in a FT system.

Contents

List of Figures vi

List of Tables vii

List of Algorithms ix

1 Introduction and State of the Art 1

1.1 Motivation . 1

1.2 State of the Art . 4

1.3 Outline . 11

2 Preliminary Concepts 13

2.1 Petri Nets . 13

2.1.1 Untimed Petri Nets . 13

2.1.2 Timed Petri Nets . 16

2.2 The Unified Modelling Language . 18

2.2.1 UML Use Case Diagrams . 19

2.2.2 UML Deployment Diagrams . 20

2.2.3 UML State Machine Diagrams . 20

2.2.4 UML Sequence Diagrams . 21

2.3 Fault Tolerance . 23

I Design of Critical Systems 25

3 A UML Profile for Security 27

3.1 Motivation . 27

3.2 SecAM UML profile . 28

3.2.1 SecAM::Resilience package . 29

3.2.2 SecAM::Cryptographic package . 33

3.2.3 SecAM::SecurityMechanisms package 35

i

CONTENTS CONTENTS

3.2.4 SecAM::AccessControl package . 39
3.3 Concluding Remarks . 41

4 Fault-Tolerant Techniques for Critical Systems 43
4.1 Motivation . 43
4.2 Compositional PN Models for Fault Tolerance 44

4.2.1 PN Error Detection Model . 45
4.2.2 PN Recovery Model . 46
4.2.3 Analysis of PN-based FT Models . 50

4.3 UML Fault-Tolerant Techniques Library . 52

4.3.1 Proactive-Reactive Recovery Technique 52
4.3.2 Switch Over Failing and Ping and Restore Techniques 56

4.4 Concluding Remarks . 59

5 Model-Based Performance Prediction of Critical Systems 61
5.1 Motivation . 61
5.2 Security Mechanisms . 63
5.3 A Model-Based Methodology to Quantify Security-Performance Trade-off . 64

5.4 Concluding Remarks . 66

II Performance Analysis 69

6 Strategies for Upper Throughput Bound Computation in PNs 71
6.1 Motivation . 71
6.2 Little’s Law and Upper Throughput Bounds 72

6.2.1 Tight Marking . 75
6.3 Regrowing Strategy for Stochastic Marked Graphs 76

6.3.1 Experiments and Discussion . 78
6.4 Regrowing Strategy for Process Petri Nets 83

6.4.1 An Iterative Strategy to Compute Upper Throughput Bounds 84
6.4.2 Numerical Problems in LPP (6.9) . 87

6.5 Concluding Remarks . 88

7 Compensation of Throughput Degradation in FT Systems 91
7.1 Motivation . 91
7.2 Maximising Throughput through Resource Optimisation 92

7.2.1 Calculating the Next Constraining Resource 92

7.2.2 An Iterative Strategy for Resource Optimisation 94
7.3 Minimising Cost of Compensating Throughput Degradation 97

7.3.1 An ILPP for Minimising the Cost of Compensating 98
7.4 Concluding Remarks . 100

ii

CONTENTS CONTENTS

III Applications 101

8 Case Study: a Secure Database System 103

8.1 System Description . 103

8.2 Experiments and Discussion . 108

8.2.1 Performance Estimation . 108

8.2.2 Resource Optimisation Maximising Throughput 112

8.2.3 Resource Optimisation Minimising Cost while Adding FT Techniques 113

8.3 Concluding Remarks . 114

9 Case Study: an E-Commerce System 117

9.1 System Description . 117

9.2 Experiments and Discussion . 118

9.2.1 Experimental Setting . 118

9.2.2 Experimental results . 123

9.3 Concluding Remarks . 125

10 Performance Analysis of Data-Intensive Workflows 127

10.1 Motivation . 127

10.2 Model Transformation: From a DAG to a SMG 129

10.3 A Metric for Quantifying the Effectiveness of Throttled Data Transfers . . . 129

10.3.1 Metric Evaluation . 131

10.4 An Automating Data-Throttling Analysis Method 132

10.4.1 Experiments and Discussion . 136

10.4.2 Impact on the Workflow Makespan 138

10.5 Concluding Remarks . 141

IV Tool Support 145

11 The PeabraiN Tool: A PIPE Extension 147

11.1 Motivation . 147

11.2 PeabraiN Framework . 148

11.2.1 Implemented Features . 148

11.2.2 Framework Design . 149

11.2.3 Example of Use . 152

11.2.4 Tool Availability and Installation Requirements 153

11.3 Concluding Remarks . 154

iii

CONTENTS CONTENTS

V Conclusions 155

12 Conclusions and Open Problems 157
12.1 Thesis Summary . 157
12.2 Main Contributions . 158
12.3 Future Work and Open Problems . 160

Relevant Publications Related to this Dissertation 163

Bibliography 165

iv

List of Figures

2.1 A UML Use Case (UML-UC) diagram of a payment system. 19

2.2 A UML Deployment Diagram (UML-DD) of a secure database system. . . . 20

2.3 A UML State-Machine Diagram (UML-SM) of a computer keyboard. 21

2.4 A UML Sequence Diagram (UML-SD) of a financial reporting system. . . . 22

2.5 Phases on a FT technique (adapted from [Avizienis et al., 2004]). 23

3.1 (a) SecAM profile and library, (b) SecAM UML extensions (subpackages). . . 30

3.2 The SecAM::Resilience package. 32

3.3 A UML-State Machine diagram with SecAM::Resilience annotations. . . . 33

3.4 The SecAM::Cryptographic package. 34

3.5 An encrypted communication (symmetric, hardware, and 256 bits). 35

3.6 The SecAM::SecurityMechanisms package. 36

3.7 A deployment scenario composed by a DMZ and different bastions. 38

3.8 The SecAM::AccessControl package. 39

3.9 A UML-SD with access control policy. 40

4.1 Transformation rule T R of a transition tf subject to fail (faulty transition). 44

4.2 Integration between a PN-based system model and a PN-based FTT. 45

4.3 PN-based model of Error Detection and faulty activity inside the system. . 46

4.4 PN-based models of Recovery model: (a) and (b) isolation & reconfiguration. 48

4.5 Petri net representation of a packet-routing algorithm. 50

4.6 Petri net representation of a packet-routing algorithm with a FT technique. 51

4.7 Schedule time-line showing activation of reactive and proactive recoveries . 54

4.8 Scheduler UML state-machine diagram. 55

4.9 PRR controller UML state-machine diagram. 56

4.10 UML Sequence Diagram of the SwitchOverFailing Fault-Tolerant Technique. 58

4.11 UML Sequence Diagram of the Ping&Restore Fault-Tolerant Technique. . . 60

5.1 A process to estimate the system performance while adding SMs and FTTs. 65

6.1 Example MG. 74

v

LIST OF FIGURES LIST OF FIGURES

6.2 Another MG example. 78
6.3 Throughput of graph s1488. 82
6.4 Example of a supermarket system. 86

7.1 Results of initial marking with respect to probability of error. 98

8.1 SDBS Deployment. 104
8.2 SDBS Update Customer’s Data scenario. 105
8.3 PN of the SDBS. 107
8.4 Throughput of the SDBS with variable number of users. 110
8.5 Different resources configurations and their associated cost. 112

9.1 ECS Performance-Annotated Application Model. 119
9.2 ECS SMs-FTTs-Enabled Application Model. 122
9.3 ECS Performance Analysis Results. 124

10.1 (a) Workflow tasks and (b) its transformation to PN. 129
10.2 Automated Data-Throttling Analysis Flowchart. 133
10.3 A workflow with 6 task and multiple inter-tasks dependencies. 134
10.4 PN-based abstract workflow with explicit data-transfer transitions. 136
10.5 Makespan of workflow depicted in 10.3 with different network topologies. . 137
10.6 Montage workflow for 5 input files. 139
10.7 Buffer waiting time in (a) task mImgTbl and (b) mConcatFit. 142

11.1 PeabraiN software architecture. 150
11.2 Integration of PeabraiN in the PIPE tool. 151
11.3 UML Sequence Diagram for executing performance estimation module. . . . 152
11.4 PeabraiN: Snapshot of execution results (resource optimisation). 153

vi

List of Tables

3.1 Security attributes and SecAM packages in which they are covered. 31

4.1 Valid combinations of error handling and fault handling techniques. 47
4.2 New (a) p-semiflows and (b) t-semiflows of the PN in Figure 4.6. 50
4.3 Visit ratios modification for different error handling techniques 53
4.4 CPN initial marking, token colour definition and functions. 57

6.1 Experiment results showing improvement of upper bound. 80
6.2 Graph throughput and CPU time comparative. 81

8.1 Experimental parameters. 106
8.2 Experimental results for number of requests {15, 20, 21, 22, 23 . . . 30}. 109

9.1 Experimental parameters: system resources and number of instances. 121
9.2 Experimental parameters: execution times of system actions. 121

10.1 Mean & standard deviation values of buffer waiting time for Montage. . . . 132
10.2 Metric values computed for the considered Montage workflows. 132
10.3 Makespan for Montage workflow with 5 input files. 138
10.4 Buffer waiting time of Montage tasks under different configurations. 140

vii

List of Algorithms

1 The regrowing strategy algorithm. 77
2 The iterative strategy algorithm for computing upper throughput bounds. . . 85

3 The resource optimisation heuristics. 95
4 An algorithm to compute initial marking maintaining a given throughput. . 97

ix

Chapter 1

Introduction and State of the Art

1.1 Motivation

Complex, large scale and distributed systems are required to fulfil their mission despite
the presence of security issues. Today, one of the main challenges in the software engineer-
ing area is to devise methods for the development of such critical systems. The system
requirements, also called properties, are expressed in the initial phases when developing
a system. A system requirement defines how a system should be (functional) or should
perform (non-functional).

Functional requirements are devoted to calculations, data processing or any other func-
tionality that defines what the system is supposed to behave. On the contrary, non-
functional requirements (or non-functional properties, NFPs) involve how the system is
supposed to perform its activities (e.g., how many customers per unit of time can be at-
tended by a service, how many bytes per second can be transferred by a network device,
or how many bytes per unit of time can be ciphered with a cipher algorithm).

Examples of NFPs are performance, dependability or security of a system. Several
works in the literature [Devanbu and Stubblebine, 2000, Wing, 2003, McGraw, 2004,
Barnum and McGraw, 2005, Khan and Zulkernine, 2008, Mouratidis and Giorgini, 2008]
remark that security has not been conceived as an integral part of the development
process and claim for it. Nowadays, most of the systems are deployed without taking into
account security. Thus, after a security disaster the systems usually need to be redesigned,
accounting for security from the beginning. This “fix it later” approach can lead to severe
consequences, such as the huge cost of reimplementing or redeploying all the system, as
well as economic losses [Randimbivololona, 2001] due to the unavailability of services or
the disclosure of personal customers data (as the case of Sony PlayStation Network or
RSA company breach in 2011).

Thus, the new generation of development methods have to face challenges never intended
before, where security plays a main role. In our opinion, these methods need to address at

1

Section 1.1 1. Introduction and State of the Art

least the following issues to start considering the menaces to security successfully:

1. They should provide an integrated approach. By integrated we mean the need
of considering security as a first-class citizen in all the stages of the software
and systems life-cycle: Analysis, Design, Implementation, Testing, Deployment
and Maintenance. So security needs to be integrated in the life-cycle of sys-
tems as functional properties (FP) are today. As we mentioned before, many
works in the literature [Devanbu and Stubblebine, 2000,Wing, 2003,McGraw, 2004,
Khan and Zulkernine, 2008,Mouratidis and Giorgini, 2008] claim for the necessity for
this integration.

2. The methods should promote the analysis of system security even before the deploy-
ment of the system. This challenge links with the previous one since the analysis of
security is then just considered as a new stage inside the life-cycle. For instance, as
it was pointed out in [Randimbivololona, 2001], the cost of verification in the avion-
ics system domain is the 50% of overall costs when the system is already deployed.
This trend should change when analysis is really coupled with the development, thus
saving costs.

3. The methods should promote a unified view of the security issues. Nowadays, we
realise that the different – and sometimes orthogonal – aspects of security (e.g., access
control or cryptography) are dealt by specialised communities that unfortunately
do not share goals nor even vocabulary. This fact impairs communication and the
possibility to integrate advances from different communities.

4. These methods should not be oblivious to the current software engineering (SE)
techniques. For example, the Model-Driven Development (MDD) paradigm can play
an important role in the generation of models for the analysis of security in software
systems.

Moreover, large scale and distributed systems are deployed in heterogeneous environ-
ments where they are subject to suffer security issues, such as intrusion attempts, con-
fidential data theft or other type of attacks. For example, a Denial-of-Service (DoS) at-
tack [Garber, 2000] sends multiple requests to a server with the intention of consuming its
resources and, in last term, bringing it down. These harmful actions clearly have an impact
on the functionality of servers that might not be able to attend all incoming requests, and
finally might cut their services off by saturation.

Relevant efforts of software designers are devoted to devise the security strategies suit-
able to protect information and computational systems against not authorised accesses.
Indeed, when designing critical systems it is fundamental to study the attacks that may
occur and plan how to react to them. The occurrence of attacks in software systems leads
software designers to introduce different Fault-Tolerant Techniques (FTTs), such as recov-

2

1. Introduction and State of the Art Section 1.1

ery procedures, and/or Security Mechanisms (SMs), such as encryption of data, in order
to react to intrusions or other type of attacks.

Despite these efforts, it is necessary to consider the costs incurred to guarantee a cer-
tain security level in critical systems. In fact, the security costs can be very relevant
and may span along different dimensions, such as budgeting, performance and reliabil-
ity [Menascé and Virgilio, 2000,Menascé, 2003]. Therefore, FTTs and SMs inevitably con-
sume system resources hence they influence the performance, even affecting its full oper-
ability. The security and performance trade-off becomes clear: the addition of security
into a system must assure that the system guarantees a minimal level of func-
tionality (i.e., to maintain a certain system throughput).

This dissertation steps forward in such a trade-off. Firstly, we bring security into fore-
ground while designing, and secondly, we provide several strategies for performance (and
performability – i.e., performance under failure conditions) analysis as well as resource
optimisation analysis.

About considering security during design phase, we propose a Unified Modelling Lan-
guage (UML) [OMG, 2005] extension (through profiling), called SecAM (stands for Secu-
rity Analysis and Modelling) which enhances UML modelling expressiveness by providing
security-related concepts, and we also propose FTTs models that can be easily added to
system design and make easier its analysis.

Many of these critical systems that incorporate FT techniques, then called FT systems,
are complex systems using shared resources that are compromised or even fail by the acti-
vation of faults. These systems can be naturally modelled as Discrete Event Systems (DES)
where resources are shared, also called Resource Allocation Systems (RAS) [Colom, 2003].
In this dissertation, we focus on FT systems using shared resources modelled as Petri nets
(PNs) as formal model language – more precisely, as process Petri nets [Tricas, 2003].

Unfortunately, these systems are usually large what makes the exact computation of
their performance a highly complex computational task. The main reason for this com-
plexity is the well-known state explosion problem. As a result, a task that requires an
exhaustive state space exploration becomes unachievable in reasonable time for large sys-
tems.

Therefore, our main contributions on performance and resource optimisation analysis
are: firstly, an iterative strategy to compute upper throughput bounds closer to the real
throughput1 than the ones that can be achieved in previous works [Chiola et al., 1993,
Campos et al., 1992]; secondly, an iterative algorithm to compute the number of resources
that mitigate the impact of activation of faults in FT systems; and thirdly, an Integer
Linear Programming Problem (ILPP) that minimises the cost of compensation needed for
maintaining a given throughput in a FT system.

Such strategies make use of linear programming techniques for which polynomial com-

1The notion of real throughput refers to the throughput of the system modelled, which can be calculated
by exact analysis or simulation.

3

Section 1.2 1. Introduction and State of the Art

plexity algorithms exist (but the ILPP), so they offer a good trade-off between accuracy and
computational complexity. They can be applied to any real-life application whose Petri net
model matches the net class considered in this work, i.e., process Petri net [Tricas, 2003].
This kind of real-life applications can be found in manufacturing, logistics or dissimilar sys-
tems such as web services. In general, such applications represent real-life problems where
resources are shared.

1.2 State of the Art

This section discusses the state-of-the-art by introducing interesting works of the litera-
ture related to the topics covered by this thesis, namely: software engineering considering
security as a requirement, Fault Tolerance design, security-performance trade-off analysis,
performability/performance analysis, and resource optimisation analysis. These works are
introduced by briefly describing and comparing them with our work.

Security as a requirement. Bringing security into the design stage of development has
been pointed out by many works in the literature, and from very different perspectives.
Some works try to bring security to requirements analysis, capturing so security in the ini-
tial stage [Haley et al., 2006,Yskout et al., 2008,Wolter and Meinel, 2010]. Haley et al. give
in [Haley et al., 2006] a powerful framework to, first, capture security goals of the system,
and then check that such goals are fulfilled. In [Yskout et al., 2008], Yskout et al. propose
an automatic transformation from a security requirements model to an architectural model.
They use UML as target model. Wolter and Meinel provide in [Wolter and Meinel, 2010]
an extension for Business Processing Modelling (BPM) giving some graphical annotations
to express authorisations.

Other works capture security requirements and preserve them into architectural de-
signs [Schmidt and Wentzlaff, 2006, Abi-Antoun and Barnes, 2010, Heyman et al., 2011].
Schmidt andWentzlaff propose in [Schmidt and Wentzlaff, 2006] a Jackson’s problem frame
approach to map usability and security characteristics into architectural design artifacts.
In [Abi-Antoun and Barnes, 2010], Abi-Antoun and Barnes present SECORIA, a method
to analyse an architecture to seek information flow vulnerabilities and the conformance level
with regard to specification in execution time. Heyman et al. give in [Heyman et al., 2011]
an operational framework to develop at the same time security and architectural design
artifacts.

Aspect-oriented modelling approach is used in [Georg et al., 2010, Braga, 2011] as a
way of expressing security requirements. Georg et al. propose in [Georg et al., 2010] an
Aspect-Oriented Risk-Driven Development (AORDD) where UML-Sequence Diagrams are
transformed to Alloy language, then it is able to verify by logic checkers, and to Bayesian
Belief Networks (BBFs) [Heckerman, 1995] allowing different analysis trade-offs.

Other works propose new design framework methodologies to integrate security as a NFP

4

1. Introduction and State of the Art Section 1.2

into the system’s design [Mouratidis et al., 2003,Islam et al., 2011,Khan, 2011]. Mouratidis
et al. introduce in [Mouratidis et al., 2003] a methodology based on Tropos, which brings
security to system design through a hierarchical approximation. In [Islam et al., 2011],
Islam et al. propose a framework to deal with security legal regulations within Tropos
methodology while Khan claims in [Khan, 2011] for a prescriptive framework to add secu-
rity from the beginning of the system/software design, so saving costs and without affecting
to backward system/software compatibility. Microsoft also proposes a secure development
life-cycle with Security Development Lifecycle (SDL) [Microsoft, 2010], assuring security
practices in each one of the development phases (based on classic spiral model) by re-
ducing software maintenance costs and increasing software reliability and security against
bug-coding.

There exist some other works in the literature which propose security patterns,
such as [Fernández, 2004, Halkidis et al., 2008]. Fernández proposes in [Fernández, 2004]
a methodology for building secure software based on UML, patterns and constraints ex-
pressed by Object Constraint Language (OCL) [OMG, 2010]. In [Halkidis et al., 2008],
Haldikis et al. estimate the resilience of a bunch of security patterns to STRIDE (Spoofing
Identity, Tampering with Data, Repudiation, Information Disclosure, Denial of Service,
Elevation of Privilege) attacks.

Some other works make use of formal methods [Schneider, 2000,
Horvath and Dörges, 2008, Patzina et al., 2010]. Schneider proposes in [Schneider, 2000]
a security automata for expressing security policies. Horvath and Dörges model
in [Horvath and Dörges, 2008] security patterns using High-Level Petri nets (HLPNs),
while Patzina et al. introduce in [Patzina et al., 2010] a Petri nets model called Monitor
Petri nets, which enable the modelling of use cases and misuse cases.

Other works propose light-weight UML extensions for considering security into UML de-
signs [Houmb and Hansen, 2003, Hussein and Zulkernine, 2006, Cirit and Buzluca, 2009].
In [Houmb and Hansen, 2003] a UML profile (SecurityAssessmentUML) for model-based
security assessments is introduced. Mainly focused on risk identification and risk analysis in
a security assessment, it allows to analyse the frequency of attacks using fault trees obtained
from UML activity diagrams. A UML profile (called UMLintr) for specifying intrusions is
described in [Hussein and Zulkernine, 2006]. UMLintr aims at specifying intrusion scenar-
ios in UML diagrams to make much easier the communication of customers with software
designers. However, this profile does not specify properties of distributed attacks and it
is very focused on intrusion domain. A recent work in [Cirit and Buzluca, 2009] proposes
a UML profile for specification of Role-Based Access Control (RBAC). This UML profile
allows to graphically model the access control specifications in the domain problem and
uses Object Constraint Language (OCL) to validate the well-formedness and meaning of
information models against the RBAC.

Other works are focused on UML profiles for business processes or grid
computing, such as [Rodŕıguez et al., 2006, Trujillo et al., 2009, Rosado et al., 2010b] .
In [Rodŕıguez et al., 2006], Rodŕıguez et al. propose a UML profile that increases the

5

Section 1.2 1. Introduction and State of the Art

expressive ability of activity diagrams by incorporating security requirements into the
business process modelling. In [Trujillo et al., 2009], UML profile is proposed for defin-
ing security requirements for Data Warehouses (DW) at the business level, then taking
security issues into account and enforcing them from early DW design phases. UML ex-
tensions have been also proposed in the mobile grid system domain. A UML profile for
building use case diagrams in the mobile Grid context called GridUCSec-Profile is in-
troduced in [Rosado et al., 2010b]. This profile allows to analyse the system’s security
requirements from the early stages of development and to make decisions in the design
phase about which security mechanisms should be used. The GridUCSec-Profile is used
also in [Rosado et al., 2010a], where a methodology is proposed to analyse, design and
construct a Secure Mobile Grid System.

Among other works using UML for expressing security issues, and by more close-
ness to our approach, it is worth mentioning [Lodderstedt et al., 2002, Jürjens, 2002,
Goudalo and Seret, 2008]. SecureUML [Lodderstedt et al., 2002] allows to build secure dis-
tributed systems;in particular, it enables the specification of RBAC-based access control
requirements together with several authorisation constraints. SecureUML also provides a
model transformation to standard UML/OCL, then obtaining a secure system model where
OCL constraints can be checked. Besides, it supports code generation from the secure sys-
tem model. UMLsec [Jürjens, 2002] allows to specify security relevant information during
development of security-critical systems. It considers RBAC as access control policy, like
SecureUML, and also provides tool-support for formal security verification. Goudalo and
Seret claim in [Goudalo and Seret, 2008] a UML extension for security as a real solution,
and propose a set of stereotypes to deal with confidentiality into information systems. A re-
cent work [Thapa et al., 2010] combines UMLsec and MARTE profiles, allowing to address
both security and timing properties together in a UML model. The combined metamodel
is then transformed to a USE (UML-based Specification Environment) specification to be
verified using USE tools.

This thesis proposes in Chapter 3 a UML extension through profiling. Although Se-
cureUML provides a comprehensive framework for the specification and verification of
access control policies, it does not cover other security aspects, like the ones considered in
our approach (i.e., non-repudiation, authenticity, availability). Besides, SecAM strives for
gaining formal models for analysis and verification. In contrast to the UML extension given
in [Goudalo and Seret, 2008], our approach aims to be applicable in more domains than
just information systems, and covers more security attributes than confidentiality issue.
Unlike UMLsec [Jürjens, 2002], SecAM has been built by following well-known UML pro-
file rules given by Lagarde [Lagarde et al., 2007] and Selic [Selic, 2007]. This UML-profile
compliance should make easier the task of adding SecAM to existing UML profile-based case
tools. In contrast to UMLsec, SecAM defines security attributes from a more abstract way
and not proposes ad-hoc stereotype solutions. Besides, SecAM enables security properties
to be expressed as parameters for further quantitative/qualitative analysis.

6

1. Introduction and State of the Art Section 1.2

Fault Tolerance design. Regarding Fault-Tolerant (FT) techniques
applied at software architectural level also several works can be
found [Nguyen-Tuong and Grimshaw, 1999, Bondavalli et al., 2001, Majzik et al., 2003,
Rugina et al., 2007,Harrison and Avgeriou, 2008].

In [Harrison and Avgeriou, 2008] Harrison and Avgeriou studied how several FT tech-
niques (FTTs) can be carried out as best-known architectural patterns. By the use of ar-
chitectural patterns they aim to directly create software architectures satisfying quality at-
tributes. Nguyen-Tuong and Grimshaw presented in [Nguyen-Tuong and Grimshaw, 1999]
a reflective model, called Reflective Graph & Event (RGE), which is applied for making
failure-resistant applications. Using this reflective model they are able to express FT al-
gorithms as reusable components allowing composition with user applications. Rugina et
al. propose in [Rugina et al., 2007] an approach for system dependability modelling using
AADL (Architecture Analysis and Design Language), being the design model transformed
into Generalised Stochastic Petri nets (GSPNs). This approach was applied to an Air Traf-
fic Control System. Bondavalli et al. [Bondavalli et al., 2001, Majzik et al., 2003] have a
vast work in the area of translating UML diagrams into dependability models, having also
used Petri nets as a target model in some of these works. Their proposal of translation
needs an intermediate model as a first step.

This thesis introduces a FT model library (see Chapter 4), where we have explored the
idea of combining models that represent FT techniques and software behavioural designs.
The combined model is useful for dependability assessment, as it is shown through an
example. In our honest opinion, the key point that we are proposing is to gain a “library”
of UML models representing FT techniques ready to use in critical designs.

Security-performance trade-off analysis. The problem of analysing the performance
of security technologies has been widely addressed in literature, in particular most of the
studies focus attention on the performance of existing standards such as IPsec and SSL.
Examples of research investigation in this direction can be found in [Blaze et al., 2002,
Gupta et al., 2002,Kant et al., 2000].

Security properties are often considered in trade-off with other features, for instance
in [Menascé, 2003] the security is considered while minimising performance penalties. Our
aim is similar to this one because we also target an analysis of how security strategies
impact on system performance. However, in [Menascé, 2003] the analysis is conducted
using a specific security protocol (i.e., SSL) and a limited set of cryptographic algorithms,
whereas our methodology is intended to enlarge the set of design options while modelling
and analysing more general solutions.

Estimating the performance of a system with different security properties is a difficult
task, as demonstrated in [Juric et al., 2006], where different measurements on different
platforms have been performed to compare secure and non-secure Web services, RMI and
RMI with SSL. Our work differs from [Juric et al., 2006] because we estimate the system
performance before the deployment with the possibility of targeting different platforms.

7

Section 1.2 1. Introduction and State of the Art

An experimental approach with regard to the performance evaluation of security ser-
vices is presented in [Cilardo et al., 2007] where security applications are planned and im-
plemented with embedded security strategies, and subsequently monitored. Our approach
differs from [Cilardo et al., 2007] because we adopt a model-based approach to predict the
system performance, hence no implementation of the system is required.

Some works use the aspect-oriented modeling (AOM) paradigm to specify and integrate
security risks and strategies into a system model, such as the one in [Woodside et al., 2009].
It models security solutions as aspects in UML, and the annotated model is transformed
into a performance model. This work uses an approach to the problem that is similar to
ours, in that they are both based on model annotations and transformations. However,
our work targets the problem of representing security strategies while guaranteeing certain
security properties, whereas the analysis in [Woodside et al., 2009] is only performed on
the SSL protocol.

The lack of a model-based approach to this problem is the major motivation behind
our work, as it shown by the proposals given in Chapter 4 and 5. We aim at overcoming
the limitations of ad-hoc solutions (i.e., the well assessed security protocols like IPsec and
SSL) that estimate the performance of specific security technologies. To achieve this goal,
the models that we propose aim at informing software designers about the performance of
different design solutions for critical systems.

Performability analysis. Other interesting parameter while designing critical system is
performability. Performability [Meyer, 1982] evaluates the performance (throughput) and
the reliability of systems whose provided services may suffer some degradation due to errors
and failures. Many studies evaluate the performability of a FT system through analytical
models, usually represented as Markov processes [Goŝeva-Popstojanova and Trivedi, 2001,
Gokhale et al., 2004]. These studies consider the FT systems modelled ad-hoc, and they
do not provide any solution to mitigate the impact of activation of faults into the
FT system. An evaluation of performability using Petri net-based models is presented
in [Sanders and Meyer, 1991,Bobbio, 1989]. Stochastic Activity Networks (SANs) are used
in [Sanders and Meyer, 1991], associating reward rates directly with the markings of desig-
nated places and reward impulses with the completion of activities. Such an idea is extended
for GSPNs by Bobbio in [Bobbio, 1989].

A more recent approach is given by Reussner et al. in [Reussner et al., 2003], where a
compositional approach is presented using Markov chains as modelling formalism. Other
works [Abdelmoez et al., 2004,Cortellessa and Grassi, 2007] in the literature study the im-
pact of error propagation on reliability, also focused on component-based systems.

This thesis proposes in Chapter 4 a compositional PN models for FT techniques. These
compositional PN models allow us to make performability (i.e., performance under failure
conditions) analysis easier when FT parameters change. Thus, these FT models can be
useful for evaluating different FT approaches in the same system model. Finally, Chapter 5
introduces a model-based methodology for performance prediction of critical systems where

8

1. Introduction and State of the Art Section 1.2

FT techniques and other security mechanisms are incorporated.
Recall that FT systems (i.e., systems that incorporate FT techniques) can be naturally

modelled as Discrete Event Systems (DES) where resources are shared, also called Resource
Allocation Systems (RAS) [Colom, 2003]. In this dissertation, we focus on FT systems
using shared resources modelled as Petri nets (PNs) – more precisely, as process Petri
nets [Tricas, 2003].

Performance analysis. Performance estimation using PNs is a topic which has been
broadly studied. Some works are concerned to the exact computation of analytical mea-
sures of the performance [Ajmone Marsan et al., 1995], while others overcome the state
explosion problem providing performance bounds [Ramchandani, 1974,Chiola et al., 1993,
Campos et al., 1992,Liu, 1995]. The use of performance bounds, on which our approach is
based, avoids the necessity of calculating the whole state space. The advantage of using
performance bound computation is the reduced computing time, but its drawback is the
difficulty to assess how accurate the computed bound is with respect to the real system
performance.

One of the first works on performance bounds computation is [Ramchandani, 1974],
where strongly connected Marked Graphs (MGs) with deterministic timing are con-
sidered, and the reachability of the computation bound is proved. Some other works
that compute performance bounds use linear programming techniques [Chiola et al., 1993,
Campos et al., 1992], in the same way that our approach. These bounds are frequently
calculated by using the first order moment (i.e., the mean) of the distributions associated
to the firing delay. In [Liu, 1995], the second order moment is used to obtain a sharper
(i.e., more accurate) performance bound.

Other works provide bounds for queueing systems instead of PN models like our ap-
proach does, e.g., [Haddad et al., 2005, Casale et al., 2008, Osogami and Raymond, 2010].
Haddad et al. give in [Haddad et al., 2005] space complexity upper and lower bounds for
Stochastic Petri nets with product-form solution. In [Casale et al., 2008], Casale et al. pro-
pose performance upper and lower bounds for closed queueing networks with general inde-
pendent and non-renewal services. They use linear programming techniques on the queue
activity probabilities. Osogami and Raymond provide in [Osogami and Raymond, 2010]
upper and lower bounds on the tail distribution of the transient waiting time for a gen-
eral independent services queue. They use the two first moments of the service time and
interarrival time, and solve it through semidefinite programming (SDP), a convex optimi-
sation technique used for optimisation of complex systems. On the contrary, our approach
introduced in Chapter 6 uses first order moment and linear programming techniques.

This thesis proposes in Chapter 6 an improvement of upper bound computation for the
particular case of MGs and of process Petri nets by using regrowing techniques (that is, by
adding more components to the initial bottleneck of the net).

We have also applied our approach for getting improved performance bound to
the domain of scientific workflow, as it is summarised in Chapter 10. Petri nets

9

Section 1.2 1. Introduction and State of the Art

and their extensions have been widely used for the specification, analysis and im-
plementation of scientific workflows [van der Aalst and van Hee, 2004] (e.g., GWork-
flowDL [Pellegrini et al., 2008, Vossberg et al., 2008], Grid-Flow [Guan et al., 2006] or
FlowManager [Aversano et al., 2002]). In Chapter 10, we propose the use of ordinary PNs
for deriving performance models of pure graph-based workflows.

An analysis of the overhead for scientific workflows in Grid environments was given
by Nerieri et al. in [Nerieri et al., 2006]. The analysis includes both load imbalance and
data movement, with these being identified as the most significant sources of overhead. As
discussed in this paper, Park & Humphrey [Park and Humphrey, 2008] already analysed
the problem of load imbalance and data throttling for scientific workflows. They proposed
a process envelope based framework for throttling data transfers. Nonetheless, they do not
provide any analysis method in order to automatically obtain such data-throttling values.
The proposal that we describe in Chapter 10 gives a method that can automatically derive
(sub-optimal) values for them.

Lastly, it is worth mentioning the work in [Aalst et al., 2002], where a Petri net struc-
tural analysis is undertaken for business workflows. A specific class of Petri nets, WF-nets,
is used and tailored towards workflow analysis. WF-nets can model workflows with differ-
ent kind of control operations such as sequence, choice, synchroniser, fork or merge. The
types of structural analysis that can be undertaken includes correctness, deadlock analysis
or liveness.

Resource optimisation analysis. Finally, resource optimisation and its usage have
been already studied for workflow Petri nets (WF-nets) [Li et al., 2004] or some vari-
ants [Wang and Zeng, 2008,Hee et al., 2001,Chen et al., 2008]. The underlying PN model
of WF-nets are free choice nets (FCNs). However, the kind of systems we are considering
cannot be modelled through FCNs: in the systems we consider, it may exist conflicts in
the resources acquirement synchronisation, which is not allowed in FCNs. Li et al. propose
in [Li et al., 2004] an approach to estimate the resource availability by using Continuous
Time Markov Chains (CTMCs) and compute the turnaround time (i.e., the shortest re-
sponse time) by performing reduction operations on the original WF-net. This performance
analysis has an exponential complexity in the worst case, whilst our approach has a poly-
nomial complexity due to the use of linear programming (LP) techniques. Resource usage
could be computed in our approach by calculating the average marking of resource places
in the PN system. Wang and Zeng provide in [Wang and Zeng, 2008] a method for com-
puting the best implementation case for a workflow represented by a PN model, based
on the reachability graph. Such a method, however, can suffer scalability problems if the
workflow size is large. Van Hee et al. give in [Hee et al., 2001] an algorithm to compute
optimal resource allocation in stochastic WF-nets. Such an algorithm suffers from scalabil-
ity problems because its complexity depends on the number of resources. On the contrary,
our approach only depends on the net structure, no matters the number of resources in
the system. Therefore, for large systems with great number of resources our approach is

10

1. Introduction and State of the Art Section 1.3

more tractable than the one in [Hee et al., 2001]. Chen et al. propose in [Chen et al., 2008]
a new PN model, called Resource Assignment Petri Net (RAPN), to define how resources
are shared and assigned among different and concurrent project activities. The computa-
tion of the execution project time considers deterministic timing and, unlike our approach,
such a new PN model is not able to model activities that utilise and release the same
resource intermittently.

This thesis proposes, in Chapter 7, several approaches to minimise the cost of compen-
sation needed for maintaining a given throughput in a FT system.

Another important issue related to resource sharing is deadlock prevention. The common
use of system resources in concurrent systems may lead to deadlock problems, i.e., a process
waits for the evolution of other process/es, while the latter is/are also waiting for the former
to evolve. In order to deal with such problems, there exist deadlock prevention or avoidance
policies which may be applied for assuring the liveness property and therefore to avoid
deadlocks [Colom et al., 1990,Tricas et al., 2000,Ezpeleta and Valk, 2006,Wu et al., 2008,
Lopez-Grao and Colom, 2011,Hu et al., 2012,Li et al., 2012].

1.3 Outline

The balance of this dissertation is as follows. Chapter 2 introduces the preliminary concepts
needed to follow the rest of the dissertation, such as Petri nets (PNs), UML diagrams and
Fault Tolerance. The rest of this dissertation has been divided in five main parts: Design
of Critical Systems, Performance Analysis, Applications, Tool Support and Conclusions.

The first part of this dissertation is composed of Chapters 3 to 5 and it is mainly devoted
to the contributions related to the specification of security and the design of critical systems.
Namely, Chapter 3 introduces a UML profile focused on security, called SecAM, which has
served for expressing security properties into UML designs in several publications. Then,
Chapter 4 introduces a set of Fault-Tolerant (FT) techniques, expressed in UML models and
directly into PN models, which allows to make easier the addition of these FT techniques
into software designs. Lastly, Chapter 5 is devoted to performance prediction of critical
systems by means of a model-based methodology which combine Fault-Tolerant Techniques
(FTTs), such as recovery procedures, and/or Security Mechanisms (SMs).

The second part of this dissertation is related to the contributions on performance anal-
ysis theory. Chapter 6 introduces a bunch of strategies for the upper throughput bound
computation on Petri nets. Recall that we are dealing with critical systems that incorporate
FT techniques to deal with any unexpected situation, and these additions may have an im-
pact on system performance. Thus, Chapter 7 introduces a set of algorithms to compensate
the throughput degradation in critical systems.

The third part of this dissertation is devoted to applications of the theory introduced
in previous chapters. Namely, Chapter 8 considers the design of a Secure Database System
(SDBS) where the approaches presented in Chapters 6 and 7 are tested. Lastly, Chapter 10

11

Section 1.3 1. Introduction and State of the Art

addresses the application of approaches presented in Chapter 6 to other scientific domain,
more precisely, scientific workflows. Chapter 10 also introduces a quantitative metric for
workflows, and a data-throttling strategy for improving the use of bandwidth and input
buffers of workflow tasks.

The forth part of this dissertation is related to tool support. Chapter 11 introduces
PeabraiN, a tool developed as a side product during this dissertation that implements
some of the approaches presented in Chapters 6 and 7.

Finally, Chapter 12 in the fifth part summarises the major contributions of this disser-
tation and establishes the current open problems.

12

Chapter 2

Preliminary Concepts

This chapter introduces some basic concepts that are needed to follow the rest of this
dissertation. We start defining Petri nets (PNs) in the untimed and timed framework, and
introducing a special class of PNs – more precisely, Process Petri net (PPN), which is a
basis for our approach – and related concepts, such as upper throughput bounds. Secondly,
the Unified Modelling Language (UML) is addressed by describing the semantics of the
diagrams that we use in this dissertation. Lastly, the concepts related to Fault Tolerance
are introduced.

2.1 Petri Nets

This section introduces some basic concepts regarding the class of Petri nets (PNs) we
are considering in this dissertation. Firstly, we define process Petri nets in the untimed
framework. Then, timed Petri net systems are defined. In the following, the reader is
assumed to be familiar with Petri nets (see [Murata, 1989] for a gentle introduction).

2.1.1 Untimed Petri Nets

Definition 1 A Petri net [Murata, 1989] (PN) is a 4–tuple N = 〈P, T,Pre,Post〉, where:� P and T are disjoint non-empty sets of places and transitions (|P | = n, |T | = m)
and� Pre (Post) are the pre–(post–)incidence non-negative integer matrices of size |P | ×
|T |.

The pre- and post-set of a node v ∈ P ∪ T are respectively defined as •v = {u ∈
P ∪ T |(u, v) ∈ F} and v• = {u ∈ P ∪ T |(v, u) ∈ F}, where F ⊆ (P × T) ∪ (T × P) is the
set of directed arcs. A Petri net is said to be self-loop free if ∀p ∈ P, t ∈ T t ∈ •p implies

13

Section 2.1 2. Preliminary Concepts

t 6∈ p•. Ordinary nets are Petri nets whose arcs have weight 1. The incidence matrix of a
Petri net is defined as C = Post −Pre.

A vector m ∈ Z
|P |
≥0

which assigns a non-negative integer to each place is called marking
vector or marking.

Definition 2 A Petri net system, or marked Petri net S = 〈N ,m0〉, is a Petri net N
with an initial marking m0.

A transition t ∈ T is enabled at marking m if m ≥ Pre(·, t), where Pre(·, t) is the
column of Pre corresponding to transition t. A transition t enabled at m can fire yielding
a new markingm′ = m+C(·, t) (reached marking). This is denoted bym t−→m′. A sequence
of transitions σ = {ti}ni=1 is a firing sequence in S if there exists a sequence of markings

such that m0
t1−→m1

t2−→m2 . . .
tn−→mn. In this case, marking mn is said to be reachable

from m0 by firing σ, and this is denoted by m0
σ−→mn. The firing count vector σ ∈ Z

|T |
≥0

of the firable sequence σ is a vector such that σ(t) represents the number of occurrences
of t ∈ T in σ. If m0

σ−→m, then we can write in vector form m = m0 + C · σ, which is
referred to as the linear (or fundamental) state equation of the net.

The set of markings reachable from m0 in N is denoted as RS(N ,m0) and is called the
reachability set.

A place p ∈ P is k − bounded if ∀m ∈ RS(N ,m0),m(p) ≤ k. A net system S is k-
bounded if each place is k-bounded. A net system is bounded if there exists some k for which
it is k-bounded. A net N is structurally bounded if it is bounded no matter which m0 is
the initial marking.

Two transitions t, t′ are said to be in structural conflict if they share, at least, one input
place, i.e., •t∩ •t′ 6= ∅. Two transitions t, t′ are in equal conflict if Pre(·, t) = Pre(·, t′) 6= 0,
where 0 is a vector with all entries equal to zero.

A transition t is live if, for each marking m ∈ RS(N ,m0) there exists a marking m′

reachable from m where transition t is enabled. A marked Petri net S is live when every
transition is live. Hereafter, we assume that Ss we work with are live.

A p-semiflow is a non-negative integer vector y ≥ 0 such that it is a left anuller of
the net’s incidence matrix, y⊤ ·C = 0. In the sequel, we omit the transpose symbol in the
matrices and vectors for clarity. A p-semiflow implies a token conservation law independent
from any firing of transitions. A t-semiflow is a non-negative integer vector x ≥ 0 such that
is a right anuller of the net’s incidence matrix, C ·x = 0. A p- (or t-)semiflow v is minimal
when its support, ‖v‖ = {i|v(i) 6= 0}, is not a proper superset of the support of any other
p- (or t-)semiflow, and the greatest common divisor of its elements is one. A Petri net is
said to be conservative (consistent) if there exists a p-semiflow (t-semiflow) which contains
all places (transitions) in its support.

A Petri net is said to be strongly connected if there is a directed path joining any pair
of nodes of the net structure. A state machine is a particular type of ordinary Petri nets
where each transition has exactly one input arc and exactly one output arc. More formally:

14

2. Preliminary Concepts Section 2.1

Definition 3 [Murata, 1989] A state machine is a subclass of Petri nets such that ∀t ∈
T, |t•| = |•t| = 1.

Marked graphs (MGs) are a subclass of ordinary Petri nets that are characterised by
the fact that each place has exactly one input and exactly one output arc. More formally:

Definition 4 [Murata, 1989] A marked graph (MG) is an ordinary Petri net such that
∀p ∈ P, |•p| = |p•| = 1.

In this dissertation, we deal with Petri nets that model systems where resources are
shared. Examples of this kind of systems can be found in manufacturing, logistics or web
services systems. In general, these systems represent real-life problems where some items are
processed and require the use of different resources (which are shared) during its processing.
These systems can be naturally modelled in terms of process Petri nets, a subclass of Petri
net whose inner structure is a strongly connected state machine. More formally:

Definition 5 [Tricas, 2003] A process Petri net (PPN) is a strongly connected self–loop
free Petri net N = 〈P, T,Pre,Post〉 where:

1. P = P0 ∪ PS ∪ PR is a partition such that P0 = {p0} is the process-idle place,
PS 6= ∅, PS ∩ P0 = ∅, PS ∩ PR = ∅, PS is the set of process-activity places and
PR = {r1, . . . , rn}, n > 0, PR ∩ P0 = ∅ is the set of resources places;

2. The subnet N ′ = 〈P \ PR, T,Pre,Post〉 is a strongly connected state machine, such
that every cycle contains p0.

3. For each r ∈ PR, there exist a unique minimal p-semiflow associated to r, yr ∈ N
|P |,

fulfilling: ‖yr‖∩PR = {r}, ‖yr‖∩PS 6= ∅, ‖yr‖∩P0 = ∅ and yr(r) = 1. This establishes
how each resource is reused, that is, they cannot be created nor destroyed.

4. PS =
⋃

r∈PR
(‖yr‖ \ {r}).

Definition 5 implies that PPNs are conservative and consistent. Intuitively, Definition 5
establishes a kind of nets where:

a) there is a process using different shared resources;

b) every place in the net is covered by some p-semiflow and uses at least one resource;

c) the number of instances of each resource remains constant; and

d) resources cannot change its type.

Let N = 〈P, T,Pre,Post〉 be a PPN . A vector m0 ∈ Z
|P |
≥0

is called acceptable initial
marking [Tricas, 2003] of N if:

15

Section 2.1 2. Preliminary Concepts

1) m0(p) ≥ 1, p ∈ P0;

2) m0(p) = 0, ∀p ∈ PS ; and

3) m0(r) ≥ yr(r), ∀r ∈ PR, where m0(r) is the capacity, i.e., number of items, of the
resource r and yr is the unique minimal p-semiflow associated to r.

Definition 6 A process Petri net system, or marked process Petri net S = 〈N ,m0〉, is
a process Petri net N with an acceptable initial marking m0.

2.1.2 Timed Petri Nets

In order to be able to use Petri nets for systems performance evaluation, the inclusion of
the notion of time must be considered. There are two ways of introducing the notion of
time in Petri nets, either in places or transitions. Since transitions are representing the
actions of a system, which have associated some duration, we associate such a duration
to the firing delay of transitions [Ramchandani, 1974]. Besides, we consider that the firing
delays of transitions follow an exponential distribution functions.

A Petri net model where a set of exponential rates is considered (one for each transi-
tion in the model) is called a Stochastic Petri net (SPN) model [Florin and Natkin, 1985,
Ajmone Marsan et al., 1995]. These rates characterise the probability distribution function
of the transition delay, which follow an exponential distribution function and are obtained
as the inverse of the mean. These rates are considered to be marking-independent, i.e., its
values are constant.

In this dissertation, we consider that the average service time of a transition t can be
zero, i.e., it fires in zero units of time. These transitions are called immediate transitions.
Otherwise, transition t is a timed transition. The exponential transitions are graphically
represented by a white box, whilst immediate transitions are black boxes. It will be assumed
that all transitions in conflict are immediate. An immediate transition t in conflict will

fire with probability
r(t)

∑

t′∈A r(t′)
, where A is the set of enabled immediate transitions in

conflict and r(t) ∈ N>0 is the routing rate associated to transition t. The firing of immediate
transitions consumes no time. When a timed transition becomes enabled, it fires following
an exponential distribution with mean δ(t). More formally, we will consider the following
timed Petri net classes:

Definition 7 A Stochastic Petri Net (SPN) [Florin and Natkin, 1985] system is a pair

〈S, δ, r〉 where S = 〈P, T,Pre,Post,m0〉 is a Petri net system, δ ∈ R
|T |
≥0

is a positive real
function such that δ(t) is the mean of the exponential firing time distribution associated to

transition t ∈ T and r ∈ N
|T |
>0 is the vector of routing rates associated to transitions.

Definition 8 A Stochastic Marked Graph (SMG) is a Stochastic Petri net whose under-
lying Petri net is a Marked Graph.

16

2. Preliminary Concepts Section 2.1

Definition 9 A Stochastic Process Petri net (SPPN) system is a Stochastic Petri net
system whose underlying Petri net is a Process Petri net.

There exist different semantics for the firing of transitions, being infinite and finite server
semantics the most frequently used. Given that infinite server semantics is more general
(finite server semantics can be simulated by adding self-loop places), we will assume that
the timed transitions work under infinite server semantics.

The average marking vector, m, in an ergodic [Ross, 1983] Petri net system is defined
as [Florin and Natkin, 1989]:

m(p) =
AS

lim
τ→∞

1

τ

∫ τ

0

m(p)udu (2.1)

where m(p)u is the marking of place p at time u and the notation =
AS

means equal almost

surely.
Similarly, the steady-state throughput, χ, in an ergodic Petri net is defined

as [Florin and Natkin, 1989]:

χ(t) =
AS

lim
τ→∞

σ(t)τ
τ

(2.2)

where σ(t)τ is the firing count of transition t at time τ .
By definition, all the places of a SPPN are covered by p-semiflows, and therefore

it is structurally bounded. In this work, we will assume that the SPPN under study
is a live and structurally bounded net with Freely Related T-semiflows (i.e., a FRT-
net) [Campos and Silva, 1992]. It is known that the Markov process that describes the time
evolution [Ajmone Marsan et al., 1995] of these nets is ergodic [Campos and Silva, 1992],
i.e., when the observation period tends to infinite, the estimated values of average marking
and steady-state throughput tend to a certain value, what implies the existence of the
above limits.

The vector of visit ratios expresses the relative throughput of transitions in the steady
state. The visit ratio v(t) of each transition t ∈ T normalised for transition ti , v

ti(t), is
expressed as follows:

vti(t) =
χ(t)

χ(ti)
= Γ(ti) · χ(t), ∀t ∈ T (2.3)

where Γ(ti) =
1

χ(ti)
represents the average inter-firing time of transition ti.

The visit ratios of two different transitions t, t′ in equal conflict must be proportional
to the corresponding routing rate r(t), r(t′) defining the conflict resolution condition r(t) ·
vti(t′) = r(t′) · vti(t). This condition can be also written in vector form as:

R · vti = 0 (2.4)

where R is a matrix containing as many rows as pairs of transitions in equal conflict.

17

Section 2.2 2. Preliminary Concepts

In FRT-nets, the vector of visit ratios v exclusively depends on the structure of the
net and on the routing rates [Campos and Silva, 1992]. The vector of visit ratios v nor-
malised for transition ti, v

ti , can be calculated by solving the following linear system of
equations [Campos and Silva, 1992]:

(

C
R

)

· vti = 0

vti(ti) = 1

(2.5)

2.2 The Unified Modelling Language

This section introduces briefly the main Unified Modelling Language (UML) diagrams that
we use in this dissertation. Mainly, they are: UML Use Case (UML-UC) diagrams, UML
Deployment Diagrams (UML-DD), UML State Machine (UML-SM) diagrams and UML
Sequence Diagrams (UML-SD). In the following, the reader is assumed to be familiar with
UML (see [OMG, 2005] for a gentle introduction).

UML, standard de facto as modelling language, is a powerful language which allows to
represent from architectural to behavioural aspects of the systems. The focus in UML in
this dissertation is motivated by the fact that UML is well-known by the system designers
and they are very familiar with its use for designing.

The UML is a semi-formal language developed by the Object Management Group
(OMG) to specify, visualise and document models of software and non-software systems.
UML has gained widespread acceptance in the software development process for the spec-
ification of software systems based on the object-oriented paradigm.

UML provides several types of diagrams which allow to capture different aspects and
views of the system. A UML model of a system consists of several diagrams which represent
the functionality of the system, its static structure, the dynamic behaviour of each system
component and the interactions among the system components.

UML defines twelve types of diagrams, divided into three main categories:� Static diagrams, which are intended to model the structure (logical and architec-
tural) of the system. They are: class diagram, object diagram, component diagram
and deployment diagram.� Behavioural diagrams, which are intended to describe system dynamics, and they
are subdivided in: sequence diagram, collaboration diagram, use case diagram, state-
machine diagram and activity diagram.� Diagrams to organise modules, allowing to reduce complexity of the system.
There exist packages, subsystems and models.

18

2. Preliminary Concepts Section 2.2

Verify Identity through PIN

Bank

Pay in Cash

Pay with Credit Card

Cashier

Pay

System boundary

Customer

<<include>>

<<extend>>

<<extend>>

Figure 2.1: A UML Use Case (UML-UC) diagram of a payment system.

2.2.1 UML Use Case Diagrams

A UML Use Case (UML-UC) diagram is a UML behavioural diagram that describes the
functionality of a system in a horizontal way. That is, rather than merely representing
the details of individual features of a system, UML-UCs can be used to show all of its
available functionality. The description of a UML-UC shows a list of steps, typically defining
interactions between a role (known in UML as an actor, that can be a human or an external
system) and a system, to achieve a goal. A UML-UC is represented by an oval with a label
that describes it. A use case can extend another use case when the former is a special case
behaviour of the latter. A use case can also include other use case when the former needs
the latter to complete.

For instance, Figure 2.1 depicts a UML-UC diagram representing a paying system. There
are three actors who interacts with the system, namely the Customer, the Cashier and the
Bank. A customer pays for a service, while a cashier has to accept the customer’s payment.
The use case Pay is extended by two uses cases, Pay in Cash, which represents the case
when the customer decides to pay for the services in cash, and by Pay with Credit Card

when the customer decides to pay for with the credit card.

The latter use case, Pay with Credit Card, includes other use case, called Verify

Identity through PIN, which needs to be completed in order to complete the payment
through the credit card. Note that the Pay with Credit Card use case interacts as well
with the Bank actor – the credit card issuer.

19

Section 2.2 2. Preliminary Concepts

WebServer Intranet

DataBase<<artifact>>

WebService-Payment

<<deploy>>

Internet

User

Figure 2.2: A UML Deployment Diagram (UML-DD) of a secure database system.

2.2.2 UML Deployment Diagrams

A UML Deployment Diagram (UML-DD) is a UML static diagram that is used to visualise
the topology of the physical components of a system where the software components are
deployed. They describe the static deployment view of a system and consist of nodes
(represented as cubes), software components (represented as a rectangle and associated to
a node through an arrow labelled deploy) and their relationships (lines). In other words, a
UML-DD shows the hardware for a system (nodes), the software that is installed on that
hardware (components, usually called artifacts), and the middleware used to connect
the disparate machines to one another.

Figure 2.2 depicts a system representing an online payment service. There exits a User,
represented as an actor, that interacts with a WebServer through the Internet. The web
server deploys a software artifact called WebService-Payment which is in charge of inter-
acting with the users and complete the payments. The web server is connected through an
Intranet to a DataBase server that stores information about user’s payments, accounts,
etc.

2.2.3 UML State Machine Diagrams

A UML State-Machine Diagram (UML-SM) is a UML behavioural diagram that can be
used for modelling discrete behaviour through finite state-transitions systems. A UML-SM
is a directed graph in which nodes denote states and connectors denote state transition. A
state is represented by a rounded rectangle labelled with a state name, while transitions are
represented by arrows labelled with the triggered events followed (optionally) by executed
actions. The initial transition originates from a solid circle and sets the default state where
system begins. The final transition ends in a solid circle surrounded by an empty circle.

Figure 2.3 shows a UML-SM corresponding to the behaviour of a wireless computer
keyboard. The initial state is the state from the initial transition, that is, Initialise state.
A state can have a set of optional actions, such as entry actions that are executed upon

20

2. Preliminary Concepts Section 2.2

entry / switchAllLEDs(ON)

do / checkHardware()

exit / switchAllLEDs(OFF)

Upper CaseLower Case
Initialise

PWR_KEY

PWR_KEY

PWR_KEY

ANY_KEY / sendUpperCaseScanCode()ANY_KEY / sendLowerCaseScanCode()

CAPS_LOCK / switchCapsLED(OFF)

CAPS_LOCK / switchCapsLED(ON)

Figure 2.3: A UML State-Machine Diagram (UML-SM) of a computer keyboard.

entry to a state, exit actions that are executed upon exit from a state and do actions that
represent activities to execute during staying into a state. For instance, the Initialise

state has an entry action to switch on the keyboard LEDs called switchAllLEDs(ON), a
do activity that performs a self-checking on hardware called checkHardware() and as exit
activity it switches off the keyboard LEDs by means of the activity switchAllLEDs(OFF).
Once the do and exit activities have been performed, the state of the system is led to the
final state when event of pressing the power button of the keyboard occurs (event PWR KEY),
or to Lower Case state otherwise.

The system remains in Lower Case state until CAPS LOCK key is pressed. When this
happens, a triggered action is invoked (switchCapsLED(ON)) and the new state is Upper
Case. In the same way, the system remains in the latter state until CAPS LOCK key is pressed
again, that triggers switchCapsLED(OFF) and the return to Lower Case state. When any
other key is pressed, the appropriate scan code is sent to the operative system. As in the
Initialise state, when PWR KEY is pressed the system is led to the final state from both
states Lower Case and Upper Case.

2.2.4 UML Sequence Diagrams

A UML Sequence Diagram (UML-SD) is a UML behavioural diagram that shows how
processes into a system cooperate with one another and in what order. A UML-SD shows
different processes or objects that live simultaneously as parallel vertical lines (called life-
lines), and the messages exchanged between them, as solid horizontal arrows, in the order
in which they occur. A message response is represented as a dashed horizontal arrow. All
messages have a label to identify the invoked method between the processes or objects.
This allows the specification of simple run-time scenarios in a graphical manner. A run-
time scenario is called interaction, and it is enclosed on a a solid-outline rectangle. The left
upper corner of an interaction contains the diagram’s label beginning with letters “sd”,
which stands for Sequence Diagram.

Figure 2.4 shows a UML-SD corresponding to an interaction called Consult Available
Reports between a financial analyst (user) with a financial reporting system. The user,

21

Section 2.2 2. Preliminary Concepts

opt [userClearance can access]

loop
[for each report r in avalReports]

secSystem : SecuritySystemsystem : ReportingSystem

user: FinancialAnalyst

2.2: details 2.1: details = buildDetailedReport(r)

2: getDetailsReport(r)

1.4: avalReports 1.3: avalReports = retrieveAvailableReports()

1.2: userClearance

1.1: getSecurityClearance(user)

1: getAvailableReports()

sd Consult Available Reports

Figure 2.4: A UML Sequence Diagram (UML-SD) of a financial reporting system.

22

2. Preliminary Concepts Section 2.3

Fault

Tolerance

Techniques

Error Detection

Recovery

Fault

Handling

Error

Handling

Concurrent Detection

Preemptive Detection

Rollback
Rollforward
Compensation

Diagnosis

Reconfiguration
Isolation

Reinitialisation

Figure 2.5: Phases involved on a Fault-Tolerant technique (adapted
from [Avizienis et al., 2004]).

represented as an actor in the Figure 2.4 asks for the available reports to the reporting
system. Then, the system interacts with the security system in order to verify the security
clearance of the user. The security system returns (represented by a dashed arrow) the user
clearance.

A UML-SD can incorporate combined fragments that model a sequence that, given
a certain condition, will occur; otherwise, the sequence does not occur. For instance, Fig-
ure 2.4 has two combined fragments. The first one is an optional combined fragment element
(keyword opt) that takes place when the user has enough clearance to access to available
reports. When this occurs, the available reports are retrieved (self-message avalReports

= retrieveAvailableReports()) are returned to the user. Finally, the user iterates for
each one of the available reports by asking for detailed information. This iteration has been
represented by means of a loop combined fragment element (keyword loop). Note that an
optional combined fragment element is modelling a typical if-then case. A if-then-else case
can also be modelled with an alternative combined fragment element, using keyword alt

rather than opt and with a dashed horizontal line to separate each one of the cases that
occur once the condition has been evaluated.

2.3 Fault Tolerance

Fault Tolerance (FT) aims at fault avoidance carrying out error detection and system
recovery [Avizienis et al., 2004]. Figure 2.5 depicts the phases involved in a FT technique:

Error detection tries to identify the presence of an error in the system. It takes places
either while the system is providing its services (concurrent), or when services are
not being provided (preemptive). For instance, a hardware checking when the system
boots up is a preemptive error detection technique.

Recovery techniques are aimed at handling possible errors and/or faults in the system

23

Section 2.3 2. Preliminary Concepts

and leading it to a state without detected errors. Recovery techniques may have two
steps: an error handling (optional step), which tries to eliminate the presence of an
error in the system; and fault handling (mandatory step), which tries to avoid the
reactivation of the detected fault.

There are three common techniques when dealing with a detected error:� rollback, when the system is conducted to a previous saved state (i.e., prior to error
occurrence) without detected errors;� rollforward, when the system is conducted to a new state without detected errors (in
this case, later to error occurrence); and� compensation, when there is enough redundancy to mask the error in the erroneous
state.

Unlike rollback or rollforward that happen on demand, compensation may happen on
demand or systematically, independently of the presence (or absence) of an error. For
instance, an example of a compensation handling technique triggered on demand is an
exception handler mechanism. In this paper, we consider that error handling takes place
on demand.

The fault handling techniques that can be carried out to prevent faults from reacting
are:� diagnosis, which records the origin (cause) of the error, locating where it happened

and the type of error raised;� isolation, which excludes (in a logical or physical way) faulty components from normal
service delivery, so avoiding its participation in service delivery;� reconfiguration, which reschedules service requests between non-failed components;
and� reinitialisation, which reconfigures the faulty system services by changing its config-
uration, stores this new configuration and reinitialises such affected services.

24

Part I

Design of Critical Systems

25

Chapter 3

A UML Profile for Security

In this chapter we summarise the main contributions of this dissertation related
to the design of a UML extension focused on security [Rodŕıguez et al., 2010,
Rodŕıguez and Merseguer, 2010, Rodŕıguez et al., 2012d]. This extension is performed
through profiling. Briefly, a UML profile defines a set of stereotypes and tagged values
that allow the expression of non-functional properties (such as performance, dependability
or security), which are eventually attached to UML model elements extending its semantics.

3.1 Motivation

As we claimed in Section 1.1, there is a need to express security as a Non-Functional
Property (NFP) into the design of systems. This need is even more important when the
system is deployed in a harmful environment, where the system may be the victim of
persistent and targeted attacks.

The approach we present in this chapter encompasses all the challenges that we identify
to be addressed by new generation of development methods (see Section 1.1) relying on the
Unified Modelling Language (UML) [OMG, 2005]. UML is the current standard modelling
language, both for the industry and the software engineering research community. We
propose a domain specific language, built as a UML profile, called SecAM (which stands
for Security Analysis and Modelling) that integrates with the UML for the modelling and
analysis of security.

Integration SecAM is used to annotated security issues in the requirements, design and
deployment models of the UML. Therefore the security specification is integrated
with the system functional specification, i.e., with the system models. The rest of the
stages will use these models for development, then providing the necessary integrated
view of security in all the stages of the life-cycle.

Analysis SecAM is conceived so that it allows to leverage the system models for security

27

Section 3.2 3. A UML Profile for Security

analysis purposes. Sometimes the very same models can be directly used for analysis,
sometimes they are transformed into formal models that allow analysis (e.g., Fault
trees or Petri nets).

Unified view and vocabulary SecAM uses the standard Value Specification Language
(VSL) [OMG, 2009]. VSL aims at the specification of NFPs, say performance, de-
pendability and security. Through this language the different communities research-
ing security gain a common vocabulary for expressing the security properties they
manage.

Current SE techniques SecAM resorts to current software engineering trends. For ex-
ample, the model-driven paradigm (MDD) to transform system models into formal
models of analysis or the profiling mechanism, later explained.

In the following, we introduce the SecAM profile that integrates with the
UML for the modelling and analysis of security. The SecAM profile was orig-
inally published in [Rodŕıguez et al., 2010] and used in several manuscripts such
as [Rodŕıguez and Merseguer, 2010,Rodŕıguez et al., 2012d].

3.2 SecAM UML profile

The basis that support the SecAM profile are well-known, rely on standards and mean the
current mainstream in software engineering with UML.

At this regard, SecAM relies on the “UML profile for Modelling and Analysis of Real-
Time and Embedded systems” (MARTE) [OMG, 2009]. MARTE is an Object Management
Group (OMG) standard defined using the “profiling” mechanism, a current innovative
software engineering technique, as proposed by the fourth principle in the previous section.

Profiling was introduced by UML to indeed add new capabilities to the language. A
UML profile is just an extension of the UML defined in terms of:

Stereotypes They are concepts in the target domain that will be added to the UML. For
example, in SecAM we will add stereotypes for the security concepts, e.g., attack or
intrusion.

Tags The attributes of the stereotypes. For example, for the attack stereotype, as we will
show later, we will define attributes such as its type, objective or location.

Constraints They are formulae that apply to stereotypes and UML elements to extend
their semantics.

Another important feature of MARTE is that it provides an analysis framework called
Quantitative Analysis Model (GQAM). SecAM inherits GQAM, what confers it the analysis

28

3. A UML Profile for Security Section 3.2

capabilities that we defended in the previous section, second principle. The analysis in
MARTE addresses the schedulability and performance NFPs, while in SecAM the security.

MARTE has been specialised for dependability modelling and analysis, leading to the
definition of a Dependability Analysis and Modelling (DAM) profile [Bernardi et al., 2011].
MARTE and DAM together provide the basic bricks on which we build on our profile
proposal in the security context.

Aside of MARTE, SecAM is not the first attempt to enlarge UML for the analysis of
NFPs. The Dependability Analysis and Modelling (DAM) profile [Bernardi et al., 2011]
also follows this technique, in particular to introduce the dependability1 NFP in UML.

The relations between MARTE, SecAM and DAM are described in Figure 3.1(a). The
VSL referred before is the language all they share and then what justifies the third principle
in the Section 3.1.

SecAM relies on MARTE and DAM, as shown in Figure 3.1(a). The result is a common
and powerful UML framework that can be used for the joint specification of different NFPs,
concretely performance and schedulability (from MARTE), dependability (from DAM) and
security (from SecAM). Like MARTE and DAM, the SecAM profile is organized in two main
packages, namely the SecAM UML Extensions, that includes the set of stereotypes, and
the SecAM Library. The latter contains basic (typically enumeration types) and complex
types, used to define the stereotype tags and composite security NFPs.

The SecAM stereotypes are divided in sub-packages: Cryptographic, SecurityMechanisms,
Resilience and AccessControl as in Figure 3.1(b). In the following, we introduce each pack-
age first depicting the stereotypes and tagged-values, and giving some explanation over
them. Then, a small example for putting on each package in practice is introduced.

The rationale of this organisation has been to address different security issues, typically
dealt by independent research communities. We have used a breadth-first approach to
provide common basis for the specification of security in UML. Obviously, the profile is
an open proposal, that can be refined to add new modelling capabilities of security in
application domains.

The stereotypes in the first three sub-packages (cryptography, mechanisms and
resilience) can be applied to behavioural diagrams, while the latter to struc-
tural diagrams. Each sub-package deals with a subset of well-known security at-
tributes [Pfleeger and Pfleeger, 2006] (integrity, availability, confidentiality, authorisation,
non-repudiation, authenticity) and, as shown in Table 3.1, the sub-packages overlap with
respect to attribute coverage. These packages are largely explained in the sequel.

3.2.1 SecAM::Resilience package

The Resilience package, depicted in Figure 3.2, was initially proposed
in [Rodŕıguez et al., 2010] to enable the specification in UML behavioural diagrams

1By dependability here we understand: availability, reliability, safety and maintainability.

29

Section 3.2 3. A UML Profile for Security

<<profile>>

MARTE

<<profile>>

DAM

<<profile>>

SecAM

<<modelLibrary>>

SecAM_Library

SecAM_UML_Extensions

<<modelLibrary>>

SecAM::SecAM_Library

Basic_SECA_Types

Complex_SECA_Types <<profile>>

MARTE::VSL::DataType

<<modelLibrary>>

MARTE::MARTE_Library::BasicNFP_Types

<<import>>

<<apply>>
<<import>>

<<import>>
<<import>>

<<import>>

<<import>>

(a)

(b)

Figure 3.1: (a) SecAM profile and library, (b) SecAM UML extensions (subpackages).

30

3. A UML Profile for Security Section 3.2

Security SecAM packages
attributes (P1) (P2) (P3) (P4)

Integrity
√ √ √

Availability
√ √

Confidentiality
√ √ √

Authorisation
√

Non-repudiation
√

Authenticity
√

(P1): Cryptographic; (P2): SecurityMechanisms
(P3): Resilience; (P4): AccessControl

Table 3.1: Security attributes and SecAM packages in which they are covered.

of attacks, vulnerabilities and intrusion concepts, and their causal relationships (i.e., the
AVI chain) [Avizienis et al., 2004], as well as to support vulnerability stochastic analysis.

It contains two stereotypes, SecaAttackGenerator and SecaStep. They specialise the
DAM stereotypes DaFaultGenerator and DaStep, respectively. Hence, by inheritance, they
can be applied to all those UML behavioural model elements that can be stereotyped
with the latters. For example, SecaStep can stereotype actions, activities, trigger events,
transitions and states in UML State Machines diagrams, messages and fragments in UML
Sequence Diagrams.

These two stereotypes have the attributes depicted in Figure 3.2 (left side), i.e., attack
of SecaAttackGenerator and vulnerability and intrusion of SecaStep. The definition
of the types of these attributes appears in Figure 3.2 (right side).

Herein, we add a new complex type to represent the concept of coordinated attacks
(SecaCoordAttack). A coordinated attack allows attackers to avoid an intrusion detection
by splitting a malicious attack pattern in several sub-patterns (attacks attribute). It can
be classified (type attribute) as [Braynov, 2003]: a cumulative attack, where simultaneous
attacks are initiated to overcome computer limitations; a replicated attack, where several
attacks to replicated services occur to bring down the entire service structure; or a mixed
attack, i.e., a combination of the previous ones. For probabilistic analysis purposes, we have
characterized a coordinated attack by its occurrence probability (occurrenceProb), that
is the joint probability of the occurrences of single attacks it coordinates.

Considering several sources [Barnum, 2008, Hansman and Hunt, 2005,
Hussain et al., 2003] new attributes have been also added to the Attack class; i.e., class,
kind, objective and location. The different classes of attacks (ClassOfAttack) are
compliant to the taxonomy defined by Hansman and Hunt in [Hansman and Hunt, 2005],
e.g., virus or worm, which define how an attack works.

On the other hand, an attack can be of different kind (KindOfAttack) [Barnum, 2008],
depending on the method adopted by the attacker to succeed in the intent, e.g., injection or

31

Section 3.2 3. A UML Profile for Security

<<stereotype>>

SecaAttackGenerator

attack : SecaAttack

<<stereotype>>

DAM::DaFaultGenerator

<<profile>>

SecAM::Resilience

<<tupleType>>

DAM::DaFault

ocurrenceProb : NFP_Real[*]

<<tupleType>>

SecaCoordAttack

type : CoordinationType

attacks : SecaAttack[2..*]

/ ocurrenceProb : NFP_Real[*]

<<tupleType>>

SecaIntrusion

successProb : NFP_Real
origin : SecaVulnerable
cause : SecaAttack

<<tupleType>>

SecaVulnerable

degree : Degree

composed : SecaVulnerable[*]

<<tupleType>>

SecaAttack

type : TypeOfAttack

class : ClassOfAttack

location : AttackLocation

objective : AttackObjective
kind: KindOfAttack[*]<<stereotype>>

DAM::DaStep

<<stereotype>>
SecaStep

vulnerability : SecaVulnerable
intrusion : SecaIntrusion

<<Constant>> Injection

<<Constant>> ResourceModification
<<Constant>> ProtocolManipulation
<<Constant>> Analysis

<<Constant>> APIabuse
<<Constant>> BruteForce
<<Constant>> Flooding
<<Constant>> Spoofing
<<Constant>> SocialEngineering

<<enumeration>>

KindOfAttack

<<Constant>> Denial-Of-Service
<<Constant>> RunArbitraryCode
<<Constant>> PrivilegeScalation

<<Constant>> DataModification
<<Constant>> InformationLeakage

<<enumeration>>

AttackObjective

<<Constant>> Single-source
<<Constant>> Multi-source
<<Constant>> Reflector-source

<<enumeration>>

AttackLocation

<<Constant>> Virus
<<Constant>> Worm

<<Constant>> BufferOverflow
<<Constant>> ResourceConsuming
<<Constant>> Physical
<<Constant>> Password
<<Constant>> InformationGathering

<<Constant>> Trojan

<<enumeration>>

ClassOfAttack

<<Constant>> Cumulative
<<Constant>> Replicated
<<Constant>> Mixed

<<enumeration>>

CoordinationType

<<Constant>> Active
<<Constant>> Passive

<<enumeration>>

TypeOfAttack

<<modelLibrary>>

SecAM::SecAM_Library
<<import>>

Figure 3.2: The SecAM::Resilience package.

resource modification. If we focus on the objective of the attack (AttackObjective), that
is, what the attack is able to provoke in the system, we can distinguish: denial of service, run
arbitrary code, privilege escalation, data modification and information leakage. Finally, con-
sidering from where the attack is actuating, three different locations [Hussain et al., 2003]
can be identified (AttackLocation): single-source (originated at only one host), multi-
source (replicated over multiple hosts), and reflector-source (the attacker uses legitimate
hosts to attack the victim, hiding so his identity or amplifying his attack [Paxson, 2001]).

In Figure 3.3 we put on practice the Resilience extensions, as UML notes, with a two-
fold purpose: 1) to characterize from a qualitative point of view the possible attacks to a
server host, the activities of the server that are vulnerable to such attacks as well as the
consequences of an intrusion; 2) to provide quantitative input parameters for carrying out
vulnerability analysis. Observe that the annotations could appear clumsy even for a simple
model then affecting the readability and/or scalability of profiling approaches. However,
they are introduced for illustration purposes. Indeed, most of the current UML-CASE tools
provide support to profiling techniques through proper visualization features.

The values assigned to tags are expressed using the VSL syntax. In particular, for
complex NFP different values can be set: a value or variable name prefixed by the dollar
symbol (value property); the origin of the NFP (source), e.g., an estimated or measured
value; the type of statistical measure (statQ), e.g., a mean or a variance.

Figure 3.3 depicts a simple UML State Machine diagram representing a server attend-
ing customer requests. Such requests come from a WAN connection which can be exploited

32

3. A UML Profile for Security Section 3.2

do / processCustomer(c)

HungProcessing
attendCustomer(c)

$1=(occurrenceProb=(value=$attProb, source=est);

 type=Active; class=ResourceConsuming;

 kind=Flooding; objective=Denial-of-Service)

$2=(degree=High)

«secaAttackGenerator»

{attack=$1}

«secaStep»

{kind=intrusion;

 intrusion=(successProb=(value=$succProb,source=assm);

 cause=$1;origin=$2)}

«secaStep»

{hostDemand=

 (value=$process,unit=s,statQ=mean,source=est);

kind=vulnerable;vulnerability=$2}

«secaStep»

{prob=(1 - $attProb*$succProb)}

Figure 3.3: A UML-State Machine diagram with SecAM::Resilience annotations.

by external attackers (transition stereotyped secaAttackGenerator). The expected at-
tack (attack tagged-value) is classified as active, resource-consuming, denial-of-service and
flooding. The probability of an attack (occurrenceProb) is specified as an input param-
eter (attProb). The do-activity in the Processing state (stereotyped secaStep) is highly
vulnerable to attacks (vulnerability tagged-value). We have used hostDemand to specify
the estimated mean time duration (in seconds) of the do-activity as a parameter (process).
The state Processing owns two immediate outgoing transitions, the annotations attached
to the latter are meant to resolve the conflict in a probabilistic manner. When the incoming
request is an attack, then an intrusion arises that leads to a process crash. Otherwise, the
process terminates correctly. The transition from Processing to Hung is an intrusion step;
it may occur with a probability attProb · succProb, where attProb is the probability of an
attack and succProb is the probability that, given an attack, it finally succeeds.

3.2.2 SecAM::Cryptographic package

Cryptography [Menezes et al., 1996] is primarily used to gain confidentiality over the com-
munications between pairs; however, it also supports data integrity and authentication.
Confidentiality assures that information is not disclosed to those unauthorised to own it,
while data integrity guarantees the information keeps unaltered. Finally, authentication
happens at two levels: entity authentication, that ensures two (or more) participants on a
communication are identified, and data origin authentication that guarantees the informa-
tion has been delivered from the origin.

The Cryptographic package has been devised to support mainly the specification of cryp-
tographic design rather than its analysis as it happened with the resilience package. So, by
adding contextual information to the UML models, such as when an encryption/decryption
takes place and the main characteristics of these processes.

33

Section 3.2 3. A UML Profile for Security

<<modelLibrary>>

SecAM::SecAM_Library
<<import>>

<<Constant>> Software

<<Constant>> Hardware

<<Constant>> Biometric

<<enumeration>>

KeyType

<<Constant>> Assymmetric

<<Constant>> Symmetric

<<enumeration>>

KeyKind

<<Constant>> Zero

<<Constant>> Bit

<<Constant>> Byte

<<enumeration>>

PaddingScheme

<<Constant>> ECB

<<Constant>> CBC

<<Constant>> CFM

<<Constant>> OFM

<<Constant>> CTR

<<enumeration>>

OperationMode

<<Constant>> Synchronous

<<Constant>> Asynchronous

<<enumeration>>

StreamType

<<Constant>> Periodic

<<Constant>> NonPeriodic

<<enumeration>>

Perioricity

<<Constant>> vulnerable
<<Constant>> intrusion
<<Constant>> cryptographic
<<Constant>> messageDigest

<<enumeration>>

SecStepKind

 size : NFP_Integer

 type : KeyType

 kind : KeyKind[0..1]

 cipher : SecaCipher[0..1]

<<tupleType>>

SecaKey

 type : StreamType

 perioricity : Perioricity
key : SecaKey

<<tupleType>>

SecaStream

 size : NFP_Integer

 padding : PaddingScheme[0..1]

 opMode : OperationMode

<<tupleType>>

SecaBlock

 errorRate : NFP_Real

 operationalRate : NFP_Real

 kind : CipherKind

<<tupleType>>

SecaCipher

<<Constant>> Stream

<<Constant>> Block

<<enumeration>>

CipherKind

 kind : SecStepKind

 vunerable : SecaVulnerable

 intrusion : SecaIntrusion

 cryptographic : SecaKey

 hash : SecaMessageDigest

<<stereotype>>

SecaStep

<<stereotype>>

DAM::DaStep

 length : NFP_DataSize

 padding : PaddingScheme[0..1]

 opMode : OperationMode

 blocks : SecaBlock [1..*]

<<tupleType>>

SecaMessageDigest

 key : SecaKey

<<tupleType>>

SecaMAC

SecAM::Cryptography
<<profile>>

Figure 3.4: The SecAM::Cryptographic package.

Figure 3.4 depicts the set of extensions for specifying cryptography into UML be-
havioural models. The SecaStep stereotype, already considered in the Resilience sub-
package, is now used to specify a cryptographic step through the new tags: kind,
cryptographic and hash.

The cryptographic tag is a complex type (SecaKey) that enables to characterize the
key, either asymmetric or symmetric (KeyKind). The latter can be of different types, de-
pending on how/where it is deployed (KeyType): software, hardware (i.e., cryptographic
devices) or biometric (e.g., fingerprint, facial recognition or retinal scanning). A cipher
(SecaCipher) can be either a block or stream cipher, depending on the algorithm, and
it uses a key. It is characterized by an error rate, i.e., the ratio of errors that the cipher
can suffer during the process of encryption/decryption, and an operational rate, i.e., the
number of encrypted/decrypted bits per time unit.

A stream cipher (SecaStream) uses a key-stream to cipher/decipher plain text, which
generates a stream of secret bits given an initial key. It can be either self-synchronous (i.e.,
ciphertext-auto-key, CTAK) or synchronous (i.e., key-auto-key, KAK), depending whether
the used key-stream is influenced or not by the ciphered/deciphered text. Besides, a stream
cipher can be either periodic or non-periodic (e.g., Vernam cipher, running-key), depending
on the self-repetition of the key-stream.

A block cipher (SecaBlock) has a block size, that is the number of characters (or bits)
of the plain text message which can be ciphered at a time. Normally, the partition of the
message into blocks is not exact and, therefore, a padding scheme is needed to “fill the
gaps” then existing several padding schemes.

Besides, a block cipher uses an operation mode (OperationMode) which determines its
encryption/decryption scheme. Several operation modes have been proposed; without loss
of generality, we rely on the ones approved by NIST [Dworkin, 2001].

34

3. A UML Profile for Security Section 3.2

Figure 3.5: An encrypted communication (symmetric, hardware, and 256 bits).

A message digest (SecaMessageDigest), also called hash, is a value calculated through
a cryptographic hash function. Such a value is used, for instance, to determine if a message
has been altered. When the cryptographic hash function uses a key (then called keyed hash
function), the obtained value is called message authentication code (MAC, SecaMAC). MAC
values assure data integrity and data authenticity.

Figure 3.5 exemplifies the usage of the cryptographic extensions in a sequence diagram,
where Alice sends a message to Bob. In this näıf example we have used the secaStep

stereotype for indicating this communication step occurs in a cryptographic way, that
is, an encryption is taking place. For instance, the encryption uses a key of 256 bits,
the encryption process is done by hardware (e.g., a hardware dongle attached to Alice’s
terminal) and using symmetric scheme.

3.2.3 SecAM::SecurityMechanisms package

The Security Mechanisms package, shown in Figure 3.6, aims to represent, in architec-
tural system views, the different kinds of software or hardware devices used to attain
security. For instance, from basic cryptographic devices [Menezes et al., 1996] to more
sophisticated ones [Cheswick et al., 2003, Scarfone and Mell, 2007, Sousa et al., 2010b],
the use of security communication links (e.g., Virtual Private Networks), honey-
pots [HoneyNet Project, 2004] or any kind of security software (e.g., antivirus, firewall
software, etc.).

A security mechanism can be located either in a host machine or in a network. In the
first case, it can be either a software, e.g., the Windows firewall or UNIX packet-filtering
rules (SecaHostFirewall). In the second case, it can be a hardware device (e.g., a worm-
hole [Sousa et al., 2010b] or a cryptographic token/accelerator [Menezes et al., 1996]). The

35

Section 3.2 3. A UML Profile for Security

<<Constant>> Low

<<Constant>> Medium

<<Constant>> High

<<enumerat ion>>

Degree

<<Constant>> OnDemand

<<Constant>> RealTime

<<enumerat ion>>

ScanningMode

<<Constant>> VirtualMachine

<<Constant>> Logical

<<Constant>> CapabilitySystem

<<enumerat ion>>

HPotType

<<Constant>> SignatureBased

<<Constant>> AnomalyBased

<<Constant>> StatefulBased

<<Constant>> Other

<<enumerat ion>>

DetectionMethod

<<Constant>> DataLink

<<Constant>> Packet

<<Constant>> Stateful

<<Constant>> Circuit

<<Constant>> Application

<<enumerat ion>>

FilterLevel

<<Constant>> FileSystem

<<Constant>> Registry

<<Constant>> Process

<<Constant>> Memory

<<Constant>> Services

<<Constant>> Ports

<<Constant>> All

<<enumerat ion>>

Feature

<<Constant>> Read

<<Constant>> Write

<<Constant>> Create

<<Constant>> Delete

<<Constant>> Open

<<Constant>> Kil l

<<Constant>> Close

<<Constant>> All

<<enumerat ion>>

OpMonitored

<<Constant>> Host

<<Constant>> Network

<<enumerat ion>>

Location

<<Constant>> Proactive

<<Constant>> Reactive

<<Constant>> Both

<<enumerat ion>>

DefenceType

<<Constant>> Web

<<Constant>> Mail

<<Constant>> FTP

<<Constant>> DNS

<<Constant>> Proxy

<<Constant>> VPN

<<Constant>> Honeypot

<<Constant>> Other

<<enumerat ion>>

ServiceOffered

antivirus : SecaAntivirus [0..*]

hostFirewall : SecaHostFirewall [0..*]

idpsSoftware : SecaIDPSsoftware [0..*]

webBrowser : SecaWebBrowser [0..*]

<<tupleType>>

SecaOperativeSystem

scanningMode : ScanningMode

<<tupleType>>

SecaAntivirus

filterLevel : FilterLevel

<<tupleType>>

SecaHostFirewall

detection : DetectionMethod

<<tupleType>>

SecaIDPSsoftware

<<tupleType>>

SecaWBPlugin

wbPlugins : SecaWBPlugin [0..*]

securityLevel : Degree

<<tupleType>>

SecaWebBrowser

feature : Feature

operation : OpMonitored [1..*]

<<tupleType>>

SecaMonitorFeature

name : NFP_String

version : NFP_String

vulnerabilities : SecaVulnerable [0..*]

<<tupleType>>

SecaCommonType

<<modelLibrary>>

SecAM::SecAM_Library

<<import>>

<<stereotype>>

MARTE::GRM::Resource

location : Location
defenceType : DefenceType
hitRate : NFP_Real

<<stereotype>>

SecaSecurityDevice

key : SecaKey

<<stereotype>>

SecaCryptoHW

nParallel : NFP_Integer

nFaulty : NFP_Integer

tPeriod : NFP_Duration

tRecovery : NFP_Duration

<<stereotype>>

SecaWormhole

detection : DetectionMethod[1..*]

<<stereotype>>

SecaIDPS

filterLevel : FilterLevel

<<stereotype>>

SecaFirewall

<<metaclass>>

UML::Package

service : ServiceOffered

<<stereotype>>

SecaBastion

<<stereotype>>

SecaDMZ

type : HPotType

duration : NFP_DataTime

operativeSystem : SecaOperativeSystem

cryptoHW : SecaCryptoHW [0..*]

monitor : SecaMonitorFeature [0..*]

<<stereotype>>

SecaHoneyPot

<<ex tend>>

<<profile>>

SecAM::SecureMechanisms

nFactor : NFP_Integer

layer : ProtocolLayer

protocol : NFP_String

<<stereotype>>

SecaLink

nFactor : NFP_Integer

layer : ProtocolLayer

protocol : NFP_String

<<stereotype>>

SecaLink

CommunicationMedia

<<stereotype>>

MARTE::GRM::

Figure 3.6: The SecAM::SecurityMechanisms package.

36

3. A UML Profile for Security Section 3.2

type of defense (DefenceType) of the security mechanism can be: proactive, if it prevents
from possible security incidents, reactive, if it increments security once detected a security
breach, or both [Sousa et al., 2010b].

Several types of specialised security hardware mechanisms can be distinguished, i.e.,
crypto hardware (SecaCryptoHW), wormholes (SecaWormhole), firewalls (SecaFirewall)
and Intrusion Detection and Prevention System (IDPS) (SecaIDPS). Cryptographic tokens
(e.g., USB tokens, smart cards or retinal scanning) and cryptographic accelerators which
free the host CPU from performing cryptographic actions (e.g., the Sun Crypto Accelerator
6000 PCIe Card) are examples of crypto hardware [Menezes et al., 1996]. These devices
may have a key which is used to perform cryptographic actions (the SecaKey complex type
is shown in Figure 3.4).

A wormhole [Sousa et al., 2010b] enables both proactive and reactive defense on the
system and is characterized by several parameters: the number of tolerated faulty hosts
(nFaulty tag), the number of host replicas which can be recovered in parallel (nParallel)
and timing parameters (the recovery time, tRecovery, and the period, tPeriod). A fire-
wall [Cheswick et al., 2003], usually a network-location device, filters packets from the
network at different layers of the OSI architecture (FilterLevel), e.g., data-link or
application-based filtering. An IDPS monitors the network (or a single host) to discover
security breaches. Several detection methods exist (DetectionMethod), our profile relies
on the ones described by NIST [Scarfone and Mell, 2007].

An aggregation of security hardware devices can conform to a demilitarised zone
(DMZ) [Cheswick et al., 2003]. There exists many configurations for a DMZ, from a single
router to a more complex architecture. The hosts deployed on a DMZ are called bastions
(SecaBastion stereotype), they offer secure services (e.g., web, mail, FTP, DNS, honeypot)
and they can be protected by wormholes to preserve their functionality.

A honeypot (SecaHoneyPot stereotype) can be a virtual machine, a sandbox (logical)
environment or a real system with capability features. Usually, a honeypot is used to test
security metrics into systems, or to attract the attacker to a controlled and confined en-
vironment. Through operativeSystem tagged-value, we can specify the software which is
running in such confined environment knowing the security breaches (e.g., vulnerabilities)
within it. Besides, security monitoring tools can enhance the security of confined environ-
ment (via monitor tagged-value, specifying what operation and what feature are being
monitored).

A secure communication link (SecaLink stereotype) is characterised by the number of
authentication factor (e.g., one level if only a password is needed, two levels if a correct com-
bination of user/password is needed, and so on), the layer where the secure communication
is taking place and the specification of the secure protocol (e.g., IPSec).

The SecaSecurityDevice and the rest of stereotypes specialise the
MARTE::GRM:Resource stereotype, then they can be applied to classes, lifelines or
connectable elements. SecaLink stereotype specialises CommunicationMedia from
MARTE, so it can be applied to any element representing a communication link (e.g.,

37

Section 3.2 3. A UML Profile for Security

<<secaDMZ>>

<<deviceResource>>

<<secaFirewall>>

firewall

<<gaCommHost>>

LAN

<<secaBastion>>

WebServer

<<secaBastion>>

MailServer

<<secaBastion>>

TestServer

<<secaBastion>>

ProxyServer

<<secaFirewall>>

<<deviceResource>>

InternalFirewall

<<gaCommHost>>

InternaLAN

<<secaBastion>>

VPNServer

<<gaCommHost>>

WAN

<<secaLink>>

<<gaCommHost>>

SecureInternalLAN
«secaBastion»

{service=VPN}

«secaBastion»

{service=Mail} «secaLink»

{nFactor=2;

layer=Network;

protocol=IPsec}

«secaFirewall»

{location=Network; defenceType=Reactive;

filterLevel=Packet}

«secaFirewall»

{location=Network; defenceType=Reactive;

filterLevel=Stateful}

Figure 3.7: A deployment scenario composed by a DMZ and different bastions.

38

3. A UML Profile for Security Section 3.2

 level : SubjectLevel

 inheritance : SecaSubject [0..*]

 exclusion : SecaSubject [0..*]

<<stereotype>>

SecaSubject

<<metaclass>>

UML::Classifier

<<metaclass>>

UML::Lifeline

<<stereotype>>

MARTE::GRM::Resource

<<stereotype>>

SecaObject

<<stereotype>>

DAM::DaStep

 type : OperationType [1..*]

<<stereotype>>

SecaOperation

<<extend>><<extend>>

<<profile>>

SecAM::AccessControl

<<Constant>> Access

<<Constant>> Read

<<Constant>> Write

<<Constant>> Execute

<<enumeration>>

OperationType

<<Constant>> TopSecret

<<Constant>> Secret

<<Constant>> Confidential

<<Constant>> Unclassified

<<enumeration>>

SubjectLevel

<<modelLibrary>>

SecAM::SecAM_Library
<<import>>

Figure 3.8: The SecAM::AccessControl package.

nodes or connectable elements). Finally, the SecaDMZ and SecaHoneyPot stereotypes,
which extend the Package UML meta-class, can be applied to a UML package including
the bastion hosts (if any) and the security hardware devices integrating the DMZ or any
security software which integrate a host machine.

Figure 3.7 depicts a UML deployment diagram annotated with
SecAM::SecurityMechanisms profile. The firewall connected to the WAN is said to
use a packet-based filter, while the internal firewall uses a stateful-based filter. In the
DMZ, each node has been annotated as secaBastion specifying the deployed service.
For illustration purposes, we have only annotated two bastions. Finally, the VPN server
has a secure communication link (secaLink stereotype) which uses a username/password
authorisation, works on the network layer and uses the IPsec protocol.

3.2.4 SecAM::AccessControl package

The Access Control package addresses confidentiality, integrity and authorisation is-
sues. Access control can be classified depending on the policy used in three basic
groups [Bertino and Crampton, 2007]: Mandatory Access Control (MAC)2, Discretionary
Access Control (DAC) and Role-Based Access Control (RBAC) [Sandhu et al., 1996].

The small set of stereotypes defined in Figure 3.8 include the necessary concepts to
specify all the aforementioned access control and integrity policies, and also any other
access control policy that a user can devise. Control policies rely on:

1. Who is accessing to the system (SecaSubject stereotype);

2. Which objects should be protected for un-authorised access or modification
(SecaObject stereotype);

3. Which operations a user wants to perform on the available objects (SecaOperation).

2MAC is also called Lattice-Based Access Control (LBAC).

39

Section 3.2 3. A UML Profile for Security

«secaOperation»

{type=Read}

«secaSubject»

{level=Unclassified}

«secaSubject» «secaObject»

«subjectLevel»

{TopSecret,Secret,

 Confidential,Unclassified}

context SecretDB inv:

read.sendEvent.constraint.stereotype.name='SecaUser'

and read.sendEvent.constraint.constrainedElement -> size() = 1

and (read.sendEvent.constraint.constrainedElement -> any(true)).level >= Secret

f: SecretDBu: User

1: read(f)

Figure 3.9: A UML-SD with access control policy.

In SecaSubject the attributes inheritance and exclusion allow to specify delegation
of authority and separation of duties, respectively, two major concerns in access control
policies. The other attribute, level, allows to specify the level of security of the subject.
Such level aims to be defined by the engineer depending on the problem context. For
instance, High, Medium, Low levels when designing a military security policy, or Manager,
Developer, Administrative when dealing with a company’s hierarchy.

The type attribute (SecaOperation stereotype) indicates the type of the operation to
be performed. The set of operations (OperationType values) can be redefined in order
to customise them to the target domain problem. For instance, if the engineer wants to
consider a payment as an operation, s/he can define a permission constant such as payment
which will be valid in his/her domain.

Permissions of an object (i.e., which operations are permitted on the protected ob-
jects) are reflected through the definition of constraints in Object Constraint Language
(OCL) [OMG, 2010]. Moreover, OCLs can be defined to specify the different access control
policies.

Figure 3.9 depicts a UML sequence diagram where there is a user (SecaSubject) and a
database with sensitive data (SecaObject). The user tries to read into the protected object.
The OCL in the Figure specifies the MAC policy, indicating that the security level of user

40

3. A UML Profile for Security Section 3.3

must be greater or equal than Secret. However, relying on the final user for the definition
of the OCL constraints that define the access control policies may result in a non-trivial
issue. For this reason, we are working on an automatic methodology to make it easier. For
instance, providing check lists for collecting security attributes and then deriving the OCL
constraints automatically. This an interesting step which deserves further study.

3.3 Concluding Remarks

There exists a real need to devise new methods for the development of complex, large
scale and distributed systems which are exposed to malicious security issues. The profile
we present here is an asset, inside UML, for these methods to take advantage of the four
principles that we devised: integration, analysis, unified view and leveraging of current
trends in software engineering.

A solution which tackles these security issues should consider them as an integrated
approach, that is, considering security in the early stages of the software and systems life-
cycle. Besides, such solution should also promote the analysis of system security before the
deployment stage, a unified view of security issues and, at the same time, fit properly into
the current software engineering techniques.

SecAM presents a powerful UML framework for the specification and analysis of secu-
rity. SecAM is made of different sub-packages, each one targeting a subset of well-known
security attributes: integrity, availability, confidentiality, authorisation, non-repudiation,
authenticity.

A plug-in for Eclipse tool (built on MARTE-DAM profile plug-in) has been developed.
However, this plug-in is in a (very) early development phase thus is not fully operative
and not yet released. As future work, we plan to develop plug-ins for applying SecAM into
UML tools, e.g., Eclipse (through a fully operative plug-in) or ArgoUML. Moreover, SecAM
needs to be applied in complex case studies, and further extensions have to be developed
for addressing concrete application domains.

Besides, we aim at extending the transformation to other interesting dependability/se-
curity analysis models, such as Fault Trees or Bayesian Networks. We also plan to define
model-to-model (M2M) transformations to automatically compute SecAM derived tagged-
values, to verify SecAM UML-profiled model for consistency (i.e., using OCL constraints)
as well as to compute vulnerability related metrics.

41

Chapter 4

Fault-Tolerant Techniques for

Critical Systems

This chapter summarises the main contributions of this dissertation related to the modelling
of Fault-Tolerant techniques (FTTs). The proposed models have resulted in several publi-
cations [Rodŕıguez and Merseguer, 2010,Rodŕıguez et al., 2012d,Rodŕıguez et al., 2013b].

4.1 Motivation

As we claim in Section 1.1, large scale and distributed systems deployed in heterogeneous
environments are subject to be a target of harmful attacks, with the intent of performing an
intrusion, confidential data theft or other type of attacks. These systems, whose provided
services may suffer some degradation due to errors and failures triggered by attacks, are
commonly called degradable systems.

Normally, degradable systems include Fault-Tolerant (FT) techniques [Avizienis, 1997,
Avizienis et al., 2004] that provide mechanisms to deal with failures inside the system
and mitigate the consequences of faults. Some examples of FT techniques are: switching
system requests between non-faulty components, adding watch-dogs for checking liveness
of system components, or software exception handlers. A degradable system equipped with
a FT technique is called a FT system.

Therefore, when designing critical systems it is fundamental to study the attacks that
may occur and plan how to react from them. The occurrence of attacks in software systems
leads software designers to introduce the aforementioned FT Techniques (FTTs), such as
recovery procedures, and/or Security Mechanisms (SMs), such as encryption of data, in
order to react to intrusions.

This chapter addresses the issue of integrating already developed fault-tolerant (FT)
techniques into software designs for their analysis through automatically obtained formal
models (as it is shown in Chapter 5). More precisely, this chapter is subdivided in two

43

Section 4.2 4. Fault-Tolerant Techniques for Critical Systems

(a) Original model (b) Transformed model

Figure 4.1: Transformation rule T R of a transition tf subject to fail (faulty transition).

main sections, one of them devoted to a review of FT concepts [Avizienis et al., 2004,
Avizienis, 1997] and our proposal of compositional Petri net (PN) models for FT tech-
niques, and a second one where we propose a UML model library containing FT techniques
that are ready to use in UML designs of critical systems.

Firstly, we introduce a compositional PN model for FTTs based on the basic concepts
of FT given in Section 2.3. These compositional PN models allow us to make sensitive
performability analysis easier when some FT parameters change (e.g., expected failure
rate or activity timing related to recovery actions). Thus, these FT models can be useful
for evaluating different FT approaches in the same system model.

Lastly, we introduce a UML model library which models different FTTs, namely: a
Proactive-Reactive Recovery technique (inspired in the one given in [Sousa et al., 2010a]),
Switch Over Failing technique and Ping And Restore technique. These UML models
can be transformed to PN models using well-known techniques [Distefano et al., 2011,
Gómez-Mart́ınez and Merseguer, 2006] (see [Balsamo et al., 2004] for an extensive survey
on this topic), and they may allow to test different techniques for the same design to find
the ones fitting better. However, such PN models are more complex than the Process PNs
that we introduced in Section 2.1 – indeed, they belong to the class of Generalised Stochas-
tic Petri Nets (GSPNs), and therefore these models cannot be analysed with the methods
presented in the Part II of this dissertation but with simulation.

4.2 Compositional PN Models for Fault Tolerance

In this section, we provide compositional PN-based models for the Fault-Tolerant (FT)
techniques based on the basic concepts of FT given in Section 2.3. Recall that a FT tech-
nique may involve both error detection – concurrent or preemptive – and recovery phases
– divided in error handling (rollback, rollforward or compensation) and fault handling
(diagnosis, isolation, reconfiguration or reinitialisation).

Consider we have a system modelled with a PN in which there is an activity (represented
by a timed transition Tf) which is subject to fail. We called it faulty transition, as it may
lead to a fault. Before adding any FT technique to the system, we apply a transformation
rule T R in the PN. This transformation rule allows us to apply our approach in the general

44

4. Fault-Tolerant Techniques for Critical Systems Section 4.2

Figure 4.2: Integration between a PN-based system model and a PN-based FT technique.

case, and it is not modifying the behaviour of the original PN model anyhow.

Figure 4.1 shows how this transformation rule T R works: two immediate transitions
t and t′ and two places •Tf and T •

f are added just from(to) transition Tf , and all in-
put(output) places of transition Tf are accordingly connected to transition t and t′.

Figure 4.2 depicts the interaction between a PN that models the behaviour of a given
system and a PN that models a FT technique. A PN-based FT model is subdivided in Error
Detection and Recovery sub-models. Each sub-model represents respectively the phases
involved in a FT technique. In the sequel, we explain each model and its interactions in
detail.

4.2.1 PN Error Detection Model

Figure 4.3(a) depicts the PN model for error detection. The timed transition Tdetect repre-
sents how long the error detection activity takes. Note that this transition is abstracting
the behaviour for detecting an error, so that it may be refined into a more complex model
representing error detection in more detail (Detection phase in Figure 4.3(a)). After error
detection activity takes place, the presence of an error is discriminated. When an error
arises (transition terr), then a token is put on place p|eed. Otherwise, a token is put on
place p|ned.

The integration between the Error Detection model and the System model is done
through labelled places p|sed, p|eed (a labelled place p is defined as p|label). We have fol-
lowed the compositional rules over the places defined in [Donatelli and Franceschinis, 1996,
Bernardi et al., 2001] to combine models using labelled places: pairs of places with match-
ing labels are superposed. Figure 4.3(a) depicts the places p|sed, p|ned added to the system
model. The origin of the incoming arc of place p|sed depends on the type of error detection,
and synchronises the execution of error detection model with the system model: when con-

45

Section 4.2 4. Fault-Tolerant Techniques for Critical Systems

current, the arc added is the red-dashed one (from t to p|sed); otherwise (preemptive), the
green-dotted arc is considered (from Tf to p|sed). Note that the place p|ned is synchronised
with T •

f (which indeed is added to the system by transformation rule T R).

(a) Error Detection model

(b) Places p|sed, p|ned added to the system model

Figure 4.3: PN-based model of Error Detection and faulty activity inside the system.

This simple model allows us to represent the most common error detection techniques,
e.g., to validate input data, or intermediate data generated and reused during a faulty
transition (it can be concurrently done), or to validate output after a faulty transition
execution (preemptive).

4.2.2 PN Recovery Model

The recovery phase involves two steps, a first (optional) step of error handling (rollback,
rollforward or compensation) and a second one of fault handling technique (diagnosis,
isolation, reconfiguration or reinitialisation).

Following the definitions given in [Avizienis et al., 2004], we have grouped the fault
handling techniques in two groups: diagnosis and reinitialisation techniques; and isolation
and reconfiguration. This decision is based on the abstracted behaviour of these techniques,
as we explain henceforward. We have composed models that represent valid combinations of
the recovery phase as it is shown in Table 4.1. This classification is made based on how the
techniques work. For instance, we believe that a rollforward technnique cannot be combined

46

4. Fault-Tolerant Techniques for Critical Systems Section 4.2

Rollforward Rollbackward
(& compensation)∗ (& compensation)∗

Diagnosis
√ √

Isolation
√ √

Reconfiguration X
√

Reinitialisation X
√

Table 4.1: Valid combinations of error handling and fault handling techniques. The symbol
∗ means optional.

with reconfiguration or reinitialisation, because reconfiguration switches the request to
spare components, while reinitialisation updates and records a new system configuration.
Thus, we consider that to move to a future correct state after recovering is meaningless.

Figure 4.4(a) shows the PN model of diagnosis and reinitialisation FT recovery tech-
niques. Place p|eed is superposed with the one of Error Detection model, and place p|T •

f
is

superposed with place T •
f in the system model. A token in place p|eed indicates that an

error has been detected. Once transition trm is fired, a (optional) compensation activity
may take place (Compensation phase). Then, recovery activity takes place (abstracted in
Recovery phase). As in the previous model of error detection, we have represented com-
pensation and recovery phases as a single timed transitions (Tc and Trec, respectively).
These transitions may be refined into a more complex models representing compensation
and recovery activities in more detail.

Finally, the token flow is redirected through place p|rtn. The superposition of this place
depends on the error handling technique used: it will be a place which becomes eventually
marked after the faulty transition Tf is fired (rollforward), or which was eventually marked
before its firing (rollback). In both cases and to keep conservativeness of the model, place
p|rtn must belong to the p-semiflow associated to the resource r (we called it faulty resource),
being r the inner resource used by faulty activity. Although a transition Tf can represent
an activity where several resources are being used, for the sake of simplicity in this paper
we assume that the fault is caused by the use of the inner resource (i.e., the last one
acquired). Otherwise, note that after the recovering phase other resources acquired after
faulty resource should be released to keep conservativeness.

The difference between diagnosis and reinitialisation technique can be established by
the duration of the recovery phase. For instance, when diagnosis technique is considered,
the recovery phase will have a much lower duration than when reinitialisation is taken into
account due to the actions that are performed.

Figure 4.4(b) shows the PN model of isolation and reconfiguration FT recovery
techniques. This case is identical to the previous until the (optional) compensation
phase. After the compensation phase takes place, the type of the fault is discrimi-
nated [Avizienis et al., 2004] as intermittent (that is, the fault is transient) or solid (i.e.,

47

Section 4.2 4. Fault-Tolerant Techniques for Critical Systems

(a) Diagnosis & reinitialisation

(b) Isolation & reconfiguration

Figure 4.4: PN-based models of Recovery model: (a) and (b) isolation & reconfiguration.

the faults whose activation is reproducible). When the fault is intermittent, as proposed
in [Avizienis et al., 2004], normal execution can keep going on and token is returned to
place p|rtn (as before, the superposed place depends on the type of error detection). On
the contrary, when a solid fault is detected, the faulty resource is excluded from normal
service delivery – as indicated by both isolation and reconfiguration techniques – and the
token is moved to the place p|safe. We assume that place p|safe is superposed with the place
previous to acquire the faulty resource r, i.e., p|safe = •tacq, where tacq is the transition
where faulty resource r is acquired.

In the case of isolation and reconfiguration, the recovery phase is called Maintenance
phase, because it involves the participation of an external agent [Avizienis et al., 2004]. We
have modelled maintenance phase as a single transition TMTTR that represents the Mean
Time To Repair (MTTR) spent on fixing the faulty resource. As in the previous case, this
model can be refined to a more complex maintenance model. Anyhow, after maintenance
phase takes place the fixed resource is returned to place p|ir, which is superposed to the
resource place pr.

As in the previous techniques, the difference between isolation and reconfiguration tech-
nique can be established by the duration of the maintenance phase. For instance, when
isolation technique is considered, the maintenance phase will have a much greater duration

48

4. Fault-Tolerant Techniques for Critical Systems Section 4.2

than when reconfiguration is taken into account.

Finally, note that most of the FT techniques can be modelled with the proposed models.
For instance, a watchdog can be modelled as a reconfiguration FT technique with concurrent
error detection and rollforward (or rollback), and a check-pointing and rollback can be
modelled as a reinitialisation FT technique. Unfortunately, other FT techniques, such as n-
version programming or combined proactive-reactive techniques [Sousa et al., 2010a] cannot
be adapted to the proposed model and some tweaks must be done. We aim to extend these
models to cover all FT techniques as a future work.

Running example Let us consider a packet-routing algorithm inside a router where
packets arrive and after checking source and destination of the packets, they are filtered
following some defined rules. Figure 4.5 depicts a PN modelling such an algorithm. The PN
marking represents the number nP of packets (initial marking of the process-idle place,
p0), the number nT of threads attending the incoming packets (initial marking of p2)
and the number nS of filtering-threads (initial marking of p7). The number nC denotes the
capacity of the system. We consider that this number is equal to the number nP of packets,
therefore place p′0 becomes implicit and we omit it for analysis. Packets arrive to the router
following an exponential distribution of mean δ0 = 5 milliseconds1. The amount of time
for checking packet headers (i.e., source, destination) is represented by transition T2, which
follows an exponential distribution of mean δ2 = 2 milliseconds. The algorithm’s decision is
represented by place p5 and its outgoing arcs: either transition t4 is fired (then the packet
must be discarded, which happens with a probability of 0.75), or transition t5 is fired. In
the latter case, once some filtering-thread is available, it is used. Such a use is represented
by T7 and takes, on average, δ7 = 1 millisecond to complete. Finally, T9 represents the final
step of the algorithm, that consists in routing the packet(acknowledgement) properly to
its destination(source) and takes, in terms of time, about 2 milliseconds, i.e., δ9 = 2.

This running example will be used henceforward to illustrate our approach. Suppose
that the filtering activity may fail, i.e., the faulty transition is T7. The router manufacturer
is interested in adding a watchdog (recall it can be modelled as a reconfiguration FT tech-
nique) into the algorithm such that the threads that fail (they are hanged) are discarded,
and they are cleaned with a fixed internal timer. In this case, the error detection model is
concurrent, as the failure can be detected during normal operation; and the error handling
technique used is rollback: when an error is detected, the packet is filtered by another
thread, when available.

The resulting PN after adding the FT technique described above is depicted in Fig-
ure 4.6. In Section 6.4, this running example is used for sensitive performability analysis.

1We use δi as an abbreviation for δ(Ti)

49

Section 4.2 4. Fault-Tolerant Techniques for Critical Systems

Figure 4.5: Petri net representation of a packet-routing algorithm.

y′
1 = y1 ∪ {•T7, T •

7 , p
1
4}

y′′
1 = y1 ∪ {p1|sed, p12, p13, p1|eed, p14} x′

2 = x2 ∪ {t′1, t′2, T 1
detect, t

1
noError}

y′
2 = y2 ∪ {•T7, T •

7 , p
1
4} x3 = {t′1, T7, T 1

detect, t
1
err, t

1
rm, t

1
int}

y′′
2 = y2 ∪ {p1|sed, p12, p13, p1|eed, p14} x4 = {t6, t′1, T7, T 1

detect, t
1
err, t

1
rm, t

1
sld, T

1
MTTR}

y′
3 = y3 ∪ {•T7, T •

7 , p
1
4, p

1
5}

y′′
3 = y3 ∪ {p1|sed, p12, p13, p1|eed, p14, p15}

(a) (b)

Table 4.2: New (a) p-semiflows and (b) t-semiflows of the PN in Figure 4.6.

4.2.3 Analysis of PN-based FT Models

This subsection analyses how some structural properties are modified when the proposed
FT models are added (namely, the p-semiflows and t-semiflows) and how visit ratios prop-
erties are as well affected.

P-semiflows Let us analyse how minimal p-semiflows are modified. The addition of the
proposed FT models provokes that, for each p-semiflow yr associated to a resource r that
makes use of the faulty transition tf (i.e, ‖yr‖ ∩ {•tf , t•f} 6= ∅), yr is transformed into two
p-semiflows y′

r,y
′′
r ,y

′
r 6= y′′

r such that ‖yr‖ ⊂ ‖y′
r‖, ‖yr‖ ⊂ ‖y′′

r‖. This transformation is
due to the FT models consume/produce tokens from/to the original p-semiflows. These
p-semiflows cover all places added by the FT technique, thus the net remains conservative.

For instance, the minimal initial p-semiflows are, in Figure 4.5: y1 =
{p0, p1, p3, p4, p5, p6|safe, p8|rtn, p9, p10, p11}, y2 = {p2, p3, p4, p5, p6|safe, p8|rtn, p9, p10, p11}
and y3 = {p7|ir, p8|rtn, p9}. The minimal p-semiflows of the PN in Figure 4.5 that contain

50

4. Fault-Tolerant Techniques for Critical Systems Section 4.2

Figure 4.6: Petri net representation of a packet-routing algorithm with a FT technique.

places from/to transition T7 (p8|rtn and p9, respectively) are y1,y2 and y3. Thus, the new
p-semiflows of PN in Figure 4.6 are the ones showed in Table 4.2(a).

Note that these new p-semiflows violate the third property of definition of PPN (see
Definition 5 in Section 2.1), given that there exist more than a single minimal p-semiflow
containing the same resource, e.g., y′

2 and y′′
2 contain the resource place p2 on its support.

T-semiflows Let us focus now on t-semiflows. The addition of the proposal FT models
provokes that, for each t-semiflow xf containing transition tf (i.e., ‖xf‖ ∩ {tf} 6= ∅), xf is
transformed into a t-semiflow x′

f such that ‖xf‖ ⊂ ‖x′
f‖. Besides, a new t-semiflow appears

for each free-choice place added by the proposed FT models – i.e., in the case of an isolation
or reconfiguration FT technique two new t-semiflows appear. These t-semiflows cover all
transitions added by the FT technique, thus the net remains consistent.

For instance, the minimal t-semiflows are, in Figure 4.5: x1 = {T0, t1, T2, t3, t4, T9, t10}
and x2 = {T0, t1, T2, t3, t5, t6, T7, t8, T9, t10}. The minimal t-semiflow of PN in Figure 4.5

51

Section 4.3 4. Fault-Tolerant Techniques for Critical Systems

that contains T7 is x2. Thus, the new t-semiflows of PN in Figure 4.6 are the ones showed
in Table 4.2(b).

Visit ratios Let us focus now on visit ratios. We assume that the transition chosen for
normalisation is always the think time of customers, i.e., the timed transition that consumes
the process-idle place tokens. We have summarised how the visit ratios of transitions in the
original system are modified in Table 4.3. The transitions added by the proposed FT models
have visit ratios equal to the new visit ratio of faulty transition. Besides, all transitions
from the path modelling the error (i.e., for the FT technique i, from tierr to T

i
rec) has a visit

ratio multiplied by we, where we is the probability of error, and by 1− we the transitions
on the other path. In the case of isolation and reconfiguration FT models, the transitions
from tisld to T

i
MTTR are as well multiplied by ws, and by 1−ws the transitions in the other

path.

For instance, we have applied an isolation FT technique in the running example. There-
fore, the visit ratios are modified as follows. The transitions on the path from p|•rtn to
the faulty transition, {p|•rtn → tf}, (in the original model) have a visit ratio equal to the

previous one times
1

(1− we)
, i.e., v(t) = v′(t) · 1

(1− we)
, where v′(t) is the visit ratio of

transition t before adding an FT technique and we the probability of error. The transitions
on the path from p|•safe to •p|rtn (in the original model) have a visit ratio equal to the

previous one times
(1− we · ws)
(1− we)

, where ws is the probability of having a solid fault.

4.3 UML Fault-Tolerant Techniques Library

This section introduces a bunch of Fault-Tolerant Techniques (FTTs) modelled with UML.
The key idea of this “FTTs model library” is to provide a software engineer with UML
models ready to use in the design of critical designs. These UML FTTs models have clearly
defined interfaces, which make its use easier for practitioners.

The main goal is to introduce different security models and compose them with soft-
ware architectural models, thus to support software designers to find appropriate security
strategies while meeting performance requirements.

This UML FTTs library is currently composed by three different models, each one
modelling a different FT technique. In the sequel, we introduce each UML FT model and
define it in more detail.

4.3.1 Proactive-Reactive Recovery Technique

Recall that Fault-Tolerant Techniques (FTTs) are added to mitigate the consequences of
faults that when exploited may lead to failures, i.e. to assure that critical systems remain
fully operative. Depending on when FTTs are applied (i.e., they act), they can be classified

52

4. Fault-Tolerant Techniques for Critical Systems Section 4.3

Error handling: Backward

(a) ∀t ∈ Q1,v(t) = v′(t) · 1

1− we

(b) ∀t ∈ Q1,v(t) = v′(t) · 1

1− we

∀t ∈ Q3,v(t) = v′(t) · (1− we + we · ws)
1− we

Error handling: Forward

(a) ∀t ∈ Q2,v(t) = v′(t) · (1− we)

(b) ∀t ∈ Q2,v(t) = v′(t) · 1−we
(1− we · ws)

∀t ∈ Q4,v(t) = v′(t) · 1

(1− we · ws)
Q1 = {p|•rtn → Tf},Q2 = {T •

f
• → •p|rtn}

Q3 = {p|•safe → •p|rtn},Q4 = {p|•safe → Tf}

Table 4.3: Visit ratios modification for different error handling techniques of recovery mod-
els: (a) diagnosis & reinitialisation and (b) isolation & reconfiguration. v′(t) means previous
value of visit ratio of transition t; we is the probability of error and ws the probability of
having solid faults.

as [Avizienis et al., 2004]: (i) either proactive techniques, when they mitigate the effect of
the failures as a way of prevention, i.e., without any previous proof of having failures;
(ii) either reactive techniques when they are applied once some fault is detected; (iii) or
proactive-reactive techniques [Sousa et al., 2010a].

Proactive recovery transforms a system state containing one or more errors (or even visi-
ble faults) into a state without detected errors or faults. Proactive techniques were presented
in [Canetti et al., 1997a] as a long-term protection against break-ins and implemented,
for example, in the scope of an on-line certification-authority system [Zhou et al., 2002].
These techniques borrow ideas from proactive discovery protocols (e.g., IPSec [Tran, 2006]),
session-key refreshment (SSL/TLS [Dierks and Rescorla, 2006]) or secret sharing algo-
rithms [Shamir, 1979]. Hence, proactive security is defined as a combination of periodic
refreshment and distribution [Canetti et al., 1997b,Ostrovsky and Yung, 1991].

On the contrary, a reactive recovery [Avizienis et al., 2004] performs a concurrent error
detection, that is, errors in the system are detected meanwhile it is working. Then, a
detection implies some actions must be performed in order to recover the system to a
free-error state.

Proactive and reactive recovery techniques should not be considered as mutually exclu-
sive but as complementary. Briefly, proactive techniques are worried about fault prevention
(passive part of the system), while reactive ones are concerned with fault removal (active

53

Section 4.3 4. Fault-Tolerant Techniques for Critical Systems

Reactive slot Proactive slot

Tslot = (⌈f
k
⌉+ 1) · Tdelay

⌈f
k
⌉ · Tdelay Tdelay

Reactive slot Proactive slot

Tslot = (⌈f
k
⌉+ 1) · Tdelay

⌈f
k
⌉ · Tdelay Tdelay

Tperiod = ⌈n
k
⌉ · Tslot

Figure 4.7: Schedule time-line showing activation of reactive and proactive recoveries
(adapted from [Sousa et al., 2010a]).

part). Sousa et al. presented in [Sousa et al., 2010a] a real application of proactive and
reactive recovery techniques to an existing critical system, which tolerates up to f fail-
ure nodes and is able to recover in parallel up to k nodes. The rationale behind this
idea is a scheduled time-line, which will be modelled in the sequel (Figure 4.7, adapted
from [Sousa et al., 2010a], depicts it) and it is explained in the following.

A system with n distributed devices is initially divided into ⌈n
k
⌉ groups, containing each

one up to k devices, being k the number of simultaneous recoveries the system can support.
Assuming a period of time Tperiod, then each one is divided in ⌈n

k
⌉ slices (called Tslot from

now on) where both (i.e., proactive and reactive) recoveries have to be performed. In a
Tslot, one proactive recovery will be activated for a selected group which has a duration
equal to Tdelay, being Tdelay the maximum expected time for recovering a device. Regarding
reactive recovery, if we assume up to f failures and k simultaneously recoveries, that implies
a maximum of ⌈f

k
⌉ reactive activations may happen in a Tslot. As can be inferred, Tslot has

a duration equal to (⌈f
k
⌉+ 1) · Tdelay. There exists a relation [Sousa et al., 2010a] between

values of n, f and k as is shown in equation (4.1).

n ≥ 2 · f + k + 1 (4.1)

A deeper description of the schedule time-line for proactive and reactive recov-
eries, as well as justification for inequality shown in equation (4.1), can be found
in [Kalan et al., 2008].

UML Modelling Henceforward, we develop, a generic and reusable model of proactive
and reactive recovery techniques. In first term, we model them using UML state-machine
(UML-SM) diagrams annotated with the previously discussed profiles (MARTE-DAM and
SecAM, see Chapter 3). Then, we transform it to a Coloured Petri Net (CPN) [Jensen, 1997]
which maps the behaviour of these UML diagrams. In fact, this CPN accurately repre-
sents proactive and reactive recovery techniques. So, our proposal to reuse the “proactive-
reactive” CPN within a given software design has to offer adequate “interfaces” to compose
both CPNs. Then, we finally get a CPN that embeds both the proactive-reactive techniques

54

4. Fault-Tolerant Techniques for Critical Systems Section 4.3

Figure 4.8: Scheduler UML state-machine diagram.

and the software design.

We have distinguished two components, one in charge of controlling the scheduled time-
line presented early in this section, and the other controlling the device to be recovered.
The latter has been called Proactive and Reactive Recovery (PRR) component following
terminology in [Sousa et al., 2010a].

Schedule controller UML state-machine (UML-SM) diagram is depicted in Figure 4.8.
Initial analysis variables (gaAnalysisContext stereotype) are: tDelay, which determines
the duration of each recovery; f, number of faulty devices allowed; and k, number of de-
vices recovered in parallel. Only one controller will be placed in the system (tag pop of
gaWorkloadGenerator stereotype). Once created, it calculates in g the first group which
will be proactively recovered. Upon entrance into Reactive slot state, it invokes event
nextSchedule() for PRR devices in g to inform them that the components they con-
trol will be proactively recovered in the next proactive slot, so their monitoring activity
will not be necessary since for sure they will be recovered. Then, it starts the countDown()
activity with duration hostDemand equals to ⌈f

k
⌉ · tDelay seconds (that is, it makes room

for up to ⌈f
k
⌉ parallel recoveries). Completion of countDown() activity means to schedule

elements in g and to change to Proactive slot state, where all PRR devices are disabled and
it starts the proactive countDown() activity, in this case with a duration equal to tDelay

seconds. Once finished, it enables all PRR devices and before entering again in the Reactive
slot state, it calculates the next proactive group.

Figure 4.9 shows UML-SM for PRR component controller. Obviously, the population
is equal to the number of effectively monitored devices, nDevices. It starts in Enabled
state and executing the activity monitor(), which abstracts two processes: 1) detection of
errors in the monitored device and 2) checking for room in current time slot for a reactive
recovery. So, when it positively informs, then enters in Reactive state to perform a recovery

55

Section 4.3 4. Fault-Tolerant Techniques for Critical Systems

Figure 4.9: PRR controller UML state-machine diagram.

(reactiveRecovery() activity), which has a duration of rRecovery seconds on average.
Once finished, it comes back to Enabled state. From there, event nextSchedule() evolves
to Waiting4Schedule state, where the PRR will wait for event scheduled() invoked by the
scheduler to start the proactive recovery. In both recovery states (Reactive or Proactive) the
PRR invokes upon the entrance (recovery()) and on the exit (recovered()) events in the
monitored device switching it off/on, respectively. Finally, note that events enable() and
disable() received from the scheduler effectively prevent the PRR to monitor its device.

4.3.2 Switch Over Failing and Ping and Restore Techniques

In this section, we consider the following FTTs: Switch Over Failing and Ping And Re-
store. Both techniques are fault detection and recovery reactive FTTs aimed at adding
redundancy capacity to the system, but in a different way:

Switch Over Failing provides an Intrusion Detection System (IDS) which is in charge of
analysing incoming requests, and filtering legal ones to be correctly processed by the
system. Besides, the IDS defines a threshold that allows to establish an attack limit.
When such a limit is exceeded, the IDS brings down the machine which is collecting
the potentially harmful requests, and brings up a new (and clean) machine replica.

Ping And Restore provides a Monitor software component which observes the vulner-
able system machines. When it finds some of these machines in an undefined state

56

4. Fault-Tolerant Techniques for Critical Systems Section 4.3

Token colour definitions

type D is {1 . . . nDevices}
type G is {G1 . . . G⌈nDevices

k
⌉}

subtype Gi is {(k · (i− 1) + 1) . . . k · i}
var i : D, g : G

Initial marking

m0(Enable) =
∑

i ∈ D

m0(nextGroup) = G1

m0(Idle) = 1
m0(maxParallel) = k

Functions definitions

belonging(g : G) =
∑

i ∈ G
cSubset(g : G) =

∑

i ∈ D|i ∋ G

allDevices() =
∑

i ∈ D

Table 4.4: CPN initial marking, token colour definition and functions.

(i.e., affected by attacks), it brings down such a machine and brings up a new (and
clean) replica.

Note that in both FTTs the machine replica may have a different operating system or
software capabilities, as a way of mitigating incoming illegal requests.

UML Modelling Figure 4.10 illustrates the UML Sequence Diagram (UML-SD) of the
SwitchOverFailing FTT interacting with a web server. Grey notes indicate the system
performance properties and they are specified as annotations by means of the MARTE
profile. For example, the gaStep stereotype represents a part of the scenario (defined in
sequence with other actions) for which it is possible to indicate the demands of such a part
on the system resources, such as its execution on the host processor (called its hostDemand
attribute).

Each external incoming request is sent to the WatchDog that analyses it; such an analysis
requires processing resources (hostDemand) of $analyse milliseconds (ms), which is a mean
value to be estimated.

Note that the request may be an attack or not, and it can be either detected or
not detected. When the request is not an attack, the web server redirects the request
to other services inside the system. Successful attack detection occurs with a probabil-
ity of $hitRate. When the attack is detected and the threshold is reached, the WatchDog

prepares a redundancy replica to be switched on, starts it (which has a duration of 70.1
seconds [Sousa et al., 2010a]), and then it switches off the server receiving the attacks,
which has a cost of 0.6 seconds [Sousa et al., 2010a]. When the request is an attack but it
is not detected, then the server collapses and it needs to be repaired, and we assumed it
lasts for 30 minutes. For such a duration the server is inoperative, i.e., it is not attending

57

Section 4.3 4. Fault-Tolerant Techniques for Critical Systems

alt [r is an attack]

d : WatchDogws : webServer

8: login(r)

1: loginRequest(r)

1.1.1: analyseRequest(r, nAttacks)

ws1 : webServer

1.1: newLoginRequest(r)

alt
[r is detected as attack]

4: switchOn(ws1)

2: ws1= prepareNextReplica()

«gaStep»

{hostDemand=

 (value=0.5; unit=ms;

 statQ=mean; source=mea)}
4.1: start()

alt
[nAttacks > threshold]

3: switchO�(ws)

3.1: shutdown()

«gaStep»

{hostDemand=

 (value=0.6; unit=s;

 statQ=mean; source=mea)}

5: request clear

7: request clear

6: repair()

«gaStep»

{hostDemand=

 (value=70.1; unit=s;

 statQ=mean; source=mea)}

«gaStep»

{prob=$hitRate}

sd SwitchOverFailing

«gaStep»

{hostDemand=

 (value=$analyse; unit=ms;

 statQ=mean; source=est)}

«gaStep»

{hostDemand=

 (value=30; unit=min;

 statQ=mean; source=mea)}

Figure 4.10: UML Sequence Diagram of the SwitchOverFailing Fault-Tolerant Technique.

58

4. Fault-Tolerant Techniques for Critical Systems Section 4.4

new requests, because it represents the maintenance time, i.e., someone locally or remotely
must fix the error or restart the server.

It is worth to notice that input parameters of the model, such as $analyse, $hitRate, are
values set by the IDS which implements this FTT. That is, this model will be useful for
performing sensitive analysis of different IDS solutions.

Figure 4.11 depicts the UML-SD of the Ping&Restore FTT interacting as well with a
web server. The cyclic behaviour of the monitor is as follows. It waits a certain amount of
time ($wait ms) and then initialises a variable m, which counts the number of replicas in a
non-functional state. The monitor sets a timeout having a duration of $tOutms and iterates
up to k machines to be recovered, asking whether each machine is alive. When the machine
answers, then the monitor cancels the timeout. Otherwise, the timeout is expired and the
current machine is marked for recovering. When the number of machines to be recovered
are reached or all machines have been inspected, then the monitor iterates preparing a new
replica, switches off the faulty machine and switches on the new replica.

As in the previous case, it is worthy of mention that input parameters of the model,
such as $wait, $tOut, are values useful for performing sensitive analysis of different monitor
solutions.

4.4 Concluding Remarks

Security attacks aim at system vulnerabilities that, when achieve success, may lead to
system failures. As an attempt to mitigate these effects, software designers use to introduce
Fault-Tolerant Techniques (FTTs) and/or Security Mechanisms (SMs).

In this chapter, we have proposed some models that represent common FT techniques,
with the idea of combining such models with software behavioural designs. The combined
model is useful for dependability assessment, as it will be shown in Chapter 5. The key
point we look for is to gain a “library” of UML models representing FT techniques ready
to use in critical designs.

The use of our approach should otherwise bring several benefits from the point of view
of a software engineer. The easy integration of FT techniques into software designs and
the existence of such “library” may allow to test different techniques for the same design
to find the ones fitting better. Such “library” will also free the engineer of worrying about
how to model FT and concentrate on the problem domain. Finally, it is well-known that
the use of formal models early in the life-cycle to prove requirements is less expensive than
other approaches.

As future work, we plan to develop a plug-in for common UML design tools, such
as ArgoUML, Visual Paradigm or MagicDraw, which incorporates the UML FT models
introduced in this chapter, thus to provide guidelines to software designers about the best
choices of Fault-Tolerant techniques and security mechanisms for the attacks systems may
suffer.

59

Section 4.4 4. Fault-Tolerant Techniques for Critical Systems

alt

loop

loop m

[m < k]

[server is not down]

loop

t : timerm : monitorws1 : webServerws : webServer

6:

11.1:

11: switchOn(ws1)

10.1:

10: switchO�(ws)

9: ws1 =

8:

7: t expired

5: ack

4: setTimeOut(t)
3: isAlive(ws)

1: wait()

2: initialise(m = 0)

cancelTimeOut(t)

increment(m)

shutdown()

prepareNextReplica()

start()

sd Ping&Restore

«gaStep»

{hostDemand=

 (value=$wait; unit=ms;

 statQ=mean; source=est)}

«gaStep»

{hostDemand=

 (value=0.6; unit=s;

 statQ=mean; source=mea)}

«gaStep»

{hostDemand=

 (value=70.1; unit=s;

 statQ=mean; source=mea)}

«gaStep»

{hostDemand=

 (value=0.5; unit=ms;

 statQ=mean; source=mea)}

«gaStep»

{hostDemand=

 (value=$tOut; unit=ms;

 statQ=mean; source=est)}

Figure 4.11: UML Sequence Diagram of the Ping&Restore Fault-Tolerant Technique.

60

Chapter 5

Model-Based Performance

Prediction of Critical Systems

This chapter introduces a model-based methodology for performance prediction of critical
systems which combine Fault-Tolerant Techniques (FTTs), such as recovery procedures,
and/or Security Mechanisms (SMs), such as encryption of data, in order to react to intru-
sions. The proposed methodology was originally published in [Rodŕıguez et al., 2012d].

5.1 Motivation

Communication networks are globally used to perform many transactions: electronic pur-
chases, bank transfers or even stock exchanges can be accomplished with a computer con-
nected to a network. This new concept of electronic market allows to perform almost
everything remotely, so saving a lot of time to the users.

The main drawback in this domain is that some bad human behaviours may occur:
spam or junk mails, viruses, trojan horses or other attacks are commonly suffered. For
example, with the Denial-of-Service (DoS) attack [Garber, 2000] multiple requests are sent
to a server with the intention of consuming its resources and, in last term, bringing the
server down. These harmful actions clearly have an impact on the functionality of servers
that might not be able to attend all incoming requests, and finally might bring down their
services for saturation.

Relevant efforts of software designers are devoted on devising the security strategies
suitable to protect information and computational systems against not authorised accesses.
In fact, when designing critical systems it is fundamental to study the attacks that may
occur and plan how to react from them. The occurrence of attacks in software systems
leads software designers to introduce different Fault-Tolerant Techniques (FTTs), such as
recovery procedures, and/or Security Mechanisms (SMs), such as encryption of data, in
order to react to intrusions.

61

Section 5.1 5. Model-Based Performance Prediction of Critical Systems

Despite these efforts, it is necessary to consider the costs that have to be incurred to
guarantee a certain security level in critical systems. In fact, the security costs can be
very relevant and may span along different dimensions, such as budgeting, performance
and reliability [Menascé, 2003,Menascé and Virgilio, 2000]. In this paper we focus on the
security costs related to the system performance.

FTTs and SMs inevitably consume system resources hence they influence the perfor-
mance, even affecting its full operability. Therefore, the necessity of balancing security
and performance in these systems becomes clear: security strategies must assure that the
system guarantees a minimal level of functionality.

The work in this chapter steps towards this goal. We define a model-based methodol-
ogy able to quantitatively estimate the system performance while introducing some FTTs
and/or SMs aimed at protecting critical systems. Such a methodology is able to inform soft-
ware designers about the performance degradation the system may incur, thus supporting
them to find appropriate security strategies while minimising performance penalties.

To this end, we make use of a library of models that represent a subset of FTTs (already
introduced in Section 4.3) and SMs ready to be composed. Once a system model is built,
in order to conduct a joint analysis of security and performance with our approach it is
necessary: (i) to specify the appropriate security annotations (e.g. the confidentiality of
some data), and (ii) to annotate the model with performance related data (e.g. the system
operational profile). Thereafter, such an annotated model can be automatically transformed
into a performance model whose solution quantifies the prediction of performance properties
for the system under design.

The starting point of this work can be found in [Rodŕıguez and Merseguer, 2010,
Cortellessa et al., 2010a, Cortellessa and Trubiani, 2008], where we introduced a prelimi-
nary set of models aimed at representing the most common security strategies: models for
FTTs have been introduced in [Rodŕıguez and Merseguer, 2010], whereas models for SMs
have been presented in [Cortellessa et al., 2010a]. This work jointly considers FTTs and
SMs with the aim to enlarge the set of alternatives in the hands of software designers while
making critical systems more secure. The final goal is to allow the addition of security
strategies to a given system model thus to enable a model-based performance analysis.

The setting where our approach works is Unified Modelling Language
(UML) [OMG, 2005] for software modelling and Generalized Stochastic Petri Nets
(GSPNs) [Ajmone Marsan et al., 1995] for performance analysis.

UML models are aimed at representing the architecture of critical software systems.
Such models can be extended for specific purposes through a technique called profil-
ing [Lagarde et al., 2007,Selic, 2007]. A UML profile defines a set of stereotypes and tagged-
values which are used to extend its semantic. In this work, we use two profiles: (i) the Mod-
elling and Analysis of Real-Time and Embedded Systems (MARTE) profile [OMG, 2009]
for the specification of performance properties that enable the performance analysis; (ii)
and the Security Analysis and Modelling (SecAM) profile [Rodŕıguez et al., 2010] (see Sec-
tion 3.2) for the specification of security properties.

62

5. Model-Based Performance Prediction of Critical Systems Section 5.2

UML annotated models are transformed into GSPN models, i.e., formal models rep-
resenting the system for performance analysis purposes. This choice has been driven by
two main factors: (i) GSPNs provide a formal notation which avoids any source of am-
biguity while representing the stochastic behaviour of systems; (ii) GSPNs have a clear
graphical notation and several tools have been developed for analysis. The transforma-
tion from UML to GSPN can been carried out using well-established tools, such as Ar-
goSPE [Gómez-Mart́ınez and Merseguer, 2006], ArgoPN [Delatour and de Lamotte, 2003]
or ArgoPerformance [Distefano et al., 2011].

In the following, we firstly introduce the SMs that we consider for this work (namely,
Encryption, Decryption, Digital Signature and Verification). The FTTs that we consider
for this work have been previously introduced in Section 4.3. Lastly, we introduce a model-
based methodology to quantify the security-performance trade-off in critical systems where
FTTs and SMs are considered. Chapter 9 introduces a case study where this methodology
is applied.

5.2 Security Mechanisms

The Security Mechanisms (SMs) were initially introduced
in [Cortellessa and Trubiani, 2008, Cortellessa et al., 2010a], where Cortellesa and
Trubiani introduced a set of UML models representing the most common security
mechanisms. The SMs that we consider here are: Encryption, which refers to the usage
of mathematical algorithms to transform data into a form that is unreadable without
knowledge of a secret (e.g. a key); Decryption, which is the inverse operation of Encryption
and makes the encrypted information readable again; the Digital Signature, which is a
mathematical scheme for demonstrating the authenticity of a digital message or document
through its Generation and Verification.

Some preliminary operations, such as the generation of public and secret keys and the
process of obtaining a certificate from a certification authority, are executed once by all
software entities involved in the security annotations. The generation of public and private
keys involves a software component that sets the key type and length thus to generate
the public and the private keys. The process of obtaining a certificate from a certification
authority involves a software component that sends its information and its public key; the
certification authority checks the credentials and, if trusted, generates the certificate and
sends it back to the software component.

Encryption. The sender of the message decides the type of algorithm to use and the
key length. The encryption can be of two different types: (i) asymmetric encryption (i.e.,
by public key); (ii) symmetric encryption (i.e., by a shared secret key). For asymmetric en-
cryption the sender sets the padding scheme it requires and verifies the receiver’s certificate
if it is not already known. Finally, the encryption algorithm is executed on the message
with the public key of the receiver. For symmetric encryption the sender sets the algorithm

63

Section 5.3 5. Model-Based Performance Prediction of Critical Systems

mode, performs a key-exchange protocol if a shared key is not already exchanged, and
requires the exchange of certificates. Finally, the encryption algorithm is executed on the
message with a session key obtained combining the keys generated by the sender and the
receiver.

Decryption. After receiving the encrypted message, the algorithm type and the key
length are extracted, and the decryption algorithm is executed to obtain the plain text.

Digital Signature Generation. The hash function algorithm must be specified, and
the digest is generated. The encryption algorithm is applied on the digest by using the
software component private key.

Digital Signature Verification. A message and the digital signature are received as
inputs. Two operations are performed: the first one is to calculate the digest; the second one
is the actual execution of the encryption algorithm applied on the input digital signature
producing a forecast of the real signature. The last computation involves the verification of
the digital signature which compares the forecast digital signature with the received one,
in order to confirm the verification.

The models of the aforementioned security mechanisms are not reported, for further
details please refer to [Cortellessa et al., 2010a].

5.3 A Model-Based Methodology to Quantify Security-

Performance Trade-off

In this section we recall the model-based methodology presented
in [Rodŕıguez et al., 2012d] that allows to quantify the trade-off between the secu-
rity strategies previously introduced to cope with the security attacks and the consequent
performance degradation.

In Figure 5.1 the process that we propose is reported. The process has been partitioned
in two sides: on the top-hand side all models that can be represented with a software
modelling notation (e.g. UML) appear; on the bottom-hand side all models represented
with a performance modelling notation (e.g. GSPN) appear.

The starting point of the process is a Performance-Annotated Application Model that
is a static and dynamic representation of a software system. For the sake of simplicity,
we assume that such a model is annotated with performance parameters related to the
application such as the expected workload and system operational profile. The standard
MARTE profile [OMG, 2009] has been adopted to specify performance parameters in our
UML models.

A Security-Annotated Application Model is obtained by introducing security annotations
in the former. Such annotations specify where security strategies have to be inserted, namely
which software services have to be protected and how (e.g. some data must be encrypted).
Security annotations have been incorporated by the Resilience package of the Security Anal-
ysis and Modelling (SecAM) profile [Rodŕıguez et al., 2010,Rodŕıguez et al., 2011] that en-

64

5. Model-Based Performance Prediction of Critical Systems Section 5.3

Software notation

(e.g. UML)

Performance-Annotated

APPLICATION

MODEL

(annotated with MARTE)

Performance notation

(e.g. GSPN)

Security-Annotated

APPLICATION

MODEL

(annotated with SecAM)

SMs-Enabled

APPLICATION

MODEL

Enabling Security Mechanisms

Enabling Fault-Tolerant Techniques

PERFORMANCE

MODEL

SMs-FTTs-Enabled

APPLICATION

MODEL

A
n

n
o

ta
ti

n
g

 S
ec

u
ri

ty

FTTs-Enabled

APPLICATION

MODEL

<<profile>>

SecAM::

Resilience

Merging Security Strategies

Security Mechanisms

Library

Fault-Tolerant

Techniques Library

Figure 5.1: A process to estimate the system performance while adding Security Mecha-
nisms and Fault-Tolerant Techniques.

ables the specification of attacks, vulnerabilities and intrusions in UML models (see Sec-
tion 3.2.1 for more details). Security attacks are characterised with their kind (i.e., flooding,
spoofing or brute force), type (i.e., active or passive), objective (i.e. DoS, run arbitrary code
or privilege escalation), class (i.e. virus, worm or buffer overflow) and occurrence rate (i.e.
the probability of success).

The task of Enabling Security Mechanisms has been already presented in
[Cortellessa et al., 2010a]. This step is driven by the security annotations specified in the
application model, and a SMs-Enabled Application Model is finally obtained. As an exam-
ple, if a security annotation specifies that data must be kept secret, an additional pattern
with the steps needed for the encryption mechanism must be introduced in the system
model. Such a pattern is one of the mechanisms modelled in our Security Mechanisms
Library (see Section 5.2).

The task of Enabling Fault-Tolerant Techniques consists in embedding the appropriate
fault-tolerant techniques in the system model, and a FTTs-Enabled Application Model
is finally obtained. As an example, if an attack annotation specifies that spoofing can
be performed for a certain service, an additional pattern with the steps needed for the
FTT acting against such an attack must be introduced in the system model wherever the
service is invoked. Such a pattern is one of the techniques modelled in our Fault-Tolerant
Techniques Library (see Section 4.3.2).

Note that both the security strategies we consider (i.e., SMs and FTTs) can be analysed
in isolation or can be jointly analysed while merging the previous models (i.e., the SMs-
Enabled and FTTs-Enabled models) and a SMs-FTTs-Enabled Application Model is finally
obtained.

A key aspect of our approach is the composability of models, and this is achieved through

65

Section 5.4 5. Model-Based Performance Prediction of Critical Systems

two features: (i) entry points for FTTs and SMs are unambiguously defined by security
annotations, and (ii) models in the SMs and FTTs libraries have been designed to be easily
composable with application models.

Shaded boxes of Figure 5.1 represent the models that can be finally transformed into
GSPN-based Performance Model(s). This step involves not only a transformation between
modelling notations1, but an additional task is necessary to appropriately instrument the
target performance model, because security strategies inevitably introduce additional per-
formance parameters to be set in the model. The definition of such parameters is embed-
ded in the security libraries where they are defined in an application-independent way. For
example, the encryption mechanism introduces additional parameters affecting system per-
formance, such as the complexity and resource requirements of the encryption algorithm,
its mode of operation (e.g. CBC), the lengths of the keys, etc. Hence, the GSPN perfor-
mance model finally generated has to be carefully parameterised with proper performance
data.

The GSPN performance models can be solved by means of any available formal model
analysis tools, such as the PeabraiN [Rodŕıguez et al., 2012a] simulator (Chapter 11 intro-
duces PeabraiN in more detail), and the model evaluation provides performance indices
that jointly take into account the security strategies as well as the performance features of
critical systems. Note that such a trade-off analysis can be conducted on multiple security
settings by only modifying the security annotations and re-running the steps of our ap-
proach. In fact, in Figure 5.1 we can define a certain multiplicity in the security annotations
to emphasise that different strategies can be adopted for the same system design according
to different settings.

Finally we observe that several types of analysis can be conducted on the models built
with this approach: (i) a performance model with a set of security requirements can be com-
pared with one without security to simply study the performance degradation introduced
from certain security strategies; (ii) the performance estimates from different performance
models can be compared to each other to study the trade-off between security and perfor-
mance across different design configurations.

This model-based approach is put on evidence in a case study introduced in Chapter 9.

5.4 Concluding Remarks

In this chapter we provided a model-based methodology able to quantitatively estimate the
system performance while introducing Fault-Tolerant Techniques (FTTs) and/or Security
Mechanisms (SMs) aimed at protecting critical systems. The main goal of this methodology
is to introduce different security models and compose them with software architectural
models, thus to support software designers to find appropriate security strategies while

1Well consolidated techniques have been exploited to transform software models (e.g. UML models) into
performance models (e.g. GSPN), see [Balsamo et al., 2004] for an extensive survey on this topic.

66

5. Model-Based Performance Prediction of Critical Systems Section 5.4

meeting performance requirements.
There exist many security techniques that may affect system performance, such as the

use of firewalls, security protocols, remote logging, etc. In this work, we have only considered
a subset of FTTs and SMs, however, as future work, the subset of techniques may be
enlarged to enable the verification of (possibly future) techniques.

We consider this work as a starting point for investigating even more sophisticated
trade-offs, for example it would be relevant to study the trade-off between security and
other non-functional attributes, such as availability. In particular, addressing the problem
of quantifying and locating data replicas for availability purposes without heavily affecting
the security of the system may be crucial in certain domains.

Finally, we plan to automate the steps of our approach by means of a tool, thus to provide
guidelines to software designers about the best choices of Fault-Tolerant techniques and
security mechanisms for the attacks systems may suffer.

67

Part II

Performance Analysis

69

Chapter 6

Strategies for Upper Throughput

Bound Computation in Petri Nets

Nothing happens in the universe
that does not have a sense of either

certain maximum or minimum.
(Leonhard Euler)

This chapter summarises the main contributions of this dissertation related to upper
throughput computation of Stochastic Marked Graphs (SMGs) and of a special class of
Petri net; more precisely, Stochastic Process Petri net (SPPN). We provide different strate-
gies for computing upper throughput bounds that are more accurate, i.e., closer to the
real throughput of the system, that the bounds that can be achieved with other meth-
ods (see Section 1.2). The main outcomes of this chapter have been mainly published
in [Rodŕıguez and Júlvez, 2010] and [Rodŕıguez et al., 2013a].

6.1 Motivation

As it is claimed in Section 1.1, many artificial systems, such as the Fault-Tolerant (FT) sys-
tems that we consider in this thesis, can be naturally modelled as Discrete Event Systems
(DES). Unfortunately, these systems are usually large and this makes the exact computa-
tion of their performance a highly complex computational task. The main reason for this
complexity is the well-known state explosion problem. As a result, a task that requires
an exhaustive state space exploration becomes unachievable in a reasonable time for large
systems.

A way to overcome the state explosion problem is to provide performance
bounds [Ramchandani, 1974, Chiola et al., 1993, Campos et al., 1992, Liu, 1995]. The use
of performance bounds, on which our approaches are based, avoids the necessity of calcu-
lating the whole state space. The advantage of using performance bound computation is

71

Section 6.2 6. Strategies for Upper Throughput Bound Computation in PNs

the reduced computing time, but its drawback is the difficulty of assessing how accurate
the computed bound is with respect to the real system performance.

This chapter explores the issue of upper throughput bound for Stochastic Marked
Graphs (SMGs) and Stochastic Process Petri nets (SPPNs), and provides two different
strategies for getting an improved upper throughput bound than the ones that those
achieved in previous works [Chiola et al., 1993,Campos et al., 1992].

First of all, we introduce some basic concepts needed to follow the rest of the chapter,
such as tight marking, which allows us to compute easily slacks of places with respect to
the critical cycle (i.e., the slowest cycle in the system). Then, we introduce an iterative
algorithm to obtain performance bounds on SMGs [Rodŕıguez and Júlvez, 2010] that are
sharper, i.e., closer to the real performance, than the ones we can currently compute with
some of the works previously mentioned in Section 1.2. In a few words, our method works as
follows. Firstly, the algorithm calculates the most restrictive cycle (also called bottleneck)
by applying well-known methodologies. Then, it adds to the bottleneck cycle those sets
of places that are more likely to constraint the throughput of the system. The process
of adding sets of places is repeated until the throughput of the resulting net does not
vary significantly. Such a throughput cannot increase during the addition process since
more constraints are added to the SMG. The proposed algorithm produces the following
outputs:� a performance bound for the steady-state throughput of a stochastic Marked Graph

and� a subnet representing the bottleneck of the stochastic Marked Graph.

As it will be explained, the method makes intensive use of linear programming techniques
for which polynomial complexity algorithms exist. Given that the performance bound is
refined in each iteration, the accuracy of the final bound depends on the number of itera-
tions to be performed. The obtained results show that the proposed method offers a good
trade-off between accuracy and computational complexity load.

Lastly, such an iterative algorithm is extended to be able to deal with Process Petri
nets [Rodŕıguez et al., 2013a]. As in the previous algorithm, the strategy for getting sharper
(i.e., closer to the real throughput) upper throughput bounds is based on the computation
of bottlenecks. It calculates in a first step the slowest part of the system, that is, the initial
bottleneck of the system. After that, in each iteration the most likely part of the system
to be constraining the current bottleneck is calculated, and the union of both parts is
considered to calculate the new upper throughput bound.

6.2 Little’s Law and Upper Throughput Bounds

The Little’s formula [Little, 1961] involves the average number of customers L in the sys-
tem, the throughput, λ, and the average time spent by a customer within the system,

72

6. Strategies for Upper Throughput Bound Computation in PNs Section 6.2

W .

L = λ ·W (6.1)

Let p be a place such that |p•| = 1, and p• = {t}, then the pair (p, t) can be seen
as a simple queueing system to which, if the limits of average marking and steady-state
throughput exist, Little’s formula can be directly applied [Campos and Silva, 1992]:

m(p) = (Pre(p, t) · χ(t)) · υ(p) (6.2)

where Pre(p, t) · χ(t) is the output rate of tokens from place p, which in steady state is
equal to the input rate, and υ(p) is the average residence time at place p, i.e., the average
time spent by a token in place p.

The average residence time, υ(p), is the sum of the average waiting time due to a possible
synchronisation and the average service time, δ(t). Therefore, equation (6.2) becomes:

m(p) = (Pre(p, t) · χ(t)) · υ(p) ≥ (Pre(p, t) · χ(t)) · δ(t) (6.3)

where the service time δ(t) is a lower bound for the average residence time υ(p), i.e.,
δ(t) ≤ υ(p), since place p has only one output transition. Given that conflicting transitions
are assumed to be immediate, equation (6.3) can also be applied to any pair (p, t), t ∈ p•

and t being a transition in conflict. Hence, the following system of inequalities can be
derived [Campos and Silva, 1992] from (2.3) and (6.3):

Γ(ti) ·m ≥ Pre ·Dti (6.4)

where Γ(ti) is the average interfiring time of transition ti and Dti is the vector of aver-
age service demands of transitions, Dti(t) = δ(t) · vti(t) (the vector of visit ratios vti is
normalised for transition ti). In the following, we omit the superindex ti in Dti for clarity.

Let us notice that strongly connected SMGs have a single minimal t-semiflow that is
equal to 1. This implies that the steady-state throughput is the same for every transition.

Therefore, a single scalar variable Θ =
1

Γ
suffices to express the throughput bound to be

computed for all transitions.

Proposition 1 The solution Θ of the following LPP provides an upper bound for the
steady-state throughput of the transitions of a strongly connected Freely Related T-semiflows
(FRT) net [Chiola et al., 1993]:

Maximize Θ :

m(p) ≥ δ(p•) ·Θ ∀p ∈ P (6.5a)

m = m0 +C · σ (6.5b)

σ ≥ 0 (6.5c)

73

Section 6.2 6. Strategies for Upper Throughput Bound Computation in PNs

Figure 6.1: Example MG.

The first constraint (6.5a) is obtained from (6.3), while the second and third con-
straints (6.5b), (6.5c) establish that m must be a solution of the state equation. The
value of Θ is the exact throughput in the particular case of timed MG with deterministic
delays associated to the firing delays [Ramchandani, 1974,Ramamoorthy and Ho, 1980].

The LP problem (LPP) in (6.5) can be transformed in its dual, which after some ma-
nipulations becomes in a LPP to compute a lower bound for the average inter-firing time
of transition ti, Γ

lb(ti), [Campos and Silva, 1992]:

Γ(ti) ≥ Γlb(ti) = maximum y ·Pre ·D
subject to y ·C = 0

y ·m0 = 1

y ≥ 0

(6.6)

As a side product of the solution of (6.6), y represents the slowest p-semiflow of the
system, thus LPP (6.6) can also be seen as a search for the most constraining p-semiflow.

This p-semiflow will be the one with the highest ratio
y ·Pre ·D
y ·m0

. Sn upper bound Θ(ti)

for the steady-state throughput can be calculated as the inverse of the lower bound for the

average inter-firing time Γlb(ti), that is, Θ(ti) =
1

Γlb(ti)
.

For instance, let us consider the Marked Graph (MG) shown in Figure 6.1. The initial
marking is: m(p1) = m(p2) = 1 and the rest of places have marking equal to 0. We
assume that the firing delay of each transition follows an exponential distribution with mean
δ1 = δ3 = δ5 = 1, δ2 = δ4 = 2, respectively. The net has three cycles: {p1, p3, p5}, {p1, p4, p6}

74

6. Strategies for Upper Throughput Bound Computation in PNs Section 6.2

and {p2, p4, p7}. The token/delay ratio of each cycle is
1

5
,
1

4
and

1

3
, respectively. The critical

cycle, or bottleneck, is the one with minimum token to delay ratio, thus in our case, the

bottleneck cycle is the one composed of places {p1, p3, p5} whose throughput is equal to
1

5
.

Hence, the initial throughput bound is
1

5
and the initial bottleneck is ylb = {p1, p3, p5}.

Assume again p be a place such that |p•| = 1, and p• = {t}. The equation (6.5a) can be
also expressed as follows:

m(p) = δ(t) ·Θ(t) + µ(p)

where µ(p) ≥ 0 is the slack of place p. For every place p in the critical cycle (i.e., bottleneck)
of a SMG, it necessarily holds that µ(p) = 0. For example, the slacks of the places of the
SMG in Figure 6.1 are µ(p1) = µ(p3) = µ(p5) = 0, µ(p2) = 0.16, µ(p4) = 0.08, µ(p6) = 0.12
and µ(p7) = 0.16. In general, the same optimal value of the objective function in LPP (6.5)
can be achieved for different slack vectors. In fact, the particular value of vector µ will
depend on the algorithm used by the LP solver.

6.2.1 Tight Marking

This section takes advantage of the degree of freedom of slacks in order to produce a
marking, called tight marking and denoted m̃, such that each transition has at least one
input place with null slack. This marking will greatly ease the task of adding to the initial
bottleneck cycle those cycles that have low ratio token/delay.

Definition 10 A marking vector m̃ ∈ R
|P | is called a tight marking vector of a SMG if it

satisfies:

m̃ = m0 +C · σ (6.7a)

∀ p : m̃(p) ≥ δ(p•) ·Θ (6.7b)

∀ t ∃ p ∈ •t : m̃(p) = δ(p•) ·Θ (6.7c)

where m̃ ∈ R
|P |, σ ∈ R

|T |, and Θ =
1

Γlb
is the solution of (6.6). A place p satisfying the

condition m̃(p) = δ(p•) ·Θ is called tight.

Since the places of the critical cycle do not have slack, they fulfil (6.7c) and hence
are tight. On the other hand, non-critical places may have some positive slack. The tight
marking exploits this flexibility by adjusting the marking in such a way that each transition
has at least one input place that is tight.

It can be shown that a tight marking exists for each SMG [Carmona et al., 2009]. More-
over it can be computed efficiently by solving an LPP.

75

Section 6.3 6. Strategies for Upper Throughput Bound Computation in PNs

Proposition 2 [Carmona et al., 2009] A tight marking of a SMG can be computed by
solving the following LPP:

Maximize Σσ :

δ(p•) ·Θ ≤ m̃(p) for every p ∈ P

m̃ = m0 +C · σ
σ(tp) = k

(6.8)

where tp is a transition that belongs to a critical cycle and k is any real constant number.

The proof of the Proposition 2 can be found in [Carmona et al., 2009]. Since we are deal-
ing with MGs, each row of the incidence matrix C contains a single positive (1) and a single
negative (−1) value, while all other values are zeros. Therefore, the first two constraints
of (6.8) can be transformed into a system of difference constraints and hence the LPP (6.8)
can be efficiently solved by using the Bellman-Ford algorithm [Cormen et al., 2001].

Recalling the SMG shown in Figure 6.1, if we calculate the tight marking we obtain
m̃(p1) = 0.2, m̃(p2) = 0.6, m̃(p3) = 0.4, m̃(p4) = 0.2, m̃(p5) = 0.4, m̃(p6) = 0.6, m̃(p7) =
0.2.

6.3 Regrowing Strategy for Stochastic Marked Graphs

This section presents an iterative strategy to grow the critical cycle and to compute an
upper throughput bound in SMGs. The idea of the strategy is to add in each iteration the
cycle that is potentially more restrictive than the others and then calculate the throughput.
Such a throughput cannot be higher than the one in the previous iteration, since more
constraints have been added to the net. The iteration process will stop when no significant
improvement of the bound is achieved.

Algorithm 1 represents the overall regrowing strategy used to compute throughput
bounds. The algorithm needs as input data the Stochastic Marked Graph (SMG) to be
analysed, 〈N , δ〉, and the degree of precision (ε > 0) to be achieved. As output data, the
upper throughput bound, Θ, and the bottleneck cycle of the SMG, sccN ′, are obtained.

Firstly, an upper throughput bound of 〈N , δ〉 is calculated according to (6.6), which will
be the initial upper bound. Then, the tight marking of the system is computed by using
the LPP shown in (6.8). The vector of slacks µ is computed in step 3. The iteration process
(steps 7–14) is repeated until no significant improvement is achieved with respect to the
last iteration.

In steps 8–11, a new set of places and transitions is added to the current bottleneck.
To achieve this, steps 8–9 look for the place q that is connected to the current bottleneck
sccN ′, i.e., q• ∈ sccN ′, and has minimum slack. Then steps 10–11 build the new bottleneck
by adding place q and the tight places that connect the current bottleneck to q. For brevity,
in the algorithm we use p ∈ N (p• ∈ N) to denote that a place p (transition p•) is contained

76

6. Strategies for Upper Throughput Bound Computation in PNs Section 6.3

Input: 〈N , δ〉, ε
Output: Θ, sccN ′

1 Θ = Upper throughput bound of N according to (6.6)
2 m̃ = Tight marking according to (6.8)
3 µ(p) = m̃(p)− δ(p•) ·Θ, ∀p ∈ P
4 N ′ = Graph resulting of removing from N every arc {p, p•} such that µ(p) > 0
5 sccN ′= Strongly connected component of N ′

6 Θ′ = 0

7 while

(

Θ−Θ′

Θ
≥ ε

)

do

8 Q = {q|q ∈ P, q 6∈ N ′, q• ∈ sccN ′}
9 pm = {q|µ(q) = min

p∈Q
µ(p)}

10 N ′ = Graph resulting of adding arc {pm, p•m} to N ′ where {pm, p•m} ∈ N
11 sccN ′= Strongly connected component of N ′

12 Θ′ = Θ
13 Θ = Throughput of sccN ′

14 end
Algorithm 1: The regrowing strategy algorithm.

in the set of places (transitions) of N . When there exist several identical critical cycles, i.e,
with the same token to delay ratio, steps 5 and 11 choose any of them.

In step 13, the throughput of the new bottleneck is taken as the new upper bound. In
the next iteration, this new upper bound will be compared with the previous one in order
to, depending on the degree of improvement achieved, either continue or finish the iteration
process.

Let us illustrate how the algorithm 1 works by applying it to the SMG depicted in
Figure 6.2. The delays are δ1 = 1.2, δ2 = 1, δ3 = 1.5, δ4 = δ5 = 1, δ6 = 0.75, δ7 = 1, δ8 = 1.25
and δ9 = 0.5, and the initial critical cycle is composed by {Pcb, Tcb} = {{p2, p4}, {t1, t3}}.
The throughput bound of the critical cycle is Θcb = 0.370370 and the places which are
connected (through a transition t ∈ T) to the critical cycle are p1 and p14, having slacks
µ(p1) = 0.1852 and µ(p14) = 1.0556. Hence, the place with minimum slack is p1. By
regrowing the current bottleneck the new one is obtained, composed by {Pcb′ , Tcb′} =
{{p1, p2, p3, p4}, {t1, t2, t3}}, which has a throughput of Θcb′ = 0.322581, which is 12.9%
lower than the throughput of the previously bottleneck {Pcb, Tcb}.

Let us assume that ε = 0.001. As the relative difference between Θcb and Θcb′

is 0.12903 (as commented previously), the iteration process carries on. At this mo-
ment, the places connected to the current bottleneck are p10 and p14. The addition
of the place p10 which has minimum slack produces a new bottleneck compounded of
{{p1, p2, p3, p4, p6, p7, p8, p9, p10}, {t1, t2, t3, t4, t5, t6, t7}} , being the new throughput Θ =

77

Section 6.3 6. Strategies for Upper Throughput Bound Computation in PNs

Figure 6.2: Another MG example.

0.297914, which is an improvement of 7.647% with respect to the previous bottleneck
{Pcb′ , Tcb′} and 19.563% with respect to the original bottleneck {Pcb, Tcb}.

Again, a new regrowing is possible because the relative difference is greater than ε.
In this case, the candidate places to be chosen are p5, p11 and p14, which have slacks
µ(p5) = 0.0556, µ(p11) = 0.9815 and µ(p14) = 1.0556. The addition of p5 produces a new
bottleneck with Θ = 0.297914, which is an improvement of 3.193% with respect to the
previous bottleneck. For the next regrowing, the candidate places are p11, p14 and p15. By
adding the place p11 (µ(p11) = 0.9815) we obtain a bottleneck whose relative throughput
is lower than ε with respect to the previous bottleneck, thus, the algorithm finishes. In
summary, after four iterations, the throughput bound obtained is 22.132% lower than the
original Θ calculated by LPP in (6.6).

6.3.1 Experiments and Discussion

In this section we test the algorithm given in previous section on a set of SMGs of the ISCAS
benchmarking [Brglez et al., 1989]. After applying the regrowing strategy, the obtained
results are discussed.

Experimental Setting

The structure of the SMGs to be analysed is obtained from the strongly connected com-
ponents of the ISCAS graphs. The initial marking of each place is a natural number which

78

6. Strategies for Upper Throughput Bound Computation in PNs Section 6.3

is randomly selected in the interval [1 . . . 10]. The value of the δ(t) of each transition t is a
real number randomly selected from the interval [0.1 . . . 1]. The overall strategy has been
implemented on MATLAB1, while simulations of SMGs have been performed by the Great-
SPN [Baarir et al., 2009] simulation tool using a confidence level of 99% and an accuracy
of 1%. The simulations have been run in a machine with a Pentium IV 3.6GHz processor
and 2GB DDR2 533MHz RAM.

1http://www.mathworks.com/products/matlab/

79

S
e
c
tio

n
6
.3

6
.
S
tra

te
g
ie
s
fo
r
U
p
p
e
r
T
h
ro

u
g
h
p
u
t
B
o
u
n
d

C
o
m
p
u
ta

tio
n

in
P
N
s

Graph
Size % Size Regrowing Initial

Θ|P | |T | |P ′| (%) |T ′| (%) steps thr. bound

s1423 1107 792 79 (7.13%) 76 (9.59%) 3 0.236010 0.235213 (0.34%)

s1488 1567 1128 91 (5.8%) 86 (7.62%) 6 0.201300 0.173127 (13.99%)

s208 27 24 27 (100%) 24 (100%) 3 0.409390 0.377683 (7.75%)

s27 54 44 19 (35.18%) 18 (40.9%) 1 0.305960 0.304987 (0.31%)

s349 187 146 26 (13.9%) 24 (16.44%) 2 0.340320 0.327867 (3.66%)

s444 92 68 14 (15.21%) 12 (17.64%) 2 0.181670 0.181260 (0.22%)

s510 1038 734 45 (4.33%) 40 (5.45%) 5 0.133030 0.117819 (11.43%)

s526 113 92 18 (15.93%) 16 (17.39%) 2 0.313490 0.305860 (2.43%)

s713 271 208 11 (4.06%) 10 (4.8%) 1 0.428720 0.427840 (0.2%)

s820 1162 848 40 (3.44%) 38 (4.48%) 2 0.161060 0.147483 (8.43%)

s832 1293 948 84 (6.5%) 78 (12.04%) 5 0.239429 0.208798 (12.79%)

s953 415 312 88 (11.36%) 82 (26.28%) 6 0.369214 0.337811 (8.50%)

Table 6.1: Experiment results showing improvement of upper bound.

80

6. Strategies for Upper Throughput Bound Computation in PNs Section 6.3

Graph
Original thr. Θ Original

Θ
%

CPU time (s) CPU time (s) thr. thr.

s1423 59948.980 8.283 0.222720 0.235270 5.63%

s1488 36717.156 7.165 0.168760 0.172154 2.01%

s208 0.492 0.492 0.376892 0.376892 0%

s27 2166.002 0.954 0.305082 0.306166 0.35%

s349 141.210 0.441 0.328340 0.327398 −0.28%

s444 2278.231 0.205 0.181069 0.181260 0.11%

s510 13669.814 1.358 0.117500 0.118040 0.46%

s526 129.181 0.344 0.270010 0.305860 13.27%

s713 628.503 0.405 0.411630 0.427840 3.94%

s820 20775.811 0.788 0.144770 0.147699 2.02%

s832 16165.863 1.914 0.196920 0.208873 6.07%

s953 453.850 19.155 0.327910 0.338644 3.27%

Table 6.2: Graph throughput and CPU time comparative.

Experimental Results

Table 6.1 shows the obtained results by our approach. The degree of accuracy for Algo-
rithm 1 has been set to ε = 0.005. The first column is the graph name, followed by its size
(number of places, |P |, and transitions, |T |). In the next column, it is shown the size of the
net sccN ′ (|P ′|,|T ′|) produced by the algorithm. The column Regrowing steps shows the
number of regrowing steps needed by the algorithm. The last columns of Table 6.1 show
the initial upper throughput bound calculated by using the LPP (6.6), and the improved
upper throughput bound, Θ, computed by the algorithm. Such a bound is computed by
solving the Markov Chain associated to sccN ′ when it is handleable by the computer,
and by simulation otherwise (see [Ajmone Marsan et al., 1995] for an example of Markov
Chain analysis). The last column shows the percentage of improvement with respect to the
original upper throughput bound.

As it can be seen, our method is able to get a sharper upper bound than the original
bound in a few regrowing steps, and the improvement varies from 0.2% (which indicates
that the original upper bound is already very tight) up to 14%. We conjecture that the
improvement depends on the structure of the graph. It is also worth mentioning that our
approach uses a very low percentage of the size of the original graph, in most of cases this
percentage is lower than 10%.

Table 6.2 summarises a comparative between the original throughput bound and the
improved upper throughput bound and between the CPU time needed for both computa-
tions. The first column is the graph name, followed by the CPU time consumed to calculate
the original throughput and to calculate the improved upper throughput bound Θ. The

81

Section 6.3 6. Strategies for Upper Throughput Bound Computation in PNs

1 2 3 4 5 6
0.165

0.17

0.175

0.18

0.185

0.19

0.195

0.2

0.205

Regrowing steps

T
hr

ou
gh

pu
t

Original upper thr. bound
Improved upper thr. bound
Real throughput

Figure 6.3: Throughput of graph s1488.

next columns are its original throughput and the improved upper throughput bound, Θ.
The last column shows the relative error of Θ with respect to the original throughput. Due
to the size of original graphs, the task of calculating their throughput is an unfeasible task
in reasonable time. For this reason, the simulation parameters have been set to a confidence
level of 95% and an accuracy of 4%. Owing to this reason, the values of Θ in Table 6.1
and in Table 6.2 can slightly vary. The negative relative errors are caused by such confi-
dence level and accuracy degree. As it can be observed in the results shown in Table 6.2,
the improved throughput bound varies from a value really close to the real throughput,
to a value which is 13% over the real throughput. The latter case, which deserves further
analysis, might be due to the existence of slow cycles far away from the critical cycle.

Finally, Figure 6.3 shows the real throughput of the graph s1488 (solid line), the orig-
inal upper throughput bound (dashed line, result of LPP (6.6)) and the improved upper
throughput bound (dot-dashed line) in each step of the strategy. As it can be observed,
the improved bound gets close to the real throughput after few steps.

The main results that can be extracted from both tables can be summarised as follows:� a sharp upper bound is obtained after few regrowing steps;

82

6. Strategies for Upper Throughput Bound Computation in PNs Section 6.4� the size of the obtained bottleneck is very low compared to the size of the original
graph and� the obtained bottleneck represents the actual constraint for the system throughput,
and therefore it can be considered as a potential target to carry out performance
optimisation.

6.4 Regrowing Strategy for Process Petri Nets

In this section, we extend the theory behind algorithm 1 to be able to apply to
more general nets than Stochastic Marked Graphs (SMGs), namely, to Stochastic Pro-
cess Petri nets (SPPNs, see Section 2.1). The LPP shown in (6.6) was the basis
in [Rodŕıguez and Júlvez, 2010] for developing an iterative algorithm to compute upper
bounds in SMGs. Unfortunately, the proposed algorithm is not applicable to more general
nets than MGs, hence our search for an alternative method.

The new algorithm will follow a similar strategy. Firstly, the initial bottleneck is com-
puted using (6.6). Then, in each iteration step the next slowest p-semiflow connected to
the subnet associated to the current bottleneck is added to it.

Let us suppose the p-semiflow y∗ represents the initial bottleneck, i.e., y∗ is obtained
from the solution of (6.6). The following constraint imposes that some other p-semiflow y,
y · C = 0, is connected to y∗:

∑

p∈V y(p) > 0, where V = {v|v ∈ •(‖y∗‖•) \ ‖y∗‖} (that
is, there exist places in the support of y which share output transitions with places in the

support of y∗). Hence, the p-semiflow y with the highest ratio
y ·Pre ·D
y ·m0

connected to y∗

can be searched for by solving the following LPP:

maximum y ·Pre ·D
subject to y ·C = 0

y ·m0 = 1

y(p) > 0, ∀p ∈ Q
∑

p∈V

y(p) > 0

(6.9)

where V = {v|v ∈ •(‖y∗‖•) \ ‖y∗‖}, and Q = {q ∈ P, q ∈ ‖y∗‖}.
As a result of LPP (6.9), we will obtain the p-semiflow y, which will be a linear combi-

nation of y∗ and the next most constraining p-semiflow.
The strict inequality in (6.9) could lead us to numerical problems since the lower the

value of
∑

p∈V y(p), the higher the value of the optimisation function. This issue is dis-
cussed deeply in Section 6.4.2 and also shows that the solution proposed in the following
can be applied in practice. A way to solve this is by reformulating

∑

p∈V y(p) > 0 into

83

Section 6.4 6. Strategies for Upper Throughput Bound Computation in PNs

∑

p∈V y(p) ≥ h, where h is strictly positive. The problem now is to set an appropriate
value for h. A high value can make constraints y ·m0 = 1 and

∑

p∈V y(p) ≥ h incompati-
ble leading to an infeasible LPP. A valid value of h can be obtained by searching for a real
number that is lower than each component of a p-semiflow y that covers all places and
satisfies y ·m0 = 1. Such a value can be obtained by means of the following LPP:

maximum h

subject to y ·C = 0

y ·m0 = 1

y ≥ h · 1
h > 0

(6.10)

where 1 is a vector with all entries equal to one.
The obtained value h ensures the feasibility of the following LPP, which is just a refor-

mulation of (6.9):

maximum y ·Pre ·D
subject to y ·C = 0

y ·m0 = 1

y(p) ≥ h, ∀p ∈ Q
∑

p∈V

y(p) ≥ h

(6.11)

where V = {v|v ∈ •(‖y∗‖•) \ ‖y∗‖}, and Q = {q ∈ P, q ∈ ‖y∗‖}.
As has been said, the last constraint,

∑

p∈V

y(p) ≥ h, imposes that the support of y

corresponds to the p-semiflow connected to y∗ with the highest
y ·Pre ·D
y ·m0

.

6.4.1 An Iterative Strategy to Compute Upper Throughput Bounds

This subsection presents an iterative strategy to obtain an improved upper throughput
bound in SPPNs. In a first step, the strategy calculates the initial throughput bound of the
system with the LPP (6.6) and takes the subnet associated to y as the initial bottleneck. In
each iteration the subnet associated to the p-semiflow that is potentially more constraining
than the others is added to the bottleneck. The throughput is then calculated. Note that
such an addition in each iteration restricts the behaviour of the system, which implies
a lower throughput. The iteration process stops when no significant improvement of the
bound is achieved.

84

6. Strategies for Upper Throughput Bound Computation in PNs Section 6.4

Input: 〈S, s, r〉, ε
Output: Θ, Q

1 {Θ,y} = Upper throughput bound and components of the initial bottleneck of
〈S, s, r〉 according to (6.6)

2 Calculate value h by solving LPP (6.10)
3 Θ′ = 0; Q = {p ∈ P, p ∈ ‖y‖}
4 while

Θ−Θ′

Θ
≥ ε and Q 6= P do

5 V = {v|v ∈ •(Q•) \Q}
6

maximum y′ ·Pre ·D
subject to y′ ·C = 0

y′ ·m0 = 1

y′(p) ≥ h, ∀p ∈ Q
∑

p∈V

y′(p) ≥ h

7 Θ′ = Θ
8 Θ = Throughput of the net composed by the p-semiflow y′

9 Q = {p ∈ P, p ∈ ‖y′‖}
10 end
Algorithm 2: The iterative strategy algorithm for computing upper throughput bounds.

85

Section 6.4 6. Strategies for Upper Throughput Bound Computation in PNs

Figure 6.4: Example of a supermarket system.

Algorithm 2 represents the strategy used to compute throughput upper bounds. As
input, the algorithm needs the SPPN system to be analysed, 〈S, s, r〉, and a degree of
precision (ε > 0) to be achieved. As output, the upper throughput bound, Θ, and the
places belonging to the bottleneck of the SPPN, Q, are obtained. The degree of precision
ε will be used for the stopping criterion of the iterative strategy.

In the first place, the initial upper throughput bound is calculated by LPP (6.6) (step
1). Then, the value of h is computed by using the LPP shown in (6.10) so that the feasibil-
ity of the LP is ensured. The iteration process (steps 4–9) is repeated until no significant
improvement is achieved with respect to the last iteration or until the last obtained bot-
tleneck contains all places in its support. In the worst case, only one place will be added
in each iteration. Therefore, the algorithm complexity is polynomial due to the LPP.

In step 5, the places that share output transitions with some place contained in the
support of y are calculated. Step 6 corresponds to the LPP (6.11). Finally, in step 8
the throughput of the subnet associated to the new bottleneck is considered as the new
upper bound. The throughput is calculated by solving the Markov Chain [Murata, 1989]
associated to the current bottleneck when it can be computed within a practical time, or
by simulation otherwise.

Example. Recall the PN depicted in Figure 4.5 that represents a packet-routing algo-
rithm. Such a PN models an algorithm inside a router where packets arrive and after
checking source and destination of the packets, they are filtered following some defined
rules.

Let the initial marking be nP = 21, nT = 4 and nS = 2. The vector of visit ra-

86

6. Strategies for Upper Throughput Bound Computation in PNs Section 6.4

tios v normalised for transition t1, is vt1 = {1.0, 1.0, 1.0, 0.4, 0.6, 0.6, 0.6, 0.6, 1.0, 1.0}. Ac-
cording to LPP (6.6) (step 1 of the Algorithm 2) the critical bottleneck is composed of
‖y‖ = {p0, p1, p3, p4, p5, p6, p8, p9, p10, p11}, that is, the p-semiflow which corresponds to the
packets’ life-cycle. Such a result indicates that the system has, on average, enough resources
to attend to the expected incoming packets. The upper throughput bound (normalised for
transition T0) of the critical bottleneck is Θ(T0) = 0.567521 (result of LPP (6.6)) and
the value which guarantees the feasibility of the problem is h = 0.037037 (step 2). The
places sharing output transitions with places in ‖y‖, i.e., connected to the critical bottle-
neck, are p2 and p7 (calculated in step 5). Each one corresponds to the resources of the
system, the threads and filtering-threads, respectively. The result of the LPP in step 6
allows to regrow the current bottleneck, imposing that y′(p2) + y′(p7) ≥ h (that is, one
of them, at least, must be contained on the support of y′), and gives the new bottleneck
which is composed of ‖y′‖ = {p0, p1, p2, p3, p4, p5, p6, p8, p9, p10, p11}. The new throughput
is Θ′(t1) = 0.514220 (step 8), which represents an improvement of 9.3919% with respect
to the previous bottleneck. Note that the place added is that representing the number of
threads (i.e., p2).

Let us assume that ε = 0.001. As the relative difference between Θ and Θ′ is 0.093919
(as commented previously), the iteration process carries on. At this point, the only place
that is not connected to the critical bottleneck is p7, which corresponds to the number
of filtering-threads. By solving the LPP in step 6 the new bottleneck is obtained, which
has all the places of the system in its support (i.e., ‖y‖ = P), and the new throughput is
Θ = 0.480642. So, as the support of the new bottleneck contains all places of the net, the
iteration process finishes. The new throughput Θ represents an improvement of 6.5299%
with respect to the previous bottleneck, and a total improvement of 15.3085% with respect
to the initial bottleneck.

The proposed iterative strategy is applied to a larger system in Chapter 8.

6.4.2 Numerical Problems in LPP (6.9)

The strict inequality
∑

p∈V y(p) > 0 in (6.9) is used to compel the components of places
which belong to the next slowest p-semiflow to be positive. Once the LPP (6.9) is solved,
only the strictly positive components are selected. When the solver precision is not very
high, zero components might not be distinguishable from positive components with low
values. To avoid this,

∑

p∈V y(p) > 0 is replaced by
∑

p∈V y(p) > h, with a strictly positive
h. Thus, we need to find a value h > 0 that retains the feasibility of constraints y ·C = 0,
y · m0 = 1. An alternative way to LPP (6.10) to compute a value h such that y ≥ h · 1
and which fulfils both equations is following:

Recall that by the process PN structure, the number of p-semiflows is equal to n + 1,
where n = |PR| is the number of resources in the process PN system. Note as well that the
initial marking m0 of the system will be m0(p) > 0, ∀p ∈ PR ∪ P0, m0(p) = 0, ∀p ∈ PS .
A p-semiflow y that covers all places can be computed by a linear combination of all

87

Section 6.5 6. Strategies for Upper Throughput Bound Computation in PNs

minimal p-semiflows. Remember that each resource has an associated minimal p-semiflow
(see Definition 5).

Let us consider a system with n resources. Then, a linear combination of all minimal
p-semiflows is y = α1 · y1 + α2 · y2 + · · ·+ αn+1 · yn+1, αi > 0,∀i ∈ {1 . . . (n+ 1)}. As y is
a linear combination of p-semiflows, then y · C = 0 is fulfilled. However, factors αi must
be adjusted in order to properly fulfil equation y ·m0 = 1. An intuitive idea for doing this
is the following: as y(p) ·m0(p) > 0 ⇔ p ∈ PR ∪ P0, then y ·m0 = 1 can be reformulated
as α1 · y1(pr1) ·m0(pr1) + α2 · y2(pr2) ·m0(pr2) + · · ·+ αn+1 · yn+1(prn+1

) ·m0(prn+1
) = 1,

where pri represents the place associated to resource ri, ∀i ∈ {1 . . . n}, and prn+1
is the

process-idle place.

By the process PN structure, all positive values of yi will be equal to one. Therefore,
the values αi that fulfil the equation y ·m0 = 1 can be easily calculated as:

αi =
1

m0(pri) · (n + 1)
, ∀i ∈ {1 . . . (n+ 1)}

Hence, a possible value h that fulfils y(p) ≥ h, ∀p ∈ P is, in this case, h = min(αi), ∀i ∈
{1 . . . (n+1)}. Such a value relates the number of resources in the system and the number
of resource instances. Thus, the value of h for most systems of interest in practice is
much higher than the numerical tolerance of the LPP solver (in this paper, the numerical
tolerance of the LPP solver has been set to 10−5).

As the objective function in LPP (6.10) is maximised, the value h obtained from that
LPP will be at least equal to min(αi), ∀i ∈ {1 . . . (n + 1)}, that is: h ≥ min(αi), ∀i ∈
{1 . . . (n+ 1)}.

6.5 Concluding Remarks

Current system requirements often impose tight constraints on time properties such as
system performance. In order to check such requirements, it is necessary to have methods
that accurately evaluate the system performance. Unfortunately, in most cases of interest
it is not possible to compute the exact performance of a system in a reasonable time due to
the state explosion problem inherent to large discrete systems. The state explosion problem
poses difficulties not only for computing exactly the performance of an existing system, but
also for correctly designing new systems. Thus, those methods must, not only be accurate,
but also efficient in order to be applicable to the increasingly complex systems existing in
practice.

In this chapter, we have proposed two methods that can be applied to Stochastic Marked
Graphs and Process Petri nets, respectively. Both methods are based on an iterative algo-
rithm that takes an initial throughput bound and refines it in each iteration. The initial
bound is given by the most constraining (or bottleneck) cycle, i.e., the one with minimum
token to delay ratio. The refinements are achieved by adding to the bottleneck cycle places

88

6. Strategies for Upper Throughput Bound Computation in PNs Section 6.5

and transitions with low token to delay ratio. The bound is refined until no significant
improvement is obtained.

The outputs of both methods are an accurate estimate for the steady state throughput,
and as a by-product, a subnet representing the bottleneck of the system. The first approach
has been applied to a set of Stochastic Marked Graphs of different sizes, where the results
show that few iterations suffice to obtain accurate bounds and that, in general, such bounds
are due to relatively small subnet bottlenecks of the system. The second approach has been
applied to a running example.

Given that both techniques make intensive use of linear programming techniques and
the number of required iterations is usually low, their complexity and computational time
are also low. Such system bottlenecks represent the targets on which potential methods for
performance optimisation might focus.

89

Chapter 7

Compensation of Throughput

Degradation in FT Systems

This chapter introduces the main contributions of this dissertation related to the compen-
sation of throughput degradation caused by any activation of faults in a degradable system.
Recall that degradable systems usually incorporate Fault-Tolerant (FT) techniques to mit-
igate the consequences of fault activations, then conforming a FT system. As it is claimed
in Section 1.1, many of these FT systems are complex systems using shared resources, and
can be naturally modelled as Discrete Event Systems (DES), more precisely as Resource
Allocation Systems (RAS) [Colom, 2003]. Recall that we focus on FT systems using shared
resources modelled as a special class of Petri nets (PNs) called Process Petri nets (PPNs).

The outcome of this chapter have been mainly published in [Rodŕıguez et al., 2013a]
and [Rodŕıguez et al., 2013b].

7.1 Motivation

The throughput of a FT system can be degraded (that is, it becomes lower) by the activation
of faults, or the presence of errors or failures into the system. Thus, it is important to know
the expected failure rate of the overall system when designing it, because some analysis
might be carried out aiming at minimising the throughput degradation caused by faults.

Compensation of a throughput degradation in a FT system can be performed by two
main actions: either the number of items of resources is increased, or the timing of FT
techniques is decreased. However, neither the number of resources (for example, the number
of servers in a web system) can always be increased as desired, nor the timing of FT
techniques can be performed in zero time (ideal time). In the real world, each project of a
new system manages a budget, and this budget limits the number of resources that can be
acquired and the time of FT techniques that can be improved.

The major findings of this chapter are threefold. Firstly, we propose an iterative heuris-

91

Section 7.2 7. Compensation of Throughput Degradation in FT Systems

tics to gauge in the best possible way the number of resources needed so that the overall
system throughput is maximised for Stochastic Process Petri nets (SPPNs). The other
results target to FT systems modelled as SPPN where the compositional PN models for
FT (introduced in Section 4.2) are added: we propose an iterative algorithm to compute
the number of resources that mitigate the impact of activation of faults in a FT system;
and lastly, we propose an Integer Linear Programming Problem (ILPP) that minimises the
cost of compensation needed for maintaining a given throughput in a FT system.

7.2 Maximising Throughput through Resource Optimisa-

tion

In this section we propose a heuristic strategy to gauge the number of resources a system,
modelled as a Process Petri net, should allocate. Our approach for resource optimisation
is similar to Goldratt’s principle [Goldratt and Cox, 1986]: once the system’s bottleneck is
identified, the associated resource is increased.

7.2.1 Calculating the Next Constraining Resource

Let us recall LPP (6.6) to calculate an upper throughput bound of a SPPN. The most
constraining p-semiflow, y, will have just one marked place in its support due to the net
structure (see Definition 5). Assume that the marked place corresponds to a resource place
(not the process-idle place), then given that y constrains the throughput of the whole
system, the addition of more instances to the resource place will result in an increase in
the system throughput. At a certain moment, the resource becomes saturated and adding
more instances does not improve the throughput. This occurs because the constraining
p-semiflow has changed. Note that the upper throughput bound will linearly increase with
the number of tokens of the resource place because it is the only place in ‖y‖ having tokens
and the equation y ·Pre ·D is linear.

Hence, the resource r1 contained in the support of the most constraining p-semiflow yr1 ,
can be increased until yr1 is no longer the bottleneck p-semiflow. Let m0

∆ be the initial
marking vector m0 with an increase α1 of the resource r1, i.e.,

m0
∆ =

{

m0(p), p 6= r1
m0(p) + α1, p = r1

(7.1)

The p-semiflow yr1 is not the only constraining p-semiflow if the following equation holds:

yr1 ·Pre ·D
yr1 ·m0

∆
≤ yr2 ·Pre ·D

yr2 ·m0
∆

(7.2)

where yr2 6= yr1 is a p-semiflow. Note that the p-semiflow yr2 will contain in its support
the next most constraining resource r2, and, by definition, r1 6= r2.

92

7. Compensation of Throughput Degradation in FT Systems Section 7.2

The number α1 of instances of the resource place r1, contained in the most constrain-
ing p-semiflow yr1 , which need to be added to obtain the next constraining resource r2,
contained in the next most constraining p-semiflow yr2 , can be easily computed by solving
the following LPP:

minimum α1

subject to yr2 ·Pre ·D = yr1 ·Pre ·D
yr2 ·C = 0

yr2(r1) = 0 (7.3)

yr2 ·m0
∆ = yr1 ·m0

∆

m0
∆ =

{

m0(p), p 6= r1
m0(p) + α1, p = r1

α1,yr2 ≥ 0

where yr1 is the p-semiflow which contains r1 in its support, yr2 is the p-semiflow which
contains r2 in its support and m0

∆ represents the initial marking vector m0 with the
increase α1 in r1.

Constraints yr2 · Pre · D = yr1 · Pre · D and yr2 · m0
∆ = yr1 · m0

∆ are both parts
(dividend and divisor, respectively) of equation (7.2) equalled. Constraint yr2 · C = 0
ensures that yr2 is a left annuler of the incidence matrix, hence a p-semiflow of the net.
Finally, constraint yr2(r1) = 0 is added to avoid a product of two optimisation variables
(the variable α1 and the variable yr2(r1) in equation yr2 · m0

∆ = yr1 · m0
∆). Moreover,

the variable α1 ∈ R≥0 therefore, the linearity of the optimisation problem is ensured.

Both α1 and the next constraining p-semiflow yr2 are obtained when the LPP is solved.

Note that the increase of a resource r1 does not affect the ratio
y ·Pre ·D
y ·m0

of any other

minimal p-semiflow y which contains another resource in its support (see definition of the
process Petri nets class in Section 2.1). Notice that, as in Section 6.4, a LPP is used to
solve a problem that deals with integer values as the number of resources. This relaxation
of the real domain remarkably decreases the complexity of the approach (the complexity of
solving a LPP is polynomial), at the cost of some loss of precision in the results. Once both
α1 and the next constraining p-semiflow yr2 are obtained, LPP (7.3) can easily be extended
to calculate the next constraining resource and the number of tokens, i.e., instances, to be
increased of both places:

93

Section 7.2 7. Compensation of Throughput Degradation in FT Systems

minimum α1 + α2

subject to y′ ·Pre ·D = yr1 ·Pre ·D
y′ ·C = 0

y′(r1) = 0, y′(r2) = 0 (7.4)

y′ ·m0
∆ = yr1 ·m0

∆

y′ ·m0
∆ = yr2 ·m0

∆

m0
∆ =

m0(p), p 6∈ {r1, r2}
m0(p) + α1, p = r1
m0(p) + α2, p = r2

α1, α2,y
′ ≥ 0

where m0
∆ represents the initial marking vector m0 with the increase α1 of place r1 and

the increase α2 of place r2, and yr1 (yr2) is the p-semiflow which contains r1 (r2) in its
support.

As in LPP (7.3), constraint y′ ·C = 0 ensures that y′ is a left annuler of the incidence
matrix, and hence y′ is a p-semiflow of the net. Besides, constraints y′(r1) = 0 and y′(r2) =
0 ensure linearity of the optimisation problem. Constraints y′ ·m0

∆ = yr1 ·m0
∆, y′ ·m0

∆ =
yr2 ·m0

∆ are the key of this LPP because both values of α1 and α2 can be obtained from
these equations.

Note that y′ ·Pre·D = yr2 ·Pre·D is not a constraint in LPP (7.4). This is a consequence
of the result of LPP (7.3): from the latter LPP where r1 is calculated, it is imposed that
yr2 ·Pre ·D = yr1 ·Pre ·D. The addition of this constraint does not add new information
to LPP (7.4).

LPP (7.4) can be generalised for more resources, as is shown in step 5 of the Algorithm 3.

7.2.2 An Iterative Strategy for Resource Optimisation

This subsection presents an iterative heuristics that aims at maximising the throughput
by increasing the number of resources appropriately. The main idea of the strategy is
to estimate the inflexion points where the constraining p-semiflows change, and hence to
estimate the increase in resources needed. More precisely, each unit of a resource has an
associated cost and the strategy establishes how to spend a given budget such that the
throughput is maximised. The strategy ends either when there is no budget to spend, all
resources have been dimensioned, or the last computed p-semiflow indicates an increase in
the process-idle place.

Algorithm 3 shows the resource optimisation heuristics. For the input, the algorithm
needs the SPPN system to be analysed, 〈S, s, r〉, the set of resources and the process-idle
place of the system, R and p0 (respectively), the assigned budget to be spent, budget, and

94

7. Compensation of Throughput Degradation in FT Systems Section 7.2

Input: 〈S, s, r〉, R, p0, budget, c
Output: n

1 Calculate initial bottleneck y1 by solving LPP (6.6)

2 k = 0; cost = 0; n
′

= 0
3 while cost < budget and k 6= |R| and ‖yk+1‖ ∩ {p0} = ∅ do

4 k = k + 1; cost′ = cost; n = n
′

; A = {p|p ∈ P, p ∈ ‖yj ∩R‖}, ∀j ∈ {1 . . . k}
5

minimum

k
∑

j=1

αj

subject to yk+1 ·Pre ·D = y1 ·Pre ·D
yk+1 ·C = 0

yk+1 ·m∆
0 = yj ·m∆

0 , ∀j ∈ {1 . . . k}

m0
∆ =

{

m0(p) + αj , p ∈ A
m0(p), otherwise

yk+1(p) = 0, p ∈ A

yk+1, αj ≥ 0, ∀j ∈ {1 . . . k}

6 cost = 0; n
′

= 0
7 for αj , ∀j ∈ {1 . . . k} do

8 rj = ‖yj‖ ∩R; n′

j = ⌈αj⌉
9 cost = cost+ ⌈αj⌉ · ci

10 end

11 end
12 if k ≤ |R| and cost ≤ budget then

13 n = n
′

14 end
15 if k < |R| and cost ≤ budget and ‖yk+1‖ ∩ {p0} = ∅ then
16 assignRestOfBudget(budget− cost, 〈S, s〉, R, c, n)
17 end

Algorithm 3: The resource optimisation heuristics.

95

Section 7.2 7. Compensation of Throughput Degradation in FT Systems

the vector of cost c, which assigns a cost ci to each resource ri contained in R. The output
is the number of items ni needed to increase each resource ri.

Firstly, an upper throughput bound y1 of 〈S, s, r〉 is calculated according to LPP (6.6).
After that, the iteration process (steps 3–10) is repeated either until the last assignment
of resources has spent the available budget, or until all resources have been dimensioned,
or until the last computed resource to be increased matches with the process-idle place.

Step 5 calculates, in each iteration, the number of items of a resource which need to
be increased to obtain the next restrictive resource. It should be noted that the LPP in
step 5 is a generalisation of LPP (7.3). After that, the cost of increasing such a number
of instances of the resources is computed. Note that the ceiling integer of the value αj is
taken as the result. There are two reasons for this: firstly, we assume that the number of
instances of the resources must be a natural number; and secondly, when the resource is
not saturated it will still be the restrictive resource.

Finally, step 12 checks whether all the resources have been assigned and that the cost
of new resources does not exceed the given budget. When these conditions are fulfilled,
the last resource assignment is taken as the valid one. Step 15 checks whether there is a
resource that has not been assigned, the last resource assignment does not exceed the given
budget and the last computed p-semiflow does not contain the process-idle place. When
these conditions are fulfilled, the remaining budget may be spent on increasing the system
throughput. A procedure is invoked (assignRestOfBudget, step 16) for spending the rest of
the assigned budget to increase the resources as much as possible. Note that the assignment
of the remaining budget is an NP-problem, similar to the Bounded Knapsack Problem
(BKP) [Kellerer et al., 2004]. To solve it, several heuristics can be used. For instance, a
“round-trip” algorithm which tries to increase all the resources per round until it cannot
longer increase them.

Let us illustrate the use of this strategy through the packet-routing algorithm example,
depicted in Figure 6.4. Suppose an initial marking of nP = 30, nT = 2 and nS = 2, and an
initial budget of $30, 000 dollars. The deployment of each new thread costs $5, 000 dollars,
while a new filtering-thread deployment has a price of $700 dollars. The initial bottleneck
is ‖y1‖ ∩ R = {p2}, that is, the subnet associated to the threads. Therefore, this result
gives us the following information: to attend to 30 packets whose think time follows an
exponential distribution of a mean of 30 minutes, more threads are needed. The LPP at
step 5 gives, in the first iteration, the increase in new threads needed, α1 = 2.666, and the
new constraining p-semiflow, which corresponds to the use of filtering-threads. So, at least
three new threads (⌈α1⌉) are needed to attend to the incoming packets.

As the cost of deployment of a new thread is $5, 000 dollars and the initial budget is
$30, 000 dollars, the new deployments can be done and there is still money which remains
to be spent, so a new iteration can take place. The LPP at step 5 gives, in the second
iteration, the values of α1 = 3.6752 and α2 = 0.4322. Hence, to attend to the packets, four
new threads and one more filtering-thread are needed. As the cost of these are $20, 700
dollars in total, the increase in resources can be carried out. Now, the unassigned budget

96

7. Compensation of Throughput Degradation in FT Systems Section 7.3

is $9, 300 and we can continue increasing both resources in parallel. Indeed, the relation
between both resources is known thanks to the equalities of the ratios.

In this case, even though part of the budget remains to be spent, the new constraining
p-semiflow contains the process-idle place, that is, the place representing packets. Thus,
the resources of the system (threads and filtering-threads) have been optimally calculated
to attend to 30 packets whose think time follows an exponential distribution of a mean of
30 minutes. In this way, the algorithm has computed that to attend to the customers, at
least four more threads and one filtering-threads are needed.

Note that it may happen that the LPP at step 5 returns the p-semiflow containing in
its support the process-idle place in the first iteration. This would indicate that the system
has enough resources to attend to such a number of customers with such a think time.
Therefore, the strategy is also able to compute when a system with an initial configuration
is able to support the estimated workload, or otherwise, to compute the number of instances
of resources needed to be able to support such a workload.

7.3 Minimising Cost of Compensating Throughput Degra-

dation

This section introduces an iterative strategy that computes the number of resources needed
to maintain a given upper throughput bound in a degradable system where our proposed
FT models are added (see Section 4.2).

Such a strategy is presented in Algorithm 4. As input, it needs the description of the
PN model with the FT techniques added to it with the initial marking and the vector of
service times of transitions, 〈N ,m0, δ〉; the upper throughput bound Θ before adding the
FT techniques; and the set YFT of minimal p-semiflows that are modified after adding the
FT techniques. As output, it returns the initial markingm′

0 such that the upper throughput
bound Θ′ of the FT system is greater than or equal than Θ.

Input: 〈N ,m0, δ〉,Θ,YFT

Output: m′
0

1 m′
0 = m0

2 for yi ∈ YFT do
3 m′

0(ri) = maximum(m0(ri), ⌈(yi ·Pre ·D) ·Θ⌉)
4 end
Algorithm 4: An iterative algorithm to compute initial marking needed to maintain a
certain upper throughput bound with a probability of error.

Algorithm 4 works as follows. It iterates in the content of the set YFT of minimal p-
semiflows that have been modified when adding a proposed FT model. For each minimal
p-semiflow yi ∈ YFT , the value of the initial marking for associated resource ri is com-

97

Section 7.3 7. Compensation of Throughput Degradation in FT Systems

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

20

40

60

80

100

120

Probability of error

In
it

ia
l

m
ar

k
in

g

Initial marking nP

Initial marking nT

Initial marking nS

Figure 7.1: Results of initial marking with respect to probability of error.

puted as the maximum of the previous initial marking of the resource (i.e., m0(ri)) or the

⌈(yi ·Pre ·D) ·Θ⌉. The latter equation comes from solving Θ =
m0(ri)

yi ·Pre ·D . The ceiling

is needed because m′
0(ri) ∈ N.

Let us apply the Algorithm 4 in the Petri net example depicted in Figure 4.6 (the packet-
routing algorithm). The previous upper throughput bound is Θ = 0.470588, and the set
of minimal p-semiflows that are modified after adding isolation FT is YFT = {y′

1,y
′
2,y

′
3}.

For a given initial marking m0(p0) = 10,m0(p2) = 2,m0(p7) = 2, Algorithm 4 returns as
solution: m′

0(p0) = m0(p0) = 10,m′
0(p2) = 3,m′

0(p7) = 4. That is, it is needed another
thread and two more filtering-threads to compensate a 20% of errors (and a 5% of them
deriving in solid faults) using reconfiguration as FT technique.

We have plotted in Figure 7.1 the initial marking needed to support the given throughput
of Θ = 0.470588 varying the probability of error re, re ∈ [0 . . . 1], taking steps of 0.01. The
dotted line is the initial number of tokens of p0 (packets, nP), the solid line corresponds to
the initial number of tokens of p2 (threads, nT) and the dashed line is the initial number
of tokens of p7 (filtering-threads, nS). The results show that the number of packets and
threads remain more or less equal, i.e., there is no need to increment too much units to
be able to maintain the given throughput, even with high probability of errors. However,
the number of filtering-threads needed increases rapidly with respect to the probability of
error.

7.3.1 An ILPP for Minimising the Cost of Compensating

In this section, we present an Integer-Linear Programming Problem (ILPP) that minimises
the cost of compensating throughput degradation caused by the presence of errors.

98

7. Compensation of Throughput Degradation in FT Systems Section 7.3

We are able to compute the initial marking needed to maintain a given throughput with
the previous Algorithm 4. However, the increment of items of resources can have a cost in
real systems and we may not be able to increment as much as it is desired. Recall that

equation
m0(ri)

yi ·Pre ·D relates not only the number of items of resources (m0(ri)) but also

activity timings and error (and solid faults) probabilities (D). If we consider a given error
probability re and solid faults probability rs, a compensation may be done in two ways:
either the number of resources in the system can be incremented, or the timing of FT
activities (detection, compensation and recovery phases) can be decremented. Both ways
can have some cost associated.

Let us assume that FT phases are abstracted in single timed transition, i.e., a FT
technique j adds to the system three timed transition: T jdetect (detection phase), T jc (com-

pensation phase) and T jrec/T
j
MTTR (recovery/maintenance phase). Let cri the cost of an

increment of one unit of the resource ri, and c
d
j the cost of a decrement of one unit of time

of detection phase of FT technique j, while ccj(c
rm
j) is the cost of a decrement of one unit

of time of compensation(recovery/maintenance) phase.

We can build an Integer-Linear Programming Problem (ILPP) to compute the minimum
cost that guarantees a compensation of the throughput system after adding a number m
of FT techniques as follows:

minimum

n
∑

i=1

cri · αi +
m
∑

j=1

(

cdj · βdj + ccj · βcj + crmj · βrmj
)

 subject to

m0(ri) + αi ≥ Θ · yi ·Pre ·D′

δ′(T jdetect) = δ(T jdetect)− βdj

δ′(T jc) = δ(T jc)− βcj (7.5)

δ′(T jrec) = δ(T jrec)− βrmj

δ′(t) ≥ δmin(t),∀t ∈ T

αi, β
d
j , β

c
j , β

rm
j ≥ 0, αi ∈ N,∀i ∈ [1 . . . n],∀j ∈ [1 . . . m]

where n p-semiflows have been modified by the addition of m FT techniques to the original
system; D′(t) = δ′(t) · v(t),∀t ∈ T ; and δmin(t) is a lower bound for the service time of
transition t (that is, we impose a minimum service time for transitions). The new number of
resources and firing of transitions will be given by the values of αi, β

d
j , β

c
j , β

rm
j , respectively.

This ILPP is applied to the case study shown in Chapter 8.

99

Section 7.4 7. Compensation of Throughput Degradation in FT Systems

7.4 Concluding Remarks

Software systems are usually subject to faults that may lead to the existence of error and
failures. Normally, Fault-Tolerant (FT) techniques are incorporated to these systems (then
called FT systems) to mitigate the impact of activations of faults. FT systems can be
naturally modelled as Discrete Event Systems (DES) where sharing resources are used.
Usually, the number of resources is the key for the system to obtain a good throughput
(defined as jobs completed per unit of time) for a large number of users/clients. However,
the number of resources (for example, the number of servers) cannot always be increased
as desired. In the real world, each project of a new system manages a budget, and this
budget limits the number of resources that can be acquired.

In this chapter, we firstly provide a strategy whose goal is, given an initial budget and a
cost of each resource, to gauge the number of instances of each resource so that the system
performance is maximised and the budget is not exceeded. This has been achieved by
exploiting the linear dependence of the performance bounds with respect to the number of
resources, and can be applied to any FT system modelled as Process Petri nets. Secondly, we
have presented an iterative algorithm that computes the initial marking needed to maintain
a given upper throughput bound in a system model within our proposed FT models.
Thirdly, we present an Integer-Linear Programming Problem (ILPP) that minimises the
cost of compensating throughput degradation caused by the presence of faults and errors).
The use of linear programming techniques guarantees its efficiency and scalability to large
models.

We have developed a tool, PeabraiN [Rodŕıguez et al., 2012a], which implements the
first of the strategies here presented to make their use easier for practitioners. It enables
both performance estimation and resource optimisation to be computed in systems mod-
elled with Petri nets. The PeabraiN tool is explained in more detail in Chapter 11. We aim
at extending PeabraiN functionality with the second proposed strategy.

100

Part III

Applications

101

Chapter 8

Case Study: a Secure Database

System

This chapter introduces a case study where the approaches presented in Chapters 6 and 7
are tested. We consider the design of a Secure Database System (SDBS) deployed as a Web
Service which stores sensible information. Besides, there exist users which are eventually
accessing to this information. A real application of this kind of system is, for instance, a
web server keeping customer’s data of an insurance company or a bank web server keeping
customer’s balance accounts. This case study has been used in [Rodŕıguez et al., 2013a]
and [Rodŕıguez et al., 2013b] for testing purposes.

8.1 System Description

Using standard UML [OMG, 2005] notation, Figure 8.1 shows the UML Deployment Dia-
gram (UML-DD) of the SDBS, which includes the hardware resources (depicted as cubes)
and their network links (arrows between cubes or proper cubes in the case of intranets).
Software modules stereotyped as artifact (and depicted as squares) are deployed into
hardware resources. We have also used the standard MARTE [OMG, 2009] profile to intro-
duce the system performance properties (e.g., workload, throughput or activities duration):
input parameters (pale grey notes in Figure 8.1 and 8.2) and the metric to be computed
(grey note in Figure 8.2). The architecture of the system is as follows: there exist a pol-
icy host, a security host, a provider host, an application host and a database (DB) host.
Moreover, the latter is isolated and reachable only through a secure intranet connected to
the application host. Note that each of these hosts deploys a concrete service or software
module.

The workload is defined by the number of requests from users concurrently accessing
the SDBS, which is parametrised by the variable $nRequests, an input parameter for the
analysis. The number of hosts (security host, policy host, etc.) has been indicated using

103

Section 8.1 8. Case Study: a Secure Database System

Figure 8.1: SDBS Deployment.

variables ($nSec, $nPolicy, etc.) by the tag restMult, also in the notes in Figure 8.1.
Finally, the throughput of the intranets is considered through variables $intranetLag and$secIntraLag. As output parameter for the analysis, the top-most note in Figure 8.2 defines
the variable $rTime as the response time of the SDBS system. Values for all these input
variables are set in Table 8.1.

The SDBS works as follows: a user interacts with an application outside the system,
which collects its personal data and the type of operation required (let us assume it will be
an update of personal user data) by the user. This information is summarised on a request.
Once generated the request, it needs a security token to be identified before accessing the
system. Once the security token is retrieved, following the UML Sequence Diagram (UML-
SD) diagram depicted in Figure 8.2, the policy host is requested for accessing, which checks
the request, and if the permission is granted then it will invoke the service. The web service
coordinator will communicate with the application service (located in the application host),
which has access to the database application. Then, the DB application definitively updates
the user request into the DB. Finally, the application service informs the coordinator service
that the updating process has finished and sends to it the obtained result.

The acquire (release) of a resource has been indicated through the gaAcqStep

(gaRelStep) stereotype (see notes in Figure 8.2), also denoting the number of resources
acquired (released). To avoid cluttering we only show the first acquire (release) of resource
WS-SecurityToken. The rest of acquires and releases of resources will be annotated in the
same way. Activities have been annotated with gaStep stereotype to specify how long takes,
on average, each activity using the tagged-value hostDemand. As in the previous case, for
illustrative purposes we have just annotated two activities duration. Table 8.1 shows the
duration of each activity for the experiments and the number of instances of each host in
the system.

Description as a Petri net. Figure 8.3 shows the Petri net (PN) obtained
from the transformation of the UML-SD shown in Figure 8.2. The transformation
from UML to PN is documented in [Merseguer et al., 2002, López-Grao et al., 2004,

104

8. Case Study: a Secure Database System Section 8.1

WS-SecurityToken WS-CoordinatorServiceWS-PolicyService WS-DBapplicationWS-ApplicationWS-Requester

Request

doOperation()

initialise()
 validate(encRequest)

transmit(request)

decrypt(encRequest)

requestAccess(encRequest)

 processRequest()

validate(request)

parseOutputFormat()

pack()
 getToken()

sign&encrypt(result)

 transmit(encResult)

 WSDone()

initProcessing()

unpack&validate()

generateToken() token

initProcessing()

unpack&validate()

generateToken()

 getToken()

 validate(encResult)

decrypt(encResult) display(result)

DBwrite()

retrieveData()

checksParams()

sign&encrypt(request)

DBread()

 retrieveData()

 newAccess(request)

«gaRelStep»

{resUnits=1}

«gaAcqStep»

{resUnits=1}

sd SDBS

«gaScenario»

{respTime=(value=$rTime;

 unit=ms; statQ=mean; source=calc)}

«gaStep»

{hostDemand=

 (value=$initProc1,unit=ms,

 statQ=mean, source=est)}

«gaStep»

{hostDemand=

 (value=$genToken,unit=ms,

 statQ=mean, source=est)}

Figure 8.2: SDBS Update Customer’s Data scenario.

105

Section 8.1 8. Case Study: a Secure Database System

Transition Method Value(s)

T0 newAccess() 0.2ms
T2, T8, T10, T49 $delayNet 2.5ms
T13, T16, T19, T23, $intranetLag 0.2ms
T36, T41, T46

T26, T29, T32, T34 $secIntraLag 0.5ms
T4, T43 initProcessing() 1ms
T5, T44 unpack&validate() 0.1ms
T6, T45 generateToken() 0.5ms
T9, T48 sign&encrypt() 0.8ms
T12 initialise() 0.3ms

T15, T22, T52 validate() 0.3ms
T18, T54 decrypt() 1ms
T28, T33 DBread() 0.2ms
T30 checkParams() 0.6ms
T31 doOperation() 0.2ms
T39 parseOutputFormat() 0.3ms
T40 pack() 0.1ms
T55 display() 1.5ms

(a) Activity times

Place Meaning Value(s)

p0 No. users 15, 20, 21, 22, 23 . . . 30
p2 No. request capacity ≥ m0(p0)
p5 No. security hosts 5
p13 No. policy hosts 10
p24 No. coordinator hosts 10
p29 No. application hosts 5
p32 No. DB hosts 2

(b) Initial number (no.) of resources

Table 8.1: Experimental parameters.

106

8. Case Study: a Secure Database System Section 8.1

Figure 8.3: Petri net of the SDBS. Resource places are depicted in dark grey, whilst process-
idle place in light grey.

Distefano et al., 2011], and can be carried out by several tools, such as ArgoPN, ArgoPer-
formance [Distefano et al., 2011] or ArgoSPE. In this case, ArgoSPE tool1 has been chosen
to carry out this transformation because the ArgoSPE output net format is compatible
with GreatSPN tool [Baarir et al., 2009] input net format (used later for analysis in the
experiments). Note that as software engineers usually work with UMLs diagrams, ArgoSPE
is useful in this context for obtaining the PN models we need to work with.

Each resource annotated in Figure 8.1 is represented by a place in the PN: the resource
places (depicted in dark grey) are p7 (security service), p18 (policy service), p26 (coordinator
service), p28 (application service) and p31 (database service), while the process-idle place
(user’s requests, depicted in light grey) is represented by place p0. As in the running example
of Figure 4.5, we consider that there is a place p′0 with the same initial marking that p0,
thus it becomes implicit and it is not considered for the analysis (indeed, we omitted it in
the Figure 8.3). The number of instances of each resource is summarised in Table 8.1, and
they will be represented by tokens in the respective place.

The acquire (release) of a resource has been transformed into an immediate transition
with an input (output) arc. For example, transition t3 represents the acquire of the security
host, while t7 represents the release of such a resource.

Each one of the activities, self-messages in Figure 8.2, has been transformed into an
exponential transition in the Petri net with its corresponding duration (given in Table 8.1).
Each message exchanged through a net among two resources (e.g., getToken()) gives rise
in the PN to an exponential transition (e.g., T2) whose delay is that of the net involved
(e.g., $delayNet). We have assumed that the operations/messages needed for establishing

1https://argospe.tigris.org

107

Section 8.2 8. Case Study: a Secure Database System

communication through the secure intranet are more expensive (in computing time terms).
For this reason, we have set an upper delay for the secure intranet ($intranetLag) than for
the insecure intranet ($secIntraLag). For simplicity, we have assumed the same delay for
each message on the intranet communication independent from its size. process-idle place
(p0). Its values are shown in Table 8.1. The throughput of the system will be calculated by
exact analysis when it can be computed, or by simulation otherwise.

8.2 Experiments and Discussion

In this section we test our approach by performing a set of experiments in the Petri net
that accurately represents the SDBS. After applying our approach, the results obtained
will be discussed.

8.2.1 Performance Estimation

We have carried out the regrowing strategy (Algorithm 2, Section 6.4.1) to estimate the
throughput of the SDBS system with a different number of requests. The overall strategy
has been implemented in MATLAB, while the throughput computation of the SDBS has
been performed with the GreatSPN tool. The GreatSPN tool has been run in an Intel
Pentium IV 3.6GHz with 2GiB RAM DDR2 533MHz host machine.

Table 8.2 shows the results obtained in the set of experiments with the parameters set
as described above. The first column indicates the number of requests, followed by the
number of regrowing steps. We have applied the name regrowing step to each iteration of
the loop of the Algorithm 2. For each number of requests considered in the experiments,
we have simulated the whole system. Such results are indicated in the first row of each
experiment. The next column shows the size of the bottleneck (in terms of the number of
places and transitions) produced by the algorithm and its percentage with respect to the
total size. Then, the result of the upper throughput bound computed by the algorithm is
shown. Such a bound is computed by solving the underlying Markov Chain when this is
computationally feasible [Ajmone Marsan et al., 1995] or by simulating the net otherwise.
Note that in the case of simulation, the upper throughput bound value is the mean of
the simulation values, and the real upper throughput bound value is within an interval of
±4% with a confidence level of 95%. The next two columns show, in the first place, the
percentage of increasing/decreasing improvement of one bound with respect to the previous
upper throughput bound, and secondly, the accuracy of the computed bound with respect
to the throughput of the whole system. The negative relative errors are caused by the
confidence level and degree of accuracy used in the experiments. Finally, the last column
shows the execution time consumed for computing the upper throughput bound of the PN
system. We have distinguished whether the computation of the upper throughput bound
has been achieved by exact analysis († symbol) or by simulation (no symbol).

108

8
.
C
a
se

S
tu

d
y
:
a
S
e
c
u
re

D
a
ta

b
a
se

S
y
ste

m
S
e
c
tio

n
8
.2

Number of Regrowing Size Through- Partial Bound Execution
requests step |P | (%) |T | (%) put improvement error time (s)

15

(full system) 61 (100%) 56 (100%) 0.525685 > +1 day
(initial bound) 56 (91.80%) 56 (100%) 0.551637 - 4.7045% 5.87s

1 57 (93.44%) 56 (100%) 0.533037 3.3718% 1.3792% 122.94s
2 58 (95.08%) 56 (100%) 0.522379 1.9995% −0.6330% 751.20s
3 59 (96.72%) 56 (100%) 0.522346 0.0063% −0.6393% 34256.97s

20

(full system) 61 (100%) 56 (100%) 0.652313 > +1 day
(initial bound) 56 (91.80%) 56 (100%) 0.735930 - 11.3621% 5.80s

1 57 (93.44%) 56 (100%) 0.675957 8.1493% 3.4979% 302.60s
2 58 (95.08%) 56 (100%) 0.637812 5.6431% −2.2735% 300.17s
3 59 (96.72%) 56 (100%) 0.637860 −0.0075% −2.2658% 3166.09s

21

(full system) 61 (100%) 56 (100%) 0.671806 > +1 day
(initial bound) 9 (14.75%) 9 (16.07%) 0.740741 - 9.3063% 0.18s†

1 57 (93.44%) 56 (100%) 0.697133 5.8871% 3.6331% 826.82s
2 58 (95.08%) 56 (100%) 0.653556 6.2509% −2.7924% 280.46s
3 59 (96.72%) 56 (100%) 0.653116 0.0673% −2.8616% 2216.06s

22

(full system) 61 (100%) 56 (100%) 0.687808 > +1 day
(initial bound) 9 (14.75%) 9 (16.07%) 0.740741 - 7.1459% 0.18s†

1 57 (93.44%) 56 (100%) 0.713762 3.6422% 3.6362% 2763.5s
2 58 (95.08%) 56 (100%) 0.666148 6.6709% −3.2515% 502.95s
3 59 (96.72%) 56 (100%) 0.667222 −0.1612% −3.0853% 1502.62s

23 . . . 30
(full system) 61 (100%) 56 (100%) 0.700056 > +1 day
(initial bound) 9 (14.75%) 9 (16.07%) 0.740741 - 5.4925% 0.18s†

1 14 (22.95%) 13 (23.21%) 0.740733 0.0011% 5.4915% 0.262s†

Table 8.2: Experimental results for number of requests {15, 20, 21, 22, 23 . . . 30}.

109

Section 8.2 8. Case Study: a Secure Database System

Figure 8.4: Throughput of the SDBS with variable number of users.

Note that in all cases the computation of the throughput of the whole system takes
longer than one day of simulation time to finish, even though the evaluated system is an
academic example. For larger systems, simulations may need a long convergence time, and
therefore the usefulness of bounds computation is proved.

The degree of precision (ε) of the Algorithm 2 has been set to 10−3. As can be ob-
served, the initial bottleneck with the lowest number of requests (15, 20) corresponds to
the underlying state machine (this is the result of removing resource places from the net in
Figure 8.3). Again, this result indicates that the system’s resources are well-dimensioned
for attending to such a number of requests. In the case of 15 requests, in each iteration
step there is no significant improvement (near to 6% in two iterations) and the regrowing
strategy finishes in few steps. However, the greatest improvement occurs when the requests
reach 20 units. In such a case, the first regrowing achieves an improvement near to 8%,
reaching over 13% in the next iteration.

It is interesting to note what happens when the requests are increased to 21. For this
value, the initial bottleneck is produced by one of the system’s resources (specifically, the
number of DB application hosts). This implies that the throughput bound of the system
will remain the same for any number of requests over 21 (see Average thr. of first regrowing
step for a number of requests greater than 21). In other words, requests will start waiting
to be attended to if their number is equal to or higher than 21. Besides, note that when the
number of requests is greater than 23, in the second iteration step there is an improvement
in the upper throughput bound lower than 10−3%.

As stated previously, the most significant improvement occurs when the number of

110

8. Case Study: a Secure Database System Section 8.2

requests is 20. In just one iteration step, the initial throughput bound is improved by a
value of nearly 8%. This indicates that the proposed method is more useful (i.e., it achieves
a significant improvement in the upper throughput bound in few iterations) if the resources
and requests are more well-balanced. Besides, it should be noted that the simulation of the
whole PN becomes unfeasible for large systems, as indicated by the execution time.

The throughput results have been plotted in Figure 8.4. The throughput is drawn for
each number of requests and for each step. Besides, the result of LPP (6.6) has also been
drawn (dotted line). The LPP values match the throughput values of the initial bottleneck.
As expected, the result of solving the LPP (6.6) (dotted line) is an upper bound of all the
rest of the values. As can be seen, the improvement in the upper throughput bound for
each regrowing step is almost insignificant in the case of requests lower than 20 or greater
than 25. While the number of requests is near to 20, the relative difference between the
throughput of the initial upper throughput bound and the first iteration becomes greater,
reaching its maximum in the case of 20 requests. After that point, it becomes lower even
tending towards a minimal difference near to zero (see, for instance, the case of 30 requests).

Finally, the execution time shown in last column in Table 8.2 indicates that the bigger
the size of the net, the longer it takes to complete the simulation. Note that small additions
to the net (i.e., just one place) normally cause an execution time of one or two orders
of magnitude greater than previous executions. However, the improvement of the upper
throughput bound is not so significant as to justify such an amount of execution time.

The main conclusions that can be extracted from both experiments can be summarised
as follows:� there exists a number of requests (inflexion point) at which the initially most restric-

tive p-semiflow of the system changes. Around such an inflexion point, the accuracy
of the initial throughput bound is low. This occurs because when the slowest p-
semiflow of the system is much slower than the others, it predominates over them
and the system throughput is determined by the throughput of such a p-semiflow. The
initial throughput bound is therefore usually quite accurate. However, when several
p-semiflows have similar speeds, none of them predominates over the others. Hence
the initial throughput bound, which considers just one p-semiflow, is less accurate;� the improvement in the upper bound is specially significant in the proximity of the
inflexion point.

As future work, we aim to continue researching into performance estimation based on
performance bounds, seeking to obtain some quality bound characterisation. The use of LP
problems and the token/delay ratio between p-semiflows in a PN system could be useful
for this goal.

As the reader can imagine, it would be of great interest to be able to compute such
inflexion points directly. This is the goal in the next set of experiments.

111

Section 8.2 8. Case Study: a Secure Database System

Figure 8.5: Different resources configurations and their associated cost.

8.2.2 Resource Optimisation Maximising Throughput

For these experiments, the number of requests has been set to nRequests = 100, whilst
the initial number of resources remains unchanged: 5 security hosts, 10 policy hosts, 10
coordination hosts, 5 application hosts and 2 DB application hosts (summarised in Ta-
ble 8.1). Let the budget be $20, 000 and the costs per resource be: $3, 500 per security host
(represented by place p7), $1, 000 per policy host (place p18), $2, 000 per coordinator host
(place p26), $500 per application host (place p28) and $500 per DB application host (place
p31). The prices of the hosts reflect either the cost of the physical hardware or the cost of
reimplementing the services.

Applying the optimisation strategy introduced in Section 7.2.2, the initial restrictive
resource is the number of DB application hosts, $nDBapps (initial tokens of place p31).
The algorithm in Figure 3 computes the new restrictive resource, the security hosts, and the
number of DB application hosts needed to be increased (which is just one host). As the cost
is $500 per DB application host and there is a budget of $20, 000, the increase is possible.
The strategy continues looking for the next restrictive resource. The second iteration gives
as a result the new restrictive resource (application host) and the new instances of DB
application and security hosts, respectively, 2 and 5 units. The increase of such resources
has a cost of $18, 500, so it can be afforded. The new restrictive resource after the third
iteration is the number of coordinator hosts. This time, it is necessary to increase the
security hosts by 6 units, the DB application hosts by 3 units and the application hosts

112

8. Case Study: a Secure Database System Section 8.2

by 1 unit with respect to the initial configuration. This last assignment has a cost greater
than the initial budget, so the iteration process finishes and the previous assignment is
taken as the valid one (5 security hosts and 2 DB application hosts). Moreover, there is
no possibility of spending the rest of the budget (which amounts to $1, 500) Therefore, the
optimisation strategy ends.

Hence, with the initial configuration and the given budget, the number of security hosts
needs to be increased by 5 units and the number of DB application hosts by 2 units in
order for the system resources to be optimally distributed and the throughput maximised.

Figure 8.5 plots the upper throughput bound (dashed line) of each configuration of
resources, its associated cost in dollars (dotted line) and the total assigned budget (solid
line). Initial cfg. (configuration) is 5 security hosts, 10 policy hosts, 10 coordination hosts,
5 application hosts and 2 DB application hosts. Cfg. 1 refers to the increase by one unit of
DB application hosts, whilst Cfg. 2 indicates the last assignment of resources computed:
the increase of 5 security hosts and of 2 DB application hosts. Finally, Cfg. 3 refers to the
configuration which cannot be afforded with such a budget ($20, 000): an increase in the
security hosts by 6 units, the DB application hosts by 3 units and the application hosts
by 1 unit with respect to the initial configuration. As can be observed in Figure 8.5, the
cost of the last resources configuration exceeds the assigned budget, so the solution for the
resource distribution is the previous configuration.

The evolution of the upper throughput bound is worth remarking. With the initial con-
figuration, the upper throughput bound is Θ = 0.740740. In the first configuration, the
upper throughput bound increases by 0.75% (Θ = 0.746271), while in the second config-
uration it increases by almost 100% (Θ = 1.470598). Finally, with the third configuration
the upper throughput bound increases by 9.68% (Θ = 1.612920).

8.2.3 Resource Optimisation Minimising Cost while Adding FT Tech-

niques

In this section, we consider the addition of a Fault-Tolerant (FT) technique PN-based model
as described in Section 4.2, and we apply to the combined model the resource optimisation
strategies presented in Section 7.3.

Consider that transition that represents an operation on data after reading the DB, T31,
may fail with a probability of 0.15. We decide to add a reinitialisation FT technique FT 1,
without compensation phase and with a concurrent error detection that takes, on average,
δ(T 1

detect) = 0.5ms. The recovery time, i.e., the time needed for reconfiguring DB service
takes, on average, δ(T 1

rec) = 20ms. Lastly, place p36 (the one before faulty transition T31)
is labelled as p36|rtn.

The upper throughput bound of the system is, before adding the FT technique, Θ =
1.481481, and it is associated to the minimal p-semiflow of p32 – i.e., WS-DBApplication.
When adding the FT technique described, the minimal p-semiflows that are modified cor-
respond to the ones that use T31, i.e., yp0 ,yp2 , yp29 and yp32 , and the upper throughput

113

Section 8.3 8. Case Study: a Secure Database System

bound decreases near to a 133.98%, that is, Θ′ = 0.633147 and it is related as well to
WS-DBApplication.

Let us apply now Algorithm 4 to compute the initial marking needed to compen-
sate the throughput degradation. The minimal p-semiflows under study here are: y′

p0
=

yp0 ∪ {•T31, T •
31, p

1
4},y′

p2
= yp2 ∪ {•T31, T •

31, p
1
4},y′

p29
= yp29 ∪ {•T31, T •

31, p
1
4},y′

p31
=

yp31 ∪ {•T31, T •
31, p

1
4} (the other p-semiflows y′′

p0
,y′′

p2
,y′′

p29
,y′′

p31
are not of interest

due to δdetect <= δ31). The computation of value of y1
pi

· Pre · D is, respec-
tively, 41.9520, 41.6557, 10.3965, 9.3594. Thus, the solution of Algorithm 4 is m′

0(p0) =
100,m′

0(p2) = 50,m′
0(p29) = 11,m′

0(p31) = 10. That is, the number of WS-Application
(p29) and WS-DBApplication (p31) must be incremented to 11 and 10 units, respectively,
to maintain the given throughput of Θ = 1.481481 and a probability of error of 0.15. If
resources are incremented as it is given by the solution of this algorithm, the new upper
throughput bound has a value of Θ′ = 1.567476.

Let us consider that the addition of new resources has some associated cost, more
precisely, the cost of adding new instances of any host service is $350 each (for instance,
because new licenses for deploying more virtual servers must be purchased). In the case of
recovery method, it can be improved having a cost, on average, of $250 per each millisecond,
and the minimum required time for recovering is 5ms (i.e., δmin(Trec) = 5ms).

With this configuration, we apply now the proposed ILPP (7.6) for computing the min-
imal cost that compensate a probability of error of 0.15. The result of applying ILPP (7.6)
is that 4 more resources of WS-Application (p29), 5 more resources of WS-DBApplication
(p32) and recovery time must be decremented in 2ms. The cost associated to these actions
is $3, 650. After applying these changes, the upper throughput bound is Θ′′ = 1.500441,
which represents an improvement near to 1.28% of the previous upper throughput bound
Θ.

Note that as the number of resources and the timing must be natural numbers, we will
always obtain an upper throughput bound in the FT system where results of ILPP (7.6)
are applied (slightly) better than in the original system model.

In summary, the solution of Algorithm 4 has an associated cost of $3, 850, because
11 more resources must be added, whilst the solution giving by minimising cost through
ILPP (7.6) costs $3, 650.

8.3 Concluding Remarks

The formalism of Petri nets allows one to model the behaviour of a large class of artificial
systems in which resources are shared by the different tasks. The performance of these
systems, which is usually measured as the number of completed operations per time unit,
is often a system requirement. Unfortunately, in most cases of interest it is not possible to
compute the exact performance of a system in a reasonable time due to the state explosion
problem inherent to large discrete systems. To overcome this issue, performance estimation

114

8. Case Study: a Secure Database System Section 8.3

is based on bounds computations.
Chapters 6 and 7 propose several strategies for estimating efficiently the performance

of a given system and for, given an initial budget and a cost of each resource, gauging
the number of instances of each resource so that the system performance is maximised
and the budget is not exceeded. Such strategies have been applied to a process Petri net
modelling a Secure Database System in this chapter. The performance of such a system
has been evaluated for different workloads, and a distribution of resources that maximises
the throughput for a given budget has been estimated by using several algorithms that
consider different initial conditions.

115

Chapter 9

Case Study: an E-Commerce

System

This chapter introduces an E-Commerce System (ECS) where the model-based methodol-
ogy previously introduced in Chapter 5 is applied. This case study has been used published
in conjunction with the model-based methodology in [Rodŕıguez et al., 2012d].

9.1 System Description

The model-based approach introduced in Chapter 5 has been applied to an E-Commerce
System (ECS). It is a web-based system that manages business data: customers browse
catalogues and make selections of items that need to be purchased; at the same time,
suppliers can upload their catalogues, change the prices and the availability of products
etc.

An overview of the ECS Performance-Annotated Application Model (see Figure 5.1) is
depicted in Figure 9.1.

Figure 9.1(a) reports the UML Use Case Diagram representing the services we consider
in our analysis. In particular, the makePurchase service is executed only if a customer has
been properly logged into the system, i.e., by invoking the login service. A logged user
can either make a purchase, with a probability of 0.7 (as indicated by the tagged value of
gaStep stereotype of the MARTE profile), or asking for other services with a probability
of 0.3. The gaScenario annotations in makePurchase remark the existence of two different
scenarios, one which occurs with a probability of 0.25 and has a duration of 2.5ms, and the
other one with a probability of 0.75 and an average duration of 7.5ms.

Figure 9.1(b) reports the UML Deployment Diagram. ECS has a number of web servers
nodes which attend the incoming requests. Such servers are connected through a Wide
Area Network (WAN) to a dispatcher node which forwards requests to a control node and
a database node, through a Local Area Network (LAN). A monitor node is intentionally

117

Section 9.2 9. Case Study: an E-Commerce System

added to implement the Ping&Restore FTT, and it will be used when designing security
strategies.

Figure 9.1(c) reports the UML Sequence Diagram of the login service. When a new login
request arrives to the system, the web server redirects it to the dispatcher, which diverts
it to the user controller. The latter component finally communicates with the database to
get the actual user credentials (i.e., user name and password). Once the user controller
receives the user credentials from the database, it verifies them against the ones provided
by the user. If verification is successful (which happens 85% of times), then the customer is
logged into the system, and the corresponding acknowledge is sent back to the web server.

Note that MARTE [OMG, 2009] annotations indicate, for instance, some performance
features of the system. For example, the incoming requests to ECS are characterised by an
incoming rate of $cusRate, in terms of milliseconds (gaStep stereotype), see Figure 9.1(c).
The verification of user credentials (verifyUserCredentials method) consumes, on average,
12.4ms, as specified in the hostDemand tagged value, see Figure 9.1(c).

9.2 Experiments and Discussion

In this section, we introduce the experiments we have carried out and discuss the obtained
results. We firstly describe the experimental setting (see Section 9.2.1) of our case study:
the step-wise application of the approach presented in Section 5.3 is discussed as well as the
input parameters used for the experimentation. Then we collect the experimental results
(see Section 9.2.2) of our case study: performance models are simulated and a performance
index (i.e., the throughput of the system) is studied across different design configurations.

9.2.1 Experimental Setting

The first step of our approach (see Figure 5.1) is to annotate the performance-
annotated application model by means of the SecAM profile [Rodŕıguez et al., 2010,
Rodŕıguez et al., 2011] in order to specify attacks, vulnerabilities and intrusions in UML
models.

We assume that the login service can be the objective of external attackers that have the
objective of bringing down the system while consuming its resources. The incoming requests
are annotated through secaAttackGenerator stereotype describing an attack occurrence
probability of rate $attRate. Hence, we obtain a Security-Annotated Application Model (see
Figure 5.1).

Security annotations indicate to add several SMs and FTTs. In particular, for our experi-
mentation we consider: (i) SMs, i.e., encryption and decryption, digital signature generation
and verification; (ii) FTTs, i.e., switch over failing and ping&restore. An overview of the
ECS SMs-FTTs-Annotated Application Model (see Figure 5.1) is depicted in Figure 9.2.

The activity of enabling Security Mechanisms (see Figure 5.1) leads to introduce SMs in
the communication between the web server and the dispatcher. Figure 9.2 shows that before

118

9. Case Study: an E-Commerce System Section 9.2

login

makePurchase

Customer

«gaScenario»

{prob=0.25;

hostDemand=(value=2.5; unit=ms;

 statQ=mean; source=est)}

«include»

«gaScenario»

{prob=0.75;

hostDemand=(value=7.5; unit=ms;

 statQ=mean; source=est)}

«gaStep»

{prob=0.70}

<<����e���	
��
webServerNode_cpu

dispatcherNode

<<����e���	
��
controlNode

<<����e���	
��

<<����e���	
��
DataBaseNode

d�
���	e�de�A

��c
��o�de�A

webServerDispatcherWAN

<<����e���	
��
monitorNodeFTTwe��e��e�

MonitorLAN

(a) UML Use Case Diagram. (b) UML Deployment Diagram.

1.1: login(r)

opt

db : databaseuc : userC����ollerd : dispatcherws : webServer

Customer

2.1: l������

2� ��������Cu ��!��

v���"y# ��Cr�������l $�,��%

 ���# ��Cr�������l $��)

1.1.1.1.1:

1.1.1.1: ch��&L����'($�%

�h��&k����Cu ��!��$�%

1� l����)�*u� �$�)

�h��&Cu ��!��s��!'($�%

1.1.1.2:

1.1.1.1.2:

1.1.1

[���� �����Cu ��!��+ «gaStep»

{hostDemand=

 (value=12.4; unit=ms;

 statQ=mean; source=mea)}

«gaStep»

{prob=0.85}

«gaStep»

{hostDemand=

 (value=$cusRate; unit=ms;

 statQ=mean; source=est)}

«gaStep»

{hostDemand=

 (value=2; unit=ms;

 statQ=mean; source=mea)}

«gaStep»

{hostDemand=

 (value=0.5; unit=ms;

 statQ=mean; source=mea)}

(c) UML Sequence Diagram.

Figure 9.1: ECS Performance-Annotated Application Model.

119

Section 9.2 9. Case Study: an E-Commerce System

sending data the web server generates a digital signature (box DSGeneration) and encrypts
the credentials inserted by the users (box Encryption). Both the digital signature and en-
crypted data are forwarded from the dispatcher to the user controller and finally to the
database. This latter component needs to decrypt (box Decrypt) the received data and ver-
ifies the digital signature (box DSVerification). Hence, we obtained a SMs-Enabled Applica-
tion Model (see Figure 5.1). We do not execute the performance analysis of such model be-
cause such experimentation has been already performed in [Cortellessa et al., 2010a], hence
we decided to only analyse such model in conjunction with application models equipped
with FTTs.

The activity of enabling Fault-Tolerant Techniques (see Figure 5.1) leads to introduce
FTTs in order to protect the web server. Both the FTTs we presented in Section 4.3.2 are
considered in our experimentation. In particular, the addition of FTTs gives rise to two
different system models: (i) the FTTs-Enabled Application Model (SoF), where only the
Switch Over Failing FTT has been considered; (ii) the FTTs-Enabled Application Model
(P&R), where only the Ping And Restore FTT has been introduced. The SoF technique
is depicted in Figure 9.2, whereas a monitor node is intentionally added to implement
the P&R technique, as reported in Figure 9.1(b). Hence, we obtained two FTTs-Enabled
Application Models (see Figure 5.1).

The input parameters used for our experimentation have been reported in Table 9.1
(system resources and number of their instances) and Table 9.2 (timing of system actions).

As already mentioned in Section 5.3, the definition of security parameters is embedded
in the Security-Annotated Application Model (see Figure 5.1) where they are defined in an
application-independent way. However, the task of enabling security implies the usage of
such strategies at the application level, thus they can be influenced by further application-
dependent characteristics. For example, the encryption mechanism efficiency is influenced
by the key length of the encryption algorithm, the speed of the CPU executing the en-
cryption algorithm, the length of the message to be encrypted, etc. In particular, we refer
to [Ariu et al., 2011, Sousa et al., 2010a,Menascé, 2003] in order to determine reliable nu-
merical values, whereas application-dependent parameters come from the experimentation
we conducted in [Cortellessa et al., 2010b].

In the sequel of this section the input parameters are defined as follows. IDS parameters
($analyse, $hitRate) have been chosen following values of an IDS given in [Ariu et al., 2011]
(a mean value for analysing of 32.04ms, and a generic-attack detection rate of 71.4%). The
input parameters for the monitor ($wait, $tOut) have been set to 5 minutes and 1ms, respec-
tively. Timing of recovering replicas have been taken from [Sousa et al., 2010a]. The timing
values of the referenced UML-SD SMs have been chosen from [Cortellessa et al., 2010b]
and [Menascé, 2003] while considering the MD5 hash algorithm with a public key length
of 1024 bits.

For incoming requests, we have set a rate equal to 37 visitors per second as happens in
the Amazon site. We have estimated a think time of registered customers of 2 minutes, and
after such a time, then the customer may decide either logout or make a purchase, having

120

9. Case Study: an E-Commerce System Section 9.2

Resource No. instances

webServer 50

dispatcher 40

userController 30

database 20

webServer (replicas) 5

watchDog 5

Table 9.1: Experimental parameters: system resources and number of instances.

Method name/UML-SD Duration (ms)

login 0.5

checkLoginCustomer 0.5

checkLoginDB 0.5

checkCustomerItemDB 2

sendUserCredentials 0.5

verifyCustomerCredentials 12.4

acceptedCustomers 0.5

loginOK 0.5

UML-SD DSGeneration 107

UML-SD DSVerification 68

UML-SD Encryption 117

UML-SD Decryption 117

Table 9.2: Experimental parameters: execution times of system actions.

121

Section 9.2 9. Case Study: an E-Commerce System

«secaAttackGenerator»

{attack=(occurrenceProb=

 (value=$attRate, source=est);

 type=Active; class=ResourceConsuming;

 kind=Flooding; objective=Denial-of-Service)}

«gaStep»

{hostDemand=

 (value=$cusRate; unit=ms;

 statQ=mean; source=est)}

«gaStep»

{hostDemand=

 (value=2; unit=ms;

 statQ=mean; source=mea)}

«gaStep»

{hostDemand=

 (value=12.4; unit=ms;

 statQ=mean; source=mea)}

«gaStep»

{hostDemand=

 (value=0.5; unit=ms;

 statQ=mean; source=mea)}

opt

ref

D-./0/345ion

ref

E06ryption

ref

D/63785

ref

D-9/3:;64tion

=3/>:?5/3/@BF?5GH/3I

ref

-S:56JKL/3M4:a:0>

@N O @454N4?/F6 O F?/3ContrGaa/3@ O @:?8456J/3S? O S/N-/3L/3

BF?5GH/3

PO aG>:0Q3)

PRTRURTO aG>:0KV

PRTRUO 466/85/@BF?5GH/3

2.1.2: L/3:W7X?/3Br/@/05:4a?Q3Y43Z

?/0@X?/3Cr/@/05:4a?Q43)

2.1.1.1: cJ/6\BF?5GH/3]5/HD^Q3Z

2.1.1: ch/6_G>:0D^Q3Z
2.1: 6J/6_G>:0BF?5GH/3Q3Z

1.1: aG>:0Q3Z

TO aG>:0`/bF/?5Q3)

«gaStep»

{prob=0.85}

2.1.1.2:

sd prG6/??`/bF/?5

Figure 9.2: ECS SMs-FTTs-Enabled Application Model.

122

9. Case Study: an E-Commerce System Section 9.2

a probability of 0.3 and 0.7, respectively. As it is shown in Figure 9.1(a), a new purchase
may have two different scenarios, each one with different duration.

9.2.2 Experimental results

The experimentation has been conducted while considering the following scenarios: (i)
the Performance-Annotated Application Model (see Figure 9.1); (ii) the FTTs-Enabled
Application Model (SoF), i.e., without SMs but with SwitchOverFailing FTT only; (iii)
the FTTs-Enabled Application Model (P&R), i.e., without SMs but with Ping&Restore
FTT only; (iv) the SMs-FTTs-Enabled Application Model (SoF), i.e., with SMs and the
SwitchOverFailing FTT only (see Figure 9.2); (v) the SMs-FTTs-Enabled Application
Model (SoF + P&R), i.e., with SMs and both FTTs.

The transformation from UML software models to GSPN performance models has been
carried out by ArgoSPE [Gómez-Mart́ınez and Merseguer, 2006] tool. We have used the
PeabraiN simulator (introduced in Chapter 11), which is a PNML-compliant tool and allows
to simulate GSPNs in transient mode. We have simulated an execution of the system of 2
hours with the experimental parameters reported in Tables 9.1 and 9.2.

Figure 9.3 shows the experimental results. Figure 9.3(a) reports the system through-
put (transactions completed per unit of time) while varying attack rates from 0.05 to 0.4.
When we consider attacks, the system throughput of the performance-annotated applica-
tion model quickly drops down, reaching values lower than 10−4. In fact, when the request
is an attack but it is not detected, then the server collapses and it needs to be repaired,
and such procedure lasts for 30 minutes.

On the contrary, when FTTs are enabled, the system is able to mitigate the effects
of attacks, maintaining a certain level of server availability. However, the throughput of
the FTTs-Enabled Application Model (SoF) is greater than the throughput of the FTTs-
Enabled Application Model (P&R). Finally, we can observe that when we consider a sce-
nario with SMs and both FTTs then the throughput outperforms any other combination.
Ultimately, if the system is subjected to an increasing probability of attacks, then a better
throughput is achieved while considering SMs and both FTTs, rather than considering
FTTs in an isolated way.

Figure 9.3(b) reports the system throughput while varying the incoming customers rate
from 5 to 40, and with a fixed attack rate of 1%, in all the considered scenarios. As it
is shown, the throughput in the performance-annotated application model and with the
P&R FTT only remains quite constant despite the increasing of the incoming customers
rate. The throughput in the latter scenario, however, outperforms the former. In the rest
of scenarios, the more incoming customers, the more throughput is achieved. The highest
throughput is obtained in the scenario where SMs and both FTTs have been added. These
results show that such scenario, i.e., SMs-FTTs-Enabled Application Model (SoF + P&R),
is able to successfully support the increasing rate of incoming customers.

We can conclude that the conjunction of both FTTs techniques is beneficial for the

123

Section 9.2 9. Case Study: an E-Commerce System

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.5

1

1.5

2

2.5

3

3.5
x 10

f3

Attacks (%)

T
h
ro

u
g
h
p
u
t

Application model

FTTsgEnabled Application model (SoF)

FTTsgEnabled Application model (P&R)

SMsgFTTsgEnabled Application model (SoF)

SMsgFTTsgEnabled Application model (SoF + P&R)

(a) Throughput of the system while varying attacks rate.

5 10 15 20 25 30 35 40
2

4

6

8

10

12

14

16x 10
−3

Incoming customers rate

T
hr

ou
gh

pu
t

Application model
FTTs−Enabled Application model (SoF)
FTTs−Enabled Application model (P&R)
SMs−FTTs−Enabled Application model (SoF)
SMs−FTTs−Enabled Application model (SoF + P&R)

(b) Throughput of the system while varying incoming customer rate.

Figure 9.3: ECS Performance Analysis Results.124

9. Case Study: an E-Commerce System Section 9.3

application model. As future work we plan to investigate the system throughput while
varying the probability of detecting attack conditions, i.e., by increasing the detection rate
of the IDS algorithm.

We recall that the the goal of this chapter is to validate a methodology that applies FTTs
and SMs at the architectural level by enabling the possibility of computing performance
impact before deployment. More in general, several security capabilities can be tested to
find the most suitable options.

From a performance analysis viewpoint, our experimentation follows standard practices:
a performance model is built, instrumented with input parameters and finally evaluated
through simulation. Further experimentation can be conducted by instrumenting the model
with different numerical values for the experimental parameters. As future work, we plan
to apply our approach to other real world examples in order to assess the scalability of the
framework.

9.3 Concluding Remarks

In Chapter 5 we have introduced a model-based methodology for performance prediction of
critical systems which combine Fault-Tolerant Techniques (FTTs) and/or Security Mech-
anisms (SMs).

In this chapter, we validated our proposal given in Chapter 5 by applying it to a case
study. The experiments put on evidence that our approach enables the estimation of system
performance when adding security protection strategies, and sensitive analysis (testing
various security alternatives) can be carried out as support while designing critical systems.

125

Chapter 10

Performance Analysis of

Data-Intensive Workflows

This chapter addresses the main contributions of this dissertation related to performance
analysis applied to a more specific domain, namely, scientific workflows. The major findings
of this chapter have been published in [Rodŕıguez et al., 2012b, Rodŕıguez et al., 2012c]
and [Rodŕıguez et al., 2013].

10.1 Motivation

Using workflow techniques, scientists can specify their computational experiments by
means of a control/data flow graph, consisting of a set of tasks and the dependen-
cies between them. Workflow enactors can subsequently interpret these specifications,
enabling tasks in the graph to be mapped onto distributed resources. There are, how-
ever, several efficiency limitations of the workflow system in performance and resource us-
age [Park and Humphrey, 2008]. Such limitations may be due to limited parallelism within
the application, or due to the workflow enactment engine. In data-intensive workflows, the
enactors must be efficient in both mapping tasks to resources and in transferring large
data files between tasks. Previous approaches exploit data location and link bandwidth
information to minimise data movement or move data via higher capacity links whenever
possible. Such an approach of moving the largest files via the highest-capacity links can
result in sub-optimal workflow execution [Park and Humphrey, 2008].

This data movement policy generally involves moving the output data of a task to
its successor node immediately after completing its execution. However, if a task needs
multiple files to be made available before it can begin execution, it will remain idle until all
the required data files from other predecessor nodes have been delivered. It is therefore not
how fast each file can be moved to the task, but the interval from the delivery of the first file
to the last one that is most significant. Even if the first file is delivered quickly, the task must

127

Section 10.1 10. Performance Analysis of Data-Intensive Workflows

still remain idle until others are also available. In consequence, the effective use of network
bandwidth and the buffer/storage at the receiving task is not made. If one file arrives too
early taking up all of the network bandwidth for one task, it may be at a determent to other
tasks (which may have to wait for their data to be delivered) – even though the receiving
task still has to wait for other files. Similarly, if there is limited buffer capacity at the
receiving task and the buffer needs to be shared between tasks, a quick delivery of one file
(while waiting for other files to be delivered) for a task excludes other tasks from using the
same buffer. In general therefore, the current practise of moving data from one location
to another as early as possible is often either: (i) unnecessary when viewed in isolation
(both in terms of networking and buffering): any data file that arrives much before the last
needed data file or ii) harmful when viewed in-the-large: there is only finite capacity on
each link and a limited buffer capacity – multiple concurrent data movement operations
can significantly slow each other down, or an inappropriate buffer usage may lead to a
buffer overflow. Park & Humphrey analysed this problem in [Park and Humphrey, 2008]
and proposed a data-throttling framework that allows a workflow programmer/engine to
describe the requirements on the data movement delay. This technique can be utilised to
balance the execution time of workflow branches and eliminate unnecessary bandwidth
usage, resulting in more efficient buffer and network usage. However, they do not propose
any mechanism for analysing and automatically deriving the values needed to throttle data
exchange between nodes involved in the transfer.

In this chapter, we firstly introduce a metric for quantitatively measuring the impact
that applying an intelligent data movement policy can have on buffer/storage in compar-
ison with existing approaches. This metric considers a workflow structure expressed as a
Directed Acyclic Graph (DAG), and performance information collected from historical past
executions of the considered workflow. It is intended for being used at the design-stage,
comparing various DAG structures and evaluating their potential for optimisation (of net-
work bandwidth and buffer usage). Then, we propose an automated analysis method for
DAG that may be used to derive data-throttling values. The method utilises Petri nets
for the workflow specification and combines the abstract representation with performance
information instrumented from past executions, obtaining a performance model of the
workflow: an iterative method is used to compute data-throttling values associated with
different links within the workflow. Subsequently, a performance analysis is conducted us-
ing the throttling values and the result is compared with the performance achieved without
throttling. Lastly, we introduce dynamism on the environment where a scientific workflow
is executed, i.e., the network bandwidth of the links or/and the power of hosts machines
where workflow tasks are executed significantly vary over the time.

128

10. Performance Analysis of Data-Intensive Workflows Section 10.2

(a)

(b)

Figure 10.1: (a) Workflow tasks and (b) its transformation to PN.

10.2 Model Transformation: From a DAG to a SMG

Before going forward more in detail about performance analysis on workflows, let us explain
in this section the model transformation that we perform on a Directed Acyclic Graph
(DAG) by transforming it to a performance model based on Petri nets (PNs), namely,
Stochastic Marked Graphs (SMGs, see Definition 8).

In this paper, we make use of SMGs with exponential random distributions associated
with transitions in order to model scientific workflows. In particular, we are interested in
workflows expressed as DAGs, where vertices represent tasks and edges represent data de-
pendencies between them. Figure 10.1 depicts how we derive a PN model from a DAG.
Figure 10.1(a) shows two workflow tasks of a DAG, task1 and task2 and a data-link depen-
dence from task1 to task2, while Figure 10.1(b) illustrates the transformation to a PN. Note
that such a PN model fulfils the definition of a SMG model: there are timed transitions
and each place has exactly one input and exactly one output arc.

Hence, each task of the workflow DAG is transformed to a place and a transition (rep-
resented by a white rectangle), joined by an arc. A task transmission is also transformed
to a place and a transition (grey rectangle). For instance, p1 → Ttask1 represents task1
of the workflow. Note that place p1 models the input buffer of task1. Finally, the data
dependency between task1 and task2 is modelled by adding a place and a transition, p2
and Ttx1,2 , respectively. Transition Ttx1,2 represents the time spent in sending output data
from task1 to the input buffer of task2 (place p3).

10.3 A Metric for Quantifying the Effectiveness of Throttled

Data Transfers

A task in a workflow DAG cannot start its execution until all its inputs are available. The
strategy of receiving these input values as fast as possible is often not appropriate. As some
inputs may arrive earlier than others, these inputs have to be buffered locally at the task,
resulting in unnecessary use of buffer space. If such buffer space is a shared resource and of

129

Section 10.3 10. Performance Analysis of Data-Intensive Workflows

limited capacity, it remains blocked by the task, waiting for the remaining data to arrive.
Hence, the greater the variation between arrival times of the different input data sets, the
greater the inefficiency in buffer use. Intuitively, the objective of an effective data transfer
is that each task with multiple inputs has all its data sets arrive simultaneously.

Our approach is therefore relevant for a workflow which has: (i) multiple synchronisation
points (identified as tasks in the workflow containing more than one input, where all inputs
are needed before the task can begin execution); (ii) difference in arrival times between
the different inputs to such synchronisation point. The higher the value of (i) and (ii),
the greater the possible optimisation we are likely to see with our approach. Both of
these aspects depend on the structure of the workflow and the environment within which
a workflow is enacted. Our approach could be used to re-write a workflow DAG that
has a structural imbalance, i.e. a DAG containing multiple paths whose execution times
differ significantly. Such an imbalance [Park and Humphrey, 2008] may also arise due to a
scheduler binding tasks to resources, faults or unexpected performance degradation, such
as a slow network connection or limited storage for the dataset.

In order to compute the metric, we convert the workflow DAG specification into
a Petri net (as explained in Section 10.2), we subsequently feed the Petri net model
with performance information on computational tasks, and network, as well as data
size [Rodŕıguez et al., 2012b]. Petri net theory is subsequently used to analyse the Petri
net model, and to obtain slack (µ) [Rodŕıguez and Júlvez, 2010] values (a key concept in
our analysis, see Section 6.2). Intuitively, a slack is a positive value associated with each
input link to a synchronisation (sync.) point and captures the time taken for an input data
to be delivered to such a synchronisation point. The higher the slack, the more likely to
have a higher input delay, thereby delaying the execution of the task at the synchronisation
point.

A more formal description of a synchronisation point and the associated slack, in term
of workflows, is as follows. Let W be a workflow represented as a cyclic Petri net and
composed of a set T of tasks T = {t1, . . . , tn}, |T | = n. Let ψt be the number of inputs of
task t ∈ T . Let T ′ ⊆ T be a set of tasks with multiple inputs, i.e., ∀t ∈ T ′, ψt > 1. A task
t ∈ T ′ is then called synchronisation task (or synchronisation point). Let δi,j be the time
taken for an input j ≤ ψti to arrive at synchronisation task ti. As each input j arrives at
different times, we can determine the value of max(δi,j) for a synchronisation task ti that
represents the time taken for the slowest arriving input.

Considering the entire workflow W , we can find the slowest path from the input to the
output of the workflow, which also represents the workflow makespan M – represented as
M =

∑

t∈T execution time(t) +
∑

ti∈T ′ max(δi,j), j ≤ ψti . The slack µi,j > 0 for input
j ≤ ψti of task ti, can be calculated as:

µi,j =
(maxψ

ti

j=1(δi,j)− δi,j)

M
(10.1)

130

10. Performance Analysis of Data-Intensive Workflows Section 10.3

where M is the workflow makespan, i.e., M =
∑

t∈T execution time(t) +
∑

ti∈T ′ max(δi,j), j ≤ ψti .

The slack, therefore, is a measure of the time arrival of inputs with respect to the critical
path of a workflow. Note that the slack value for the slowest input max(δi,j) is always 0.

Let us present a metric α that makes use of slack theory and incorporates both structural
and execution environment aspects. The metric α can be expressed as:

α =|T ′| ·
∑

ti∈T ′,j≤ψti

µi,j (10.2)

where
∑

ti∈T ′,j≤ψti

µi,j, represents the sum of all the slacks that appear in the workflow.

The value of α quantifies the potential benefit that a data-throttling strategy may achieve
in comparison with a transmit as-fast-as-possible strategy. The metric indicates that the
greater the number of tasks with multiple inputs, the greater the potential to save buffer/s-
torage space. The second aspect the metric considers is the sum of all the slack values that
appear in the workflow in case a transmit as-fast-as-possible strategy is applied. Ideally,
an intelligent transfer strategy would make all the slack values equal to 0.

10.3.1 Metric Evaluation

In order to evaluate how our metric α measures the effectiveness of utilising a data throt-
tling strategy, we conducted several experiments using the Montage [Berriman et al., 2007]
workflow. This workflow is used for creating image mosaics in astrophysics (using data from
different scientific instruments) and a specification of Montage structure can be found in
Fig. 10.6. The structure of the workflow is quite regular, therefore the workflow imbalance,
if any, must be due to the execution environment. However, Montage workflow structure
depends on the number of input files to assemble. We considered 3 versions of Montage,
with 25, 50 and 100 tasks, and having each workflow 5, 10 and 100 input files, respectively.
A DAX description of this workflow, along with performance information collected from
past executions is available at the Pegasus workflow system [Deelman et al., 2007] Web
site1.

We have simulated the enactment of these 3 workflows by making use of the Sim-
Grid [Casanova et al., 2008] tool. We assumed an environment with the number of machines
being the same as the number of nodes in the workflow. As for the network topology, we
assumed a single output data-link per host, a network bandwidth of 100Mbps and a latency
of 10−4s.

For each Montage workflow, Table 10.1 shows the mean values and standard deviation, σ,
of the buffer waiting time of the Montage tasks with multiple input data, namely mDiffFit,

1https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator

131

 https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator

Section 10.4 10. Performance Analysis of Data-Intensive Workflows

Montage task
25 tasks 50 tasks 100 tasks

Mean σ Mean σ Mean σ
mDiffFit 1.7726 1.1800 1.5739 1.2044 1.9819 1.6399

mConcatFit 15.9589 – 57.5424 – 226.1896 –
mBackground 15.0307 1.1194 19.0069 1.4327 25.1063 1.8597

mImgTbl 2.9567 – 1.4934 – 4.0822 –

Table 10.1: Mean & standard deviation values of buffer waiting time for Montage workflow.

No. tasks
No. tasks with ∑

µ
Metric

inputs α

25 15 1.5173 22.7591
50 32 2.7681 88.5785
100 75 5.3371 400.2842

Table 10.2: Metric values computed for the considered Montage workflows.

mConcatFit, mBackground, and mImgTbl. A buffer waiting time was computed as the
elapsed time between the arrival of the last and the first input. The results show that
for some tasks, the higher the number of synchronisation points, the longer the buffer
waiting times. The main reason for this is that the synchronisation points of larger Montage
workflows have a larger number of inputs in comparison with smaller sized workflows. In
particular, this fact can be observed in task mConcatFit.

The metric values for each considered Montage workflow are shown in Table 10.2. The
first column indicates the number of total tasks in the workflow, while the second shows
the number of tasks with multiple input dependencies. Finally, the third column,

∑

µ, rep-
resents the sum of slacks and the last column presents the value of the α metric computed.
As it can be expected, and it is remarked by the buffer waiting time given in Table 10.1, the
more value of α, the better expected reduction of waiting time by using a data-throttling
strategy. For the Montage workflow, it can be then concluded that the higher the number
of task in the Montage version, the more important a data throttling strategy will be, so
that buffer occupancy can be utilised more effectively.

10.4 An Automating Data-Throttling Analysis Method

This section describes our analysis method, which consists of a sequence of four steps that
are illustrated in Figure 10.2. As an input, the method receives a PN-based DAG workflow
model (as described in Section 10.2), and performance information obtained from past
executions (if any), or estimations provided by the user (i.e. annotations given in a DAX
file). As an output, it generates throttling values for network and buffer usage as well as
the impact of these values have on the overall workflow performance.

132

10. Performance Analysis of Data-Intensive Workflows Section 10.4

Figure 10.2: Automated Data-Throttling Analysis Flowchart.

The first step merges the PN model and the performance information (execution times
for computational tasks and transfer times for transmission tasks) and builds a SMG model.
Then, it performs the Slack-based Performance Analysis step described in previous sections.
The critical path (i.e. the path with the longest delay) is obtained and slack values derived
for each input link of a task (primarily for those tasks which have multiple input links) in
the workflow.

As we parse the workflow graph, calculation of a data-throttling value at one data
transmission may impact a calculation of a data-throttling at other data transmissions.
Hence, if we start at the output node of a graph and work towards the input nodes, the
slack value (used for computing data-throttling values) previously calculated along links
close to the output node would be influenced by those closer to the input node. For instance,
in the example DAG illustrated in 10.3, calculating data-throttling values for all incoming
links at task6 first and then moving on to task4 would imply that if incoming links at
task4 would be delayed, then task4 → task6 might be implicitly delayed and the previous
adjustment done at incoming links at task6 is no longer valid.

In order to minimise the complexity of this process, our approach classifies the data
transfers in a workflow into groups of elements that are mutually independent and not
affecting one another. We refer to this as Slack Clustering in Figure 10.2. In the Data-
Throttling Values step, the method chooses one of the clusters and derives throttling values
from the calculated slacks. Afterwards, the throttling values are used in the SMGmodel and
the remaining slacks in the workflow are re-calculated accordingly. The process is repeated

133

Section 10.4 10. Performance Analysis of Data-Intensive Workflows

Figure 10.3: A workflow with 6 task and multiple inter-tasks dependencies.

until there are no more clusters to be regulated. For the computation of the throttling
values, the third step considers a point-to-point network topology between tasks, i.e., all
tasks are interconnected through dedicated links. Finally, the Performance Analysis step
is carried out with (and without) data-throttling values to determine the impact of data
throttling on the workflow makespan.

The steps of the method can be better illustrated using the workflow example of Fig-
ure 10.3. The derived Petri net model is shown in Figure 10.4. As for the performance
information, for each computational task in Figure 10.3, δi represents the average execu-
tion delay for taski. We assume that each task is executed on a different host (resource),
therefore there is no workflow imbalance. For data transfers, we assume a dedicated net-
work topology, i.e., each host is inter-connected to the others. The available bandwidth
is considered to be 100Mbps with a latency of 1e−4s and the initial transfer policy is to
transmit as fast as possible. For the sake of simplicity in the example, we also assume that
all datasets are of equal size, 10MB.

The first step of the method, Slack-based Performance Analysis, obtains the workflow’s
slowest path: task2 → task5 → task6 in Figure 10.3. Such a workflow has three different
inputs where some slack will appear, namely task1 → task4 (because task4 needs data from
task2, and task2 takes longer than task1 to execute), task3 → task6, and task4 → task6 (in
both latter cases, the slacks happen because of the delay of the input task5 → task6). Using
the SMG model in Figure 10.4, the following slack values are derived: µ(p9) = 0.089392,
µ(p15) = 0.178451 and µ(p16) = 0.357129.

Let us consider that we avoid the Slack Clustering step and start the regulation by
throttling the input task1 → task4: the regulation would result in a decrease in transfer
time for task1 → task4, so that data elements from task1, and task2 arrive to task4
simultaneously. At task4 → task6: an effective regulation would involve increasing the

134

10. Performance Analysis of Data-Intensive Workflows Section 10.4

transfer time from task2 → task5, while decreasing the transfer from task2 → task4. Due
to this regulation, the transfer time task2 → task4 is modified, but the throttling value
obtained in the the first regulation was obtained with the initial regulation, where the
transfer task2 → task4 was actually faster.

In order to avoid such an effect, we propose the Slack Clustering step, where inputs with
slack that are not affecting each other are grouped together. For instance, in Figure 10.3,
the input task1 → task4 is at slack level 2 (because it contains the input task4 → task6,
which has some slack), while task3 → task6 and task4 → task6 are at slack level 1. In
terms of the SMG model in Figure 10.4, the Slack Clustering step groups p15, p16 in slack
level 1, while p9 is grouped in slack level 2. Such a slack clustering is therefore determined
by the number of slack values in each workflow path. For instance, the number of slack
places in the path task1 → task4 → task6 is 2, i.e., µ(p9), µ(p15) > 0, where p9, p15 belong
to path task1 → task4 → task6.

Updated data-throttling values are obtained in step Data Throttling Values, with all
slack values being re-calculated after each adjustment of a cluster. The adjustment is done
in increasing order of slack level (cluster), starting from level 1. Thus, in the example, we
would increase the transmission bandwidth for task2 → task5 (because it is the slowest
path and if there is available bandwidth in the network link), and we would decrease the
transmission bandwidth for task2 → task4. As a result of conducting this step for the
model in Figure 10.4, the following values are obtained: transmission between task1 and
task3 (i.e., task1 → task3) must be adjusted to a 28.57% of the total bandwidth (that is,
to 28.57Mbps), while task1 → task4 must be adjusted to 35.15Mbps, and task2 → task4
to 44.55Mbps.

To summarise, data-throttling values are derived from the slack values as follows. A
slack value µ(p) indicates that a transmission with duration txold must be delayed, i.e.,
txnew = txold + α. The value of α depends on the PN structure and relates to µ(p) and Θ
(the upper performance bound of the PN model): α = µ(p)/Θ. The bandwidth BW of a
network link depends on the transmission time tx, tx = d/BW , where d is the size of the
data sent through the network link. Hence, the new bandwidth BWnew can be computed
as:

BWnew =

(

1

BWold

+
µ(p)

Θ · d

)−1

(10.3)

where BWold is the current bandwidth assigned to that transmission.
Finally, Performance Analysis must be conducted with and without the obtained data-

throttling values, so that the impact on performance can be determined.
Figure 10.5 shows three execution timelines of the previous workflow with different

network topologies. Figure 10.5 (a) involves a single output link per node, Figure 10.5 b)
corresponds to a point-to-point network topology (i.e., dedicated links), and Figure 10.5 c)
is the same latter scenario but where data regulation has been undertaken. Taski represents
the duration of each task i (white boxes), and txi,j represents the time for sending data

135

Section 10.4 10. Performance Analysis of Data-Intensive Workflows

Figure 10.4: PN-based abstract workflow with explicit data-transfer transitions.

from taski to taskj (grey boxes). The symbol ∆i,j means the waiting time for the dataset
sent from taski in the input buffer of taskj, until taskj begins execution. Although data
throttling does not significantly impact makespan (5.6779 seconds versus 5.7750 seconds),
it can be noticed that it does impact the input buffer waiting times for task4 and task6.

10.4.1 Experiments and Discussion

We have used the Montage [Berriman et al., 2007] workflow (see Figure 10.6) for evaluation
– a real application that has been used to create image mosaics in the astrophysics domain.
A description of the abstract workflow and performance information were collected from
DAX files generated with the Pegasus workflow system2. We have performed two different
experiments. The first one determines the impact of bandwidth throttling on the work-
flow makespan, while the second one shows how buffer and network bandwidth utilisation
change.

Our strategy has been implemented in Matlab, whilst simulation of workflow execution
has been carried out through SimGrid [Casanova et al., 2008]. SimGrid is a toolkit that
provides core functionalities for the simulation of distributed applications in heterogeneous
distributed environments. We utilised SimGrid as it provides direct support for DAX files.

2https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator

136

 https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator

10. Performance Analysis of Data-Intensive Workflows Section 10.4

(a) Makespan: 6.5168 seconds

(b) Makespan: 5.6779 seconds

(c) Makespan: 5.7750 seconds

Figure 10.5: Makespan of workflow depicted in 10.3 with different network topologies.

137

Section 10.4 10. Performance Analysis of Data-Intensive Workflows

Network topology
Network bandwidth

10Mbps 100Mbps 1Gbps

Single output 193.20 61.18 47.98

PP without BW throttling 153.15 57.17 47.58

PP with BW throttling 153.32 57.21 47.58

Table 10.3: Makespan for Montage workflow with 5 input files.

For the experiments, we have used the Montage workflow for 5 input files, composed of
25 tasks. Each task is considered to be executed on separate hosts. Moreover, we have
assumed two different network topologies between hosts on the experiments: (1) each host
has just one output data-link; or (2) each host is connected point-to-point (PP) to other
hosts. Bandwidth throttling (BW throttling) has been considered only for topology (2). We
have considered three different data-link bandwidths: 10Mbps, 100Mbps and 1Gbps. The
experiments have been executed on an Intel Pentium IV 3.6GHz with 2GiB RAM DDR2
533MHz host machine.

10.4.2 Impact on the Workflow Makespan

Table 10.3 summarises experimental results showing the impact on makespan. The first
column indicates the network topology, the others show the different network bandwidth
used in the experiment: 10Mbps, 100Mbps and 1Gbps. The network latency is assumed to
be constant and equal to 10−4 seconds for all network topologies. The workflow makespan
(in seconds) is calculated based on the simulation time from SimGrid.

A point-to-point (PP) connection without throttling is 26.15% faster than a single
output data-link connection in the first case (10Mbps), and only 0.84% in the last case
(1Gbps). Additionally, in all cases a PP connection with throttling is slower than without
throttling. As the bandwidth increases, the impact on the workflow makespan becomes
smaller. Park & Humphrey [Park and Humphrey, 2008] also indicated a correlation be-
tween data transmission

computation
ratio and makespan, which our results confirm.

138

10. Performance Analysis of Data-Intensive Workflows Section 10.4

Figure 10.6: Montage workflow for 5 input files.

139

S
e
c
tio

n
1
0
.4

1
0
.
P
e
rfo

rm
a
n
c
e
A
n
a
ly
sis

o
f
D
a
ta

-In
te
n
siv

e
W

o
rk

fl
o
w
s

Montage task
Network topology Network topology Network topology
(1) (2) (3) (1) (2) (3) (1) (2) (3)

mDiffFit1 20.49 0.45 0.22 2.44 0.44 0.21 0.64 0.44 0.24
mDiffFit2 20.49 0.45 0.21 2.44 0.44 0.21 0.64 0.44 0.24
mDiffFit3 20.24 0.22 0.14 2.23 0.23 0.12 0.43 0.23 0.11
mDiffFit4 0.09 0.05 0.23 0.04 0.03 0.02 0.03 0.03 0.01
mDiffFit5 20.59 0.49 0.24 2.48 0.47 0.23 0.67 0.47 0.25
mDiffFit7 20.24 0.23 0.14 2.23 0.23 0.11 0.43 0.23 0.14
mDiffFit8 26.84 0.08 0.09 2.73 0.05 0.03 0.32 0.05 0.05
mDiffFit9 6.60 0.15 0.08 0.50 0.18 0.09 0.11 0.18 0.11
mConcatFit 124.76 4.20 1.57 15.96 4.06 1.96 5.19 4.05 1.95

mBackground1 33.84 13.80 7.02 15.50 13.49 6.91 13.66 13.46 6.73
mBackground2 13.35 13.35 6.61 13.05 13.05 6.45 13.02 13.02 6.42
mBackground3 33.94 13.84 6.55 15.53 13.52 6.48 13.69 13.49 6.61
mBackground4 33.59 13.57 6.31 15.28 13.28 6.30 13.45 13.25 6.31
mBackground5 40.19 13.43 6.45 15.78 13.11 6.31 13.34 13.07 6.44

mImgTbl 1.63 1.63 0.75 1.60 1.60 0.32 1.60 1.60 0.21
(a) 10Mbps (b) 100Mbps (c) 1Gbps

Topologies: (1) Single output; (2) PP w/o. BW throttling; (3) PP w. BW throttling.

Table 10.4: Buffer waiting time of Montage tasks under different configurations.

140

10. Performance Analysis of Data-Intensive Workflows Section 10.5

In this section we measure the impact of data throttling on the input buffer occupancy
and network bandwidth. In order to fulfill this goal, we consider the inter-arrival time
between data items (e.g. files) to the same task. The results of this experiment with three
different network bandwidths (10Mbps, 100Mbps and 1Gbps) are shown in Table 10.4((a),
(b) and (c), respectively). The first column indicates Montage tasks which need more than
one input to execute. The following columns show the waiting time of input data in the
buffer until the task begins its execution with different network topologies: one single output
data-link per host, a PP connection between hosts without (and with) BW throttling.

Hence, bandwidth throttling has a great impact on the buffer waiting time of the tasks.
Bandwidth throttling outperforms both single out and PP in all cases, with mDiffFit4 for
10Mbps network being an anomaly. Note that even the bandwidth throttling is not enhanc-
ing the buffer waiting time for mDiffFit4, such buffer waiting time is strongly improved in
the case of the task mConcatFit (the next task in the workflow to execute after mDiffFit4):
it is reduced by 98.74% with respect to the single output data-link topology and 62.61%
with respect to PP without bandwidth throttling.

When the network bandwidth is 1Gbps, the results of single output data-link and PP
without bandwidth throttling are quite similar, whilst applying the bandwidth throttling
still improves the buffer waiting time of the workflow tasks.

We have plotted the results of tasks with the greatest number of input dependencies in
the Montage workflow (in this case, mConcatFit and mImgTbl) in Figure 10.7((a) and (b),
respectively). As it can be observed, performing a bandwidth throttling outperforms both
other network topologies in the experiment.

We can summarise our experimental findings as:

i) there exists an intrinsic relationship between the transmitted data size and workflow
task execution time which can be useful for deciding when bandwidth throttling would
be most appropriate;

ii) applying data throttling in a PP network topology does not make a significant change
to the overall workflow makespan (compared to other topologies); but

iii) performing data throttling has a great impact on the input buffer and network band-
width usage, as outlined in our results.

10.5 Concluding Remarks

Current scientific problems usually demand a large amount of data transmissions and
complex data analysis. Scientific workflows have become the computational technology of
choice for solving such problems. However, scientific workflows can have data dependencies
which neglect their intrinsic parallel behaviour. Previous approaches attempt to either
avoid data movement completely (i.e. by co-locating tasks or moving them closer to the
data source), or move data as fast as possible (based on the network link capacity). This

141

Section 10.5 10. Performance Analysis of Data-Intensive Workflows

10Mbps 100Mbps 1Gbps
0

ijm

ijn

ijp

ijq

1

rjm

rjn

rjp

rjq

t
x
zz
{
|
}
~
��
��
�
��
�
{
��
�

Single output

�� ���j �� ����������

�� �j �� ����������

(a) Workflow task mImgTbl

10Mbps 100Mbps 1Gbps
0

20

40

60

80

100

120

140

�
�
��
�
�
�
�
��
��
�
��
�
�
 ¡
¢

Single output

PP w/o. BW throttling

PP w. BW throttling

(b) Workflow task mConcatFit

Figure 10.7: Buffer waiting time in (a) task mImgTbl and (b) mConcatFit.

142

10. Performance Analysis of Data-Intensive Workflows Section 10.5

last approach, however, can lead to some workflow tasks waiting for incoming data, while
blocking use of shared buffers that could be better utilised.

In this chapter, we have proposed a quantitative metric based on the workflow structure,
and on performance information derived from past historical executions. We convert the
DAG specification into a Petri net model, feed it with such a performance information, and
conduct analysis over it to obtain task inputs with slack. A slack is a positive value that
when computed, appears at a task input that is likely to be idle, waiting for other datasets
to arrive. The higher the slack value, the more likely the associated input will have to wait
for a longer period. Our metric is proportional to the number of synchronisation points
in the workflow and to the sum of all slack values appearing in the workflow. This metric
is intended for use at the design-stage, to compare various DAG structures and evaluate
their potential for optimisation (of network bandwidth and buffer use).

We also study a data-throttling strategy for improving the use of bandwidth and input
buffers, so that tasks have all their inputs arriving at the same time (buffer usage min-
imised). In order to achieved this, some transmissions have their speed modified (either
reduced or increased), making a better usage of bandwidth. The strategy takes as an input
a Petri net-based model of a workflow. Our approach makes use of linear programming
techniques for which polynomial algorithms exist. As an output, the method obtains the
throttling data values, but it also analyses the affection that data-throttling can have on
workflow performance. The affection depends on the workflow structure, and on the ratio
between computational and transmission and tasks. By means of this analysis, the user can
establish a trade-off between throttling (and possible degrading the performance) or not.
We have tested our approach with Montage, a real scientific workflow from astrophysics,
supposing different data-link speeds. The results are very promising, and show us how our
approach enables a more effective use of bandwidth, and reduces the waiting time of data
in input buffers.

We conducted experiments over 3 Montage workflows, with different sizes. For each syn-
chronisation point in the workflow, we measured the buffer occupancy time and obtained
our metric. We observed that the higher the value of the metric, the higher the buffer occu-
pancy time within the Montage workflows. The throttling of data becomes more important
with the growing size of the Montage workflow. Due to its characteristics, a Montage work-
flow with a larger number of tasks suffers from larger buffer occupancy, and this will require
more buffering space for the inputs. Although demonstrated through a single workflow our
approach is quite general in scope and can be applied to any workflow described using the
DAX representation.

143

Part IV

Tool Support

145

Chapter 11

The PeabraiN Tool: A PIPE

Extension

This chapter introduces PeabraiN, which stands for “Performance Estimation bAsed (on)
Bounds (and) Resource optimisAtIon (for Petri) Nets”, and is a PIPE extension for perfor-
mance estimation and resource optimisation. PeabraiN has been presented in an exhibition
tool session at the 12th International Conference on Application of Concurrency to System
Designs and also as a paper in the same venue [Rodŕıguez et al., 2012a]. It has also been
used for performing some of the experiments of the previous chapters of this dissertation,
and it is currently being promoted in other related research groups for its usage.

11.1 Motivation

Many discrete systems can be modelled in terms of Stochastic Petri Nets
(SPNs) [Molloy, 1982]. Such systems may need the use of shared resources. Two stud-
ies that are often of interest are: (i) the performance evaluation (or throughput, defined as
completed jobs per unit of time), and (ii) the resource optimisation, i.e., to have optimally
sized the number of shared resources in the system.

Exact performance evaluation may become unachievable, in terms of computation time,
due to the need of an exhaustive exploration of the state-space. Normally, the larger the sys-
tem, the bigger its state-space. An alternative is to estimate the performance by computing
performance bounds [Campos and Silva, 1992,Liu, 1995,Rodŕıguez and Júlvez, 2010].

Resource optimisation is another master key when designing these systems. When re-
sources are not well-dimensioned [Goldratt and Cox, 1986], it may happen that either the
throughput is constrained by lack of available resources (then performance is lower than it
could be), or there are idle resources (then money has been squandered).

In this chapter, we present PeabraiN, a collection of PIPE [Bonet et al., 2007] tool-
compliant modules for performance estimation and resource optimisation based on bounds

147

Section 11.2 11. The PeabraiN Tool: A PIPE Extension

computation for SPNs. The algorithms supporting such modules, which have been previ-
ously presented in Chapters 6 and 7, intensively use linear programming (LP) techniques,
then assuring low computational complexity. Besides, other modules have been added for
computing other properties based in LP techniques, such as the computation of struc-
tural enabling(marking) bound at a transition(place). Visit ratios computation and SPN
simulation analysis modules have been integrated to PIPE as well.

We studied different choices for implementation: implementation of a stand-alone MAT-
LAB application; extension of the GreatSPN [Baarir et al., 2009] tool; extension of the
HISim tool; and to develop modules to be integrated in PIPE tool.

The only tool for performance bound computation, to the best of our knowledge, is
GreatSPN, which computes lower and upper throughput bounds of transitions. The ex-
tension of GreatSPN was finally rejected because of the programming language paradigm
used, and its platform dependency. All bound computation algorithms presented in this
paper were initially developed for MATLAB. Nevertheless, a final deployment of this solu-
tion was ruled out by the dependency of a proprietary software library (namely, MATLAB
Component Runtime library). A solution deployed over HISim was rejected when we fig-
ured out the easiness of extension through modules directly over PIPE tool. For resource
optimisation, as far as our knowledge, there does not exist any tool.

PIPE was chosen because (i) we need only SPNs and not other PN extensions, (ii) it uses
the standard PN file format, Petri Net Markup Language (PNML) [Hillah et al., 2009], so it
allows an interchange of files between different PNML-compliant tools, (iii) PIPE facilitates
a user-friendly GUI editor, (iv) it is multi-platform, and (v) it is open source.

11.2 PeabraiN Framework

This section describes the PeabraiN framework in more detail. Firstly, the implemented
features and the PeabraiN design are described. Then, an illustrative example of use of
PeabraiN is shown. Lastly, tool availability and installation requirements are introduced.

11.2.1 Implemented Features

PeabraiN provides two main features which implement:

i) an iterative algorithm for performance estimation based on linear bound computation
(see Section 6.4); and

ii) a heuristic method to distribute shared resources in order to enhance the system
performance as much as possible (see Section 7.2.2).

Lastly, PeabraiN adds other features to PIPE as side effect from the algorithms above
mentioned:

148

11. The PeabraiN Tool: A PIPE Extension Section 11.2� Lower (upper) throughput bound. The algorithms given
in [Campos and Silva, 1993] for computing the lower (and upper) throughput
bound for a SPN, in terms of LP problems, have been implemented. The PN struc-
ture needs to fulfil a set of conditions so that the computation of performance bound
has some meaning, namely (i) the PN must be structurally live, (ii) structurally
bounded, (iii) have a home state and (iv) its vector of visit ratios must have a
unique solution. As some of these properties are already fulfilled depending on the
PN subclasses, and moreover some of them are NP-decidability problems, we just
automatically check the latter property.� Slowest p-semiflow. The LP problem presented in [Campos and Silva, 1993] allows
to compute the slowest p-semiflow of a PN, and its throughput which is an upper
performance bound for the real system performance. The PN must fulfil the same
conditions than in the previous algorithm.� Structural marking and structural enabling. The structural marking of a place
p, and the structural enabling of a transition t, can be computed by using LP prob-
lems [Campos and Silva, 1993]. Such algorithms work for any kind of PN.� Visit ratios. The vector of visit ratios v of a PN, normalised for a transition t ∈ T
can be computed as described in Section 2.1.2.� SPN Simulation. A simulator for SPNs using the Gillespie’s stochastic simulation
algorithm [Gillespie, 1976] has been implemented. It performs a set of replications of
the simulation, and estimates the average throughput with a given confidence interval
level and error accuracy.

11.2.2 Framework Design

PeabraiN is made of a set of modules compliant with PIPE-tool modules. As PIPE,
PeabraiN has been implemented in Java, and it uses the same libraries as PIPE, and
additionally, the Java Interface for LP solvers (Java ILP)1 library, the Stochastic Simula-
tion in Java (SSJ)2 library, the Java Matrix (JAMA)3 library for performing computational
operations in matrices and LP solver-specific interface for Java. Hence, such a collection of
modules perfectly fits in PIPE tool.

PeabraiN has been designed as a closed architecture by layers, i.e., each layer only calls
methods of the immediate lower layer modules (see Figure 11.1). Each of these three layers
matches with each component of the Model-View-Controller (MVC) architectural pattern.
It has been developed on the top of the Java Runtime Environment (JRE) and some other
external libraries as indicated above.

1http://javailp.sourceforge.net/
2http://www.iro.umontreal.ca/~simardr/ssj/indexe.html
3http://math.nist.gov/javanumerics/jama/

149

http://javailp.sourceforge.net/
http://www.iro.umontreal.ca/~simardr/ssj/indexe.html
http://math.nist.gov/javanumerics/jama/

Section 11.2 11. The PeabraiN Tool: A PIPE Extension

Java Runtime Environment
version 1.6 or higher

Java layer

SlowestPSemiflow

NextSlowest

PSemiflow

HValue

Structural

Marking

Structural

EnablingData layer

Intermediate

 layer
(algorithms)

External libraries
PIPE dependencies, JavaILP, SSJ, ...

LinearBound

GUI

Performance

EstimationGUI

Resource

OptimisationGUI

VisitRatios

GUI

Structural

BoundGUI

PetriNet

Model

compute

results

PeabraiN

GUI

Strategy

WellFormed

LPP

solve

results

GUI

 layer

VisitRatios

Strategy

Performance

EstimationStrategy

Structural

Iterator

NextConstraint

Resource

Resource

OptimisationStrategy

LowerBound

UpperBound

LinearBound

Strategy

VisitRatios

SPNSimul

GUI

SPN

Simulator

Figure 11.1: PeabraiN software architecture.

The data layer contains classes representing the information needed for the algorithms
to execute. For instance, the PetriNetModel class represents a PN in its matrix form,
and implements several methods related to PN (such as getting the initial marking at a
place or getting the rate of some transition). The rest of the classes in this layer represent
constraints, they are needed either for the LP problems of the Algorithms 1 and 3 or for
the features presented in Section 11.2.1. The WellFormedLPP class is a super-class of the
rest of classes in this layer.

The intermediate layer encloses the classes that implement the algorithms and fea-
tures explained in Section 11.2.1. Solid arrows mean that a class invokes methods of
another class, while dashed arrows represent the method return messages. For instance,
PerformanceEstimationStrategy implements algorithm in Figure 2, and invokes the LP
problem for computing the slowest p-semiflow and the LP problem for computing the next
slowest p-semiflow. Strategy is a super-class that allows all its child-classes to manage
the PetriNetModel in matrix form. The classes in this layer call the solve method of the
classes in the data layer through the WellFormedLPP class. The dotted arrows connect a
class in this layer with the classes in the data layer that it actually uses.

Finally, the GUI layer has classes which create the graphic interfaces for collecting, from
the user, information for execution of the algorithms and also to show the results. They
invoke the classes in the intermediate layer. For example, Figure 11.4(b) is an instance of
the ResourceOptimisationGUI class, it allows to introduce the necessary parameters and
after computation shows the results and the execution time.

Figure 11.2 shows the integration of PeabraiN in PIPE. PIPE is extended through
modules, and each module must implement the IModule interface. Besides, the open archi-
tecture depicted in Figure 11.2 shows how the PIPE-data layer and PeabraiN-data layer are

150

11. The PeabraiN Tool: A PIPE Extension Section 11.2

IModule Performance

EstimationModule

ResourceOptimisation

Module

SPNSimul

Module

Intermediate

 layer

GUI

 layer

Data layer PetriNetModel PNML

£¤£E

¥odules

PeabraiN

modules and class

Figure 11.2: Integration of PeabraiN in the PIPE tool.

related. Each PeabraiN module creates a matrix representation of the current PN model,
which is in PNML (PIPE format). We do not use PNML in our data layer because the
algorithms work with the matrix representation.

Each PeabraiN module in the GUI layer in Figure 11.2 will create an instance of the
class with its same name in Figure 11.1. For example, PerformanceEstimationModule
creates PerformanceEstimationGUI to allow the user to introduce ǫ (input parameter in
algorithm in Figure 2). Figure 11.3 illustrates the interactions between the user, PIPE, and
PeabraiN when executing.

In brief, the new modules added to PIPE are:� Performance Estimation. It needs as input the degree of precision, ǫ, to be
achieved. Note that the lower the value of ǫ, the longer it takes to finish. The mod-
ule reports about the components of the p-semiflow in each iteration step and its
throughput, computed by simulation.� Resource Optimisation. This feature enacts an optimal distribution of resources
in a shared-resource PN for a given budget and resource costs, trying to optimise the
system performance. It needs the process-idle place, that is, the place which represents
the workload in the system (i.e., incoming customers or requests), the maximum of
budget to be spent and the cost of each resource. Once the input data are validated,
it computes and reports about the needed increment of resources, the rest of budget
to be assigned and informs if there is more choice of improvement.� Linear Bound. This feature allows to compute the upper and lower performance
bound for a given transition and the slowest p-semiflow of the PN.� Structural Enabling. This feature allows the computation of the structural en-
abling bound for a given transition or for all the transitions.� Structural Marking. This feature allows the computation of the structural marking
bound for a given place or for all the places.

151

Section 11.2 11. The PeabraiN Tool: A PIPE Extension

PeabraiN classes in the

Data Layer

PeabraiN classes and modules

in the GUI Layer
PeabraiN classes in the

Intermediate Layer

user

Performance

Performance
Estimation
Strategy

matrix : PetriNetModel

PerformanceEstimation

Module

6: results 5: results

4: compute(epsilon)
3: compute(epsilon)

2: get(epsilon)

1:

1.3: create()

1.2: create(matrix)

1.1: create(currentPNML)

Estimation
GUI

performance estimationsd

algorithm in Fig. 1sd

click-in-module

HValue

SlowestPSemiflow

4.9: results

4.6: results

4.3: results

4.5: solve()

4.4: create(matrix)

4.2: solve()

4.1: create(matrix)

loop

NextSlowest
PSemiflow

4.8: solve()

4.7: create(matrix)

algorithm in Fig. 1sd

Performance
Estimation
Strategy

Figure 11.3: UML Sequence Diagram for executing performance estimation module.� Visit Ratios Computation. It needs a transition, used as the normalised transi-
tion, for the visit ratios computation. As well as the result, information about the
uniqueness of its solution is also given.� SPN Simulation Analysis. Input data are either the maximum simulation time, or
the confidence level and error accuracy to be achieved. When the simulation finishes,
the module informs about the estimated throughput (computed for transition t0 by
default) of the PN, the confidence level, the error accuracy achieved and the execution
time.

11.2.3 Example of Use

Let us illustrate the use of PeabraiN by an example. Recall the Petri net representation
of a packet-routing algorithm depicted in Figure 4.5 and used as a running example in
Section 4.2.

Let us suppose an expected number of packets nP = 10, an initial budget of $80, 000, the
cost of creating new threads is $6, 000, due to reimplementation and deployment issues, and
the implementation and reconfiguration of new filtering-threads has a cost of $250. With
this configuration, the resource optimisation procedure gives as result that 3 new threads
should be created in order to attend such an incoming number of packets and hence to
maximise the performance. Figure 11.4 depicts a snapshot of the results as reported by
PeabraiN. It reports about the remaining money to be spent, the number of instances

152

11. The PeabraiN Tool: A PIPE Extension Section 11.2

Figure 11.4: PeabraiN: Snapshot of execution results (resource optimisation).

of resources to be incremented and the elapsed time in computation. Besides, for this
configuration it reports that no more further improvement can be done with the remaining
budget. This means that even if we keep incrementing resources, the bottleneck of the
system is the number of packets. Therefore, if resources are incremented they will be idle.

11.2.4 Tool Availability and Installation Requirements

PeabraiN has been developed with the Eclipse IDE under Linux environment, and success-
fully tested on Linux and Windows environments. PeabraiN needs to have installed in the
host machine the following software to execute:� a JRE version 1.6 (or higher); and� an LP solver, namely the GNU Linear Programming Kit (GLPK) and its associated

library for binding with Java.

Currently, we are working on an automatic detection of installed LP solvers in the host
machine, and then automatically configure PeabraiN to work with them. Even PeabraiN

is designed for working with several LP solvers, such as CPLEX or lpsolve among others,
our initial thought was GLPK as it is free software under GNU General Public License
(GNU GPL).

There exists a web page:

http://webdiis.unizar.es/GISED/?q=tool/peabrain

where further information about tool requirements and installation steps, tool binaries and
sources can be found. PeabraiN is released under GNU GPL version 3 license.

153

http://webdiis.unizar.es/GISED/?q=tool/peabrain

Section 11.3 11. The PeabraiN Tool: A PIPE Extension

11.3 Concluding Remarks

We have developed PeabraiN, a collection of PIPE tool-compliant modules for performance
estimation and resource optimisation based on bounds computation for Stochastic Petri
Nets. Moreover, other features have been added to PIPE, such as structural enabling bound
at a transition, structural marking bound at a place, visit ratios computation or SPN
simulation analysis.

As future work, we plan to add the choice of LP solver by the user, the automatic detec-
tion of installed LP solver for automatic configuration of the tool, and to allow to change
the simulation parameters, such as the transient observations to be discarded. Besides, we
intend to perform more experiments with larger benchmarks to show its applicability, and
to compare the performance of our tool with other broadly used tools, such as GreatSPN
or TimeNET.

154

Part V

Conclusions

155

Chapter 12

Conclusions and Open Problems

If you think education is expensive,
try ignorance.
(Derek Bok)

This chapter points out the main statements and contributions of this dissertation and
opens a discussion about future work and further research lines.

12.1 Thesis Summary

In this work we have addressed the problems of designing and analysing in critical systems
that are required to fulfil their mission despite the presence of security issues. These systems
can be naturally modelled as Discrete Event Systems (DES) where resources are shared,
also called Resource Allocation Systems (RAS). In this dissertation, we have focused on FT
systems using shared resources modelled as Petri nets (PNs) as formal model language –
more precisely, as process Petri nets. The security issues that can affect this kind of systems
may even inevitably consume their resources hence system performance can be influenced,
even affecting its full operability.

This dissertation has stepped forward in such a security-performance trade-off. In the
first part we have proposed a set of models that allow to bring security into foreground
while designing. In Chapter 3 we have proposed a Unified Modelling Language (UML)
profile, called SecAM (stands for Security Analysis and Modelling), which enhances UML
modelling expressiveness by providing security-related concepts. In Chapter 4, we have
proposed Fault-Tolerant Techniques (FTTs) models that can be easily added to a system
design. The last chapter of the first part, Chapter 5, introduces a model-based methodology
for analysis of security-performance trade-off of critical systems that combine FTTs, such
as recovery procedures, and/or Security Mechanisms (SMs), such as encryption of data, in
order to react to intrusions.

157

Section 12.2 12. Conclusions and Open Problems

These systems are usually so large that makes the exact computation of their per-
formance a highly complex computational task, due to the well-known state explosion
problem. As a result, a task that requires an exhaustive state space exploration becomes
unachievable in reasonable time for large systems.

The second part of this work is devoted to performance (also performability – i.e.,
performance under failure conditions) and resource optimisation analysis in FT systems.
Chapter 6 provided some strategies for the upper throughput bound computation on Petri
nets thus avoiding the state explosion problem. Recall that we are dealing with critical
systems that incorporate FT techniques to deal with any unexpected situations and these
additions may have an impact on system performance. In Chapter 7 we have provided a
set of algorithms to compensate the throughput degradation in critical systems.

The third part of this dissertation puts the aforementioned developed methods on prac-
tice. In Chapter 8 we have introduced a case study where the approaches presented in
Chapters 6 and 7 are tested. The system under study is a Secure Database System (SDBS)
deployed as a Web Service which stores sensible information. The last chapter of this part,
Chapter 10, is devoted to the application of performance analysis methods applied to a
more specific domain, namely, scientific workflows.

The last part of this dissertation introduces PeabraiN, which stands for “Performance
Estimation bAsed (on) Bounds (and) Resource optimisAtIon (for Petri) Nets ”. PeabraiN
is a PIPE tool extension that implements some of the methods presented in Chapters 6
and 7.

12.2 Main Contributions

This section summarises the main contributions that we have identified:� Specification of security as a Non-Functional Property into UML designs. The UML
profile that we have developed, called SecAM, presents a powerful UML framework
for the specification and analysis of security. SecAM enables to consider security in
the early stages of the software and systems life-cycle, thus promoting the analysis
of system security before the deployment stage.� UML models representing common Fault-Tolerant (FT) techniques. We have pro-
posed some models that represent common FT techniques. The rationale behind
these models is to combine them with software behavioural designs for dependability
assessment. The easy integration of the proposed FT techniques (FTTs) into software
designs may allow to test different techniques for the same design to find the ones
fitting better.� Quantitative estimation of performance-security trade-off in critical systems. We have
provided a model-based methodology able to quantitatively estimate the system per-
formance while introducing FTTs and/or SMs aimed at dealing with critical systems.

158

12. Conclusions and Open Problems Section 12.2

The main goal of this methodology is to introduce different security models and com-
pose them with software architectural models, thus to support software designers to
find appropriate security strategies while meeting performance requirements.� Accurate estimation of the steady-state throughput by upper throughput bounds. We
have proposed two methods that can be applied to Stochastic Marked Graphs and
Process Petri nets to compute more accurate upper throughput bounds than the
ones that can be computed with other methods. Both methods are based on iterative
algorithms that make use of linear programming techniques, thus exhibiting a good
trade-off between accuracy and efficiency.� Compensation of throughput degradation in FT systems. We have provided a strat-
egy that, for a given initial budget and cost of each resource, gauges the number of
instances of each resource so that the system performance is maximised and the bud-
get is not exceeded. We have also presented an iterative algorithm that computes the
initial marking needed to maintain a given upper throughput bound in a FT system
model and we have presented an Integer-Linear Programming Problem (ILPP) that
minimises the cost of compensating throughput degradation caused by the presence
of faults and errors.� Quantitative metric for evaluating optimisation on scientific workflows. We have pro-
posed a quantitative metric based on the workflow structure, and on performance
information derived from past historical executions that is intended for use at the
design-stage. This metric enables to compare different workflow definitions and evalu-
ate their potential for optimisation, focusing on network bandwidth and buffer usage.� Data-throttling strategy for improving the use of bandwidth and input buffers in sci-
entific workflow tasks. In the context of scientific workflows, we have provided a
strategy for improving the use of bandwidth and input buffers, so that tasks have
all their inputs arriving at the same time (then, the buffer usage is minimised). We
have done this improvement by modifying data transmission speed (either reduced
or increased), making as a side product a better usage of bandwidth.� A tool for performance estimation and resource optimisation in Petri nets. We have
developed a PIPE extension, called PeabraiN, which provides a collection of PIPE
tool-compliant modules for performance estimation and resource optimisation based
on bounds computation for Stochastic Petri Nets. Indeed, PeabraiN provides a power-
ful framework to develop any PIPE tool-compliant module using Linear Programming
(LP) techniques for computation in a (very) easy way.

159

Section 12.3 12. Conclusions and Open Problems

12.3 Future Work and Open Problems

Despite the contributions of this dissertation, there are still several open problems that are
planned as future work, such as:� Addition of UML SecAM profile to existing UML case tools. Although SecAM has been

integrated into Eclipse through a plug-in, it is still in an early development phase
(i.e., it is not fully operative) and not yet released. We plan to extend this Eclipse
plug-in doing it fully operative and also to consider other UML case tools, such as
ArgoUML or MagicDraw.� Usage of UML SecAM profile for model-checking. We aim at extending the trans-
formation from UML-profiled diagrams to other interesting dependability/security
analysis models, such as Fault Trees or Bayesian Networks. We also plan to define
model-to-model (M2M) transformations to automatically compute SecAM derived
tagged-values, to verify SecAM UML-profiled model for consistency (i.e., using OCL
constraints) as well as to compute vulnerability related metrics.� Development and extension of a UML Fault-Tolerant (FT) modelling library. We plan
to provide guidelines to software designers about the best choices of Fault-Tolerant
techniques and security mechanisms for the attacks systems may suffer by the usage
of a plug-in for common UML design tools, such as ArgoUML, Visual Paradigm or
MagicDraw, that incorporates the UML FT models introduced in Chapter 4. We
also aim at extending the UML FT modelling library by incorporating other FT
techniques, such as Safe State or Software Exception Handlers.� Analysis of the trade-offs concerning security and other non-functional properties. In
this dissertation we have considered on the security-performance trade-off. However,
we consider this as a starting point for investigating even more sophisticated trade-
offs. For instance, it would be relevant to study the trade-off between security and
availability. In particular, addressing the problem of quantifying and locating data
replicas for availability purposes without heavily affecting the security of the system
may be crucial in certain domains.� Quality of upper throughput bounds and extension to more general Petri net classes.
As future work, we plan to research into the quality of the initial upper bound
obtained with the strategies presented in Chapter 6 and to extend both strategies to
more general Petri net classes.� Deeper analysis of the relationship between throughput and marking in FT systems.
We aim at researching the dependence between throughput and other PN-related
parameters, such as initial marking or transition timings, in order to provide an
algorithm to compensate throughput degradation in systems modelled with a more
general class of PNs rather than Process PNs.

160

12. Conclusions and Open Problems Section 12.3� Development of a tool for workflow design. We consider to design and implement a
tool for workflow design that assists users in their workflow configurations, and helps
them determine: i) comparison of different workflows configurations for potential op-
timisation, ii) sub-optimal throttling values, iii) performance speed-up or degradation
when applying data throttling, and iv) buffer storage needs.� Deployment of data-throttling strategy in more realistic environments. We plan to
deploy the approach for computing the data-throttling values in scientific workflows
presented in Chapter 10 in real scenarios. For instance, we aim at incorporating our
approach to Pegasus workflow system to see how it works in industrial scenarios.� Improvement of PeabraiN tool. As future work, we aimed at extending PeabraiN

in several ways: firstly, to provide the user the chance of selecting a LP solver for
computation. Then, we also plan to develop an approximate stochastic simulation
algorithm and lastly, a web service such that PeabraiN can be invoked over the
Internet.

Besides all the aforementioned future work, we aim at applying all the findings of this
dissertation to some other domains, such as Fault-Tolerant in manufacturing systems or
scientific workflows.

161

Relevant Publications Related to

this Dissertation

[Rodŕıguez and Júlvez, 2010] Rodŕıguez, R. J. and Júlvez, J. (2010). Accurate Perfor-
mance Estimation for Stochastic Marked Graphs by Bottleneck Regrowing. In Proceed-
ings of the 7th European Performance Engineering Workshop (EPEW), volume 6342 of
LNCS, pages 175–190. Springer.

[Rodŕıguez and Merseguer, 2010] Rodŕıguez, R. J. and Merseguer, J. (2010). Integrating
Fault-Tolerant Techniques into the Design of Critical Systems. In Giese, H., editor,
Proceedings of the 1st International Symposium on Architecting Critical Systems (IS-
ARCS), volume 6150 of Lecture Notes in Computer Science, pages 33–51, Prague, Czech
Republic. Springer.

[Rodŕıguez et al., 2010] Rodŕıguez, R. J., Merseguer, J., and Bernardi, S. (2010). Mod-
elling and Analysing Resilience as a Security Issue within UML. In Proceedings of the
2nd International Workshop on Software Engineering for Resilient Systems (SERENE),
pages 42–51, London, United Kingdom. ACM.

[Rodŕıguez et al., 2011] Rodŕıguez, R. J., Merseguer, J., and Bernardi, S. (2011). A Secu-
rity Analysis and Modelling profile: an Overview. Technical Report RR-01-11, Dpto. de
Ingenieŕıa e Informática de Sistemas, Universidad de Zaragoza.

[Rodŕıguez et al., 2012a] Rodŕıguez, R. J., Júlvez, J., and Merseguer, J. (2012a). PeabraiN:
A PIPE Extension for Performance Estimation and Resource Optimisation. In Pro-
ceedings of the 12th International Conference on Application of Concurrency to System
Designs (ACSD), pages 142–147. IEEE.

[Rodŕıguez et al., 2012b] Rodŕıguez, R. J., Tolosana-Calasanz, R., and Rana, O. F.
(2012b). Automating Data-Throttling Analysis for Data-Intensive Workflows. In Pro-
ceedings of the 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGrid), pages 310–317. IEEE.

163

RELEVANT PUBLICATIONS RELATED TO THIS DISSERTATION

[Rodŕıguez et al., 2012c] Rodŕıguez, R. J., Tolosana-Calasanz, R., and Rana, O. F. (2012c).
Measuring the Effectiveness of Thottled Data Transfers on Data-Intensive Workflows.
In Jezic, G., Kusek, M., Nguyen, N. T., Howlett, R. J., and Jain, L. C., editors, Pro-
ceedings of the 6th International KES Conference on Agents and Multi-agent Systems
– Technologies and Applications, volume 7327 of Lecture Notes in Computer Science,
pages 144–153. Springer.

[Rodŕıguez et al., 2012d] Rodŕıguez, R. J., Trubiani, C., and Merseguer, J. (2012d). Fault-
Tolerant Techniques and Security Mechanisms for Model-based Performance Prediction
of Critical Systems. In Proceedings of the 3rd International Symposium on Architecting
Critical Systems (ISARCS), pages 21–30. ACM.

[Rodŕıguez et al., 2013] Rodŕıguez, R. J., Tolosana-Calasanz, R., and Rana, O. F. (2013).
Data-Throttling Analysis for Data-Intensive Workflows on Dynamic Environments.
Technical report, Universidad de Zaragoza. To be submitted to IEEE Transactions
on Parallel and Distributed Systems.

[Rodŕıguez et al., 2013a] Rodŕıguez, R. J., Júlvez, J., and Merseguer, J. (2013a). On
the Performance Estimation and Resource Optimisation in Process Petri Nets.
IEEE Transactions on Systems, Man, and Cybernetics: Systems, PP(99):1–14.
doi: 10.1109/TSMC.2013.2245118

[Rodŕıguez et al., 2013b] Rodŕıguez, R. J., Júlvez, J., and Merseguer, J. (2013b). Quan-
tification and Compensation of the Impact of Faults in System Throughput. Proceedings
of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability. Ac-
cepted for publication.

164

http://dx.doi.org/10.1109/TSMC.2013.2245118

Bibliography

[Aalst et al., 2002] Aalst, W. M. P. v. d., Hirnschall, A., and Verbeek, H. M. W. E. (2002).
An Alternative Way to Analyze Workflow Graphs. In Proceedings of the 14th Inter-
national Conference on Advanced Information Systems Engineering, CAiSE ’02, pages
535–552, London, UK, UK. Springer-Verlag.

[Abdelmoez et al., 2004] Abdelmoez, W., Nassar, D., Shereshevsky, M., Gradetsky, N.,
Gunnalan, R., Ammar, H., Yu, B., and Mili, A. (2004). Error Propagation in Software
Architectures. In Proceedings of the 10th International Symposium on Software Metrics
(ISSME), pages 384–393.

[Abi-Antoun and Barnes, 2010] Abi-Antoun, M. and Barnes, J. M. (2010). Analyzing Se-
curity Architectures. In Proceedings of the IEEE/ACM International Conference on
Automated Software Engineering, ASE ’10, pages 3–12, New York, NY, USA. ACM.

[Ajmone Marsan et al., 1995] Ajmone Marsan, M., Balbo, G., Conte, G., Donatelli, S., and
Franceschinis, G. (1995). Modelling with Generalized Stochastic Petri Nets. Wiley Series
in Parallel Computing. John Wiley and Sons.

[Ariu et al., 2011] Ariu, D., Tronci, R., and Giacinto, G. (2011). HMMPayl: An intrusion
detection system based on Hidden Markov Models. Computers & Security, 30(4):221–
241.

[Aversano et al., 2002] Aversano, L., Cimitile, A., Gallucci, P., and Villani, M. (2002).
FlowManager: a workflow management system based on Petri nets. In Computer Soft-
ware and Applications Conference, 2002. COMPSAC 2002. Proceedings. 26th Annual
International, pages 1054–1059.

[Avizienis, 1997] Avizienis, A. (1997). Toward Systematic Design of Fault-Tolerant Sys-
tems. Computer, 30(4):51–58.

[Avizienis et al., 2004] Avizienis, A., Laprie, J.-C., Randell, B., and Landwehr, C. (2004).
Basic Concepts and Taxonomy of Dependable and Secure Computing. IEEE Transac-
tions on Dependable and Secure Computing, 1(1):11–33.

165

BIBLIOGRAPHY BIBLIOGRAPHY

[Baarir et al., 2009] Baarir, S., Beccuti, M., Cerotti, D., De Pierro, M., Donatelli, S., and
Franceschinis, G. (2009). The GreatSPN tool: recent enhancements. SIGMETRICS
Perform. Eval. Rev., 36(4):4–9.

[Balsamo et al., 2004] Balsamo, S., Marco, A. D., Inverardi, P., and Simeoni, M. (2004).
Model-Based Performance Prediction in Software Development: A Survey. IEEE Trans.
Software Eng., 30(5):295–310.

[Barnum, 2008] Barnum, S. (2008). Common Attack Pattern Enumeration and Classifica-
tion (CAPEC) Schema Description. The MITRE Corporation.

[Barnum and McGraw, 2005] Barnum, S. and McGraw, G. (2005). Knowledge for Software
Security. IEEE Security and Privacy, 3(2):74–78.

[Bernardi et al., 2001] Bernardi, S., Donatelli, S., and Horváth, A. (2001). Implementing
Compositionality for Stochastic Petri Nets. Journal of Software Tools for Technology
Transfer, 3:417–430.

[Bernardi et al., 2011] Bernardi, S., Merseguer, J., and Petriu, D. (2011). A Dependability
Profile within MARTE. Journal of Software and Systems Modeling, 10(3):313–336.

[Berriman et al., 2007] Berriman, G. B., Deelman, E., Good, J., Jacob, J. C., Katz, D. S.,
Laity, A. C., Prince, T. A., Singh, G., and Su, M.-H. (2007). Generating Complex
Astronomy Workflows. In Taylor, I. J., Deelman, E., Gannon, D. B., and Shields, M.,
editors, Workflows for e-Science, pages 19–38. Springer London.

[Bertino and Crampton, 2007] Bertino, E. and Crampton, J. (2007). Security for Dis-
tributed Systems: Foundations of Access Control. In Qian, Y., Tipper, D., Krishna-
murthy, P., and Joshi, J., editors, Information Assurance: Survivability and Security in
Networked Systems, pages 39–80. Morgan Kaufman.

[Blaze et al., 2002] Blaze, M., Ioannidis, J., and Keromytis, A. D. (2002). Trust Manage-
ment for IPsec. ACM Trans. Inf. Syst. Secur., 5(2):95–118.

[Bobbio, 1989] Bobbio, A. (1989). Petri Nets Generating Markov Reward Models for Per-
formance/Reliability Analysis of Degradable Systems. In Potier, D. and Puigjaner,
B., editors, Proceedings of the Fourth International Conference on Modeling Techniques
and Tools for Computer Performance Evaluation, pages 353–365, New York, NY, USA.
Plenum.

[Bondavalli et al., 2001] Bondavalli, A., Dal Cin, M., Latella, D., Majzik, I., Pataricza,
A., and Savoia, G. (2001). Dependability Analysis in the Early Phases of UML Based
System Design. Journal of Computer Systems Science and Engineering, 16(5):265–275.

166

BIBLIOGRAPHY BIBLIOGRAPHY

[Bonet et al., 2007] Bonet, P., Llado, C., Puijaner, R., and Knottenbelt, W. (2007). PIPE
v2.5: A Petri Net Tool for Performance Modelling. In Proceedings of the 23rd Latin
American Conference on Informatics (CLEI), Costa Rica.

[Braga, 2011] Braga, C. (2011). A transformation contract to generate aspects from access
control policies. Software and Systems Modeling, 10:395–409.

[Braynov, 2003] Braynov, S. (2003). On Future Avenues for Distributed Attacks. In
Hutchinson, B., editor, 2nd European Conference on Information Warfare and Secu-
rity (ECIW), pages 51–60, University of Reading, United Kingdom.

[Brglez et al., 1989] Brglez, F., Bryan, D., and Kozminski, K. (1989). Combinational Pro-
files of Sequential Benchmark Circuits. IEEE International Symposium on Circuits and
Systems, 3:1929–1934.

[Campos et al., 1992] Campos, J., Chiola, G., Colom, J., and Silva, M. (1992). Properties
and Performance Bounds for Timed Marked Graphs. IEEE T. Circuits-I., 39(5):386–401.

[Campos and Silva, 1992] Campos, J. and Silva, M. (1992). Structural Techniques and
Performance Bounds of Stochastic Petri Net Models. Lecture Notes in Computer Science,
609:352–391.

[Campos and Silva, 1993] Campos, J. and Silva, M. (1993). Embedded Product-Form
Queueing Networks and the Improvement of Performance Bounds for Petri Net Sys-
tems. Performance Evaluation, 18(1):3–19.

[Canetti et al., 1997a] Canetti, R., Gennaro, R., Herzberg, A., and Naor, D. (1997a).
Proactive Security: Long-term Protection Against Break-ins. CryptoBytes, 3(1):1–8.

[Canetti et al., 1997b] Canetti, R., Halevi, S., and Herzberg, A. (1997b). Maintaining
Authenticated Communication in the Presence of Break-ins. In Proceedings of the 16th
annual ACM symposium on Principles Of Distributed Computing (PODC), pages 15–24,
New York, NY, USA. ACM.

[Carmona et al., 2009] Carmona, J., Júlvez, J., Cortadella, J., and Kishinevsky, M. (2009).
Scheduling Synchronous Elastic Designs. In Proceedings of the 2009 Application of Con-
currency to System Design conference (ACSD), Augsburg, Germany.

[Casale et al., 2008] Casale, G., Mi, N., and Smirni, E. (2008). Bound Analysis of Closed
Queueing Networks with Workload Burstiness. SIGMETRICS Perform. Eval. Rev.,
36:13–24.

[Casanova et al., 2008] Casanova, H., Legrand, A., and Quinson, M. (2008). SimGrid: a
Generic Framework for Large-Scale Distributed Experiments. In 10th IEEE International
Conference on Computer Modeling and Simulation.

167

BIBLIOGRAPHY BIBLIOGRAPHY

[Chen et al., 2008] Chen, Y.-L., Hsu, P.-Y., and Chang, Y.-B. (2008). A Petri Net Ap-
proach to Support Resource Assignment in Project Management. IEEE T. Syst. Man.
Cy. A., 38(3):564–574.

[Cheswick et al., 2003] Cheswick, W. R., Bellovin, S. M., and Rubin, A. D. (2003). Fire-
walls and Internet Security; Repelling the Wily Hacker. Addison-Wesley, Reading, MA,
second edition.

[Chiola et al., 1993] Chiola, G., Anglano, C., Campos, J., Colom, J., and Silva, M. (1993).
Operational Analysis of Timed Petri Nets and Application to the Computation of Per-
formance Bounds. In Proceedings of the 5th International Workshop on Petri Nets and
Performance Models (PNPM), pages 128–137, Toulouse, France. IEEE Computer Soci-
ety Press.

[Cilardo et al., 2007] Cilardo, A., Coppolino, L., Mazzeo, A., and Romano, L. (2007). Per-
formance Evaluation of Security Services: An Experimental Approach. In Proceedings
of the 15th Euromicro International Conference on Parallel, Distributed and Network-
Based Processing, PDP ’07, pages 387–394, Washington, DC, USA. IEEE Computer
Society.

[Cirit and Buzluca, 2009] Cirit, c. and Buzluca, F. (2009). A UML Profile for Role-Based
Access Control. In Proceedings of the 2nd international conference on Security of Infor-
mation and Networks (SIN), pages 83–92, New York, NY, USA. ACM.

[Colom, 2003] Colom, J. (2003). The Resource Allocation Problem in Flexible Manufac-
turing Systems. In van der Aalst, W. and Best, E., editors, Applications and Theory of
Petri Nets, volume 2679 of LNCS, pages 23–35. Springer Berlin / Heidelberg.

[Colom et al., 1990] Colom, J., Campos, J., and Silva, M. (1990). On Liveness Analysis
through Linear Algebraic Techniques. In Proceedings of the Annual General Meeting of
ESPRIT Basic Research Action 3148 Design Methods Based on Nets (DEMON), Paris,
France.

[Cormen et al., 2001] Cormen, T. H., Stein, C., Rivest, R. L., and Leiserson, C. E. (2001).
Introduction to Algorithms. McGraw-Hill Higher Education.

[Cortellessa and Grassi, 2007] Cortellessa, V. and Grassi, V. (2007). A Modeling Approach
to Analyze the Impact of Error Propagation on Reliability of Component-Based Systems.
In Schmidt, H., Crnkovic, I., Heineman, G., and Stafford, J., editors, Proceedings of the
10th International Conference on Component-Based Software Engineering, volume 4608
of Lecture Notes in Computer Science, pages 140–156, Berlin, Heidelberg. Springer Berlin
/ Heidelberg.

168

BIBLIOGRAPHY BIBLIOGRAPHY

[Cortellessa and Trubiani, 2008] Cortellessa, V. and Trubiani, C. (2008). Towards a library
of composable models to estimate the performance of security solutions. In Workshop
on Software and Performance (WOSP), pages 145–156.

[Cortellessa et al., 2010a] Cortellessa, V., Trubiani, C., Mostarda, L., and Dulay, N.
(2010a). An Architectural Framework for Analyzing Tradeoffs between Software Security
and Performance. In Giese, H., editor, ISARCS’10: Proceedings of the 1st International
Symposium on Architecting Critical Systems, volume 6150 of Lecture Notes in Computer
Science, pages 1–18. Springer.

[Cortellessa et al., 2010b] Cortellessa, V., Trubiani, C., Mostarda, L., and Dulay, N.
(2010b). An Architectural Framework for Analyzing Tradeoffs between Software Se-
curity and Performance - Extended results . Technical report, Università degli Studi
dell’Aquila. Technical Report TRCS 001/2010.

[Deelman et al., 2007] Deelman, E., Mehta, G., Singh, G., Su, M., and Vahi, K. (2007).
Workflows for eScience, chapter Pegasus: Mapping Large-Scale Workflows to Distributed
Resources, pages 376–394. Springer.

[Delatour and de Lamotte, 2003] Delatour, J. and de Lamotte, F. (2003). ArgoPN: a
CASE Tool Merging UML and Petri Nets. In Isáıas, P. T., Sedes, F., Augusto, J. C.,
and Ultes-Nitsche, U., editors, NDDL/VVEIS, pages 94–102. ICEIS Press.

[Devanbu and Stubblebine, 2000] Devanbu, P. T. and Stubblebine, S. (2000). Software
Engineering for Security: a Roadmap. In Proceedings of the Conference on The Future
of Software Engineering, ICSE ’00, pages 227–239, New York, NY, USA. ACM.

[Dierks and Rescorla, 2006] Dierks, T. and Rescorla, E. (2006). The Transport Layer Se-
curity (TLS) Protocol Version 1.1. RFC 4346, Internet Engineering Task Force (IETF).

[Distefano et al., 2011] Distefano, S., Scarpa, M., and Puliafito, A. (2011). From UML to
Petri Nets: The PCM-Based Methodology. IEEE Transactions on Software Engineering,
37(1):65–79.

[Donatelli and Franceschinis, 1996] Donatelli, S. and Franceschinis, G. (1996). The PSR
Methodology: Integrating Hardware and Software Models. In Proceedings of the 17th
International Conference of Application and Theory of Petri Nets (ICATPN), pages
133–152.

[Dworkin, 2001] Dworkin, M. (2001). Recommendation for Block Cipher Modes of Oper-
ation: Methods and Techniques. Technical report, The National Institute of Standards
and Technology (NIST). Special Publication 800-38A.

169

BIBLIOGRAPHY BIBLIOGRAPHY

[Ezpeleta and Valk, 2006] Ezpeleta, J. and Valk, R. (2006). A Polynomial Deadlock Avoid-
ance Method for a Class of Nonsequential Resource Allocation Systems. IEEE T. Syst.
Man. Cy. A., 36(6):1234–1243.

[Fernández, 2004] Fernández, E. B. (2004). A Methodology for Secure Software Design.
In Arabnia, H. R. and Reza, H., editors, Proceedings of the International Conference
on Software Engineering Research and Practice (SERP), volume 1, pages 130–136, Las
Vegas, Nevada, USA. CSREA Press.

[Florin and Natkin, 1985] Florin, G. and Natkin, S. (1985). Les réseaux de Petri stochas-
tiques. Technique et Science Informatique, 4:143–160.

[Florin and Natkin, 1989] Florin, G. and Natkin, S. (1989). Necessary and Sufficient Er-
godicity Condition for Open Synchronized Queueing Networks. IEEE T. Software. Eng.,
15(4):367–380.

[Garber, 2000] Garber, L. (2000). Denial-of-Service Attacks Rip the Internet. IEEE Com-
puter, 33(4):12–17.

[Georg et al., 2010] Georg, G., Anastasakis, K., Bordbar, B., Houmb, S. H., Ray, I., and
Toahchoodee, M. (2010). Verification and Trade-Off Analysis of Security Properties in
UML System Models. IEEE Transactions on Software Engineering, 36(3):338–356.

[Gillespie, 1976] Gillespie, D. T. (1976). A General Method for Numerically Simulating the
Stochastic Time Evolution of Coupled Chemical Reactions. Journal of Computational
Physics, 22(4):403–434.

[Gokhale et al., 2004] Gokhale, S. S., Wong, W. E., Horgan, J., and Trivedi, K. S. (2004).
An analytical approach to architecture-based software performance and reliability pre-
diction. Performance Evaluation, 58(4):391–412.

[Goldratt and Cox, 1986] Goldratt, E. M. and Cox, J. (1986). The Goal: A Process of
Ongoing Improvement. North River Press.

[Gómez-Mart́ınez and Merseguer, 2006] Gómez-Mart́ınez, E. and Merseguer, J. (2006). Ar-
goSPE: Model-Based Software Performance Engineering. In International Conference of
Application and Theory of Petri Nets, pages 401–410.

[Goŝeva-Popstojanova and Trivedi, 2001] Goŝeva-Popstojanova, K. and Trivedi, K. S.
(2001). Architecture-based approach to reliability assessment of software systems. Per-
formance Evaluation, 45(2–3):179–204.

[Goudalo and Seret, 2008] Goudalo, W. and Seret, D. (2008). Toward the Engineering of
Security of Information Systems (ESIS): UML and the IS Confidentiality. In Proceed-
ings of the 2d International Conference on Emerging Security Information, Systems and
Technologies (SECURWARE), pages 248–256.

170

BIBLIOGRAPHY BIBLIOGRAPHY

[Guan et al., 2006] Guan, Z., Hernandez, F., Bangalore, P., Gray, J., Skjellum, A.,
Velusamy, V., and Liu, Y. (2006). Grid-Flow: A Grid-Enabled Scientific Workflow Sys-
tem with a Petri-Net-Based Interface: Research Articles. Concurr. Comput. : Pract.
Exper., 18:1115–1140.

[Gupta et al., 2002] Gupta, V., Gupta, S., Shantz, S. C., and Stebila, D. (2002). Perfor-
mance Analysis of Elliptic Curve Cryptography for SSL. In Proceedings of the 1st ACM
workshop on Wireless security, WiSE ’02, pages 87–94.

[Haddad et al., 2005] Haddad, S., Moreaux, P., Sereno, M., and Silva, M. (2005). Product-
Form and Stochastic Petri Nets: a structural approach. Perform. Eval., 59:313–336.

[Haley et al., 2006] Haley, C. B., Moffett, J. D., Laney, R., and Nuseibeh, B. (2006). A
Framework for Security Requirements Engineering. In Proceedings of the 2006 Interna-
tional Workshop on Software Engineering for Secure Systems, SESS ’06, pages 35–42,
New York, NY, USA. ACM.

[Halkidis et al., 2008] Halkidis, S. T., Tsantalis, N., Chatzigeorgiou, A., and Stephanides,
G. (2008). Architectural Risk Analysis of Software Systems Based on Security Patterns.
IEEE Transactions on Dependable and Secure Computing, 5(3):129–142.

[Hansman and Hunt, 2005] Hansman, S. and Hunt, R. (2005). A taxonomy of network and
computer attacks. Computers & Security, 24(1):31–43.

[Harrison and Avgeriou, 2008] Harrison, N. B. and Avgeriou, P. (2008). Incorporating
Fault Tolerance Tactics in Software Architecture Patterns. In Proceedings of the
2008 RISE/EFTS Joint Int. Workshop on Software Engineering for Resilient Systems
(SERENE), pages 9–18. ACM.

[Heckerman, 1995] Heckerman, D. (1995). A Bayesian Approach to Learning Causal Net-
works. In Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence,
UAI’95, pages 285–295, San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

[Hee et al., 2001] Hee, K. V., Reijers, H., Verbeek, E., and Zerguini, L. (2001). On the
Optimal Allocation of Resources In Stochastic Workflow Nets. In Djemame, K. and
Kara, M., editors, Proceedings of the 7th UK Performance Engineering Workshop, pages
23–34, University of Leeds, Leeds, UK.

[Heyman et al., 2011] Heyman, T., Yskout, K., Scandariato, R., Schmidt, H., and Yu, Y.
(2011). The Security Twin Peaks. In Erlingsson, U., Wieringa, R., and Zannone, N.,
editors, Engineering Secure Software and Systems, volume 6542 of Lecture Notes in
Computer Science, pages 167–180. Springer Berlin / Heidelberg.

171

BIBLIOGRAPHY BIBLIOGRAPHY

[Hillah et al., 2009] Hillah, L. M., Kindler, E., Kordon, F., Petrucci, L., and Tréves, N.
(2009). A primer on the Petri Net Markup Language and ISO/IEC 15909-2. Petri Net
Newsletter, 76:9–28.

[HoneyNet Project, 2004] HoneyNet Project, T., editor (2004). Know Your Enemy: Learn-
ing about Security Threats. Addison Wesley Publishing, 2nd edition.

[Horvath and Dörges, 2008] Horvath, V. and Dörges, T. (2008). From Security Patterns
to Implementation Using Petri Nets. In Proceedings of the 4th International Workshop
on Software Engineering for Secure Systems (SESS), SESS ’08, pages 17–24, New York,
NY, USA. ACM.

[Houmb and Hansen, 2003] Houmb, S. H. and Hansen, K. K. (2003). Towards a UML
profile for Security Assessment. In Proceedings of the Workshop on Critical Systems
Development with UML (UML).

[Hu et al., 2012] Hu, H., Zhou, M., and Li, Z. (2012). Liveness and Ratio-Enforcing Su-
pervision of Automated Manufacturing Systems Using Petri Nets. IEEE T. Syst. Man.
Cy. A., 42(2):392–403.

[Hussain et al., 2003] Hussain, A., Heidemann, J., and Papadopoulos, C. (2003). A Frame-
work for Classifying Denial of Service Attacks-extended. Technical Report ISI-TR-2003-
569b, USC/Information Sciences Institute. (Original TR, February 2003, updated June
2003).

[Hussein and Zulkernine, 2006] Hussein, M. and Zulkernine, M. (2006). UMLintr: A UML
Profile for Specifying Intrusions. In Proceedings of the 13th Annual IEEE International
Symposium and Workshop on Engineering of Computer Based Systems (ECBS), pages
279–288, Washington, DC, USA. IEEE Computer Society.

[Islam et al., 2011] Islam, S., Mouratidis, H., and Jürjens, J. (2011). A Framework to
Support Alignment of Secure Software engineering with Legal Regulations. Software
and Systems Modeling (SoSym), 10(3):369–394.

[Jensen, 1997] Jensen, K. (1997). Coloured Petri Nets. Basic Concepts, Analysis Methods
and Practical Use. Monographs in Theoretical Computer Science. Springer, 2nd edition.

[Juric et al., 2006] Juric, M. B., Rozman, I., Brumen, B., Colnaric, M., and Hericko, M.
(2006). Comparison of performance of Web services, WS-Security, RMI, and RMI-SSL.
J. Syst. Softw., 79:689–700.

[Jürjens, 2002] Jürjens, J. (2002). UMLsec: Extending UML for Secure Systems Devel-
opment. In Proceedings of the 5th International Conference on The Unified Modeling
Language, UML ’02, pages 412–425, London, UK. Springer-Verlag.

172

BIBLIOGRAPHY BIBLIOGRAPHY

[Kalan et al., 2008] Kalan, A. A. E., Baina, A., Beitollahi, H., Bessani, A., Bondavalli,
A., Correia, M., Daidone, A., Deconinck, G., Deswarte, Y., Garrone, F., Grandoni, F.,
Moniz, H., Neves, N., Rigole, T., Sousa, P., and Verissimo, P. (2008). D10: Preliminary
Specification of Services and Protocols. Project deliverable, CRUTIAL: Critical Utility
Infrastructural Resilience.

[Kant et al., 2000] Kant, K., Iyer, R., and Mohapatra, P. (2000). Architectural Impact of
Secure Socket Layer on Internet Servers. In Proceedings of the 2000 IEEE International
Conference on Computer Design: VLSI in Computers & Processors, ICCD ’00, pages
7–14, Washington, DC, USA. IEEE Computer Society.

[Kellerer et al., 2004] Kellerer, H., Pferschy, U., and Pisinger, D. (2004). Knapsack Prob-
lems. Springer-Verlag.

[Khan and Zulkernine, 2008] Khan, M. U. A. and Zulkernine, M. (2008). Quantifying Se-
curity in Secure Software Development Phases. Computer Software and Applications
Conference, Annual International, 0:955–960.

[Khan, 2011] Khan, R. (2011). Secure software development: a prescriptive framework.
Computer Fraud & Security, 2011(8):12–20.

[Lagarde et al., 2007] Lagarde, F., Espinoza, H., Terrier, F., and Gérard, S. (2007). Im-
proving UML Profile Design Practices by Leveraging Conceptual Domain Models. In
Proceedings of the 22nd IEEE/ACM International Conference on Automated Software
Engineering, ASE’07, pages 445–448, New York, NY, USA. ACM.

[Li et al., 2004] Li, J., Fan, Y., and Zhou, M. (2004). Performance Modeling and Analysis
of Workflow. IEEE T. Syst. Man. Cy. A., 34(2):229–242.

[Li et al., 2012] Li, Z., Wu, N., and Zhou, M. (2012). Deadlock Control of Automated
Manufacturing Systems Based on Petri Nets – A Literature Review. IEEE T. Syst.
Man. Cy. C., 42(4):437–462.

[Little, 1961] Little, J. D. C. (1961). A Proof for the Queuing Formula: L= λW. Operations
Research, 9(3):383–387.

[Liu, 1995] Liu, Z. (1995). Performance Bounds for Stochastic Timed Petri Nets. In Pro-
ceedings of the 16th ICATPN, pages 316–334. Springer-Verlag.

[Lodderstedt et al., 2002] Lodderstedt, T., Basin, D. A., and Doser, J. (2002). SecureUML:
A UML-Based Modeling Language for Model-Driven Security. In Proceedings of the 5th
International Conference on The Unified Modeling Language, UML ’02, pages 426–441,
London, UK. Springer-Verlag.

173

BIBLIOGRAPHY BIBLIOGRAPHY

[Lopez-Grao and Colom, 2011] Lopez-Grao, J. and Colom, J. (2011). On the Deadlock
Analysis of Multithreaded Control Software. In IEEE 16th Conference on Emerging
Technologies Factory Automation (ETFA), pages 1–8.

[López-Grao et al., 2004] López-Grao, J. P., Merseguer, J., and Campos, J. (2004). From
UML Activity Diagrams to Stochastic Petri Nets: Application to Software Performance
Engineering. In Proceedings of the 4th International Workshop on Software and Perfor-
mance (WOSP), pages 25–36, New York, NY, USA. ACM.

[Majzik et al., 2003] Majzik, I., Pataricza, A., and Bondavalli, A. (2003). Stochastic De-
pendability Analysis of System Architecture based on UML Models. In De Lemos, R.,
Gacek, C., and Romanovsky, A., editors, Proceedings of the Architecting Dependable
Systems, number 2677, pages 219–244. Springer.

[McGraw, 2004] McGraw, G. (2004). Software Security. IEEE Security and Privacy,
2(2):80–83.

[Menascé, 2003] Menascé, D. (2003). Security Performance. IEEE Internet Computing,
7(3):84–87.

[Menascé and Virgilio, 2000] Menascé, D. A. and Virgilio, A. F. A. (2000). Scaling for
E-Business: Technologies, Models, Performance, and Capacity Planning. Prentice Hall,
Upper Saddle River, NJ, USA, 1st edition.

[Menezes et al., 1996] Menezes, A. J., Vanstone, S. A., and Oorschot, P. C. V. (1996).
Handbook of Applied Cryptography. CRC Press, Inc., Boca Raton, FL, USA, 1st edition.

[Merseguer et al., 2002] Merseguer, J., Campos, J., Bernardi, S., and Donatelli, S. (2002).
A Compositional Semantics for UML State Machines Aimed at Performance Evaluation.
In Proceedings of the 6th International Workshop on Discrete Event Systems (WODES),
WODES ’02, pages 295–, Washington, DC, USA. IEEE Computer Society.

[Meyer, 1982] Meyer, J. F. (1982). Closed-Form Solutions of Performability. IEEE Trans.
Comput., 31(7):648–657.

[Microsoft, 2010] Microsoft (2010). Microsoft Security Development Lifecycle.
http://www.microsoft.com/security/sdl/default.aspx. version 5.

[Molloy, 1982] Molloy, M. (1982). Performance Analysis Using Stochastic Petri Nets. IEEE
T. Comput., C-31(9):913–917.

[Mouratidis and Giorgini, 2008] Mouratidis, H. and Giorgini, P. (2008). Integrating Secu-
rity and Software Engineering: An Introduction. In Information Security and Ethics:
Concepts, Methodologies, Tools, and Applications, pages 200–210. IGI Global.

174

http://www.microsoft.com/security/sdl/default.aspx

BIBLIOGRAPHY BIBLIOGRAPHY

[Mouratidis et al., 2003] Mouratidis, H., Giorgini, P., and Manson, G. (2003). Integrating
Security and Systems Engineering: Towards the Modelling of Secure Information Sys-
tems. In Eder, J. and Missikoff, M., editors, Proceedings of the 15th Conference On
Advanced Information Systems Engineering (CAiSE), volume 2681 of Lecture Notes in
Computer Science, pages 63–78. Springer Berlin / Heidelberg.

[Murata, 1989] Murata, T. (1989). Petri Nets: Properties, Analysis and Applications. In
Proceedings of the IEEE, volume 77, pages 541–580.

[Nerieri et al., 2006] Nerieri, F., Prodan, R., Fahringer, T., and Truong, H.-L. (2006). Over-
head Analysis of Grid Workflow Applications. In Proceedings of the 7th IEEE/ACM
International Conference on Grid Computing, GRID’06, pages 17–24, Washington, DC,
USA. IEEE Computer Society.

[Nguyen-Tuong and Grimshaw, 1999] Nguyen-Tuong, A. and Grimshaw, A. S. (1999). Us-
ing Reflection for Incorporating Fault-Tolerance Techniques into Distributed Applica-
tions. Parallel Processing Letters, 9(2):291–301.

[OMG, 2005] OMG (2005). Unified Modelling Language: Superstructure. Object Manage-
ment Group. Version 2.0, formal/05-07-04.

[OMG, 2009] OMG (2009). A UML profile for Modeling and Analysis of Real Time Em-
bedded Systems (MARTE). Object Management Group. Document ptc/09-11-02.

[OMG, 2010] OMG (2010). Object Constraint Language (OCL). Object Management
Group. v2.2, formal/2010-02-01.

[Osogami and Raymond, 2010] Osogami, T. and Raymond, R. (2010). Semidefinite Opti-
mization for Transient Analysis of Queues. SIGMETRICS Perform. Eval. Rev., 38:363–
364.

[Ostrovsky and Yung, 1991] Ostrovsky, R. and Yung, M. (1991). How To Withstand Mo-
bile Virus Attacks. In Proceedings of the 10th annual ACM symposium on Principles Of
Distributed Computing (PODC), pages 51–59, New York, NY, USA. ACM.

[Park and Humphrey, 2008] Park, S.-M. and Humphrey, M. (2008). Data Throttling for
Data-Intensive Workflows. In IEEE International Symposium on Parallel and Distributed
Processing, pages 1–11.

[Patzina et al., 2010] Patzina, L., Patzina, S., Piper, T., and Schürr, A. (2010). Monitor
Petri Nets for Security Monitoring. In Proceedings of the International Workshop on
Security and Dependability for Resource Constrained Embedded Systems, S&D4RCES
’10, pages 3:1–3:6, New York, NY, USA. ACM.

175

BIBLIOGRAPHY BIBLIOGRAPHY

[Paxson, 2001] Paxson, V. (2001). An Analysis of Using Reflectors for Distributed Denial-
of-Service Attacks. SIGCOMM Computer Communication Review, 31:38–47.

[Pellegrini et al., 2008] Pellegrini, S., Hoheisel, A., Giacomini, F., and Ghiselli, A. (2008).
Using GWorkflowDL for Middleware-Independent Modeling and Enactment of Work-
flows. In Proceedings of the CoreGRID Integration Workshop 2008, Crete, Greece.

[Pfleeger and Pfleeger, 2006] Pfleeger, C. P. and Pfleeger, S. L. (2006). Security in Com-
puting. Prentice Hall, 4th edition.

[Ramamoorthy and Ho, 1980] Ramamoorthy, C. V. and Ho, G. S. (1980). Performance
Evaluation of Asynchronous Concurrent Systems Using Petri Nets. IEEE T. Software.
Eng., 6(5):440–449.

[Ramchandani, 1974] Ramchandani, C. (1974). Analysis of Asynchronous Concurrent Sys-
tems by Petri Nets. PhD thesis, Dept. of Electrical Engineering, Massachusetts Institute
of Technology, Cambridge, MA, USA.

[Randimbivololona, 2001] Randimbivololona, F. (2001). Orientations in Verification Engi-
neering of Avionics Software. In Wilhelm, R., editor, Informatics, volume 2000 of Lecture
Notes in Computer Science, pages 131–137. Springer Berlin/Heidelberg.

[Reussner et al., 2003] Reussner, R. H., Schmidt, H. W., and Poernomo, I. H. (2003). Reli-
ability prediction for component-based software architectures. J. Syst. Softw., 66(3):241–
252.

[Rodŕıguez et al., 2006] Rodŕıguez, A., Fernández-Medina, E., and Piattini, M. (2006). Se-
curity Requirement with a UML 2.0 Profile. In Proceedings of the 1st International
Conference on Availability, Reliability and Security (ARES), page 8 pp.

[Rodŕıguez and Júlvez, 2010] Rodŕıguez, R. J. and Júlvez, J. (2010). Accurate Perfor-
mance Estimation for Stochastic Marked Graphs by Bottleneck Regrowing. In Proceed-
ings of the 7th European Performance Engineering Workshop (EPEW), volume 6342 of
LNCS, pages 175–190. Springer.

[Rodŕıguez et al., 2012a] Rodŕıguez, R. J., Júlvez, J., and Merseguer, J. (2012a). PeabraiN:
A PIPE Extension for Performance Estimation and Resource Optimisation. In Pro-
ceedings of the 12th International Conference on Application of Concurrency to System
Designs (ACSD), pages 142–147. IEEE.

[Rodŕıguez and Merseguer, 2010] Rodŕıguez, R. J. and Merseguer, J. (2010). Integrating
Fault-Tolerant Techniques into the Design of Critical Systems. In Giese, H., editor,
Proceedings of the 1st International Symposium on Architecting Critical Systems (IS-
ARCS), volume 6150 of Lecture Notes in Computer Science, pages 33–51, Prague, Czech
Republic. Springer.

176

BIBLIOGRAPHY BIBLIOGRAPHY

[Rodŕıguez et al., 2010] Rodŕıguez, R. J., Merseguer, J., and Bernardi, S. (2010). Mod-
elling and Analysing Resilience as a Security Issue within UML. In Proceedings of the
2nd International Workshop on Software Engineering for Resilient Systems (SERENE),
pages 42–51, London, United Kingdom. ACM.

[Rodŕıguez et al., 2011] Rodŕıguez, R. J., Merseguer, J., and Bernardi, S. (2011). A Secu-
rity Analysis and Modelling profile: an Overview. Technical Report RR-01-11, Dpto. de
Ingenieŕıa e Informática de Sistemas, Universidad de Zaragoza.

[Rodŕıguez et al., 2012b] Rodŕıguez, R. J., Tolosana-Calasanz, R., and Rana, O. F.
(2012b). Automating Data-Throttling Analysis for Data-Intensive Workflows. In Pro-
ceedings of the 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGrid), pages 310–317. IEEE.

[Rodŕıguez et al., 2012c] Rodŕıguez, R. J., Tolosana-Calasanz, R., and Rana, O. F. (2012c).
Measuring the Effectiveness of Thottled Data Transfers on Data-Intensive Workflows.
In Jezic, G., Kusek, M., Nguyen, N. T., Howlett, R. J., and Jain, L. C., editors, Pro-
ceedings of the 6th International KES Conference on Agents and Multi-agent Systems
– Technologies and Applications, volume 7327 of Lecture Notes in Computer Science,
pages 144–153. Springer.

[Rodŕıguez et al., 2013] Rodŕıguez, R. J., Tolosana-Calasanz, R., and Rana, O. F. (2013).
Data-Throttling Analysis for Data-Intensive Workflows on Dynamic Environments.
Technical report, Universidad de Zaragoza. To be submitted to IEEE Transactions
on Parallel and Distributed Systems.

[Rodŕıguez et al., 2012d] Rodŕıguez, R. J., Trubiani, C., and Merseguer, J. (2012d). Fault-
Tolerant Techniques and Security Mechanisms for Model-based Performance Prediction
of Critical Systems. In Proceedings of the 3rd International Symposium on Architecting
Critical Systems (ISARCS), pages 21–30. ACM.

[Rodŕıguez et al., 2013a] Rodŕıguez, R. J., Júlvez, J., and Merseguer, J. (2013a). On the
Performance Estimation and Resource Optimisation in Process Petri Nets. IEEE Trans-
actions on Systems, Man, and Cybernetics: Systems, PP(99):1–14.

[Rodŕıguez et al., 2013b] Rodŕıguez, R. J., Júlvez, J., and Merseguer, J. (2013b). Quan-
tification and Compensation of the Impact of Faults in System Throughput. Proceedings
of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability. Ac-
cepted for publication.

[Rosado et al., 2010a] Rosado, D. G., Fernández-Medina, E., López, J., and Piattini, M.
(2010a). Analysis of Secure Mobile Grid Systems: A systematic approach. Information
and Software Technology, 52(5):517–536.

177

BIBLIOGRAPHY BIBLIOGRAPHY

[Rosado et al., 2010b] Rosado, D. G., Fernández-Medina, E., López, J., and Piattini, M.
(2010b). Developing a Secure Mobile Grid System through a UML Extension. J. UCS,
16(17):2333–2352.

[Ross, 1983] Ross, S. (1983). Stochastic Processes. Wiley series in mathematical statistics.
Probability and mathematical statistics. Wiley.

[Rugina et al., 2007] Rugina, A.-E., Kanoun, K., and Kaâniche, M. (2007). A System
Dependability Modeling Framework Using AADL and GSPNs. In Lemos, R., Gacek,
C., and Romanovsky, A., editors, Architecting Dependable Systems IV, volume 4615 of
Lecture Notes in Computer Science, pages 14–38. Springer Berlin Heidelberg.

[Sanders and Meyer, 1991] Sanders, W. H. and Meyer, J. F. (1991). A Unified Approach
for Specifying Measures of Performance, Dependability, and Performability. Dependable
Computing and Fault-Tolerant Systems: Dependable Computing for Critical Applications,
4:215–237.

[Sandhu et al., 1996] Sandhu, R. S., Coyne, E. J., Feinstein, H. L., and Youman, C. E.
(1996). Role-Based Access Control Models. Computer, 29:38–47.

[Scarfone and Mell, 2007] Scarfone, K. and Mell, P. (2007). Guide to Intrusion Detection
and Prevention Systems (IDPS). Technical report, The National Institute of Standards
and Technology (NIST). Special Publication 800-94.

[Schmidt and Wentzlaff, 2006] Schmidt, H. and Wentzlaff, I. (2006). Preserving Software
Quality Characteristics from Requirements Analysis to Architectural Design. In Gruhn,
V. and Oquendo, F., editors, Software Architecture, volume 4344 of Lecture Notes in
Computer Science, pages 189–203. Springer Berlin / Heidelberg.

[Schneider, 2000] Schneider, F. B. (2000). Enforceable Security Policies. ACM Transac-
tions on Information and System Security (TISSEC), 3(1):30–50.

[Selic, 2007] Selic, B. (2007). A Systematic Approach to Domain-Specific Language De-
sign Using UML. In 10th IEEE Int. Symposium on Object and Component-Oriented
Real-Time Distributed Computing (ISORC), pages 2–9, Santorini Island, Greece. IEEE
Computer Society.

[Shamir, 1979] Shamir, A. (1979). How to Share a Secret. Communications of ACM,
22(11):612–613.

[Sousa et al., 2010a] Sousa, P., Bessani, A., Correia, M., Neves, N., and Verissimo, P.
(2010a). Highly Available Intrusion-Tolerant Services with Proactive-Reactive Recovery.
IEEE Transactions on Parallel and Distributed Systems, 21(4):452–465.

178

BIBLIOGRAPHY BIBLIOGRAPHY

[Sousa et al., 2010b] Sousa, P., Bessani, A. N., Correia, M., Neves, N. F., and Veŕıssimo, P.
(2010b). Highly Available Intrusion-Tolerant Services with Proactive-Reactive Recovery.
IEEE Transactions on Parallel and Distributed Systems, 21(4):452–465.

[Thapa et al., 2010] Thapa, V., Song, E., and Kim, H. (2010). An Approach to Verifying
Security and Timing Properties in UML Models. In 15th IEEE International Conference
on Engineering of Complex Computer Systems (ICECCS), pages 193–202.

[Tran, 2006] Tran, T. (2006). Proactive Multicast-Based IPSEC Discovery Protocol and
Multicast Extension. In IEEE Military Communications Conference (MILCOM), pages
1 –7.

[Tricas, 2003] Tricas, F. (2003). Deadlock Analysis, Prevention and Avoidance in Sequen-
tial Resource Allocation Systems. PhD thesis, Dpto. de Informática e Ingenieŕıa de
Sistemas, Universidad de Zaragoza.

[Tricas et al., 2000] Tricas, F., Vallés, F., Colom, J., and Ezpeleta, J. (2000). An Iterative
Method for Deadlock Prevention in FMS. In Boel, R. and Stremersch, G., editors,
Discrete Event Systems. Analysis and Control, pages 139–148, Boston, USA. Kluwer
Academic Publishers, Kluwer Academic Publishers.

[Trujillo et al., 2009] Trujillo, J., Soler, E., Fernández-Medina, E., and Piattini, M. (2009).
A UML 2.0 profile to define security requirements for Data Warehouses. Computer
Standards & Interfaces, 31(5):969–983.

[van der Aalst and van Hee, 2004] van der Aalst, W. and van Hee, K. (2004). Workflow
Management: Models, Methods, and Systems, volume 1 of MIT Press Books. The MIT
Press.

[Vossberg et al., 2008] Vossberg, M., Hoheisel, A., Tolxdorff, T., and Krefting, D. (2008).
A Reliable DICOM Transfer Grid Service Based on Petri Net Workflows. In Proceedings
of the 2008 Eighth IEEE International Symposium on Cluster Computing and the Grid,
pages 441–448, Washington, DC, USA. IEEE Computer Society.

[Wang and Zeng, 2008] Wang, H. and Zeng, Q. (2008). Modeling and Analysis for Work-
flow Constrained by Resources and Nondetermined Time: An Approach Based on Petri
Nets. IEEE T. Syst. Man. Cy. A., 38(4):802–817.

[Wing, 2003] Wing, J. M. (2003). A Call to Action: Look Beyond the Horizon. IEEE
Security and Privacy, 1:62–67.

[Wolter and Meinel, 2010] Wolter, C. and Meinel, C. (2010). An Approach to Capture
Authorisation Requirements in Business Processes. Requir. Eng., 15:359–373.

179

BIBLIOGRAPHY BIBLIOGRAPHY

[Woodside et al., 2009] Woodside, M., Petriu, D. C., Petriu, D. B., Xu, J., Israr, T., Georg,
G., France, R., Bieman, J. M., Houmb, S. H., and Jürjens, J. (2009). Performance analysis
of security aspects by weaving scenarios extracted from UML models. J. Syst. Softw.,
82:56–74.

[Wu et al., 2008] Wu, N., Zhou, M., and Li, Z. (2008). Resource-Oriented Petri Net
for Deadlock Avoidance in Flexible Assembly Systems. IEEE T. Syst. Man. Cy. A.,
38(1):56–69.

[Yskout et al., 2008] Yskout, K., De Win, B., and Joosen, W. (2008). Transforming secu-
rity audit requirements into a software architecture. In Whittle, J., Jurjens, J., Nuseibeh,
B., and Dobson, G., editors, Proceedings of the Workshop on Modeling Security (MOD-
SEC08), pages 1–10. CEUR Workshop Proceedings (CEUR-WS.org).

[Zhou et al., 2002] Zhou, L., Schneider, F. B., and Van Renesse, R. (2002). COCA: a
Secure Distributed Online Certification Authority. ACM Trans. on Computer Systems
(TOCS), 20(4):329–368.

180

	472.pdf
	ki2011159a(1).pdf
	Liver X receptor-activating ligands modulate renal and intestinal sodium-phosphate transporters
	RESULTS
	The effects of the LXR agonists on renal and intestinal gene regulation
	Treatment with DMHCA or TO901317 causes decreases in Na+-dependent phosphate uptake in kidney and ileum brush border membrane (BBM)
	Treatment with DMHCA or TO901317 decreases serum Pi and increases serum FGF23
	Treatment with DMHCA or TO901317 causes decreases in NaPi cotransporter protein and mRNA abundance in kidney and ileum

	Figure 1 Effect of the LXR agonist DMHCA and TO901317 on the abundance of LXR target genes in mouse kidney and ileum.
	DMHCA or TO901317 causes decreases in NaPi cotransport activity and NaPi-4 protein abundance in opossum kidney (OK) cells in culture

	Figure 3 Treatment with DMHCA or TO901317 decreases blood phosphate concentration, increases urine phosphate excretion in mouse, and does not change serum calcium concentration.
	Figure 2 Treatment with DMHCA or TO901317 reduces Na+-dependent phosphate uptake in mouse ileum and kidney BBM.
	DISCUSSION
	Figure 4 Effects of DMHCA and TO901317 on mouse serum FGF23 and serum PTH.
	MATERIALS AND METHODS
	Animals and diets
	Cell culture
	Materials and antibodies

	Figure 5 Effects of DMHCA or TO901317 on renal BBM NaPi transporter protein abundance and NaPi transporter mRNA abundance.
	BBM vesicle isolation
	Pi transport assays

	Figure 6 Effects of DMHCA or TO901317 on intestinal BBM NaPi transporter protein abundance and NaPi transporter mRNA abundance.
	Urine and blood analysis
	Western blotting

	Figure 7 Treatment of opossum kidney (OK) cells with LXR agonists DMHCA or TO901317 induces activation of endogenous LXR, decrease in the phosphate uptake in a dose-dependent manner, and decrease in the expression of the endogenous NaPi transporter (NaPi4
	RNA extraction and real-time quantitative PCR
	Confocal microscopy
	Statistical analysis

	DISCLOSURE
	ACKNOWLEDGMENTS
	REFERENCES

	473.pdf
	List of Figures
	List of Tables
	List of Algorithms
	Introduction and State of the Art
	Motivation
	State of the Art
	Outline

	Preliminary Concepts
	Petri Nets
	Untimed Petri Nets
	Timed Petri Nets

	The Unified Modelling Language
	UML Use Case Diagrams
	UML Deployment Diagrams
	UML State Machine Diagrams
	UML Sequence Diagrams

	Fault Tolerance

	I Design of Critical Systems
	A UML Profile for Security
	Motivation
	SecAM UML profile
	SecAM::Resilience package
	SecAM::Cryptographic package
	SecAM::SecurityMechanisms package
	SecAM::AccessControl package

	Concluding Remarks

	Fault-Tolerant Techniques for Critical Systems
	Motivation
	Compositional PN Models for Fault Tolerance
	PN Error Detection Model
	PN Recovery Model
	Analysis of PN-based FT Models

	UML Fault-Tolerant Techniques Library
	Proactive-Reactive Recovery Technique
	Switch Over Failing and Ping and Restore Techniques

	Concluding Remarks

	Model-Based Performance Prediction of Critical Systems
	Motivation
	Security Mechanisms
	A Model-Based Methodology to Quantify Security-Performance Trade-off
	Concluding Remarks

	II Performance Analysis
	Strategies for Upper Throughput Bound Computation in PNs
	Motivation
	Little's Law and Upper Throughput Bounds
	Tight Marking

	Regrowing Strategy for Stochastic Marked Graphs
	Experiments and Discussion

	Regrowing Strategy for Process Petri Nets
	An Iterative Strategy to Compute Upper Throughput Bounds
	Numerical Problems in LPP (6.9)

	Concluding Remarks

	Compensation of Throughput Degradation in FT Systems
	Motivation
	Maximising Throughput through Resource Optimisation
	Calculating the Next Constraining Resource
	An Iterative Strategy for Resource Optimisation

	Minimising Cost of Compensating Throughput Degradation
	An ILPP for Minimising the Cost of Compensating

	Concluding Remarks

	III Applications
	Case Study: a Secure Database System
	System Description
	Experiments and Discussion
	Performance Estimation
	Resource Optimisation Maximising Throughput
	Resource Optimisation Minimising Cost while Adding FT Techniques

	Concluding Remarks

	Case Study: an E-Commerce System
	System Description
	Experiments and Discussion
	Experimental Setting
	Experimental results

	Concluding Remarks

	Performance Analysis of Data-Intensive Workflows
	Motivation
	Model Transformation: From a DAG to a SMG
	A Metric for Quantifying the Effectiveness of Throttled Data Transfers
	Metric Evaluation

	An Automating Data-Throttling Analysis Method
	Experiments and Discussion
	Impact on the Workflow Makespan

	Concluding Remarks

	IV Tool Support
	The PeabraiN Tool: A PIPE Extension
	Motivation
	PeabraiN Framework
	Implemented Features
	Framework Design
	Example of Use
	Tool Availability and Installation Requirements

	Concluding Remarks

	V Conclusions
	Conclusions and Open Problems
	Thesis Summary
	Main Contributions
	Future Work and Open Problems

	Relevant Publications Related to this Dissertation
	Bibliography

