2 research outputs found

    Robot-centric elevation mapping with uncertainty estimates

    Get PDF
    This paper addresses the local terrain mapping process for an autonomous robot. Building upon an onboard range measurement sensor and an existing robot pose estimation, we formulate a novel elevation mapping method from a robot-centric perspective. This formulation can explicitly handle drift of the robot pose estimation which occurs for many autonomous robots. Our mapping approach fully incorporates the distance sensor measurement uncertainties and the six-dimensional pose covariance of the robot. We introduce a computationally efficient formulation of the map fusion process, which allows for mapping a terrain at high update rates. Finally, our approach is demonstrated on a quadrupedal robot walking over obstacles

    Learning from Experience for Rapid Generation of Local Car Maneuvers

    Full text link
    Being able to rapidly respond to the changing scenes and traffic situations by generating feasible local paths is of pivotal importance for car autonomy. We propose to train a deep neural network (DNN) to plan feasible and nearly-optimal paths for kinematically constrained vehicles in small constant time. Our DNN model is trained using a novel weakly supervised approach and a gradient-based policy search. On real and simulated scenes and a large set of local planning problems, we demonstrate that our approach outperforms the existing planners with respect to the number of successfully completed tasks. While the path generation time is about 40 ms, the generated paths are smooth and comparable to those obtained from conventional path planners
    corecore