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Abstract 
 

Quantifying spatial uncertainties in structure-from-motion snow depth 
mapping with drones in an alpine environment 
 

Due to the heterogeneous nature of alpine snow distribution, advances in hydrological 

monitoring and forecasting for water resource management require an increase in the 

frequency, spatial resolution and coverage of field observations. Such detailed snow 

information is also needed to foster advances in our understanding of how snowpack affects 

ecology and geomorphology including the occurrence of natural hazards. Recently, the use of 

structure-from-motion multi-view stereo (SFM-MVS) 3D reconstruction techniques have 

shown promising potential to provide higher spatial and temporal resolution snow depth data 

for snowpack monitoring. The combination of SFM-MVS with images collected from 

unmanned aerial vehicles (UAVs), or commonly known as drones, seems to be emerging as a 

cost-effective approach for snow depth mapping compared to traditional surveying 

techniques such as airborne light detection and ranging (lidar).  

Much of the recent research exploring how SFM-MVS snow depth mapping performs 

compared to traditional techniques has illustrated that although it can provide similar results 

as the other measurement techniques, there remain challenges to produce high-quality snow 

depth data. These challenges, which include differentiating observations from noise and 

overcoming biases in the elevation data, are inherent in digital elevation model (DEM) 

differencing. A key issue to address these challenges is our ability to quantify measurement 

uncertainties in the SFM-MVS snow depths. Furthermore, a detailed understanding of the 

uncertainties is required to determine the limits and suitability of SFM-MVS mapping for 

specific applications. The aim of this thesis is to enhance our understanding of the spatial 

uncertainties in high-resolution (≤10 cm) mapping of snow depth using SFM-MVS and drones. 

It is comprised of three main contributions that focus on developing methods for spatially 

quantifying, characterizing and reducing uncertainties in SFM-MVS snow depth mapping 

using a case study at the Combe de Laurichard, located in the southern French Alps. 

To understand the quality of SFM-MVS snow depth measurements, the uncertainty in the 

individual DEMs needs to be described. In the first part of this work, several models to define 

the spatial distribution of DEM error depending on the available validation data were 

presented. These models were based on three scenarios: (1) having a single DEM and check 

points or a reference DEM; (2) having multiple DEMs from repeat observations and check 

points; and (3) having multiple DEMs from repeat observations and a reference DEM. 

Additionally, the spatial uncertainty in SFM-MVS DEMs was quantified using in-situ field 

measurements and repeated drone surveys. The multiple elevation models were used to 

estimate the precision for each grid cell of the DEMs. To determine the effect of survey and 

field conditions on DEM quality, a generalized additive model (GAM) was applied to model 

the precision of the SFM-MVS derived elevations. Overall, by accounting for the effects of 

multiple variables using the GAM, it was found that the image height above the ground, 
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ground control network and image overlap have the strongest effect on the spatial distribution 

of DEM precision, respectively. Field site conditions, such as slope angle, and shading were 

only slightly important for spatially modelling precision. 

In the second part of this work, a new method for quantifying and visualizing SFM-MVS snow 

depth uncertainties from DEM differencing was illustrated. Spatially varying snow depth 

precision, which was estimated from repeated drone surveys of the snow-free and snow-

covered DEMs, was determined using an error propagation model that was applied to each 

grid cell. This error propagation model was used to express uncertainty with spatially varying 

detection limits for a given confidence level using a Student’s t distribution. It was found for 

the given flying height (~60 m above ground level), camera and survey design that snow 

depths as shallow as 1 cm to 5 cm could be detected with high confidence for most of the study 

area. Areas of high uncertainties where generally related to where the extent of the GCP 

coverage did not match, and in areas with high surface roughness. Applying the detection 

limits as thresholds was found to be a useful approach for identifying potential biases in the 

snow depths; for example, errors due to poor SFM-MVS reconstruction and changes in 

topography between DEM acquisition dates could be observed.  

This work additionally explored the effect of spatial resolution on snow depth errors. It was 

found for this study area, that the snow depth errors where more sensitive to the spatial 

resolution of the snow-free DEM than the snow-covered DEM. Errors related to poorer spatial 

resolution of the snow-cover DEM tended to only increase for resolutions coarser than 5 m. 

This result indicates the need for highly detailed surveying of the snow-free conditions in 

complex alpine terrain to minimize snow depth errors. 

In the third part of this work, a method for correcting snow depth errors caused by changes 

occurring to the surface topography in the time between the acquisitions of the DEMs is 

presented. Using a case study of mapping snow depth over an active rock glacier, a novel 

method for kinematic modelling of surface displacements using an open-source solution for 

non-rigid registration is applied to DEMs, scaled and then used to transform the snow-free 

DEM to represent the sub-snow ground conditions at the time of the snow-covered DEM. In-

situ snow depth measurements, and snow-free areas (e.g. rock debris and boulders) were used 

to constrain the transformation and to account for seasonal variations in displacement rates of 

permafrost creep. It was found that on-going slope deformation processes can be a 

considerable source of error in high-resolution snow-depth mapping, and that the applied 

method was able to reduce snow depth errors up to 33%.  

Performing a detailed error analysis is essential for providing strong support for the quality 

of snow depth data or any corresponding geoscientific analysis based on SFM-MVS DEMs. 

The work in thesis has developed a framework for conducting quality assurance of SFM-MVS 

DEMs based on repeated drone surveys and non-linear regression modelling. Also, since the 

repeated-based spatial uncertainty method can be applied to any SFM-MVS solution, it 

provides a standardized approach to benchmark the performance of SFM-MVS algorithms. 

The spatial distribution of uncertainties can result from the SFM-MVS survey design and 

random sub-procedures in the SFM-MVS processing. Therefore, as illustrated in this thesis, 

applying the Student’s t distribution to SFM-MVS DEM precision estimates is an effective 
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approach for determining if SFM-MVS snow depths are real observations or measurement 

errors. The work in thesis was also the first to combine uncertainties in both the snow-free and 

snow-covered SFM-MVS DEMs to quantify the spatial distribution of SFM-MVS snow depth 

uncertainties. This analysis shows how uncertainties in SFM-MVS snow depths can be highly 

spatially heterogeneous. However, given a strong image and ground control network, the 

distribution of these uncertainties can be controlled. Furthermore, by modelling hillslope 

deformation processes, errors in high-resolution snow depths can be reduced. 

Overall, this thesis contributes to the growing support of SFM-MVS combined with imagery 

acquired from drones as a suitable surveying technique for local scale snow distribution 

monitoring. Future work can focus on the application of SFM-MVS snow depth data for 

modelling local snow conditions, for example, by fusing data with numerical snowpack 

models. The error propagation technique, as presented in this thesis, can be applied to ensure 

the quality of snow depth data. This thesis also illustrated how characterizing factors 

influencing uncertainties in SFM-MVS DEMs can be used to improve SFM-MVS snow depth 

mapping. Further advances using this technique will likely result from benchmarking SFM-

MVS algorithms for optimal performance under different snow cover conditions.  
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Zusammenfassung der Dissertation 
 

Quantifizierung der räumlichen Unsicherheiten der 

Schneedeckenhöhenkartierung mittels Structure-from-Motion mit 

Drohnendaten in einem alpinen Gebiet 

 
Besonders aufgrund der hohen Heterogenität der alpinen Schneeverteilung ist eine Steigerung 

der Frequenz, der räumlichen Auflösung und der Abdeckung von Geländebeobachtungen 

notwendig, um Fortschritte im hydrologischen Monitoring und daraus abgeleiteten 

Vorhersagen für verbessertes Wasserressourcenmanagement zu erreichen. Detaillierte 

Informationen zur Schneedeckenhöhe bieten neue Anhaltspunkte zur Analyse und zum 

besseren Verständnis der Effekte der Schneedecke auf die lokale Ökologie und 

Geomorphologie, inklusive dem Auftreten von Naturgefahren. In den letzten Jahren haben 

Studien ein hohes Potential der Structure-from-Motion (SFM) multi-view stereo (MVS) 3D 

Rekonstruktion als Datenquelle zur Ermittlung der Schneedeckenhöhe mit höherer 

räumlicher und zeitlicher Auflösung für das Schneedecken-Monitoring gezeigt. Im Vergleich 

zu traditionelleren Vermessungsmethoden (wie z.B. flugzeuggestütztes Laserscanning (lidar)) 

entwickelt sich die Kombination von SFM-MVS Methoden angewandt auf Bildern, die mit 

unbemannten Flugsystemen, oder kurz oft auch Drohnen genannt, aufgenommen wurden, zu 

einem kosteneffizienten Ansatz.  

Jüngste Studien, die SFM-MVS Schneedeckenhöhenkartierung mit traditionellen Methoden 

vergleichen, zeigten, dass die Ergebnisse zwar vergleichbar sind, aber dass immer noch 

Herausforderungen bezüglich der Erstellung von hoch qualitativen Schneedeckenhöhendaten 

mittels der neuen Methoden bestehen. Diese Herausforderungen sind inhärent im Bereich der 

Differenzbildung von digitalen Höhenmodellen (DHM) und liegen im Bereich der 

Unterscheidung von Signal (tatsächliche Schneedeckenhöhe) und Rauschen (Artefakt der 

DHM). Um diesen Herausforderungen zu begegnen ist es von großer Bedeutung 

Messunsicherheiten der SFM-MVS Schneehöhenkartierung quantifizieren zu können. 

Zusätzlich, ist ein detailliertes Verständnis der Unsicherheiten notwendig, um die 

Limitierungen und Eignung der SFM-MVS Kartierung für spezifische Anwendungen 

abschätzen zu können. Die Zielsetzung der vorliegenden Dissertation ist das Verbessern 

unseres Verständnisses der räumlichen Unsicherheiten in hoch aufgelösten (<10 cm) 

Schneedeckenhöhenkartierungen mittels SFM-MVS von Drohnenbildern. In dieser 

Dissertation wurden drei Teilbereiche dieser Problematik genauer bearbeitet, um neue 

Methoden für die räumliche Quantifizierung, Charakterisierung und Reduktion von 

Unsicherheiten in SFM-MVS Schneedeckenhöhenkartierungen zu entwickeln. Diese 

Methoden wurden am Beispiel des alpinen Untersuchungsgebiets Combe de Laurichard, in 

den südlichen französischen Alpen entwickelt und getestet. 

Der erste Teil dieser Dissertation widmete sich der besseren Beschreibung der Unsicherheiten 

der einzelnen DHM die zur Berechnung der Schneehöhe herangezogen werden, um die 

Qualität der SFM-MVS Schneehöhenkartierung besser verstehen zu können. Mehrere Modelle 
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wurden zur Beschreibung der räumlichen Verteilung von Fehlern der entsprechenden DHM, 

abhängig von den verfügbaren Validierungsdaten erstellt. Diese Modelle basierten auf drei 

Szenarien: (1) ein einzelnes DHM und vermessene Punkte (mittels GNSS) oder ein Referenz 

DHM (z.B. aus lidar Daten) ist verfügbar; (2) mehrere DHM aus wiederholten 

Drohnenbefliegungen am selben Tag und vermessene Punkte sind verfügbar; und (3) mehrere 

DHM aus wiederholten Drohnenbefliegungen am selben Tag und ein Referenz DHM sind 

verfügbar. Zusätzlich wurde die räumliche Unsicherheit der SFM-MVS DHM der 

verschiedenen Zeitpunkte (schneebedeckt und schneefrei) mittels dem Vergleich der 

vermessenen Punkte und den wiederholten Drohnenbefliegungen am selben Tag 

quantifiziert. Die Abweichungen zwischen den DHM aus wiederholten Drohnenbefliegungen 

am selben Tag wurden verwendet um die Präzision der Höhe in jeder einzelnen Rasterzelle 

des entsprechenden DHM zu schätzen. Der Einfluss der Vermessungsmethode und der 

Geländebedingungen auf die DHM Qualität wurde mittels eines generalisierten additiven 

Modells (GAM) abgeschätzt. Das GAM wurde verwendet, um die Präzision der mittels SFM-

MVS abgeleiteten Geländehöhen zu modellieren. Während mittels dem GAM die Effekte von 

vielen Variablen berücksichtigt wurden, wurde für die Höhe aus der das Bild aufgenommen 

wurde, die Verteilung der Passpunkte im Untersuchungsgebiet und das Ausmaß der 

Überlappung zwischen den einzelnen Bildern der größte Einfluss auf die räumliche 

Verteilung der Präzision des DHM festgestellt. Geländebedingungen wie Hangneigung und 

Schattenwurf hatten nur wenig Einfluss auf die räumliche Verteilung der Präzision des DHM. 

Im zweiten Teil dieser Dissertation, wurde eine neue Methode zur Quantifizierung und 

Visualisierung von Unsicherheiten der SFM-MVS Schneedeckenhöhenkartierung basierend 

auf der Differenzbildung von zwei DHM entwickelt. Die räumlich variable Präzision der 

Schneedeckenhöhe, welche auf Schätzungen aus den wiederholten Drohnenbefliegungen 

während schneefreien und schneebedeckten Bedingungen basiert, wurde durch ein auf jede 

Rasterzelle angewendetes Modell der Fehlerfortpflanzung bestimmt. Dieses Modell der 

Fehlerfortpflanzung wurde verwendet um Unsicherheiten mit räumlich variablen 

Erfassungsgrenzen innerhalb eines gegebenen Konfidenzintervalls mittels der Student’s t 

Verteilung zu beschreiben. Für die gegebene Flughöhe (~ 60 m über dem Boden), 

Kameraeigenschaften und das Vermessungsdesign wurde festgestellt, dass Schneehöhen von 

nur 1 cm bis 5 cm für den größten Teil des Untersuchungsgebiets mit hoher Konfidenz erfasst 

werden konnten. Bereiche mit hohen Unsicherheiten hingen im Allgemeinen mit dem 

Ausmaß der Passpunkt-Abdeckung und mit Bereichen mit hoher Oberflächenrauheit 

zusammen. Die Anwendung der ermittelten Erfassungsgrenzen als Schwellenwerte erwies 

sich als nützlicher Ansatz zur Identifizierung potenzieller Verzerrungen in den Schneehöhen. 

Beispielsweise konnten Fehler aufgrund einer schlechten SFM-MVS-Rekonstruktion und 

Änderungen der Topographie zwischen den DHM-Erfassungsterminen beobachtet werden. 

In dieser Arbeit wurde zusätzlich der Effekt der räumlichen Auflösung auf Schneehöhenfehler 

untersucht. Für dieses Untersuchungsgebiet wurde festgestellt, dass die Schneehöhenfehler 

empfindlicher auf die räumliche Auflösung des schneefreien DHM reagieren als auf die 

räumliche Auflösung des schneebedeckten DHM. Fehler in Bezug auf eine schlechtere 

räumliche Auflösung des schneebedeckten DHM nahmen nur bei Auflösungen zu, die größer 

als 5 m waren. Dieses Ergebnis zeigt, dass die schneefreien Bedingungen in komplexem 
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alpinem Gelände sehr detailliert untersucht werden müssen, um Schneehöhenfehler zu 

minimieren. 

Im dritten Teil dieser Arbeit wird eine Methode zur Korrektur von Schneehöhenfehlern 

vorgestellt, die durch Änderungen der Oberflächentopographie in der Zeit zwischen den 

Erfassungszeitpunkten der DHM verursacht werden. Anhand einer Fallstudie zur Kartierung 

der Schneehöhe über einem aktiven Blockgletscher wird eine neuartige Methode zur 

kinematischen Modellierung von Oberflächenverschiebungen unter Verwendung einer Open-

Source-Lösung zur Bildregistrierung mittels elastischer Modelle (non-rigid image registration) 

auf digitale Geländemodelle angewendet, skaliert und dann zur Transformation des 

schneefreien DHM verwendet, um die Darstellung der Untergrundverhältnisse zum 

Zeitpunkt des schneebedeckten DHM zu generieren. In-situ-Schneehöhenmessungen und 

schneefreie Bereiche (z. B. Gesteinsschutt und Felsbrocken) wurden verwendet, um die 

Transformation zu begrenzen und saisonale Schwankungen der Bewegungsmuster und -raten 

des Permafrostkriechens zu berücksichtigen. Es wurde festgestellt, dass fortlaufende 

Hangdeformationsprozesse eine erhebliche Fehlerquelle bei der hochauflösenden 

Schneehöhenkartierung darstellen können und dass mit der angewendeten Methode 

Schneehöhenfehler um bis zu 33% reduziert werden können. 

Eine detaillierte Fehleranalyse ist unerlässlich, um die Qualität der Schneehöhendaten oder 

eine entsprechende geowissenschaftliche Analyse auf der Grundlage von SFM-MVS-DHM zu 

gewährleisten. In der vorliegenden Arbeit wurde ein Rahmenwerk für die Qualitätssicherung 

von SFM-MVS-DHMs entwickelt, das auf Bildaufnahmen aus wiederholten 

Drohnenbefliegungen und nichtlinearen Regressionsmodellen basiert. Da die Methode zur 

Ermittlung der räumlichen Unsicherheit basierend auf wiederholten Drohnenbefliegungen 

auf jede SFM-MVS-Lösung angewendet werden kann, bietet diese neue Methode einen 

standardisierten Ansatz für das Benchmarking der Leistung von verschiedenen SFM-MVS-

Algorithmen. 

Die räumliche Verteilung von Unsicherheiten kann sich aus dem SFM-MVS 

Vermessungsdesign und zufälligen Unterprozeduren in der SFM-MVS-Prozessierung 

ergeben. Wie in dieser Arbeit gezeigt, ist die Anwendung der Student-t-Verteilung auf SFM-

MVS-DHM Präzisionsschätzungen daher ein wirksamer Ansatz, um festzustellen, ob es sich 

bei SFM-MVS Schneehöhen um echte Beobachtungen oder Messfehler handelt. Mit dieser 

Arbeit wurden auch zum ersten Mal die Unsicherheiten sowohl in den schneefreien als auch 

in den schneebedeckten SFM-MVS-DEMs kombiniert, um die räumliche Verteilung der 

Unsicherheiten in SFM-MVS Schneehöhen zu quantifizieren. Diese Analyse zeigt, wie 

Unsicherheiten in SFM-MVS-Schneehöhen räumlich sehr heterogen sein können. Über gut 

verteilte Passpunkte und eine gute Überlappung der Drohnenbilder kann jedoch die 

Verteilung dieser Unsicherheiten gut kontrolliert werden. Darüber hinaus können durch die 

Modellierung von Deformationsprozessen der Topographie (wie z.B. Permafrostkriechen) 

mittels elastischer Bildregistrierungsmodelle Fehler in hochauflösenden Schneehöhen 

reduziert werden. 

Insgesamt trägt diese Arbeit zur wachsenden Unterstützung von SFM-MVS von 

Drohnenbildern als geeignete Vermessungstechnik für die Kartierung und Überwachung der 
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Schneeverteilung im lokalen Maßstab bei. Zukünftige Arbeiten können sich auf die 

Anwendung von SFM-MVS-Schneehöhendaten zur Modellierung lokaler 

Schneebedingungen konzentrieren, beispielsweise durch Zusammenführen von Daten mit 

numerischen Schneedeckenmodellen. Die in dieser Arbeit vorgestellte Methode 

Berücksichtigung von Fehlerfortpflanzung in den DHM kann angewendet werden, um die 

Qualität der Schneehöhen-Daten sicherzustellen. Diese Arbeit zeigte auch, wie 

charakteristische Faktoren, welche die Unsicherheiten in SFM-MVS-DHMs beeinflussen, zur 

Verbesserung der SFM-MVS-Schneehöhenkartierung verwendet werden können. Weitere 

Fortschritte bei der Verwendung dieser Technik werden wahrscheinlich aus dem 

Benchmarking von verschiedenen SFM-MVS-Algorithmen für eine optimale Leistung unter 

verschiedenen Schneebedeckungsbedingungen resultieren. 





 

xi 

Contents 
Acknowledgements .............................................................................................................................. i 

Abstract ................................................................................................................................................. iii 

Contents ............................................................................................................................................... xi 

List of Figures ..................................................................................................................................... xv 

List of Tables ................................................................................................................................... xviii 

List of Acronyms ................................................................................................................................ xx 

List of Symbols ................................................................................................................................. xxi 

Chapter 1 

General introduction .......................................................................................................................... 1 

1.1 Motivation ............................................................................................................................. 1 

1.2 Research objectives ............................................................................................................... 3 

1.3 Thesis outline ........................................................................................................................ 4 

Chapter 2 

Structure-from-motion multi-view stereo 3D reconstruction ..................................................... 6 

2.1 Introduction ........................................................................................................................... 6 

2.2 Structure from motion ......................................................................................................... 6 

2.3 Multi-view stereo .................................................................................................................. 8 

2.4 Georeferencing ...................................................................................................................... 8 

2.4.1 Artificial ground control points .................................................................................. 9 

2.4.2 Direct georeferencing ................................................................................................. 10 

2.5 Reconstruction quality ....................................................................................................... 10 

2.5.1 Image and network quality ....................................................................................... 11 

2.5.2 The ‘doming’ effect ..................................................................................................... 12 

2.6 SFM-MVS applied for snow depth mapping ................................................................. 13 

Chapter 3 

Modelling the precision of structure-from-motion multi-view stereo digital elevation 

models from repeated close-range aerial surveys ....................................................................... 15 

Abstract ............................................................................................................................................ 15 

3.1 Introduction ......................................................................................................................... 15 

3.1.1 Describing DEM measurement error ....................................................................... 16 



 

xii 

3.1.2 Single DEM with check points or a reference DEM .............................................. 18 

3.1.3 Multiple DEMs from repeat aerial surveys with check points ............................ 19 

3.1.4 Multiple DEMs from repeat aerial surveys with a reference DEM ..................... 20 

3.2 Data and methods .............................................................................................................. 20 

3.2.1 Study site and elevation surveys .............................................................................. 20 

3.2.2 DEM processing and error estimation ..................................................................... 22 

3.2.3 Modelling the spatial distribution of precision ...................................................... 22 

3.3 Results .................................................................................................................................. 23 

3.3.1 Spatial variation in precision .................................................................................... 23 

3.3.2 Estimated error ........................................................................................................... 26 

3.4 Discussion ............................................................................................................................ 27 

3.4.1 Spatial variation in precision .................................................................................... 27 

3.4.2 Investigating measurement bias ............................................................................... 29 

3.5 Conclusion ........................................................................................................................... 29 

3.6 Acknowledgements ............................................................................................................ 30 

Chapter 4 

Quantifying uncertainties in snow depth mapping from structure-from-motion 

photogrammetry in an alpine area ................................................................................................. 31 

Abstract ............................................................................................................................................ 31 

4.1 Introduction ......................................................................................................................... 31 

4.2 Materials and Methods ...................................................................................................... 33 

4.2.1 Study site and data collection ................................................................................... 33 

4.2.2 DEM processing and computing snow depths ...................................................... 35 

4.2.3 Mapping snow depth uncertainties ......................................................................... 36 

4.2.4 DEM resolution and snow depth accuracy ............................................................. 36 

4.3 Results .................................................................................................................................. 37 

4.3.1 DEM accuracy and precision .................................................................................... 37 

4.3.2 SFM-MVS snow depth uncertainty .......................................................................... 38 

4.3.3 Snow depth accuracy and spatial resolution .......................................................... 40 

4.4 Discussion ............................................................................................................................ 41 

4.4.1 Mapping snow depth uncertainties ......................................................................... 41 

4.4.2 Reducing SFM-MVS snow depth uncertainties ..................................................... 42 

4.4.3 The effects of spatial resolution on snow depth accuracy .................................... 43 



 

xiii 

4.5 Conclusions ......................................................................................................................... 43 

4.6 Acknowledgements ............................................................................................................ 44 

Chapter 5 

Accounting for permafrost creep in high-resolution snow depth mapping by modelling 

sub-snow ground deformation ....................................................................................................... 45 

Abstract ............................................................................................................................................ 45 

5.1 Introduction ......................................................................................................................... 46 

5.2 Methods ............................................................................................................................... 48 

5.2.1 Study site and data ..................................................................................................... 48 

5.2.2 Mapping snow depth from DEMs ........................................................................... 50 

5.2.3 Finding an optimal scale factor ................................................................................ 51 

5.2.4 Modelling surface deformation ................................................................................ 52 

5.2.5 Applying sub-snow topography estimates ............................................................. 53 

5.2.6 Error analysis .............................................................................................................. 54 

5.3 Results .................................................................................................................................. 55 

5.3.1 Mapped surface deformations .................................................................................. 55 

5.3.2 Optimal scale factors .................................................................................................. 56 

5.3.3 Performance of estimated DEMs .............................................................................. 56 

5.4 Discussion ............................................................................................................................ 62 

5.4.1 Performance of the deformation model .................................................................. 62 

5.4.2 Finding the optimal the scale factor ......................................................................... 63 

5.4.3 Snow depth errors ...................................................................................................... 64 

5.5 Conclusion ........................................................................................................................... 65 

5.6 Acknowledgements ............................................................................................................ 65 

Chapter 6 

General discussion and conclusions .............................................................................................. 66 

6.1 Uncertainties in SFM-MVS DEMs .................................................................................... 66 

6.1.1 Characterizing SFM-MVS DEM error ...................................................................... 68 

6.1.2 Uncertainties in SFM-MVS reconstruction of snow-covered surfaces ................ 69 

6.2 Quantifying SFM-MVS snow depth uncertainties......................................................... 70 

6.2.1 Spatially varying snow depth uncertainty .............................................................. 71 

6.2.2 Co-registration errors ................................................................................................. 71 

6.2.3 SFM-MVS DEM spatial resolution ........................................................................... 72 



 

xiv 

6.2.4 Errors from vegetation ............................................................................................... 72 

6.3 Correcting SFM-MVS snow depths in active alpine terrain ......................................... 73 

6.3.1 In-situ measurements to constrain snow depth corrections ................................. 75 

6.4 Future work ......................................................................................................................... 75 

6.4.1 Benchmarking SFM-MVS algorithms ...................................................................... 75 

6.4.2 Applying SFM-MVS snow depths for snow modelling ........................................ 76 

6.5 Conclusions ......................................................................................................................... 76 

 

References ........................................................................................................................................... 79 

Appendix ............................................................................................................................................. 88 

Detailed UAV flight and SFM-MVS processing information ................................................... 88 

Overview of digital elevation model registration settings ....................................................... 90 

 

  



 

xv 

List of Figures 
Figure 1. Location of the surveyed rock glacier in the Combe de Laurichard catchment 

including the extent of the study area and position of ground control points (i.e. artificial 

targets). The background topographic data is a hillshaded DEM derived from a terrestrial lidar 

survey performed in 2012 (data courtesy of Station Alpine Joseph Fourier, CNRS / Univ. 

Grenoble-Alpes). ................................................................................................................................. 21 

Figure 2. Orthomosiacs of the snow covered landscape from the set of images obtained from 

each flight. These are the UAV surveyed scenes used for processing the DEMs (Table 2). The 

scene numbers correspond to the time each UAV survey began. ............................................... 21 

Figure 3. Maps of the distribution of values for each variable used for modelling precision (a-

g), and map of DEM error calculated from standard deviation which represents the spatial 

variation in measurement precision (𝜎̂2  in Equation 7, calculated from repeat aerial surveys; 

h). .......................................................................................................................................................... 24 

Figure 4. Box plots of measurement precision (SD in elevation per pixel) for classes of each 

variable used to model precision with the GAM. These observations are based on the sample 

used for the GAM. The width of each box plot is proportional to the size of the group. ........ 25 

Figure 5. A spline function for non-parametric smoothing of the variables in the GAM.s ..... 25 

Figure 6. Bubble plot of estimated mean error between GNSS surveyed check points and SFM-

MVS derived DEMs. .......................................................................................................................... 26 

Figure 7.  A terrain map illustrating the study site and UAV surveyed area (a). Ground-based 

(b,c) and UAV (d,e) images of the rock glacier taken on the survey dates in 2017. .................. 34 

Figure 8. Bubble plots of GNSS measured accuracies and orthomosaics obtained from UAV 

imagery (a,b). Maps of DEM precision calculated from repeat DEM observations (c,d)......... 38 

Figure 9. SFM Snow depth map and bubble plot of snow depth accuracies based on snow-

probed observations (a), and an SFM snow depth precision map (b). ....................................... 39 

Figure 10. Areas where the SFM-MVS snow depth level was determined to be significant based 

a t-test applied for each grid cell at a 0.05 significance level. The snow-free area was mapped 

from an orthomosaic of the UAV imagery. .................................................................................... 40 

Figure 11. Histograms of the spatially varying snow depth detection limit at a 95% confidence 

level (a), and SFM-MVS snow depths (b). ....................................................................................... 40 

Figure 12. The impact of SFM-DEM spatial resolution on snow depth accuracy (RMSE). (a) the 

snow-on DEM was resampled to lower resolutions, (b) the snow-off DEM was sampled to 

lower resolutions, and (c) both DEMs were sampled to lower resolutions. .............................. 41 

Figure 13. Orthomosaics of the snow-covered scenes on 22-Feb-2017 (a) and 2-Jun-2017 (c). 

Distribution of field surveyed GNSS points of snow-free areas and snow-probed measured. 

An outline of the stable and active terrain areas overlays the hillshade models of the Feb-2017 

and Jun-2017 DEMs. The winter Feb-2017 DEM covers about half the area of the spring Jun-

2017 DEM. ............................................................................................................................................ 49 



 

xvi 

Figure 14. A flowchart outlining the processes involved in estimating the sub-snow 

topography using non-rigid registration. The source and target snow-free DEMs used to 

model the general surface deformation pattern related to permafrost creep were the Oct-2017 

and Aug-2012 DEMs, respectively. The optimal scale factor ĉ was obtained from mapped 

surface displacements, snow-free areas or in-situ snow-depth measurements. ĉ was optimized 

for the corresponding snow-cover date: either February 22, 2017 or June 2, 2017. ................... 54 

Figure 15. A map of the study site terrain illustrated using a hillshade map and a 5 m contour 

interval (a), and the 2D (b) and 3D (c) displacement fields obtained from a free-form 

deformation model based on B-splines. The displacements magnitudes are shown here as the 

mean annual surface velocities (m/yr) from 2012-2017. The size of the arrows depicting the 

direction of the rock glacier movement is proportional to the magnitude of the displacements.

 ............................................................................................................................................................... 55 

Figure 16. The performance of scaled values for est. Jun- and Feb-2017 DEMs based on 

optimization using snow-free elevation grid cells (Jun-2017) and in-situ snow-depth 

measurements (Jun-2017 and Feb-2017). ......................................................................................... 56 

Figure 17. Estimated scale factor c compared to expected weeks ............................................... 56 

Figure 18. Elevation errors of the Jun-2017 DEMs based on GNSS surveyed elevations of snow-

free areas. The errors have been grouped into active (i.e., on the rock glacier) and stable terrain. 

The est. Jun-2017 DEMs where ĉ=0.07 were obtained from the expected scale factor on 2-Jun-

2017, and ĉ=0.08 was obtained from optimization of the elevation and in-situ snow-depth 

measurements. The Oct-2017 and Aug-2017 were untransformed DEMs. ................................ 58 

Figure 19. Maps of the difference in elevations for the est. Jun-2017 (ĉ=0.08), Oct-2017 and Aug-

2012 DEMs from the snow-free areas in the Jun-2017 DEM. ....................................................... 59 

Figure 20. Box plots of the error between snow-probed measured and the DEM-derived snow 

depths for 2-Jun-2017 (a) and 22-Feb-2017 (b). The snow depth error has been grouped by 

active (i.e., on the rock glacier) and stable terrain. Est. Jun-2017 DEMs where ĉ=0.07 was 

obtained from the expected scale factor on 2-Jun-2017, and ĉ=0.08 was obtained from 

optimization of the elevation and in-situ snow-depth measurements. The est. Feb 2017 DEMs 

where ĉ=0.12 obtained from the expected scale factor on 22-Feb-2017, ĉ=0.13 from the 

optimization of the in-situ snow depth measurements, and ĉ=0.14 from the manually mapped 

displacements. The Oct-2017 and Aug-2017 were untransformed DEMs. ................................ 61 

Figure 21. Snow depth maps derived from the est. Jun-2017 DEM (ĉ=0.08) (a) and the Oct-2017 

DEM (b) for 2-Jun-2017, as well as a map of the difference in snow depth estimated by these 

DEMs (c). Positive values in the difference map indicate areas where the est. Jun-2017 DEM 

derived snow depths were deeper than the Oct-2017 DEM derived snow depths. ................. 61 

Figure 22. Snow depth maps derived from the est. Feb-2017 DEM (ĉ=0.13) (a) and the Oct-2017 

DEM (b) for 22-Feb-2017, as well as a map of the difference in snow depth estimated by these 

DEMs (c). Positive values in the difference map indicate areas where the est. Feb-2017 DEM 

derived snow depths were deeper than the Oct-2017 DEM derived snow depths. ................. 62 

 



 

xvii 

Figure 23. Profile of the rock glacier front illustrating transformed snow-free surfaces 

represented by (a.) scaling a model of only the vertical of displacements over time and (b.) by 

scaling a model of the 3D displacements over time. The transition colours from red to blue 

represent the modelled change in the snow-free rock glacier surface from 2012 (red) to 2017 

(blue) obtained by scaling the modelled displacements using factors from 0 to 1 with a step of 

0.1. The dotted line represents the snow-cover surface on 22-Feb-2017. The first plot (a.) shows 

that scaling only the vertical displacements does not capture the transition in elevations over 

time due to the movement of the rock glacier. The second plot (b.) shows how scaling modelled 

3D displacements more realistically represents the elevation changes over time. ................... 74 

 

  



 

xviii 

List of Tables 
Table 1. Estimated proportion of deviance explained by each variable in the GAM. The higher 

proportion indicates a higher contribution to spatial variation in DEM precision. .................. 25 

Table 2. Global statistics describing error estimated from GNSS check points for each UAV 

surveyed DEM, and the root mean square (RMS) reprojection errors corresponding to the 

image alignment within each DEM scene. ...................................................................................... 26 

Table 3. Summary of UAV flights used to derive SFM-DEMs for computing snow depth. ... 35 

Table 4. Accuracy of DEMs calculated from GNSS surveyed checkpoints. June represents the 

snow-on DEM, and October the snow-off DEM. ........................................................................... 37 

Table 5. SFM Snow depth accuracy based on snow-probed observations calculated for the 

entire area (overall), active terrain (i.e. on the rock glacier) and stable terrain. ........................ 38 

Table 6. Summary of data sets used for estimating snow depth. The vertical accuracy is based 

on a set of GNSS observations (N) surveyed for each date. ......................................................... 49 

Table 7. Error in elevations relative to the snow-free GNSS measurements in the Jun-2017 

DEM. The errors have been grouped into active (i.e., on the rock glacier) and stable terrain. 

The est. Jun-2017 DEM where ĉ=0.07 was obtained from the expected scale factor on 2-Jun-2017 

DEMs, and ĉ=0.08 was obtained from optimization of the elevation and in-situ snow-depth 

measurements. The Oct-2017 and Aug-2017 were untransformed DEMs. The median and 

mean error are reported as measures of bias. ................................................................................. 57 

Table 8. Differences in elevations relative to the snow-free areas in the Jun-2017 DEM, and the 

errors in snow-depth estimation for 2-Jun-2017 based on the comparison of snow-probed 

measurements and DEM-derived snow depths. The errors have been grouped into active (i.e., 

on the rock glacier) and stable terrain. The est. Jun-2017 DEMs where ĉ=0.07 was obtained from 

the expected scale factor on 2-Jun-2017, and ĉ=0.08 was obtained from optimization of the 

elevation and in-situ snow-depth measurements. The Oct-2017 and Aug-2017 were 

untransformed DEMs. The median and mean error are reported as measures of bias. .......... 59 

Table 9. Errors in snow-depth estimation for 22-Feb-2017 based on the comparison of snow-

probed measurements and DEM-derived snow depths. The errors have been grouped into 

active (i.e., on the rock glacier) and stable terrain. The est. Feb 2017 DEMs where ĉ=0.12 

obtained from the expected scale factor on 22-Feb-2017, ĉ=0.13 from the optimization of the in-

situ snow depth measurements, and ĉ=0.14 from the manually mapped displacements. The 

Oct-2017 and Aug-2017 were untransformed DEMs. The median and mean error are reported 

as measures of bias. ............................................................................................................................ 60 

Table 10. Summary of Agisoft PhotoScan processing settings .................................................... 88 

Table 11. Summary of survey details for October 5, 2017 (13 GCPs) and PhotoSscan processing 

results ................................................................................................................................................... 89 

Table 12. Summary of survey details for June 2, 2017 (19 GCPs) and PhotoSscan processing 

results ................................................................................................................................................... 89 



 

xix 

Table 13. Summary of survey details for Feb 22, 2017 (15 GCPs) and PhotoSscan processing 

results ................................................................................................................................................... 89 

Table 14. Summary of UAV survey conditions ............................................................................. 90 

Table 15. Summary of bUnwarpJ processing settings using ImageJ for image registration ... 90 

 

 

 

 

  



 

xx 

List of Acronyms 
AGL  Above ground level 

ASL  Above sea level 

CP  Checkpoint 

DEM  Digital elevation model 

GAM  Generalized additive model 

GCP  Ground control point 

GCV  Generalized cross-validation 

GIS  Geographical information system 

GNSS  Global navigation satellite system 

GPS  Global positioning system 

ICP  Iterative closest point 

IMU  Inertial measurement unit 

INS  Inertial navigation system 

IQR  Interquartile range 

k-NN  k-nearest neighbor 

Lidar  Light detection and ranging 

MAE  Mean absolute error 

MVS  Multi-view stereo 

PPK  Post processing kinematic 

RAE  Relative absolute error 

RANSAC Random sample consensus 

RGB  Red, green and blue optical bands 

RMSE  Root mean squared error 

RMS  Root mean squared 

RTK  Real-time kinematic 

SFM  Structure from motion 

SIFT  Scale invariant feature transform 

SRTM  Shuttle radar topography mission 

UAV  Unmanned aerial vehicle (drone)  



 

xxi 

List of Symbols 
𝒂(𝒙)  Grid cell displacements between two digital elevation models 

𝑐  Scale factor describing the magnitude of displacements 

𝑐̂  An estimate of an unknown scale factor  

𝐷  Digital elevation model domain 

𝐷̂(𝒙)  Estimated snow depths for a continuous surface 

𝑒  Measurement error 

𝜀  Random error 

𝑖  A checkpoint location 

𝑘  Number of repeat digital elevation model observations 

𝑗  Location of grid cell in repeat digital elevation model observations 

𝜇  Bias or systematic error 

𝜇̂  Estimated bias 

𝑛  Number of checkpoint locations 

𝑁  Number of elevation values in a digital elevation model 

Ω𝐷  A set of snow-probed recorded depths 

Ω𝑍  A set of snow-free cell locations 

𝑝  Repeat elevation measurements at checkpoint locations 𝑛 

𝑆(𝒙)  Digital elevation model of a snow-covered surface 

𝜎  Standard deviation / precision 

𝜎̂  Estimated standard deviation / estimated precision 

𝑡0  Time of observation 

𝑻𝒂(𝒙)  A known transformation between two digital elevation models 

𝑻𝒖(𝒙)  An unknown transformation function for a digital elevation model 

𝑻̂𝑢(𝒙)  An estimate of an unknown transformation 

𝒗(𝒙𝑖)   Displacements mapped from locations in a snow-free DEM 

𝑥  A grid cell location 

𝑦  Observed elevation value 

𝑦̅  Mean observed elevation value 

𝑧  ‘True’ elevation value 

𝑧̅  Mean reference elevation value 



 

xxii 

𝑍(𝒙)  A digital elevation model of a snow-free surface 

𝑍̂(𝒙)  An estimate of an unknown digital elevation model 

 

 

 



 

1 

 

Chapter 1 

 General introduction 
 

1.1 Motivation 
Mountain snowpack is a crucial water resource in many regions of the World. A warming 

climate has resulted in a decline of seasonal snowpack in some mountain areas (Barnett et al., 

2005; Mote et al., 2005; Lemke et al., 2007), which makes accurate monitoring, modelling and 

prediction of the seasonal snowpack vital to support water resource management strategies.  

Detailed snow depth mapping using high-resolution elevation models has led to better 

predictions of snowmelt and its impact on the local hydrology (Painter et al., 2016; Brauchli et 

al., 2017), helped to design better snow depth sampling strategies (Deems et al., 2006; López-

Moreno et al., 2011), and has improved modelling of how terrain and wind influence local 

snow accumulation patterns (Schirmer and Lehning, 2011; Grünewald et al., 2014; López-

Moreno et al., 2015). Accurate snowpack data is also important for improving our 

understanding of mountain environmental processes including vegetation patterns (Palacios 

and Sánchez-Colomer, 1997; Jonas et al., 2008; Litaor et al., 2008), changes in ground 

temperature (Luetschg and Haeberli, 2007; Apaloo et al., 2012), landslides (Matsuura et al., 

2003; Okamoto et al., 2018), rock falls (Haberkorn et al., 2016), avalanches (Bühler et al., 2011), 

glacier dynamics (Immerzeel et al., 2014; Rossini et al., 2018), and permafrost creep (Ikeda et 

al., 2008). 

With recent advances in structure from motion (SFM) multi-view stereo (MVS) 3D 

reconstruction (or SFM photogrammetry) techniques, we have seen encouraging 

developments in high resolution elevation modelling that can help tackle a classical problem 

in snow research: How can we better capture snow patterns to improve our understanding of 

snow depth distribution (Sturm, 2015)? In general, SFM-MVS techniques can create a 3D 

reconstruction of a surface from a collection of images. By differencing co-registered snow-

covered and snow-free elevation models derived from SFM-MVS, high-resolution snow 

depths can be computed. Snow depth mapping using SFM-MVS can improve our ability to 

collect data with better resolution, frequency and spatial coverage.  

Due to the low-cost of operation and ability to obtain good coverage, unmanned aerial vehicles 

(UAVs), commonly known as drones, have become a popular method to collect images for 

SFM-MVS processing (Colomina and Molina, 2014; Smith et al., 2015). This combination of 

SFM-MVS with UAVs has an excellent potential to provide detailed snow depth observations 

in challenging mountain terrain.  
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Snow depth at the basin, catchment or slope scale can be estimated by manual surveying, lidar 

(light detection and ranging) and digital photogrammetry (Tedesco et al., 2015; Marti et al., 

2016). Although manual probing of snow combined with real-time-kinematic (RTK) or 

differential global navigation systems (GNSS) surveying is the most accurate and precise way 

to obtain quality snow depth observations, it can be expensive, time consuming and 

potentially dangerous depending on the site conditions (Deems et al., 2013). Additionally, it 

suffers from poor spatial coverage, which makes it difficult to observe true snow distributions 

where snow depth is highly spatially heterogeneous (Elder et al., 1991; Hiemstra et al., 2006).  

Lidar snow depth estimates have generally overcome the issues of spatial coverage and survey 

dangers. Typically, airborne vertical accuracies of lidar estimates are at the decimeter scale and 

are spread out (horizontally) at 1 m point spacing (Hodgson and Bresnahan, 2004; Deems et 

al. 2013). Although lidar remains one of the most accurate techniques for remote sensing of 

snow depth, in particular in forested areas, recent works by Nolan et al. (2015), Bühler et al. 

(2015; 2016a), Vander Jagt et al. (2015), Michele (2016), Harder et al. (2016), and  Avanzi et al. 

(2018) have demonstrated the potential for high-resolution snow depth mapping using optical 

imagery collected from airborne surveys using SFM-MVS.  

The SFM-MVS approach may have some advantages over lidar. A comparison of airborne 

lidar and SFM-MVS snow depth estimations conducted by Nolan et al. (2015) found for their 

study conditions that SFM-MVS had twice the precision of lidar and about the same accuracy. 

SFM-MVS can produce a colour orthoimage co-registered with the derived digital elevation 

model (DEM). This orthoimage makes it easy to identify what is snow covered and what is 

not, which can be useful for depth estimation in thin snowpack conditions. Additionally, 

acquisition and processing of SFM-MVS data is substantially less expensive than using lidar 

(Nolan et al., 2015; Vander Jagt et al., 2015). 

A challenging aspect of snow depth mapping with high-resolution elevation models is 

overcoming issues of measurement uncertainty, especially in areas of shallow snowpack 

(Hopkinson et al., 2012; Harder et al., 2016). The major challenge being, what can we detect as 

real snow depths from noise? This measurement uncertainty is ingrained in elevation model 

differencing. It is generally controlled by the elevation model quality (Wechsler and Kroll, 

2006; Wheaton et al., 2010) and co-registration accuracy (Nuth and Kääb, 2011; Marti et al., 

2016; Bernard et al., 2017; James et al., 2017b). In snow depth mapping with elevation models, 

any changes in the topography beneath the snow cover occurring in the time between the 

elevation model acquisition dates can be an additional source of uncertainty (Nolan et al., 2015; 

Bernard et al., 2017; Avanzi et al., 2018). 

Although SFM-MVS has already been widely applied in the geosciences (Smith et al., 2015), 

there is a need to better understand the quality and uncertainties in SFM-MVS elevation 

models. Elevation model error is in general difficult to model because the error can be spatially 

nonstationary, heteroscedastic and spatially autocorrelated (Carlisle, 2005). Research in 

geosciences has been trying to spatially quantify uncertainty in topographic surveying for 

quite some time (Brasington et al., 2000; Lane et al., 2003; Wheaton et al., 2010; Lague et al., 

2013; Schaffrath et al., 2015).  
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The most basic approach to modelling uncertainties related to differencing elevations is to 

assume that errors in the elevation models are spatially uniform (Brasington et al., 2000; 

Passalacqua et al., 2015). Nolan et al. (2015) and Michele et al. (2016) found that SFM-MVS 

snow depth errors vary not only from site to site, but also spatially within a scene. Thus, 

making such assumptions may lead to misinterpretation of what snow depths or changes in 

depths are detected (Wheaton et al., 2010). A detailed uncertainty analysis that accounts for 

the spatial variation in errors is therefore necessary to verify the quality and usability of snow 

depths mapped using SFM-MVS 3D reconstruction. 

 

1.2 Research objectives 
The goal of this thesis is to enhance our understanding of measurement uncertainties related 

to SFM-MVS mapping of snow depth using UAV imagery and field-based measurements 

collected in an alpine environment. To achieve this goal, this thesis focuses on the following 

research questions and objectives: 

What main UAV survey design and environmental factors characterize the spatial variation in 

SFM-MVS derived DEM uncertainty? 

Since SFM-MVS snow depths are computed from differencing elevations models, the first step 

to quantifying snow depth mapping uncertainties is to describe and model how SFM-MVS 

elevation model errors vary spatially. 

The objectives of this research questions are to: 

• Describe and define SFM-MVS DEM error 

• Develop an approach to spatially estimate the precision of SFM-MVS DEMs 

• Characterize the influence of UAV survey design and field site conditions on SFM-

MVS DEMs using regression modelling 

How do the uncertainties in the snow-covered and snow-free SFM-MVS DEMs affect the spatial 

distribution of uncertainties in the computed snow depths? 

Using spatially varying estimates of SFM-MVS DEM precision, the precision of the snow 

depths can be determined using a model of error propagation. Snow depth detection limits 

can be determined using the precision of the snow depths. This detection limit (or margin of 

error) can communicate where and how much random sampling error can be expected for a 

particular SFM-MVS survey. 

The objective to this research question is to: 

• Calculate the spatially varying precision of SFM-MVS snow depths using an error 

propagation model 

• Statistically determine spatially varying snow depth detection limits using SFM-MVS 

DEM precision estimates 
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What effect does the spatial resolution of the SFM-MVS elevations models (snow-covered and 

snow-free) have on the accuracy of computed snow depths? 

Although SFM-MVS techniques combined with UAV imagery can capture very high-

resolution data, such fine detail may not be required for a particular application. This research 

question explores the issue of the spatial resolution of observations and its impact on the 

quality of SFM-MVS snow depths. 

The objective to this research question is to: 

• Model the effect of the snow-covered and snow-free DEMs spatial resolution on snow 

depth accuracy using in situ snow depth measurements and image resampling 

methods 

What is the effect of on-going slope deformation processes on the quality of SFM-MVS snow 

depths? And how can changes in the sub-snow ground surface be corrected to reduce errors in 

SFM-MVS snow depths? 

In addition to errors in SFM-MVS elevation models, snow depth errors in alpine areas can be 

caused by on-going ground deformation processes, such as permafrost creep. Accounting for 

such errors is important to link the impact of snowpack properties to local environmental 

processes. 

The objectives of these research questions are to: 

• Assess the influence of permafrost creep on SFM-MVS snow depth errors by 

comparing in situ snow depth measurements on stable and actively deforming terrain 

to SFM-MVS snow depths. 

• Determine and apply a method to correct snow depth errors caused by on-going slope 

deformation processes. 

Overall, these research questions and objectives are aimed at quantifying, characterizing and 

reducing uncertainties in SFM-MVS snow depths mapped in alpine areas. 

 

1.3 Thesis outline 
This cumulative doctoral thesis is organized as follows. This first chapter introduces the 

motivation, main research questions and objectives of this thesis. Chapter 2 provides a general 

overview of elevation modelling using SFM-MVS 3D reconstruction techniques, and a 

summary of previous applications for snow depth mapping. 

Chapter 3 describes how definitions of error in SFM-MVS derived DEMs may vary depending 

on the available validation data, presents a method to estimate the spatial variation in DEM 

uncertainty, and characterizes the main survey design and environmental factors influencing 

uncertainty for a case study of snow-covered terrain in the French Alps.  

Chapter 4 explores measurement uncertainties in SFM-MVS snow depth mapping for a case 

study in the French Alps. It describes how spatially varying estimates of SFM-MVS snow 
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depth precision can be obtained using a model of error propagation, and how the Student’s t 

distribution can be used to determine spatially varying snow depth detection limits from 

repeat observations. Additionally, the effect of DEM spatial resolution on SFM-MVS snow 

depth accuracy is explored.  

Chapter 5 addresses the issue of measurement errors that can occur in SFM-MVS snow depth 

mapping, and in general in snow depths estimated from DEM differencing, due to on-going 

slope deformations in alpine terrain (i.e., permafrost creep). A novel method to reduce errors 

in the SFM-MVS snow depths based on surface deformation modelling is presented for a case 

study in an alpine environment. 

Chapter 6 discusses the main contributions of this study, limitations, provides suggestions for 

future research, and presents a summary of the main conclusions. 
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Chapter 2 

 Structure-from-motion multi-view stereo 3D reconstruction 
 

2.1 Introduction 
Structure from motion (SFM) combined with multi-view stereo (MVS) is a method for image-

based 3D reconstruction. The geometry of a scene can be resolved from a series of overlapping 

images taken from different viewpoints. The major difference from conventional 

photogrammetry is being able to solve for camera positions and orientation automatically 

without prior knowledge (Verhoeven, 2011; Westoby et al., 2012). The images can be collected 

using ground-based (i.e. terrestrial) and aerial observations – UAVs being one of the most used 

methods for image collection in geosciences.  

A 3D model is constructed using SFM by first applying an algorithm that automatically aligns 

overlapping images and detects matching feature points or key points (Lowe, 2004). Next, a 

bundling adjustment algorithm is used to refine SFM estimated camera parameters (Favalli et 

al., 2012). This unscaled, sparse 3D point cloud can then be georeferenced using either ground 

control points (GCPs), geolocations of the camera position or a combination of both. The last 

step utilizes MVS image matching algorithms to generate a dense 3D point cloud from the 

computed camera positions and additional parameters, which can be interpolated into a mesh 

and subsequently a grid to create a digital elevation model (DEM; Smith et al., 2015). 

 

2.2 Structure from motion 
The recent success of SFM-MVS is for a large part due to the improvements of SFM algorithms. 

In particular, developments in image feature detection (Harris and Stephens, 1988; Lowe, 2004; 

Rosten and Drummond, 2006), and descriptors (Lowe, 2004; Leutenegger et al., 2011; Rublee 

et al., 2011; Alahi et al., 2012). Altogether, these improvements have contributed to enhancing 

the quality of tracks derived from unstructured datasets consisting of images with very 

different pose and illumination (Furukawa and Hernández, 2015; Micheletti et al., 2015b). 

Structure from motion algorithms are commonly used to produce (1) the camera parameters 

for every image, and (2) to compute a set of 3D points visible in the images, referred to as 

tracks, from unordered sets of images. Both products are a requirement to run MVS algorithms 

for producing more detailed 3D reconstruction models.  

The camera parameters are a set of extrinsic and intrinsic properties (or values) describing the 

camera configuration corresponding to each image. The extrinsic properties relate to the 
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camera pose information consisting of the camera orientation and location, where the intrinsic 

properties refer to internal camera properties such as focal length and pixel size (Furukawa 

and Hernández, 2015). A track consists of the 3D coordinates of a feature and a list of the 2D 

coordinates for the corresponding matches in other images.   

The SFM pipeline can be generalized into the following steps (Snavely et al., 2008; Furukawa 

and Hernández, 2015): 

1. Feature correspondence 

• Detect 2D features in each image 

• Match the 2D features between pairs of images 

• Organize matches into tracks 

2. Structure from motion 

• Produce an SFM solution from the tracks 

• Apply the bundle adjustment to iteratively refine the SFM model 

 

Lowe’s (2004) Scale Invariant Feature Transform (SIFT) is one of the most popular image 

descriptors used for feature correspondence (Snavely, 2008). SIFT has good invariance to 

image transformations; that is, it performs well to detect and describe 2D image features from 

a set of images with variation in viewpoints and illumination (Lowe, 2004). SIFT works by first 

identifying features of an object within an image by searching over multiple scales and 

locations. Once these candidate features are identified, a model of the scale and location is 

combined with the computed orientation and the image gradient (corresponding to local cell 

neighbours) to produce a descriptor. This highly distinctive descriptor is subsequently used 

to identify matching features in overlapping images. 

Matching features in multiple images is typically done using the approximate nearest 

neighbour (ANN; Arya et al. 1998), and applying the Random Sample Consensus (RANSAC; 

Fischler and Bolles, 1981) algorithm usually filters out any incorrect correspondences. The 

tracks produced from these algorithms are used as input to the bundle adjustment, which 

recovers and refines the camera parameters and outputs a sparse 3D point cloud.  

The bundle adjustment is used to improve estimates of camera parameters by minimizing the 

distance between a projected/estimated point location and a measured one (i.e. the 

reprojection error; Granshaw, 1980; Triggs et al., 2000). This minimization is performed using 

a non-linear least squares method – usually the Levenberg-Marquardt minimization algorithm 

(Zhang et al., 2006). The accuracy of this estimation is commonly expressed using the root 

mean square error (RMSE), which is measured in pixels. After a bundle adjustment the RMSE 

should be sub-pixel; normally, before the bundle adjustment the RMSE is in the order of 

several pixels (Furukawa and Hernández, 2015).  

There are generally two methods for initialisation of the bundle adjustment, sequential and 

factorisation algorithms: sequential being the most popular (Robertson and Cipolla, 2009). The 

sequential algorithms work by including each image (or view) one at time. As each image is 

added, a partial reconstruction is extended, and triangulation is applied to estimate the 
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positions of the 3D points visible in overlapping images. In contrast, factorisation algorithms 

work by computing the scene geometry and camera pose all at once. A major problem of this 

method is it requires every 3D point to be visible in every image; that is, it does not deal well 

with missing data (Robertson and Cipolla, 2009). 

 

2.3 Multi-view stereo 
After the camera intrinsic and extrinsic parameters have been solved, MVS algorithms can be 

applied to compute a detailed 3D reconstruction of a scene. MVS algorithms can create a 3D 

model by representing the geometry of a scene in different ways such as depth maps, point 

clouds, voxels or meshes. 

In depth map reconstruction, depth maps are computed for each image and merged to into a 

single 3D model (Szeliski, 1999; Seitz et al., 2006; Li et al., 2010; Furukawa and Hernández, 

2015). A depth map is an image where the distances to a viewpoint are computed for all pixels. 

Point cloud reconstruction or patch-based surface representation computes a single point-

cloud 3D model using all images. Spatial consistency assumptions are used to allow the point 

cloud to expand across the reconstructed scene. Patch-based Multi-View Stereo (PMVS) is a 

widely used approach to point cloud reconstruction (Furukawa and Hernández, 2015), and 

works by matching features, expanding patches and then filtering incorrect matches (Carrivick 

et al., 2016).  

Voxel reconstruction or volumetric scene modelling is based on dividing the 3D space into a 

set of voxels (Seitz and Dyer, 1999), projecting the voxel and matching voxels based on a photo-

consistency measure (e.g. sum of absolute squared difference or normalized correlation 

coefficient). Edges of features in the images can also be used to segment the voxels into 

features. The boundary of the segments are then used to extract a surface model (Seitz and 

Dyer, 1999; Furukawa and Hernández, 2015) 

Mesh reconstruction or surface evolution models work by building a conservative bounding 

box around the scene, and then iteratively reshaping the surface to fit a point cloud until some 

cost function is minimized (Kazhdan et al., 2006; Tagliasacchi et al., 2011; Carrivick et al., 2016). 

These methods are robust to noisy real-world data, and are useful for reconstructing the 

surface in a scene where small holes or patches of no data are present in the point cloud 

(Kazhdan et al., 2006; Tagliasacchi et al., 2011). 

In general, there are a variety of MVS algorithms available (Seitz et al., 2006; Furukawa and 

Hernández, 2015), and they are often combined to achieve optimal results for a given scene. 

 

2.4 Georeferencing 
The SFM procedure estimates only the relative positions of cameras/images. To make absolute 

measurements, and to be able to compare with SFM-MVS reconstructions with other spatial 

datasets, these positions must be projected into a georeferenced coordinate system (Snavely et 

al., 2006). In contrast to traditional photogrammetry, not every image is required to have 
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ground control points (GCPs) for georeferencing (Fonstad et al., 2013). Instead, georeferencing 

requires either a minimum of three GCPs for the entire image network or knowing the exact 

camera position for each image. 

Ground control is in general required to orient data derived from remotely sensed imagery to 

a referenced coordinate system. SFM-MVS surveys can generally be transformed into a 

coordinate system by direct measurement of camera positions determined from RTK-GNSS 

and inertial navigation systems (INS), surveying natural and artificial ground targets, or by 

registering to a previously controlled image. Similar to traditional photogrammetry, GCPs for 

SFM should cover the full extent of the study area and be well distributed (James and Robson, 

2012; Javernick et al., 2014). 

Depending on the project, the number and distribution of GCPs can vary.  It is generally better 

to be redundant and include more GCPs to avoid possible mistakes, such as having poor 

quality GNSS positioning measurements (James et al., 2017b). Tonkin et al. (2016) observed 

that using a minimum of four GCPs could more than double the vertical accuracy of SFM-

MVS DEMs compared to using only three. Additionally, the distribution of GCPs strongly 

influences the accuracy and precision of georeferencing (Tonkin and Midgley, 2016; James et 

al., 2017a).  

Poorly distributed GCPs, such as clustered in isolated portions of a survey site may result in 

doubling the RMS error (Harwin and Lucieer, 2012; James and Robson, 2012). Also, the vertical 

error in the SFM-MVS DEMs appears to be spatially correlated to the position of GCPs. For 

example, Tonkin et al. (2016) found that the vertical accuracies followed a strong polynomial 

trend where accuracies decrease for locations further away from the GCPs. For best results, 

the GCPs should be evenly distributed throughout the survey  (James and Robson, 2012; James 

et al., 2017b). It is also recommended to increase the sampling density of GCPs when surveying 

steeper terrain to adequately capture the variation in position estimates (Harwin and Lucieer, 

2012; James et al., 2017a). Using well-distributed and clearly visible GCPs, it is possible to 

achieve a magnitude of accuracy similar to RTK-GNSS/differential GPS measurements (< 5 

cm) when flying a UAV at a height between 40-50 m (Harwin and Lucieer, 2012), as well as 

strengthen the precision (i.e., repeatability) of the survey (James et al., 2017b). 

 

2.4.1 Artificial ground control points 
Natural landscapes do not always have the most suitable features useful for ground control. 

It may be difficult to identify natural features that standout in the imagery (e.g. coastal sand 

dunes; Brunier et al., 2016), or it may be difficult to survey features that standout do to 

challenging terrain (e.g. rugged mountain terrain; Barrand et al., 2009). Direct georeferencing 

or using control points obtained from laser scanned imagery are some examples of how to 

overcome this challenge; however, the most accurate and common technique in natural 

landscapes is the use of highly visible (i.e. a clearly defined centroid) artificial ground targets 

(Westoby et al., 2012). Ground targets may not always be necessary. It is also an option to 

produce the SFM point cloud, identify surface features that standout clearly, revisit the site 

and survey these features (e.g. Fonstad et al., 2013). 
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2.4.2 Direct georeferencing 
In theory, SFM-MVS point clouds can be georeferenced without ground control if the exact 

location of the camera is known. Determining this exact position in space can be challenging 

with UAVs. Some factors that need to be considered are the precision of the quality of the 

onboard GNSS receiver, the quality and position of the GNSS antenna, and the geotagging 

accuracy. 

The navigation grade single frequency GNSS receivers, which are commonly used on 

consumer UAVs, have a low positional accuracy (2-5 m) that alone is not accurate enough to 

be used for georeferencing the camera position. However, differentially correcting the GNSS 

positions (e.g., applying post processing kinematic corrections – PPK) can greatly improve the 

measurement of camera position (Turner et al., 2014). With the correct setup a spatial error of 

± 10-20 cm for a SFM derived elevation model can be achieved (Turner et al., 2014). This level 

of error was achieved for a generally flat surface, and higher errors would be expected for 

more complex topography (e.g. higher variation in point density). The spatial error can 

therefore be further reduced by the integration of dual frequency receivers on a UAV platform, 

which has been seen to achieve a level of accuracy < 10 cm (Vander Jagt et al., 2015). Also, 

direct georeferencing with a strong positional accuracy can result in survey precisions similar 

to using a well-distributed network of GCPs (James et al., 2017a). 

 

2.5 Reconstruction quality 
How SFM-MVS algorithms perform under different physical conditions is not very well 

known. SFM-MVS algorithms can perform differently under different conditions, and there is 

a need for researchers, through good experimental design, to explore this behaviour to 

improve SFM-MVS algorithms (Oliensis, 2000; Snavely et al., 2008). In particular, ground 

validation is required to determine the most accurate SFM-MVS techniques.  

Many recent applications of SFM-MVS in geosciences do a good job of ground validation. For 

example, Javernick et al. (2014) compare their SFM-MVS modelling results of a braided river 

channel to just over 10 000 RTK-GNSS surveyed check points (CPs). In doing so, they managed 

to uncover a systematic broad-scale error in the estimation of surface elevation. This systematic 

error has also been observed by James and Robson (2012) and can be seen in the results in 

Rosnell and Honkavaara (2012).  Observing this systematic error has resulted in research 

focused on SFM-MVS model optimizations and UAV survey designs to mitigate this error and 

improve the quality of the 3D point cloud (James and Robson, 2014; Tonkin and Midgley, 2016; 

James et al., 2017a; James et al., 2017b).  

This kind of research is excellent for progressing the field of SFM-MVS applied to geosciences; 

however, as mentioned before, it is complicated by the many different SFM-MVS algorithms 

(or software) available. That is, it can be at times uncertain if this error also occurs when other 

SFM-MVS algorithms are applied (Smith et al., 2015). Therefore, given the current state of 

SFM-MVS research, experiments benchmarking different algorithms under different 
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environmental conditions remains critical for enhancing our practical understanding of the 

SFM-MVS approach to 3D reconstruction (Seitz et al., 2006; Snavely et al., 2008). 

In geosciences, quality of SFM-MVS 3D reconstructions has been observed to be affected by 

the camera and its lens (Micheletti et al., 2015a; Niederheiser et al., 2016; James et al., 2017a), 

the resolution and number of images acquired (James and Robson 2014; Micheletti et al. 2015a), 

the viewing directions of those images (i.e., the image network; James and Robson, 2014), the 

SFM-MVS processing software/workflow (James and Robson, 2012; Ouédraogo et al., 2014; 

Turner et al., 2014; Niederheiser et al., 2016), the georeferencing approach (i.e., the distribution 

and quality of ground control points; Tonkin and Midgley, 2016; James et al., 2017a), having 

the appropriate scale for a particular application (Smith et al., 2015), the presence of vegetation 

cover (Westoby et al., 2012; Hugenholtz et al., 2013; Micheletti et al., 2015b; Nolan et al., 2015), 

and image texture (Seitz et al., 2006; Fonstad et al., 2013; Micheletti et al., 2015b; Nolan et al., 

2015) 

 

2.5.1 Image and network quality 
Since SFM is a geometric problem, the image network, which is made up of the number of 

images, their overlap and viewing angles, plays a key role in the quality of the SFM-MVS 

reconstruction results. For SFM to perform best, multiple images must view matching features 

from multiple viewpoints. Although technically only two overlapping images are required, 

more robust 3D coordinate estimates can be obtained when a minimum of three images are 

used (Furukawa and Hernández, 2015). In general, SFM performs better with more images 

(Furukawa and Hernández 2015).  

It is not always necessary to have a large set of images for good results as long as the image 

geometry remains strong (Micheletti et al., 2015b). Additionally, there are different image 

requirements for SFM and MVS solutions. MVS algorithms typically perform extremely well 

with a large number of high-resolution images. That is, they can create a detailed 

reconstruction without being heavily influenced by ambiguous feature matches. In contrast, 

these ambiguities, which usually correspond to high-resolution imagery, can become a 

problem for SFM algorithms (Furukawa and Hernández, 2015).  

SFM performs well when the viewing angle difference between images ranges between 5-15 

degrees (Furukawa and Hernández, 2015). Angular changes greater than 25-30 degrees 

between overlapping images can lead to poor performance of the automatic feature matching 

algorithms (Moreels and Perona, 2007). Matching in this case may be prevented because the 

surface texture appears too dissimilar in the images from different viewpoints (Micheletti et 

al., 2015b).  

Higher resolution imagery has the potential to improve the detection of unique pixels (i.e. 

features) that may be identifiable in multiple images. The quality of the lens is also important. 

For example, imagery taken from a high-resolution camera with a poor lens may worsen the 

SFM estimated camera positions, which subsequently will lead to poorer results of the MVS 

derived dense point cloud (Furukawa and Hernández, 2015). Additionally, it is also critical to 
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ensure that the camera exposure is set ideally to capture the required detail (Micheletti et al., 

2015a), and the images are in focus (Furukawa and Hernández, 2015).   

Although many MVS algorithms can handle illumination variations in multiple images, best 

results are obtained when these variations are stable. That means making sure that the lighting 

(e.g., shadings and shadowing effects) is well balanced within and across multiple images 

(Furukawa and Hernández, 2015). MVS algorithms can perform well on smooth surfaces, as 

long as subtle shading variations on the surface are present for feature matching (Seitz et al., 

2006).  

Some common feature matching issues are related to surveying in natural conditions include 

(Bemis et al., 2014): 

• Homogenous surface textures, such as due to reflections, flat surfaces with little 

variation in texture, and deep shadows. 

• Changes in the feature appearances between images due to wind moving vegetation, 

or the movement of animals, people and vehicles. 

• Changes in the illumination, e.g., caused by a variable cloud cover, or changes in the 

sun position. 

 

2.5.2 The ‘doming’ effect 
One of the major impacts on the quality of the SFM-MVS reconstructions is poor modelling of 

the radial distortion in a camera lens (i.e. intrinsic camera parameters; Magri and Toldo, 2017). 

An inaccurate camera-lens distortion model can result in a systematic broad-scale error in 

SFM-MVS elevation models. These errors are expressed in the elevation models as a vertical 

‘doming’ (deformation) of the surface. A poor image network caused by collecting the images 

at near-parallel directions to the ground, which is common in UAV surveying, can produce an 

unreliable camera calibration for correction of any radial lens distortions (James and Robson, 

2014). The easiest way to uncover such an error is to compare the 3D model reconstruction 

with well distributed ground control data. 

This ‘doming’ effect can be mitigated by designing the aerial survey to allow for variety of 

camera inclination, by providing an accurate camera model for the bundle adjustment 

procedure (James and Robson, 2014), or by allowing the camera model to vary during the 

bundle adjustment (Javernick et al., 2014). For example, a fixed wing UAV could obtain 

oblique images by adding a gently curved overpass to the survey, or by having a system where 

the camera can be inclined (James and Robson, 2014).  

A ‘metric’ survey camera, which is designed for photogrammetry, can help minimize the 

‘doming’ effect. They have a well-defined camera model where radial distortions are minimal. 

This contrasts with consumer grade cameras. They have a less accurate camera model, which 

may need to be automatically calibrated during the bundle adjustment (James and Robson, 

2014). If no accurate camera model is available for a consumer grade camera, Javernick et al. 

(2014) found that allowing the bundle adjustment to optimize camera model parameters with 

ground control can considerably reduce the ‘doming’ error pattern. This works by re-running 

the bundle adjustment using the external information provided by the ground control, which 
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minimizes the sum of the re-projection error and the georeferencing error (Smith et al., 2015). 

This approach improves the error locally where ground control is located, and the overall 

precision of the model is also improved (James and Robson, 2014; Javernick et al., 2014). 

 

2.6 SFM-MVS applied for snow depth mapping 
Most research using SFM-MVS for snow depth mapping has focused on testing the reliability 

of UAV and SFM-MVS methods for producing quality high-resolution snow depth data. With 

the exception of Harder et al. (2016) and Fernandes et al. (2018), few studies have used SFM-

MVS methods for hydrological and general environmental analysis. This is mainly due to the 

need to better understand the limitations of SFM-MVS snow depth mapping (Bühler et al., 

2016a; Bernard et al., 2017).  

In general, snow depth from SFM-MVS 3D reconstruction can be obtained by differencing two 

co-registered elevation models, one of snow-free and the other of snow-covered conditions. 

Additionally, snow accumulation or ablation can be calculated by differencing two snow-

covered scenes. The difference between two scenes can be calculated from either DEMs 

interpolated from the dense point cloud or raw point cloud elevations.  

Accuracies of snow depth (i.e., RMSE) estimation using SFM-MVS have been observed to vary 

from 4 cm to 30 cm (Nolan et al., 2015; Vander Jagt et al., 2015; Bühler et al., 2016a; Harder et 

al., 2016; Michele et al., 2016; Avanzi et al., 2018). These accuracies are in general comparable 

to snow depths calculated from terrestrial lidar surveys (Piermattei et al., 2016; Avanzi et al., 

2018). Nolan et al. (2015) suggests the accuracy limitation for measuring snow depth is around 

± 10 cm when using GCPs for controlling geolocation accuracy. When using highly accurate 

RTK-GNSS measurements (direct georeferencing) for camera locations and no GCPs, reliable 

measurements may be obtained for snow depths greater than 20 to 30 cm (Nolan et al., 2015; 

Vander Jagt et al., 2015).  

The biggest challenges to obtaining quality snow depth maps using SFM-MVS are snow and 

lighting conditions. Fresh snow creates a smooth surface texture, which makes it difficult to 

detect unique features for performing image matching (Nolan et al., 2015; Bühler et al., 2016b; 

Cimoli et al., 2017). Flat-diffused light can hide subtle features in the snow cover surface due 

to a lack of contrast in the surface texture (Bühler et al., 2016b; Cimoli et al., 2017). These 

sources of error usually cause large data gaps in the reconstructed snow-covered surface 

(Bühler et al., 2016b). This problem can usually be resolved by just waiting for optimal lighting 

conditions (Nolan et al., 2015; Gindraux et al., 2017), by pre-processing the images to enhance 

contrast or by using near infrared (NIR) imaging (Bühler et al., 2016b). The worst case in this 

scenario may result in a reduced point cloud density, which may be handled by either 

reducing the resolution of the elevation model or marking these locations as having no data 

(Nolan et al., 2015; Gindraux et al., 2017). 

In general, temporal influences on surface conditions may lead to errors that are difficult to 

estimate; e.g., lighting conditions (Bühler et al., 2016b; Harder et al., 2016; Gindraux et al., 

2017), vegetation compaction (Nolan et al., 2015; Vander Jagt et al., 2015), frost heave (Nolan 

et al., 2015), and on-going erosion processes (Bernard et al., 2017). The influence of vegetation 
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on surface elevation estimation may be systematic and therefore corrected, but this hypothesis 

needs further investigation (Hugenholtz et al., 2013). Accounting for the errors from frost 

heave potential is not very feasible, considering you can only observe such effects under snow-

free conditions (Nolan et al., 2015).  

In addition to these temporal influences, cases can occur where obtaining matched points in 

an imagery set can be difficult (James and Robson, 2012), such as observed by Piermattei et al. 

(2016) who had difficulties reconstructing a 3D sparse point cloud for parts of a glacier which 

was covered by fine debris. Substantial error in snow depth estimation can also potentially 

occur from small errors in the georeferencing and/or co-registration of snow-free and snow-

covered scenes (Nuth and Kääb, 2011; Tinkham et al., 2014; Cimoli et al., 2017). These errors 

can be exacerbated in areas of high slope (Hopkinson et al., 2012; Marti et al., 2016). 

In summary, there is much room for improving the understanding of the uncertainty in SFM-

MVS snow depth mapping. Before performing large scale applications of this approach, it is 

important to thoroughly know its limitations to avoid producing poor quality data that may 

not be suitable for analysis or may lead to erroneous results. 
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Chapter 3 

 Modelling the precision of structure-from-motion multi-view stereo 

digital elevation models from repeated close-range aerial surveys 
 

Abstract 
The accuracy of digital elevation models (DEMs) derived from structure-from-motion (SFM) 

multi-view stereo (MVS) 3D reconstruction is commonly computed for a single realization of 

model elevations. This approach may be adequate to estimate an overall measure of systematic 

error; however, it cannot provide a good estimation of measurement precision. Knowing 

measurement precision is crucial for measuring elevation surface changes observed by DEM 

comparisons. In this paper, we illustrate an approach to characterize spatial variation in the 

precision for SFM-MVS derived DEMs. We use a snow-covered surface of an active rock 

glacier located in the southern French Alps as the case study. A spatially varying precision 

estimate is calculated from repeated close-range aerial surveys for a single acquisition period 

by calculating the standard deviation per grid cell between the DEMs created for each flight 

repetition. Regression analysis using a generalized additive model (GAM) is performed to 

model the estimated precision and provide insights regarding how sensor, survey design and 

field site conditions may spatially influence the measurement precision. Additionally, we 

define how DEM error can be described differently depending on the available validation data. 

In our study image height above ground level and distance to ground control points had the 

greatest explanatory power for spatial variation in DEM precision. Image overlap mean 

reprojection error and saturation were also useful for explaining spatially varying 

measurement precision of the DEMs. Field site characteristics, such as slope angle and 

shading, had the least importance in our model of precision. From a practical point of view, 

regression-modeled relationships between precision and image and site characteristics can be 

utilized to design future surveys with similar sensing platforms and site conditions for 

improved DEM precision.  

 

3.1 Introduction 
One of the most recent developments in digital elevation model (DEM) generation methods is 

the use of structure-from-motion (SFM) and multi-view stereo (MVS) 3D reconstruction 

techniques (James and Robson, 2012; Westoby et al., 2012; Micheletti et al., 2015b; Smith et al., 

2015; Carrivick et al., 2016). In general, these techniques can create a 3D reconstruction of a 

surface from a collection of images for a given feature taken from a variety of viewing angles 

(Snavely et al., 2006). It has become vastly popular for geosciences applications (see (Carrivick 
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et al., 2016) for an extensive list). As with the use of any DEM, it is crucial to understand the 

quality of the SFM-MVS derived DEMs to ensure the suitability for a particular application. 

The quality of DEMs can be described by analyzing its errors (Fisher, 1998). In general, all 

DEMs inherently contain some error (Fisher and Tate, 2006), and systematic and random error 

structures can vary between different sensors and survey designs (Wilson 2010). These errors 

will propagate to DEM derivatives, such as slope, aspect and the hydrologic or geomorphic 

models that utilize these derivative products (Walker and Willgoose, 1999; Holmes et al., 2000). 

As a result, DEM error can contribute to the uncertainties related to monitoring Earth surface 

changes (Brasington et al., 2000; Burns et al., 2010; Wyrick and Pasternack, 2016). A model of 

DEM error can be developed to characterize DEM uncertainty for a particular survey 

technique and site (Holmes et al., 2000; Wheaton et al., 2010; Tinkham et al., 2014; Bangen et 

al., 2016). Such a model can be used to not only determine possible sources of errors, but also 

to improve methods of DEM production (Fisher, 1998; Carlisle, 2005; James and Robson, 2014; 

James et al., 2017b). 

The most common approach to modelling the spatial variation in DEM errors has typically 

been to stochastically simulate DEM error distributions (Fisher, 1998; Kyriakidis et al., 1999; 

Holmes et al., 2000; Fisher and Tate, 2006; Wechsler and Kroll, 2006). Recently, such an 

approach has been applied to assess error in SFM-MVS elevation models using Monte Carlo 

simulation; in particular, the authors evaluated how survey design may influence the 

distribution of precision in a DEM (James et al., 2017a; James et al., 2017b). Since there are 

numerous factors that can lead to errors in the SFM-MVS DEM (Smith and Vericat, 2015), it is 

possible that the simulation approach could potentially overlook factors, such as field 

conditions (Favalli et al., 2012), that may affect the distribution of error in DEMs derived from 

SFM-MVS 3D reconstruction. 

The purpose of this study is to assess DEM error by estimating measurement precision of SFM-

MVS derived DEM values to characterize how precision may spatially vary and to explain this 

variability. Repeat aerial surveys from an unmanned aerial vehicle (UAV) can be used to create 

multiple DEMs for estimating precision. This approach computes the precision for individual 

grid cells of the DEM image of surface elevations. That is, we estimate the precision 

corresponding to each grid cell. In this way, we are treating each grid cell as a separate 

measurement, and we are using a model of error that allows for the values of precision to vary 

spatially. Additionally, a generalized additive model (GAM), a nonlinear statistical regression 

technique, is used for characterizing the spatial variation in precision by modelling the 

respective influences of sensor, survey and field site conditions.  

 

3.1.1 Describing DEM measurement error 
Typically, analysis of the spatial pattern of errors in DEMs focuses on the difference between 

the measured values and some ‘true’ value that is perceived as more accurate (Kyriakidis et 

al., 1999; Smith and Vericat, 2015); i.e. where the reference data used for validation is 

considered as the ‘truth’. In this paper, we focus on measurement bias, the mean difference 

between measured values and some ‘true’ value, to describe the pattern of error. Bias can be 

used to describe the presence of systematic error, which is the tendency of measurements to, 
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on average, under- or overestimate the ‘true’ values. Additionally, we define precision of a 

measurement as the variability in values between multiple observations. It can be used to 

describe random error and can be assessed in terms of reproducibility or repeatability.  

Most SFM-MVS studies in the geosciences have focused on reproducibility (Smith and Vericat, 

2015; Clapuyt et al., 2016). Reproducibility can be defined as how measurements vary using 

different sensors under different conditions, including different periods (Bartlett and Frost, 

2008). These studies are popular for good reasons: they seek to optimize experimental 

parameters to produce the best 3D reconstruction results for a variety of sensor and field 

conditions (e.g., (Clapuyt et al., 2016); they also demonstrate the capability of the SFM-MVS 

approach to produce high resolution and high quality DEMs suitable for studies of Earth 

surface processes and landforms. There are many factors that affect elevation modelling 

results, some examples of reproducibility include comparisons of: SFM-MVS pipelines from 

different software (Ouédraogo et al., 2014; Dandois et al., 2015; Micheletti et al., 2015a; Smith 

et al., 2015; Stumpf et al., 2015); sensors/cameras (Dandois et al., 2015; Micheletti et al., 2015a), 

camera settings and calibration (Harwin et al., 2015; Clapuyt et al., 2016; James et al., 2017b), 

flight plans (James and Robson, 2014; Dandois et al., 2015; Smith and Vericat, 2015), the 

distribution of ground control (Clapuyt et al., 2016; Tonkin and Midgley, 2016; James et al., 

2017a), different field sites (Dandois et al., 2015; Nolan et al., 2015; Bühler et al., 2016a; Harder 

et al., 2016); variable field site conditions (Harwin and Lucieer, 2012; Westoby et al., 2012; 

Dandois et al., 2015; Harder et al., 2016) and georefencing approaches (Carbonneau and 

Dietrich, 2017).  

Repeatability can be defined as how a measure varies for a particular sensor and involves 

conducting repeat measurements of the same object with the same sensor under similar 

conditions within a short period (Bartlett and Frost, 2008). That is, repeatability investigates 

what would be the expected variation in elevation measurement for a given UAV survey for 

a given camera, survey design and field site conditions. Using repeat observations for 

determining measurement precision is a well-known approach for assessing measurement 

uncertainty, but has yet to be commonly applied for DEMs, in particular for SFM-MVS DEMs. 

This study focuses on repeatability. 

Throughout this section, we define several models that can be used to describe the distribution 

of DEM error. Each error model is based on a scenario that depends on the data collected or 

available for error analysis. These scenarios are, (i.) single DEM from an aerial survey with 

surveyed check points or a reference DEM; (ii.) multiple DEMs from repeat aerial surveys with 

surveyed check points; or (iii.) multiple DEMs from repeat aerial surveys with a reference 

DEM. The error models mathematically characterize and define the error components for each 

of these different situations and subsequently define estimators for the bias and precision. In 

doing so, we present characterizations of bias and precision that are allowed to vary spatially 

depending on the surveying scenario and thus data availability. The error models presented 

here are not meant to be a comprehensive list; we acknowledge that there are other approaches 

to error analysis of SFM-MVS DEMs such as those based on simulations (James et al., 2017b). 

Instead, we present the most commonly applied error model (i.e., i.) and demonstrate how we 

can afford more complex descriptions of error by providing additional repeat survey data (i.e, 

ii. and iii.).  
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The elevation value 𝑦(𝑥)of a surface (e.g. a SFM-MVS derived DEM) within domain 𝐷 can be 

described as, 

𝑦(𝑥) = 𝑧(𝑥) + 𝑒(𝑥) (1) 

where 𝑧(𝑥) is the ‘true’ elevation value and 𝑒(𝑥) is the measurement error at location 𝑥. 

Typically, 𝑒(𝑥) is determined by comparing 𝑦(𝑥) to a reference data set to represent 𝑧(𝑥) at a 

higher accuracy, where the number 𝑛 of reference elevations (𝑧(𝑥))
𝑥∈𝐷

, 𝑖 = 1, … , 𝑛 can either 

be a set of check points, for example from a Global Navigation Satellite System (GNSS) survey, 

or elevations from another DEM (Kyriakidis et al., 1999). 

 

3.1.2 Single DEM with check points or a reference DEM 
The most common approach for describing measurement error in DEMs, both classically and 

within SFM-MVS studies, is the use of global statistical measures, such as root mean square 

error (RSME), mean error and the standard deviation (SD) of error at check point locations 

(Fisher and Tate, 2006; Wilson, 2010; Smith et al., 2015). These statistics describe the overall 

measurement error of a DEM and, given a spatially distributed set of reference data, can 

provide a visualization of spatial error patterns. Usually, these statistics are calculated for the 

scenario where a close-range aerial survey is used to produce a single SFM-MVS DEM to 

measure the elevations of a surface, and some sort of reference data has been collected. 

We describe the measurement error 𝑒(𝑥) in this situation by decomposing it into a constant 

bias or systematic error, 𝜇, and a random error, 𝜀(𝑥): 

𝑒(𝑥) = 𝜇 + 𝜀(𝑥). (2) 

The random error in this conceptual model has a mean of 0 and standard deviation 𝜎, and it is 

often observed or assumed to be normally distributed (Kyriakidis et al., 1999; Fisher and Tate, 

2006; James et al., 2017b). 

The standard deviation, or precision, is estimated as the standard deviation 𝜎 of measurement 

error, or the square root of the measurement error variance 𝜎2, 

𝜎2  =
1

𝑛 − 1
∑(𝑒(𝑥𝑖) − 𝜇̂)2

𝑛

𝑖=1

 (3) 

where 𝑒(𝑥𝑖) is the difference between the elevation surface and reference data, 𝑦(𝑥𝑖) − 𝑧(𝑥𝑖), 

at locations for 𝑥𝑖 ∈ 𝐷, 𝑖 = 1, … , 𝑛. That is, the measurement precision is based on an estimate 

of the standard deviation of random errors calculated across all check points or all grid cells 

of a reference DEM. The estimate of the mean error or bias 𝜇̂ is 

𝜇̂ =
1

𝑛
∑ 𝑒(𝑥𝑖)

𝑛

𝑖=1

=  𝑦̅ − 𝑧̅. (4) 

where 𝑦̅ and 𝑧̅ are the mean values of the DEM and the reference data height values, 

respectively, calculated from locations 𝑥𝑖 , 𝑖 = 1, … , 𝑛. The measurement error variance can 

therefore also be expressed as 
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𝜎2  =
1

𝑛 − 1
∑((𝑦(𝑥𝑖) − 𝑦̅) − (𝑧(𝑥𝑖) − 𝑧̅))

2
𝑛

𝑖=1

. (5) 

Although this approach does provide quick statistics to summarize DEM error, it only 

provides limited insights into error distribution because, with a spatially constant 𝜇̂ and 𝜎2 , it 

does not describe its spatial distribution (Fisher, 1998; Kyriakidis et al., 1999). The spatial 

distribution of errors can either be modelled through simulation (James et al., 2017b) or by 

obtaining more observations of the individual elevation values in a DEM. 

 

3.1.3 Multiple DEMs from repeat aerial surveys with check points 
By obtaining multiple DEMs from repeated aerial surveys, the DEM error can be described 

with more complexity by allowing precision to vary spatially across the entire DEM grid. That 

is, the random error corresponding to each DEM measurement (i.e. grid cell) can be 

characterized. We will demonstrate this in the case study presented in Section 3 of this paper. 

The data available in this situation contains multiple overlapping DEMs representing 𝑝 repeat 

measurements of the elevation surface, and each DEM is comprised of 𝑁 elevation values 

𝑦(𝑘)(𝑥𝑗), 𝑘 = 1, … , 𝑝, distributed throughout a grid 𝑥𝑗 ∈ 𝐷, 𝑗 = 1, … , 𝑁. Additionally, a set of 

check points 𝑧(𝑥𝑖), 𝑖 − 1, … , 𝑛, is available as reference data. In this situation, DEM error in the 

𝑘th DEM can be represented as,  

 

𝑒(𝑘)(𝑥) = 𝜇 + 𝜀(𝑘)(𝑥), (6) 

And we can now afford to allow the precision 𝜎2(𝑥) of 𝑒(𝑘)(𝑥) to vary spatially. Since the 𝑝 

repeat DEMs represent only a sample of all possible realizations of DEMs that could be 

generated using the same process, precision at a location 𝑥 can now be estimated from the 

corresponding measurement error variance, 

𝜎̂2(𝑥) =
1

𝑝 − 1
∑ (𝑦(𝑘)(𝑥) − 𝑦̅(𝑥))

2
𝑝

𝑘=1

 (7) 

where 𝑦̅(𝑥)  is the mean elevation value averaged over all repeat DEMs. Compared to Equation 

5, the reference elevation data has been replaced with the cellwise mean over all 𝑘 DEMs from 

repeat surveys. 

In terms of estimating bias, the general representation is similar as Equation 4; however, it can 

now be estimated from 𝑝 repeat measurements at the 𝑛 check point locations. As a result, the 

bias 𝜇̂ is estimated as  

𝜇̂ =  
1

𝑛𝑝
∑ ∑ 𝑒(𝑘)(𝑥𝑖)

𝑛

𝑖=1

𝑝

𝑘=1

. (8) 

 



 

20 

3.1.4 Multiple DEMs from repeat aerial surveys with a reference DEM 
In addition to using repeat DEMs, having spatially continuous reference data or a reference 

DEM can further expand the complexity of the error description by allowing the bias to vary 

spatially continuous across the DEM grid. In this situation, the locations 𝑥𝑖 of elevation values 

of the reference data and DEMs are the same, and therefore 𝑛 = 𝑁. Here, we can afford to 

decompose DEM errors into spatially varying systematic and random components, 

𝑒(𝑘)(𝑥) = 𝜇(𝑥) + 𝜀(𝑘)(𝑥) (9) 

where the bias 𝜇(𝑥) can be estimated for each grid cell 𝑥 as 

𝜇̂(𝑥) =
1

𝑝
∑ 𝑒(𝑘)(𝑥)

𝑝

𝑘=1

=
1

𝑝
∑ (𝑦(𝑘)(𝑥) − 𝑧(𝑥))

𝑝

𝑘=1

. (10) 

 

3.2 Data and methods 
3.2.1 Study site and elevation surveys 
This study was conducted for the surface of a snow-covered section of an active rock glacier 

in the Combe de Laurichard catchment, Écrins National Park, located in the southern French 

Alps at 45.01N, 6.37E (Figure 1). The rock glacier dynamics of this site have been monitored 

in detail for well over 30 years (Francou and Reynaud, 1992; Bodin et al., 2009), and it is 

currently being used as a test site for new methods for mapping rock glacier displacements 

based on airborne laser scanning, terrestrial laser scanning and SFM-MVS derived surface 

elevation models (Bodin et al., 2008).  

Multiple (5) UAV surveys of the frontal part of the rock glacier were completed on the 22 

February 2017 using a DJI Phantom quadcopter. The UAV survey covered an area of 0.04 km2. 

These 5 flights all started within a 30-minute period (13:57 to 14:28) to maintain generally 

similar lighting between each surveyed set of images. Each flight was flown in parallel paths 

with the camera in a nadir position, with a 75% side and top overlap between images and a 

maximum flying speed of 9 m/s. The repeated flight paths were programmed using the 

MapPilot iOS app. This was a close-range survey with a flying height of approximately 60 m 

above ground level (agl). A feature within MapPilot allowed the flights to follow the terrain 

based on approximately 30 m × 30 m resolution Shuttle Radar Topography Mission (STRM) 

DEM, instead of being flown at a constant altitude above ground. A height of 60 m agl was 

selected to allow this study to investigate DEMs based on the highest image resolution that 

can be afforded while maintaining a safe distance above the terrain. All images were saved in 

JPEG format. Each flight recorded from 66 to 68 images. 
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Figure 1. Location of the surveyed rock glacier in the Combe de Laurichard catchment including the 

extent of the study area and position of ground control points (i.e. artificial targets). The background 

topographic data is a hillshaded DEM derived from a terrestrial lidar survey performed in 2012 (data 

courtesy of Station Alpine Joseph Fourier, CNRS / Univ. Grenoble-Alpes). 

The sky during the flights was cloud-free. The scene was predominantly snow-covered, with 

some areas of exposed boulders and rock debris (Figure 2). The snow cover had a strong 

texture, as the last snowfall in the catchment, recorded by the nearest meteorological station 

situated 2 km away (Col du Lautaret), was on the 8 February 2017, 14 days before the survey. 

This location is also popular among backcountry skiers, and had been marked up by ski tracks. 

The UAV images did contain shadowed areas, which grew larger with each flight as the sun 

sank from 32° to 30° in elevation and extended northeastwards as the sun also travelled from 

200° to 208° in azimuth (Figure 2). 

 

Figure 2. Orthomosiacs of the snow covered landscape from the set of images obtained from each flight. 

These are the UAV surveyed scenes used for processing the DEMs (Table 2). The scene numbers 

correspond to the time each UAV survey began.  

In addition to the UAV surveys, a survey of ground control points (GCPs), using artificial 

targets, and check points was collected from kinematic Global Navigation Satellite System 

(GNSS) measurements with a positional accuracy ≤ 2 cm (at 1σ). The penetration depth of the 

GNSS-receiver pole into the snow surface was recorded to adjust the observed GNSS vertical 

positions in post-processing to represent the elevations of the snow surface. This survey was 

used as the reference data for our study. In total, 14 GCPs and 106 check points were surveyed. 

All the check point measurements represent the elevation of the snow surface. 
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3.2.2 DEM processing and error estimation 
The imagery from each flight was processed to produce its own DEM (5 in total). Agisoft’s 

Photoscan software (version 3.12) was used to process the images into dense 3D point clouds 

based on its own SFM-MVS workflow. All camera (intrinsic and extrinsic) parameters were 

optimized, including an option for rolling shutter correction. Before camera parameters were 

optimized, tie-points with a reprojection error greater than 0.5 pixels were removed to reduce 

the reprojection error while maximizing the available number of tie points for model 

optimization. This optimization and georeferencing was also based on the set of surveyed 

GCPs. The alignment process was set to use high accuracy, and the dense point matching 

parameters were set to high quality with moderate depth filtering. The points cloud for each 

set of imagery was exported as a DEM with a 5 cm × 5 cm spatial resolution, and the grid cells 

between each DEM were aligned using the snap raster feature available in ESRI’s ArcMap 

(version 10.5).  

A grid of precision estimates was computed by calculating the standard deviation in elevation 

for each overlapping grid cell of the DEMs. This calculation follows the approach to spatial 

varying precision estimation described in Equation 7 using repeated UAV surveys and only 

check point data, not a reference DEM. It results in a raster data set illustrating the amount of 

variation in elevation between the multiple surveyed DEMs. Since in this study only a set of 

check points was available for reference data, bias was estimated using Equation 8: the 

difference between check point elevations and the mean elevations from overlapping data in 

the multiple DEMs. The result of the bias estimation is a set of points, corresponding to the 

locations of the check points, illustrating how much, on average per check point location, the 

DEMs differed from the reference data. Using the check points, the RMSE, mean absolute error 

(MAE), bias and standard deviation of error were also calculated for each DEM individually 

to summarize error using the basic non-spatial approach presented in Section 2.1.   

 

3.2.3 Modelling the spatial distribution of precision 
A generalized additive model (GAM) was selected to model the spatial distribution of 

estimated DEM precision. GAMs are an extension of generalized linear models that have the 

flexibility to represent the dependence of the response on linear or nonlinear predictors (Hastie 

and Tibshirani, 1990). The smoothing terms with the GAM were optimized based on 

generalized cross-validation (GCV) with a limit of 4 degrees of freedom to ensure model 

flexibility while still providing interpretable generalizations of variable trends within the 

model. 

There is potentially an inexhaustible list of variables that might be useful for explaining the 

precision pattern. We decided to focus on variables that would hopefully provide some 

practical insight into their influences on precision, leading to improved methods for increasing 

precision. These predictors are based primarily on the sensor conditions and spatially varying 

image processing factors related to the scene. Therefore, we used image height, image count, 

image mean reprojection error, image saturation, and distance to GCPs. Additionally, 

landform slope angle was used as a variable to describe the relationship with terrain shape, 
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and a classification of shaded areas was used to assess precision varying with lighting 

conditions. 

The variables for image height, count and mean reprojection error are based on the values of 

individual images used for the 3D reconstruction. The footprint boundaries of each image 

were projected onto the corresponding reconstructed elevation surface. These projected image 

boundaries were then each assigned the corresponding value related to the height the image 

was taken, and the mean reprojection error resulting from the image matching process. To 

summarize image height, count and mean reprojection error, for all scenes, the mean value 

was taken from an overlay of all the individual images. The mean reprojection error is a 

summary of the quality of tie-point matching within each image. It depends on the quality of 

the camera calibration and on the points within an image, which are related to the general 

image network (or image collection design; (James and Robson, 2014; James et al., 2017b). 

Image saturation may provide a proxy of areas within a scene that are difficult to reconstruct 

because of a lack of information (i.e. over- and under-exposed areas), such as areas cast under 

shadow. Here, the maximum saturation based on an ortho mosaic for each scene was 

computed to represent the areas that had saturation problems across all scenes. The Red Green 

Blue (RGB) to Hue-Intensity-Saturation (HIS) image transformation in GRASS GIS (version 

7.4) was used to calculate saturation for each orthomosaic. 

Shaded areas were classified for each scene using a k-nearest neighbor (k-NN) algorithm 

applied to the RGB bands of the orthomosaics. The resulting classes of the k-NN classification 

were labeled as either shaded or unshaded areas. A map representing the shaded areas of all 

scenes was created by merging the shaded areas from each scene to a single grid. Distance to 

GCPs was based on computing the Euclidean distance to the nearest GCP within the DEM 

grid, and slope angle was based on the mean slope angle for each pixel across all scenes.  

The relative importance of each of the variables in the GAM was also assessed to determine 

which variables were most important for characterizing the spatial variation in precision. An 

estimate of the proportion each variable contributed to explaining the deviance in the GAM 

was used to rank variable importance. A higher proportion of deviance explained indicates a 

higher rank.  

Given the large data size (about 19 million grids cells per variable), a spatially random sample 

of 20 000 grid cells was used for the GAM. This sample was taken from an area that all DEMs 

managed to cover (the study boundary in Figure 1). This sample was also used to explore 

relationships between predictors and DEM precision.  

 

3.3 Results 
3.3.1 Spatial variation in precision 
Overall, the median precision estimated from repeated DEM surveys for this study area was 

0.03 m with an interquartile range (IQR) of 0.05 m (Figure 3h and Figure 4). The maximum 

and minimum precision was 0.001 m and 0.33 m, respectively.  
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Figure 3. Maps of the distribution of values for each variable used for modelling precision (a-g), and 

map of DEM error calculated from standard deviation which represents the spatial variation in 

measurement precision (𝜎̂2 in Equation 7, calculated from repeat aerial surveys; h).  

The deviance in precision explained by the GAM was 83%. Factors relating to survey design, 

such as image height and distance to GCPs were most important for modelling the spatial 

variation in precision, as estimated by the proportion of deviance explained (Table 1). Scene 

conditions such as saturation, slope angle and shading had relatively much less influence on 

precision characterization.   

Some of the factors in the GAM illustrate well-defined trends, which characterize the spatial 

variation in precision (Figure 5). The modeled precision tends to lower when the distance to 

the nearest GCP is greater than 30 m, when image height is greater than 58 m, when slope was 

greater than 40, and generally when the image reprojection error is higher. Modeled precision 

was also slightly lower for shaded areas. 
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Figure 4. Box plots of measurement precision (SD in elevation per pixel) for classes of each variable used 

to model precision with the GAM. These observations are based on the sample used for the GAM. The 

width of each box plot is proportional to the size of the group. 

 

Table 1. Estimated proportion of deviance explained by each variable in the GAM. The higher 

proportion indicates a higher contribution to spatial variation in DEM precision. 

Variable in GAM Proportion deviance explained 

Mean image height 0.114 

Distance to GCP 0.068 

Mean image overlap 0.021 

Mean reprojection error 0.014 

Maximum saturation 0.006 

Slope angle 0.004 

Shading 0.003 

 

 

Figure 5. A spline function for non-parametric smoothing of the variables in the GAM.s 
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3.3.2 Estimated error 
The mean RMSE estimated error for the DEMs was 0.050 m with a standard deviation of 0.003 

m. The error ranged from -0.176 to 0.152 m between the DEMs (Table 2).  The mean bias was 

-0.008 m with a standard deviation of 0.005 m, which may indicate that the global bias on 

average is close to zero when considering elevations measured from repeat DEM observations.  

The values of the overall root mean square (RMS) reprojection error for each scene ranged 

from 0.446 to 0.801 pixels. There is no indication that there is a clear relationship between the 

check point estimated error estimates and the RMS reprojection errors (Table 2).   

 

Table 2. Global statistics describing error estimated from GNSS check points for each UAV surveyed 

DEM, and the root mean square (RMS) reprojection errors corresponding to the image alignment within 

each DEM scene. 

DEM 

Scene 

Time of 

image 

acquisition 

RMSE 

(m) 

MAE 

(m) 

Bias 

(m) 

Standard 

deviation of 

error (m) 

Max. 

error (m) 

Min. 

error (m) 

RMS reproj. 

error (pixels) 

1357 13:57 0.047 0.038 -0.010 0.046 0.111 -0.110 0.446 

1405 14:05 0.050 0.039 -0.013 0.048 0.108 -0.118 0.768 

1411 14:11 0.052 0.041 -0.002 0.052 0.152 -0.112 0.737 

1420 14:20 0.047 0.038 -0.012 0.046 0.108 -0.103 0.402 

1428 14:28 0.054 0.043 -0.004 0.055 0.135 -0.176 0.801 

 

The spatial distribution of the estimated bias does not clearly show any pattern that would 

indicate a strong bias through the entire scene (Figure 6). There are some transects where the 

error seems to have a positive trend towards the edge of the scenes, but this error pattern is 

not consistent with all transects. There are also areas in the center of the scene where the check 

point transects show contrasting error results. 

  

 

Figure 6. Bubble plot of estimated mean error between GNSS surveyed check points and SFM-MVS 

derived DEMs. 
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3.4 Discussion 
3.4.1 Spatial variation in precision 
Modelling the spatial variation in precision can provide us with insights on the major factors 

influencing precision, which can help improve sensor and image acquisition design, 

particularly for a site where SFM-MVS DEMs are key to monitoring changes in surface 

elevations.  

Our model of the spatial variation in precision indicates that a GCP spacing of 30 m would 

help provide better precision across a SFM-MVS derived DEM for our given study area and 

survey design. Various optimal GCP spacings have been found in other studies. Both with 

image heights near 100 m agl, (James et al., 2017a) and (Tonkin and Midgley, 2016) found that 

a spacing of 50 and 100 m, respectively, was suitable for controlling DEM errors. In our model, 

distance to GCPs was also an important variable for explaining the spatial variation of 

precision. This finding provides further empirical support to previous studies that 

demonstrate the importance of a well-designed GCP network to mitigate errors related to the 

SFM-MVS approach to elevation modelling (James and Robson, 2014; Clapuyt et al., 2016; 

Tonkin and Midgley, 2016; James et al., 2017b). 

The lowest precisions within the surveyed area were generally related to areas that had a poor 

distribution of GCPs (Figure 4). In general, lower elevation precisions can be attributed to 

imprecise GNSS surveyed GCP locations or a poor distribution of GCPs (James et al., 2017b). 

In the case where there is a well distributed GCP network and the precision of the GNSS 

surveyed GCP locations is high (i.e. centimeters scale), other factors such as the image network 

(i.e. location and distribution) may better characterize the spatial variation in precision (Bemis 

et al., 2014; James et al., 2017b). With our modelling approach, if the GCP network is strong, 

we may not observe a substantial influence of distance to GCPs for modelling precision within 

the GAM. This result may provide evidence that would suggest a good GCP network design; 

however, it may also lead to potentially underestimating the importance of the GCPs for future 

surveys at the same site. Methods of survey simulation (James et al., 2017a) or a comparison 

of SFM-MVS DEMs created with different GCP distributions (Clapuyt et al., 2016; Tonkin and 

Midgley, 2016) can be used to further investigate the influence of the GCP for a given study 

site. 

The GAM also indicates that lower precision was generally associated with images taken from 

higher altitudes above ground, as well as where the number overlapping images was either 

relatively low or high (Figure 5). Image height and overlap have been established as strong 

factors that influence SFM-MVS DEM errors in previous studies (Bemis et al., 2014; James and 

Robson, 2014; Micheletti et al., 2015b). The maximum precision related to image overlap, show 

in the GAM plots of smoothed functions (Figure 5), may have been affected by the spatial 

distribution of precision influenced by the distribution of GCPs. A large portion of the area 

where image overlap was the highest was also where the GCP network was the poorest 

(Figure 3). This result may highlight that increasing image overlap alone cannot act as a 

substitute for having a well-distributed network of GCPs. The area of high image overlap was 

also related to areas where slope was generally the steepest (Figure 3). Thus, terrain 

conditions, such as slope, may have influenced the precision of the elevation models; however, 
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this effect was likely related to how terrain conditions may restrict the placement of GCPs due 

to problems of accessibility.   It is also possible that since the images were taken at nadir, more 

images without different viewing angles may have produced worse auto-calibrated camera 

models by contributing more noise in the calibration procedure (Bemis et al., 2014; James and 

Robson, 2014). We attempted to ensure that the image height was stable above our surveyed 

object (i.e. the rock glacier) by designing the UAV surveys to follow the terrain at constant 

height above ground level based on approximately 30 m spatial resolution SRTM data. 

However, an even height above ground may be challenging to maintain since SRTM data in 

high-mountain areas is prone to lower vertical accuracies (Berthier et al., 2006). Therefore, 

there may be inconsistencies between the actual ground elevation and the SRTM data, which 

in the case of our UAV survey design would result in having some areas under- or 

overestimating the actual altitude above ground level. As our results illustrated, precision 

tends to deteriorate as the images are taken from higher heights (Figure 5); typically, higher 

flying heights result in a deterioration in elevation model accuracy (Smith and Vericat, 2015). 

Thus, relatively lower precision of SFM-MVS derived elevation models can occur in areas 

where the actual flying height of the UAV is higher than the desired programmed height above 

ground level. 

Image reprojection errors have been found to be closely related to the spatial variation in SFM-

MVS elevation model precision  (James et al., 2017b). It was observed in our model that 

precision generally decreased with higher mean reprojection errors. However, we also 

observed that the lowest mean reprojection errors were associated with areas of lower 

precision in the eastern edge of our study (Figure 3 and Figure 5). We conjecture that this may 

be due potential biases related to how mean reprojection error is calculated. A very low mean 

reprojection error may indicate a good local camera model that is overfitting. That is, it does 

not apply well throughout the entire reconstructed scene. Local overfitting can occur when 

few images with little variation in viewing angle are used for camera model calibration, which 

was the case for our observed area of low reprojection error (Figure 3d). UAV flight designs 

to mitigate the issue of producing only good local camera models can be found in James and 

Robson, 2014).  

Factors related to field site conditions, such as lighting (saturation and shading) and terrain 

(slope), were the least effective at explaining the spatial variation in precision. We did however 

observe that precision deteriorated with increasing landform slope angle. Steep slopes are 

more susceptible to horizontal shifting errors between DEMs. Also, steep areas may be more 

affected by shadows. Poor lighting conditions in general can have negative effect on the 

quality of the SFM-MVS model (Bemis et al., 2014). Perhaps, the low contribution to predictive 

performance is due to the spatial scarcity of these variables throughout the scene. That is, they 

do not occur throughout most of the scene, since we had generally good lighting conditions 

during the UAV surveys conducted for this study. 
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3.4.2 Investigating measurement bias 
The approach for estimating error by comparing DEM values to reference data is adequate 

when the measurement accuracy of the reference data far surpasses that of the technique to 

derive the DEM. However, when the measurement accuracy of the DEM approaches that of 

the reference data, such as is the case with SFM-MVS DEM, which is producing sub meter to 

decimeter accuracies (e.g. (Carrivick et al., 2016; Clapuyt et al., 2016), caution should be taken. 

The errors corresponding to the reference data may propagate into the estimation of DEM 

errors, which may contribute to an inaccurate knowledge of the distribution of errors. In our 

study, we may have observed just that. It appears that there may have been biases in the GNSS 

survey, since adjacent and nearly parallel transects showed different patterns of error (Figure 

6). Error in the GNSS survey data may be related to the challenges of surveying the snow 

surface elevations. As mentioned in the methods, we would record the depth of the GNSS 

antenna pole into the snow to correct for the height of the snow surface. However, it is possible 

that some of the observed depths of the antenna pole were inaccurately observed. 

Measurement bias can be much better explained by a comparison to spatially continuous 

reference data, such as a laser scanning derived DEM (Favalli et al., 2012; James and Robson, 

2012; Westoby et al., 2012; Smith and Vericat, 2015). Laser-scanning data has become an 

established approach for high density and resolution surveying (Wilson 2010), and as a result 

it has provided valuable insights on the systematic errors associated with the SFM-MVS 

techniques (James and Robson, 2014; Javernick et al., 2014; Smith and Vericat, 2015; Brunier et 

al., 2016; Carbonneau and Dietrich, 2017). In this paper, we have provided a model to describe 

error that when given repeat DEMs could potentially provide a more confident estimate of 

how DEM error may vary spatially by allowing for multiple elevation observations (or 

realizations). 

Having reference data based on laser scanning is still one of the best options for investigating 

DEM measurement bias. However, in general, obtaining laser scanning reference data to 

characterize the errors in SFM-MVS elevation models may not only be difficult due to cost, 

equipment or timing constraints, it may also not be practical from an operational point of view 

(Smith et al., 2015). Reference data collected from GNSS surveys is much more feasible for 

error analysis of SFM-MVS elevation models, especially considering that GNSS surveyed 

ground control points (GCPs) are usually required for georeferencing and controlling 

systematic errors (James and Robson 2014; James et al. 2017b). For these reasons, we have 

provided and demonstrated within this study an error model that allows for spatial variation 

in error based on check points and repeat DEM observations.  

 

3.5 Conclusion 
Overall, mapping the distribution of precision can provide better confidence in our 

observations than using traditional error assessments such as the global RMSE statistic. In this 

study, we had presented several approaches to describing DEM error depending on the data 

available for model validation. In the case of having multiple DEMs from repeated surveys, 

we can characterize spatial variations in DEM precision. This spatial estimate of error from 
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repeat DEMs can provide stronger support of the elevation model quality than from a single 

DEM observation.  

For our study, factors related to SFM-MVS survey design were the strongest at characterizing 

the spatial variation of precision: image height and distribution of GCPs were the strongest. 

The factors relating to the field conditions, such as shading and slope steepness had only a 

slight influence on the spatial variation of precision. 

We would recommend our approach as an excellent starting ground for designing and 

conducting pilot studies for monitoring changes in surface elevations. Much investment goes 

into monitoring, especially in remote areas, which is why investigating the precision of a 

particular sensing approach is critical to ensure we obtain quality data from our efforts. 
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Chapter 4 

 Quantifying uncertainties in snow depth mapping from structure-from-

motion photogrammetry in an alpine area 
 

Abstract 
Mapping snow conditions in alpine areas is crucial for monitoring local hydrology to support 

water resource management decisions. Recently, the use of structure-from-motion multi-view 

stereo (SFM-MVS) 3D reconstruction (or SFM photogrammetry) to derive high-resolution 

digital elevation models (DEMs) has become popular for mapping snow depth in alpine areas. 

In this study, methods for communicating the uncertainty in snow depth calculated from SFM-

MVS derived DEMs are presented using a case study in the French Alps. A spatially varying 

snow depth precision estimate was determined using an error propagation model based on 

the precision of the acquired SFM-MVS DEMs, which was obtained from repeated unmanned 

aerial vehicle (UAV) flights. Spatially varying snow depth detection limits were determined 

using Student’s t distribution. Additionally, the effect of the spatial resolution on the snow 

depth accuracy was explored. It was found that snow depths as shallow as 1 cm to 5 cm could 

be detected with high confidence for most of the study area. A map of the snow depth 

detection threshold was also found useful at identifying areas with high uncertainties, such as 

changes in topography or a systematic error caused by poor SFM-MVS reconstruction. It was 

additionally found that the spatial resolution of the snow-free conditions had a stronger effect 

on the snow depth accuracy than the snow-covered DEM. This result suggests that high-

accuracy snow depths can be achieved by combining a detailed snow-free DEM with a lower-

resolution snow-covered DEM, as obtained by satellite photogrammetry or a high-altitude 

above the ground UAV survey. 

 

4.1 Introduction 
Snow is an important water resource in many mountain regions around the world. A warmer 

climate can effectively reduce the water availability in these snow-dominated regions 

(Middelkoop et al., 2001; Barnett et al., 2005; Lemke et al., 2007). Therefore, given the changing 

climate, accurate monitoring and prediction of seasonal snow accumulation play key roles in 

water resources management. Accurate knowledge of snow accumulation can also help us 

improve our understanding of environmental processes in mountain areas including changes 

in ground temperatures (Luetschg and Haeberli, 2007; Apaloo et al., 2012), permafrost creep 

(Ikeda et al., 2008; Delaloye et al., 2010), avalanches (Bühler et al., 2011), rockfalls (Haberkorn 

et al., 2016), landslides (Matsuura et al., 2003; Okamoto et al., 2018) glacier dynamics 
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(Immerzeel et al., 2014; Rossini et al., 2018), and vegetation growth (Jonas et al., 2008). 

Additionally, high-resolution snowpack data can be used as reference data to test the accuracy 

of satellite remote-sensing products (Tinkham et al., 2014; Marti et al., 2016). 

In the past two decades, lidar (light detection and ranging) has been a major source of high-

resolution snow depth mapping, with accuracies typically in the decimeter range (Deems et 

al., 2006; Prokop, 2008; Schaffhauser et al., 2008; Deems et al., 2013). It has helped improve our 

understanding of the spatial distribution of seasonal snow accumulation (Deems et al., 2006; 

Helfricht et al., 2012; Kirchner et al., 2014; López-Moreno et al., 2015), and it has also improved 

snowpack modelling by integrating lidar derived snow depths into physically-based models 

(Revuelto et al., 2016; Hedrick et al., 2018).  

There have been recent developments for high-resolution snow depth mapping in mountain 

environments using digital photogrammetry. Bühler et al. (2015) demonstrated that airborne 

stereo optical imagery can produce snow depth maps with 2 m spatial resolution and a root 

mean squared error (RMSE) of 30 cm. Marti et al (2016) demonstrated the potential of stereo 

satellite imagery for snow depth mapping. They obtained decimeter accuracies using Pléiades 

high-resolution optical imagery, also with a 2 m spatial resolution. There were earlier attempts 

to use photogrammetry to map snow depth (Cline, 1993, 1994), but due to technical limitations 

at the time, it was difficult to produce accurate snow depth maps. 

In addition to lidar and digital photogrammetry, the use of structure-from-motion multi-view 

stereo (SFM-MVS) 3D reconstruction (also known as SFM photogrammetry) for high-

resolution snow depth mapping has become popular. In general, SFM-MVS can create a 3D 

reconstruction of a surface using a collection of images taken from different viewing angles 

(Snavely et al., 2006). When SFM-MVS techniques are applied for topographic analysis, they 

can be used to produce high-resolution digital elevation models (DEMs) of Earth’s surface 

(James and Robson, 2012; Westoby et al., 2012; Fonstad et al., 2013). Like lidar and digital 

photogrammetry methods, SFM-MVS derived snow depth maps are computed by 

differencing two co-registered elevation models acquired for snow-covered (snow-on) and 

snow-free (snow-off) conditions. Reported snow depth RMSEs typically range between 7 cm 

to 30 cm (Nolan et al., 2015; Vander Jagt et al., 2015; Bühler et al., 2016a; Harder et al., 2016; 

Adams et al., 2018; Avanzi et al., 2018). 

Although SFM-MVS derived snow depth maps have shown promise to obtain frequent 

observations of snow distribution with a high spatial resolution, as with the other techniques, 

there are challenges to produce reliable and accurate data. These challenges are related to 

uncertainties inherent in elevation differencing, which are controlled by the elevation models’ 

quality (Wechsler and Kroll, 2006; Wheaton et al., 2010) and co-registration accuracy (Nuth 

and Kääb, 2011; Marti et al., 2016; Bernard et al., 2017; James et al., 2017b). Understanding and 

quantifying the uncertainties in elevation model differencing can help us differentiate the 

computed surface change observations from noise (Wheaton et al., 2010). Or in the case of 

mapping snow distribution, it can help us determine detection limits of the computed snow 

depths. 

Calculating the propagation of elevation model errors is typically used for estimating the 

uncertainty when analysing surface changes (Brasington et al., 2000; Lane et al., 2003; Wheaton 
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et al., 2010; James et al., 2017b). Uncertainties in SFM-MVS-derived elevation models are 

usually assessed by a comparison with a spatially distributed set of reference data, typically 

acquired using a lidar, differential/kinematic Global Navigation Satellite System (GNSS) or 

total-station survey data (James and Robson, 2012; Westoby et al., 2012; Smith et al., 2015; 

Goetz et al., 2018). 

The quality of the SFM-MVS-derived elevation models for snow depth mapping depends on 

site conditions (Nolan et al., 2015; Bühler et al., 2016b; Harder et al., 2016; Cimoli et al., 2017; 

Gindraux et al., 2017), survey design (James and Robson, 2014; Tonkin et al., 2014; Smith et al., 

2015; Piermattei et al., 2016; James et al., 2017a; Goetz et al., 2018) and the data processing 

pipeline (Ouédraogo et al., 2014; Micheletti et al., 2015b; Cimoli et al., 2017). Currently, a major 

limitation of the SFM-MVS techniques for mapping snow depth is that it is difficult for feature 

matching algorithms to perform well with images having a weak image texture, such as in the 

smooth-homogeneous surface caused be fresh snow cover (Bühler et al., 2016a; Bühler et al., 

2016b; Gindraux et al., 2017). However, image acquisition over weathered snow surfaces can 

produce good results for SFM-MVS elevation models (Vander Jagt et al., 2015; Bühler et al., 

2016b; Michele et al., 2016), even if the fresh snow has been exposed to sunlight for only a day 

(Gindraux et al., 2017). 

An additional challenge unique to mapping snow depth using elevation differencing, is 

accounting for changes in the surface topography beneath the snow cover that may occur over 

time. For example, seasonal erosion of the surface (Bernard et al., 2017; Avanzi et al., 2018), 

frost heave (Nolan et al., 2015), vegetation compression (Nolan et al., 2015), and permafrost 

creep [Goetz al 2018- submitted] can cause errors in the computed snow depths. In the case of 

monitoring snow accumulation on glaciers, glacier surface lowering due to ice or snow melt 

and ice flow can also lead to errors (Gindraux et al., 2017). 

The purpose of this paper is to spatially characterize uncertainties in snow depths computed 

from SFM-MVS-derived elevation models in an alpine area. This study’s approach utilizes 

repeated unmanned aerial vehicle (UAV) surveys and in-situ field survey data taken during 

both snow-on and snow-off elevation model acquisition dates to spatially determine the 

precision of the derived snow depths and a spatially varying snow depth detection limit. 

Additionally, an analysis is conducted to investigate the effect of scale (i.e., spatial resolution 

of the DEMs) on snow depth accuracy. 

 

4.2 Materials and Methods 
4.2.1 Study site and data collection 
This study was conducted in the Combe de Laurichard (45.01N, 6.37ºE, 2500 m a.s.l.), which 

is located in the French Alps near the Col du Lautaret. The snow depth in the area of an active 

rock glacier was mapped, the Laurichard rock glacier, to test SFM-MVS methods in complex 

mountain topography. The rock glacier surface is generally composed of large angular 

boulders and debris formed from densely fractured granite (Bodin et al., 2009). The survey 

area (~240 m × 210 m) contains the front of a tongue-shaped rock glacier showing compression 

features such as transverse ridges and furrows. Throughout this paper, the rock glacier area is 
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referred to as active terrain. The stable terrain, which is adjacent to the rock glacier front, has 

a hummocky topography that contains dense and sparse clusters of large boulders and debris, 

as well as low vegetation cover.  

 

Figure 7.  A terrain map illustrating the study site and UAV surveyed area (a). Ground-based (b,c) and 

UAV (d,e) images of the rock glacier taken on the survey dates in 2017. 

 

Aerial imagery acquired from UAV flights for SFM-MVS processing and ground-based 

measurements were collected on June 1st and October 5th, 2017. The June date corresponds to 

the snow-on conditions during the melt period, and October 5th was the snow-off date required 

for computing snow depth (Figure 7). During the survey on June 1st, the study area was 

partially snow covered. The snow had a strong texture due to formation of suncups and 

surface runoff patterns. The UAV flights were flown in cloud-free conditions with air 

temperature ranging from 2 to 10°C. On October 5th, the study area was entirely snow-free. 

The flights were flown in mainly cloud-free to partially cloud-covered conditions, and the air 

temperature ranged from 7 to 16°C.  

Repeated UAV surveys were performed on each date to obtain multiple DEMs representing 

the surface heights. These surveys were conducted using a DJI Phantom 4 quadcopter that was 

programmed to fly autonomous missions with the Map Pilot app for iOS devices. Each survey 

was programmed to fly in parallel flight paths with a maximum speed of 7.1 m/s, and to fly 

above the terrain at 60 m above ground level; the terrain model is based on the Shuttle Radar 

Topography Mission (SRTM) 1 Arc-Second Global elevation data. The optical imagery (RGB) 

was acquired at nadir position with a 75% side and top overlap. A shutter-priority mode with 

a set aperture of f/2.8 and ISO of 100 was used to take the images, which were saved in JPEG 

format. Artificial targets spread across the study area were used as ground control points 

(GCPs). 

Reference data and the position of the GCPs were surveyed using Real-Time-Kinematic (RTK) 

GNSS measurements. The errors in the SFM-MVS derived snow-on and snow-off DEMs were 

determined from surveyed checkpoints of surface heights, which depending on the date, 
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include the height of snow-covered and/or snow-free surfaces. During the snow-on date, 

snow-probe measurements were taken at each checkpoint location using an avalanche snow 

probe with a maximum depth of 3 m. These probed snow depths were used to measure errors 

in the SFM-MVS-derived snow depths. 

Due to the changing topography of the snow-covered surface, the location of the GNSS base 

station was different during survey dates. To improve the quality of the RTK GNSS 

measurements, the data was post-processed using GNSS data from the PUYA reference 

station, which is located approximately 19 km from the study area. The positional accuracies 

of the RTK GNSS surveys were ≤ 2 cm at 1σ. The spatial reference of this study was based on 

the RGF93 / Lambert-93 projection and the NGF-IGN69 vertical datum (EPSG::5698). The 

positional accuracy of the GNSS was relied on for co-registration of the snow-free and snow-

on DEMs. There were no shared GCP targets between the snow-on and snow-off DEMs. The 

co-registration of the DEMs relied solely on the accuracy of the georefencing based on the 

RTK-GNSS surveyed GCPs. There were no shared GCP targets between the snow-on and 

snow-off DEMs. This condition was tested to determine what snow depth accuracies may be 

achievable when snow-free areas are not available for co-registration, which can be the case in 

this study area during peak accumulation or after recent snowfall. 

Table 3. Summary of UAV flights used to derive SFM-DEMs for computing snow depth. 

Date 

No. of 

flights 

No. 

images / 

flight 

No. 

GCPs 

Avg. flying 

height (m) 

Coverage area 

(km2) 

RMS reproj. 

error (pixels) 

Vertical 

error from 

GCPs (cm) 

Jun-01 6 67-77 19 59 - 62 0.056 – 0.061 0.48 – 0.70 1.8 – 2.5 

Oct-05 7 92-121 13 62 - 67 0.078 – 0.090 0.44 – 0.51 1.9 – 3.9 

 

4.2.2 DEM processing and computing snow depths 
The UAV imagery for each flight was processed using Agisoft’s Photoscan (version 1.4.2) for 

deriving SFM-MVS DEMs. The photos were aligned using a high accuracy with a key point 

limit of 40,000, a tie point limit of 4000, and the option for adaptive camera model fitting 

selected. All intrinsic and extrinsic parameters were optimized. Before optimization, the sparse 

point cloud was filtered by removing points that had a reprojection error > 0.5, a projection 

accuracy > 3.0, and reconstruction uncertainly level > 10. Georeferencing and optimization of 

camera parameters were based on the surveyed GCPs. The dense points matching quality 

parameter was set to mild. The dense point clouds were exported as DEMs to the software-

suggested spatial resolution (< 5 cm). All DEMs were resampled to the same 5 cm × 5 cm spatial 

resolution grid format using bilinear interpolation. The elevation surface for each surveyed 

date was represented by a mean DEM, which was determined by calculating the mean 

elevation, 𝑦̅, for each grid cell from the corresponding repeat DEMs. Snow depths were 

computed by subtracting the mean elevations, 𝑦̅on − 𝑦̅off, of the mean snow-on and snow-off 

DEMs. 
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4.2.3 Mapping snow depth uncertainties 
A spatially varying uncertainty, 𝜎𝑑, or precision in the SFM-MVS snow depths can be 

expressed by estimating the standard deviation of the propagated error for each grid cell, 

𝜎𝑑 = √𝜎on
2 + 𝜎off

2 , (11) 

where 𝜎on and 𝜎off are measures of uncertainty for the snow-on and snow-off DEMs, whose 

errors are assumed to be independent. Calculating the propagated error standard deviation 

for DEM differencing is often applied to estimate the uncertainties in topographic change 

detection (Brasington et al., 2000; Lane et al., 2003; Wheaton et al., 2010; James et al., 2017b). 

Similar to Goetz et al. (2018), the uncertainty or precision in the DEMs was estimated by 

calculating the standard deviation 𝜎 in elevation for each grid cell from the repeatedly 

acquired SFM-DEMs (Table 3). The root mean squared error (RMSE) was used to determine 

the accuracy of the DEMs and the snow depths from the GNSS-surveyed validation data. The 

errors in the DEMs were also characterized by terrain cover: snow cover, fine debris, or rocky 

debris. The snow depth errors where estimated for stable terrain and active terrain (i.e. on the 

active rock glacier). 

In addition to mapping the precision of the SFM-MVS snow depths, the uncertainty in 

differencing DEMs can be expressed using the minimum level of detection (LoD) for a given 

confidence level based on estimates of DEM precision (Brasington et al., 2003; Lane et al., 2003; 

Wheaton et al., 2010).  Since in this study there are repeat observations of the snow-on and 

snow-off DEMs, the detection limit was expressed as the margin of error corresponding to a 

one-sided confidence interval using a critical t-value. That is, for determining a minimum level 

of snow depth detection, we are mainly concerned if the SFM-MVS snow depths are greater 

than 0, in this case at a 95% confidence level. In earth sciences (Borradaile, 2002), including 

topographic change detection studies (Brasington et al., 2003; Wheaton et al., 2010; Lague et 

al., 2013; James et al., 2017b) a 95% confidence level is usually applied. The minimum detected 

snow depth was determined by, 

LoD95% CL = 𝑡df
∗ × √

𝜎on
2

𝑛on
+

𝜎off
2

𝑛off
, (12) 

where, 𝜎on and 𝜎off are estimates of the standard deviations of the snow-on and -off elevations 

based on repeat DEM observations, 𝑛on and 𝑛off are the corresponding number of DEMs used 

for finding 𝑦̅ and 𝜎, and 𝑡df
∗  is the (one-sided) critical t-value for the given degrees of freedom, 

df. These are calculated for each grid cell as, 

df = (
𝜎on

2

𝑛on
+

𝜎off
2

𝑛off
)

2

  (
1

𝑛on−1
(

𝜎on
2

𝑛on
)

2

+
1

𝑛off−1
(

𝜎off
2

𝑛off
)

2

)⁄ . (13) 

 

 

4.2.4 DEM resolution and snow depth accuracy 
To gain some insight on how these methods could be scaled for application to larger areas, we 

performed an exploratory analysis on how the spatial resolution of the DEMs can affect the 
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accuracy of the snow depth measurements. That is, we use the spatial resolution as a proxy for 

performing higher altitude UAV surveys that can result in coarser resolution DEMs (i.e., 

ground sampling distance). Three scenarios were tested: (1) the snow-on DEM was resampled 

to coarser spatial resolutions, (2) the snow-off DEM was sampled to coarser spatial resolutions, 

and (3) both DEMs were sampled to coarser spatial resolutions. The snow depth accuracy 

(RMSE) was determined for resolutions from 0.05 m to 10.00 m with a step of 0.05 m. Coarser 

resolutions were obtained by aggregating the original 0.05 m resolution DEMs using the mean 

elevation values. For the individual comparison of the snow-on and snow-off DEM resolutions 

(scenarios 1 and 2), the aggregated DEMs were resampled to a 0.05 m resolution using bilinear 

interpolation. 

 

4.3 Results 
4.3.1 DEM accuracy and precision 
The relatively smoother snow-covered DEM surface heights had a higher accuracy than the 

snow-free areas (Table 4), which was predominantly made up of exposed rock debris. Also, 

the DEM measured surface heights were more accurate for the smoother fine rock debris areas 

than the rougher rock-debris surfaces such as found on the rock glacier. The overall accuracy, 

measured by the RMSE, of the DEMs ranged from 7 cm to 9 cm.  

The distribution of DEM errors for the snow-off DEM was generally spatially heterogeneous 

(Figure 8b). That is, there was no clear sign of strong systematic error in the elevation surface 

where the GNSS validation data was sampled. However, there was a cluster of over-estimated 

elevations in the north-west area of the snow-on DEM (Figure 8a). This elevation measurement 

bias was occurring outside of an area enclosed by the GCPs, and where the precision was 

relatively good (< 2 cm; Figure 8c). 

The precision of the DEMs was lower where the terrain surface was rougher (i.e., rocky debris 

cover), further away from ground control, and at the smoothly textured snowdrift located in 

the south-west area of the snow-on DEM (Figure 8c). The precision throughout the DEMs was 

mainly less 2 cm. The distribution of precision values was spatially more heterogenous in the 

snow-off DEM than the snow-on DEM.  

 

Table 4. Accuracy of DEMs calculated from GNSS surveyed checkpoints. June represents the snow-on 

DEM, and October the snow-off DEM. 

Mean DEM No. obs. RMSE (cm) Mean (cm) 

June (overall) 177 8.7 2.1 

    Snow cover 106 6.5 0.3 

    Rocky debris cover 71 11.3 4.8 

    

October (overall) 141 7.4 1.5 

    Fine debris cover 38 3.8 2.0 

    Rocky debris cover 103 8.4 1.3 
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Figure 8. Bubble plots of GNSS measured accuracies and orthomosaics obtained from UAV imagery 

(a,b). Maps of DEM precision calculated from repeat DEM observations (c,d). 

 

4.3.2 SFM-MVS snow depth uncertainty 
The overall RMSE of the snow depths was 15 cm (Table 5). The stable terrain had a higher 

accuracy (RMSE = 12.2 cm) than the active terrain (18.2 cm). Based on the snow-probe 

measurements, the snow depths were on average underestimated. However, this may be a 

result of a measurement bias related to snow-probing – the suncups made it difficult to 

determine the height of the snow to the nearest cm. Snow depths that were also computed in 

the snow-free areas located in the north-east part of the scene show an increasing trend in 

depth towards the boundary of the study area. This trend may be an indication of where an 

overestimation in snow depth occurred due to a bias in the snow-on DEM, which was 

identified with the GNSS measurements.  The precision of the SFM-MVS snow depths was 

less than  = 4 cm for most of the study area (Figure 9). 

 

Table 5. SFM Snow depth accuracy based on snow-probed observations calculated for the entire area 

(overall), active terrain (i.e. on the rock glacier) and stable terrain. 

Terrain No. obs. RMSE 

(cm) 

Mean 

(cm) 

Std. dev. 

(cm) 

Median 

(cm) 

IQR 

(cm) 

Overall 80 15.2 -3.6 14.8 -2.4 17.3 

Stable 44 12.2 -1.0 12.3 -1.9 12.3 

Active 36 18.2 -6.7 17.2 -10.3 26.2 
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Figure 9. SFM Snow depth map and bubble plot of snow depth accuracies based on snow-probed 

observations (a), and an SFM snow depth precision map (b). 

 

At a 95% confidence level, most of the study area had a detection limit between 1 cm to 5 cm 

– the median detection limit was 3 cm (Figure 10 and Figure 11). The minimum detectable 

snow depth ranged from 0.2 cm to 194 cm. The snow depths in most of the study area were 

significantly detected. A comparison of the mapped snow-free areas to the areas that were 

lower than the snow depth detection limit shows possible uncertainties in the computed snow 

depths (Figure 10). For example, areas that should be below the detection limit because they 

are snow-free were not (Figure 10e). This is the same area that was overestimated in the snow-

on DEM (Figure 8a) and may indicate that there was also a bias in the estimated snow depths 

surrounding this area. On the active rock glacier, there was a mismatch between the mapped-

snow free areas and the ones detected by the threshold limit (Figure 10cd), which can be an 

indication of a change in the bare-ground topography between the snow-on and snow-off 

DEM acquisition dates.  
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Figure 10. Areas where the SFM-MVS snow depth level was determined to be significant based a t-test 

applied for each grid cell at a 0.05 significance level. The snow-free area was mapped from an 

orthomosaic of the UAV imagery. 

 

 
Figure 11. Histograms of the spatially varying snow depth detection limit at a 95% confidence level 

(a), and SFM-MVS snow depths (b). 

 

4.3.3 Snow depth accuracy and spatial resolution 
The accuracy of the snow depths was more sensitive to the spatial resolution of the snow-off 

DEM than the snow-on DEM (Figure 12). The resolution of the snow-on DEM did not affect 

the accuracy of the DEM until resolutions coarser than 5 m. The accuracy decreased 

approximately at a rate of 4 cm per m in coarser resolution when the snow-off DEM was 

resampled and decreased 5 cm per m  in coarser resolution when both DEMs where resampled 

to a coarser resolution (Figure 12). 
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Figure 12. The impact of SFM-DEM spatial resolution on snow depth accuracy (RMSE). (a) the snow-

on DEM was resampled to lower resolutions, (b) the snow-off DEM was sampled to lower resolutions, 

and (c) both DEMs were sampled to lower resolutions. 

 

 

4.4 Discussion 
4.4.1 Mapping snow depth uncertainties 
Based on a spatially varying snow depth detection limit, it was shown that SFM-MVS snow 

depths using UAV imagery can detect depths as shallow as 1 cm (Figure 11a). Harder et al 

(2016) proposed a global SFM-MVS snow detection limit of 30 cm (at 4σ), which would be 

approximately 15 cm at a 95% confidence level (2σ). For deep snowpacks where it is clear the 

most of the snow depths will exceed the precision, a global limit of snow depth detection may 

be suitable (Passalacqua et al., 2015). However, a spatially varying snow depth detection limit 

may be useful for analysis of shallow snowpack since the precision of snow depths, as 

observed in this study and by Adams et al (2018), can substantially vary spatially. Spatially 

varying measures of precision can be used to avoid overly conservative detection limits caused 

by global thresholds (Lane et al., 2003; Wheaton et al., 2010; Passalacqua et al., 2015).  

In general, the precision of the SFM-DEMs is related to flying height, distance to GCP, and 

image overlap (James et al., 2017b; Goetz et al., 2018), as well as field site conditions (Nolan et 

al., 2015; Bühler et al., 2016a). That is, errors in the computed snow depths can also vary 

temporally due to different snow-cover conditions (Bühler et al., 2016a; Harder et al., 2016; 

Adams et al., 2018). The precision for most of the study area was less than 4 cm (at 1σ). This 

precision estimate is based on a flying height of approximately 60 m agl. Adams et al (2018) 

observed precisions ranging from 4 cm for stable terrain to 33 cm for their entire alpine study 

area. This relatively weaker precision that they reported is likely due to their higher-flying 

height of 400 m agl. The precision of SFM-DEMs can increase with higher flying heights (Goetz 

et al., 2018). 

In addition to using the detection limits to determine where significant levels of snow depth 

were detected, a comparison with a map of snow-free areas helped to identify areas where a 

bias in the snow depths was present. Bias in SFM-MVS snow depths can be caused by co-

registration errors (Nuth and Kääb, 2011; Westoby et al., 2012; Marti et al., 2016), changes in 

the sub-snow topography between snow-on and snow-off DEM acquisition dates (Nolan et 

al., 2015; Bernard et al., 2017; Gindraux et al., 2017; Avanzi et al., 2018), and a systematic 

‘doming’ error in the SFM-DEMs (James and Robson, 2014; Micheletti et al., 2015b). The 
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pattern in the GNSS-measured errors of the snow-on DEM did show signs of such a doming 

error (Figure 8a). This error is likely due to the poor image collection geometry caused by the 

UAV imagery being taken at near-parallel directions, and an inaccurate camera model 

(Micheletti et al., 2015b). Perhaps this error was only observed outside the area enclosed by 

the GCPs because the error is locally improved near GCPs (James and Robson, 2014; Javernick 

et al., 2014). 

The spatially varying detection limit in this study used critical values of a t distribution based 

on precision estimates calculated from repeat UAV surveys; however, there are other 

approaches for calculating a spatially varying estimate of SFM-DEM precision. For example, 

the position precision of the SFM-MVS tie-points (i.e. sparse point cloud) can be estimated 

from the bundle adjustment using a stochastic error model, which can be interpolated to map 

the precision of the corresponding elevation model (James et al., 2017b). 

 

4.4.2 Reducing SFM-MVS snow depth uncertainties 
When designing a survey for snow depth monitoring with SFM photogrammetry, just as with 

lidar (Csanyi and Toth, 2007) and digital photogrammetry (Barrand et al., 2009), it is important 

to ensure that in each survey the spatial distribution of GCPs encloses the entire area of 

interest. Otherwise, data may be lost due to low-precision observations, or more-likely due to 

a strong bias in one of the DEMs that can lead to an over- or underestimation of snow depth, 

as was observed in this study.  

Depending on the desired accuracy and precision of the snow depth estimates, it is also 

important to ensure that the GCPs are evenly spaced out to control the amount of 

measurement uncertainty. For example, Goetz et al. (2018), who used the same sensor (DJI 

Phantom 4) and flying height above ground level (60 m), observed that precision decreased 

substantially in areas that were farther than 40 m from a GCP. Tonkin et al 2016 observed a 

decrease in elevation accuracies further away from GCPs: at 100 m away from the GCP they 

found the RMSE of the elevations became greater than a decimeter. However, as both Tonkin 

et al. (2016) and Gindraux et al. (2017) observed, the accuracy of the DEM only improved until 

a certain GCP density is reached. In the case of Gindraux et al. (2017), they found that more 

than 17 GCPs/km2 did not significantly improve DEM accuracy.  

Accurate georeferencing of the SFM-DEMs is also important for reducing the uncertainties and 

improving the accuracy of computed snow depths. Due to the constantly changing 

topography of a snow-covered surface, especially just after recent snowfall, there may be 

occasions when there are no exposed snow-free areas that could allow for co-registration of 

the snow-on and snow-off DEMs to reduce any potential registration biases. Also, the 

constantly changing snow-covered topography makes it difficult to have GCPs located in the 

same place (Bernard et al., 2017). In such scenarios, only the positional accuracy of the GCPs 

measured by a GNSS survey are relied on for the registration of the DEMs.  

The influence of GCPs on DEM accuracy, and the resulting snow depth accuracy, is also 

controlled by the quality of the positional estimate of the GCPs locations (Tonkin and Midgley, 

2016; James et al., 2017a). In this study, a local reference GNSS station was used to ensure high 
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quality positional estimates of the GCPs. Using this approach, it was demonstrated that an 

overall snow depth accuracy of 15 cm, and a precision of the snow depth measurements of 

approximately less than 5 cm can be achieved without co-registering the snow-on and snow-

off DEMs. 

 

4.4.3 The effects of spatial resolution on snow depth accuracy 
The spatial resolution of the snow-off DEM had a stronger influence on the accuracy of the 

snow depths than the spatial resolution of the snow-off DEM. Since our study area has a 

complex terrain, the accuracy of the snow depths depended on the ability of the SFM snow-

off DEM to capture the small-scale variability of the surface topography, which is consistent 

with the findings of Cimoli et al (2017). Marti et al (2016) observed that the accuracy of the 

SFM-MVS snow depths remained similar when calculated for spatial resolutions of 0.1, 1 and 

2 m; however, this result contrasts with this study, which found a strong effect on accuracy – 

a 5 cm decrease with each 1-meter increase in spatial resolution. This difference is likely due 

to the rougher rocky-debris covered terrain of the site used in this study.  

The relatively stable accuracy of the snow depth with lower spatial resolution (Figure 11) of 

the snow-on DEM indicates that future DEM-differencing snow depth calculations may 

combine data from other sources such as satellite high-resolution stereo imagery (e.g. Pléiades) 

to capture snow-on conditions (Marti et al 2016). This combination of the SFM- and satellite-

derived DEMs could allow for more frequent snow depth estimation in remote areas that are 

difficult to access. Additionally, one could spend more time in surveying the snow-off DEMs, 

for examples by flying closer to the surface. Conversely, UAVs can fly higher to capture a 

larger area when snow is present. The smaller sensitivity to the spatial resolution of the snow-

on DEM is likely due to the gentler topography of the snow-covered surface. 

 

4.5 Conclusions 
This study presented a method for calculating a spatially varying estimate of snow depth 

precision and detection limits using repeated UAV surveys. The map of snow depth precision 

is important for communicating the distribution of uncertainties in the snow depths. Through 

applying the spatially varying detection limits it is found that it is possible to observe snow 

depths generally as low as 2 cm with 95% confidence from UAV imagery and SFM 

photogrammetry. The spatially varying detection limit was also found to be useful in this 

study to highlight areas where possible snow depth biases were present. Identifying areas that 

may have a strong bias in the calculated snow depths can be used to delineate the boundaries 

of the study area where the data quality is acceptable.  It is recommended to ensure that the 

area covered by the GCPs is the same for the snow-on and snow-off DEMs to avoid losing data 

due to poor SFM-MVS performance in areas more distant from ground control locations. 

In our study, a snow-on DEM resolution as low as 5 m would have been sufficient for snow 

depth estimation without loss of accuracy. This result shows the potential to combine snow-

on elevation models obtained from satellites with snow-off SFM-elevation models to map 

snow depth with high accuracies. The ability to acquire snow-on DEMs with different sensors 
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may increase the possibility to obtain more frequent high-resolution snow-depth observations 

in remote areas.  
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Chapter 5 

 Accounting for permafrost creep in high-resolution snow depth 

mapping by modelling sub-snow ground deformation 
 

Abstract 
Snow depth estimation derived from high-resolution digital elevation models (DEMs) can lead 

to improved understanding of the spatially highly heterogeneous nature of snow distribution, 

as well as help us improve our knowledge of how snow patterns influence local geomorphic 

processes. Slope deformation processes such as permafrost creep can make it challenging to 

acquire a snow-free DEM that matches the sub-snow topography at the time of the associated 

snow-covered DEM, which can cause errors in the computed snow depths. In this study, we 

illustrate how modelling changes in the sub-snow topography can reduce errors in snow 

depths derived from DEM differencing in an area of permafrost creep. To model the sub-snow 

topography, a surface deformation model was constructed by performing non-rigid 

registration based on B-splines of two snow-free DEMs. Seasonal variations in creep were 

accounted for by using an optimization approach to find a suitable value to scale the 

deformation model based on in-situ snow depth measurements or the presence of snow-free 

areas corresponding to the date of the snow-covered DEM. This scaled deformation model 

was used to transform one of the snow-free DEMs to estimate the sub-snow topography 

corresponding to the date of the snow-covered DEM. The performance of this method was 

tested on an active rock glacier in the southern French Alps for two surveys dates, which were 

conducted in the winter and spring of 2017. 

By accounting for surface displacements caused by permafrost creep, we found that our 

method was able to reduce the errors in the estimated snow depths by up to 33% (an 

interquartile range reduction of 11 cm) compared to using the untransformed snow-free DEM. 

The accuracy of the snow depths was only slightly improved (root-mean-square error decrease 

of up to 3 cm). Greater reductions in error were observed for the snow depths calculated for 

the date that was furthest (i.e., the winter survey) in time from the snow-free DEM. 

Additionally, we found that our approach to scaling the deformation model has promising 

potential to be adapted for monitoring seasonal variations in permafrost creep by combining 

in-situ snow depth measurements with high-resolution surface deformation models. 
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5.1 Introduction 
A combination of complex terrain with variable snow accumulation and ablation processes 

can result in a spatially highly heterogeneous snow distribution (Elder et al., 1991; Blöschl, 

1999; Deems et al., 2006; Erickson et al., 2005; Winstral et al., 2013; Grünewald et al., 2013). In 

mountain areas, snow cover can be an important control of surface deformation rates related 

to geomorphic processes such as permafrost creep (Ikeda et al., 2008) and shallow-landslides 

(Matsuura et al., 2003; Okamoto et al., 2018). Snow cover also plays an important role in 

ground temperatures (Hasler et al., 2011; Luetschg and Haeberli, 2007; Haberkorn et al., 2016). 

Therefore, providing detailed and accurate mapping of the heterogeneous snow patterns 

would allow a continued improvement in our understanding of snow distribution and how to 

model it (Sturm, 2015; Bhardwaj et al., 2016) to better describe the impact of snow cover on 

mountain geomorphic processes (Swift et al., 2015).  

Currently, the best method to capture the spatial variations in snow depth is the use of high-

resolution digital elevation models (DEMs). High-resolution mapping of snow depth can be 

achieved using any or a combination of available techniques for deriving high-resolution 

elevation models of the Earth’s surface. Some common techniques already applied include 

laser altimetry (LiDAR; (Deems et al., 2006; Prokop et al., 2008; Helfricht et al., 2012; Draebing 

et al., 2017), digital photogrammetry (Bühler et al., 2015; Marti et al., 2016; Grünewald et al., 

2014; Bühler et al., 2012), and structure-from-motion multi-view stereo (SFM-MVS) 3D 

reconstruction (Nolan et al., 2015; Vander Jagt et al., 2015; Bühler et al., 2016; Michele et al., 

2016; Harder et al., 2016). 

Snow depth based on high-resolution elevation data can be computed by differencing co-

registered elevation models obtained for snow-covered and snow-free conditions. The 

differencing can be applied to surface elevations represented as 3D point clouds or a 

corresponding DEM (Deems et al., 2013). It is typically assumed that the surface topography 

beneath the snow-cover remains unchanged during the period between the acquisition of the 

snow-covered and snow-free conditions. However, any change in the surface topography 

between the acquisition dates can contribute to errors in the computed snow depth 

measurements (Nolan et al., 2015; Bernard et al., 2017; Avanzi et al., 2018). For this reason, 

applying this approach in mountain areas can be challenging due to on-going changes in 

surface topography caused by permafrost creep (Haeberli et al., 2006; Kääb et al., 2003), and 

other slope deformation processes (Arenson et al., 2016). Therefore, such changes in surface 

topography should be accounted for in the snow-free elevation model to reduce errors in the 

computed high-resolution snow depths, as well as to provide more reliable snow distribution 

data for analysis on the impacts of snow on local variations in geomorphic processes. In this 

paper, we propose that a kinematic model of surface displacements can be used to account for 

changes in topography due to permafrost creep. 

The spatial pattern of creeping mountain permafrost is often monitored using surface 

displacement fields obtain from processing remote sensing data (Arenson et al., 2016). Most 

commonly, surface displacements fields are determined from multi-temporal optical imagery 

using image matching techniques (Scambos et al., 1992; Kääb, 2002; Heid and Kääb, 2012; 

Kääb, 2005; Debella-Gilo and Kääb, 2011; Kraaijenbrink et al., 2016; Evans, 2000). Image 
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matching has also been applied to high-resolution DEMs to produce detailed surface 

displacement maps of glacial ice (Abdalati and Krabill, 1999), slow-moving landslides 

(Ghuffar et al., 2013) and permafrost creep (Dall’Asta et al., 2017; Bodin et al., 2018). The use 

of DEMs for image matching has the advantage of avoiding the requirement of having the 

paired survey data acquired under similar lighting conditions (Kääb, 2005), and have been 

found to obtain a greater number of matched pixels than high-resolution optical imagery 

(Dall’Asta et al., 2017).  

Due to its simplicity, normalized cross-correlation is one of the most commonly applied 

methods for image matching using remote sensing data (Kääb, 2005; Heid and Kääb, 2012). 

However, this method typically requires post-processing to remove erroneous matches (Heid 

and Kääb, 2012; Kääb, 2005; Debella-Gilo and Kääb, 2012). Also, large data gaps in surface 

displacement maps can occur in areas where the image matching algorithm had difficulties 

detecting corresponding surface features (Bodin et al., 2018; Kääb, 2005). To overcome these 

issues, image registration techniques, in particular deformable or non-rigid registration, may 

be a good alternative to using image matching techniques alone for mapping surface 

displacement field since they are designed to provide a spatially continuous field of 

displacements for monitoring deformation of objects over time (Hill et al., 2001).  

Image registration is the process of aligning images by finding a spatial transformation that 

maps the pixels from one image to corresponding pixels in another image (Hill et al., 2001). 

Like image matching techniques, the aligning of two images for registration can be feature- 

and/or intensity-based, where features refer to corresponding points identified in the images 

either manually or automatically. The alignment based on features aims to minimize the 

distance between points, where intensity-based alignment involves minimizing a cost function 

that measures the similarity between a set of corresponding pixels between images (Yoo, 2004). 

Non-rigid image registration allows for a non-uniform mapping of corresponding pixels 

between images (Rueckert et al., 1999; Crum et al., 2004). The resulting transformation is a 

deformation field that tracks the displacement of every pixel from one image to another. To 

ensure that physically meaningful deformations are recorded by the transformation, 

regularization terms can be applied (Crum et al., 2004; Rueckert et al., 1999). Given this ability 

to record realistic changes in morphology, non-rigid image registration techniques have 

promising potential for producing a model of creep-related surface deformations for an entire 

scene. Additionally, to our knowledge, non-rigid image registration techniques have yet to be 

applied for monitoring surface displacements of Earth surface landforms.  

In this study, we present a method to reduce errors in snow depths computed from high-

resolution DEMs in an area of permafrost creep based on surface deformation modelling. The 

changes in the sub-snow topography caused by permafrost creep movement during snow-

cover conditions are estimated by transforming a snow-free DEM using a kinematic model of 

surface deformations. This model is obtained by performing non-rigid registration using a 

free-form deformation model based on B-splines of two snow free DEMs. To account for 

variations in creep rates over time, the resulting displacement field is scaled and then used to 

transform one of the snow-free DEMs to estimate the sub-snow surface topography at the time 
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of the snow-covered DEM. The performance of our method is evaluated using in-situ bare-

ground topography and snow depth measurements. 

 

5.2 Methods 
5.2.1 Study site and data 
Our study site is the Laurichard rock glacier in the Combe de Laurichard catchment, Écrins 

National Park, located in the southern French Alps (45.01N, 6.37E). It is an active, tongue-

shaped rock glacier extending from 2650 m a.s.l. (the headwall) to 2450 m a.s.l. (the front) with 

a width varying from about 100 m to 200 m. Based on expert knowledge of the study site 

(Bodin et al., 2009; Bodin et al., 2018), areas on the rock glacier were considered as active 

terrain, and the remaining terrain was considered as stable. The delineation of active and stable 

terrain was based on a map of the rock glacier (Figure 13). The movement rate of the rock 

glacier, measured as the mean annual surface velocity (0.39 to 1.44 m/yr; (Bodin et al., 2009), is 

typical of deep-seated permafrost creep (Haeberli et al., 2006). Similarly to many rock glaciers 

in the Alps (e.g., Delaloye et al., 2008; Kellerer-Pirklbauer et al., 2018), the Laurichard rock 

glacier experiences interannual fluctuation of its velocity (Thibert et al., 2018). The spatial 

pattern of displacements have been generally consistent over the past 10 years (Bodin et al., 

2018). Consistent spatial patterns of rock glacier movement has also been observed by others 

(Ikeda et al., 2008). 

Our method for accounting for permafrost creep in snow depth mapping was applied to two 

dates, February 22, 2017 and June 2, 2017, which represent the snow cover conditions during 

the winter accumulation and spring melt periods. A snow-free DEM was obtained on October 

5, 2017. The DEMs were acquired by performing SFM-MVS 3D reconstruction with Agisoft’s 

PhotoScan (version 1.41) to images collected from unmanned aerial vehicle (UAV) surveys 

using a DJI Phantom 4 quadcopter. The UAV surveys and PhotoScan processing used the same 

methods as Goetz et al. (2018). The winter DEM (referred to as Feb-2017 DEM) was mainly 

snow covered except for some large rock debris and boulders located on the rock glacier 

(Figure 13). The spring DEM (Jun-2017 DEM) was partially (75%) snow covered. 

An available DEM acquired on August 16-17, 2012 (Aug-2012 DEM) and the Oct-2017 DEM 

were used to find a non-rigid image transformation that captures the permafrost creep related 

surface deformation patterns. The Aug 2012 DEM was derived from airborne-laser scanning 

(ALS; Cessna 206 with a Riegl LMS Q680i laser scanner) (Bodin et al., 2018). All of the DEMs 

used in our study were sampled (bilinear interpolation) to have a 10 cm × 10 cm spatial 

resolution.  

The vertical accuracies of the DEMs were assessed from Global Navigation Satellite System 

(GNSS) surveyed elevation measurements (positional accuracy ≤ 2 cm at 1σ). The resulting 

RMSE for the Jun-2017, Oct-2017 and Aug-2012 DEMs were 7.8 cm, 9.1 cm and 2 cm, 

respectively (Table 6). The RMSE for the Aug-2012 DEM was based on a set of GNSS surveyed 

points of artificial flat surfaces measured during the acquisition of the airborne LiDAR data 

(Bodin et al., 2018). 
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Figure 13. Orthomosaics of the snow-covered scenes on 22-Feb-2017 (a) and 2-Jun-2017 (c). Distribution 

of field surveyed GNSS points of snow-free areas and snow-probed measured. An outline of the stable 

and active terrain areas overlays the hillshade models of the Feb-2017 and Jun-2017 DEMs. The winter 

Feb-2017 DEM covers about half the area of the spring Jun-2017 DEM. 

 

Table 6. Summary of data sets used for estimating snow depth. The vertical accuracy is based on a set 

of GNSS observations (N) surveyed for each date. 

 Data overview    

Label Feb-2017 DEM Jun-2017 DEM Oct-2017 DEM Aug-2012 DEM 

Acquisition data 22 Feb 2017 2 Jun 2017 5 Oct 2017 16/17 Aug 2012 

Description Snow covered Snow covered Snow free Snow free 

Method UAV SFM-MVS UAV SFM-MVS UAV SFM-MVS Airborne LiDAR 

Vertical accuracy (RMSE) 4.8 cm (N = 85) 7.6 cm (N = 118) 9.1 cm (N = 130) 2 cm (N = 45) 

No. of snow probe 

observations 
ND = 63 ND = 58 - - 
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5.2.2 Mapping snow depth from DEMs 
Estimating snow depth 𝐷̂(𝒙) for a continuous surface at locations 𝒙 for a given time 𝑡0 can be 

calculated as 

𝐷̂𝑡0
(𝒙) = 𝑆𝑡0

(𝒙) − 𝑍̂𝑡0
(𝒙), (14) 

where 𝑆𝑡0
(𝒙) and 𝑍̂𝑡0

(𝒙) are DEMs consisting of elevations for the snow-covered surface and 

the estimated sub-snow topography, respectively. Since the actual sub-snow topography 

𝑍𝑡0
(𝒙) at the time of the acquired snow-covered DEM is an unknown, the acquired snow-free 

DEM 𝑍𝑡1
(𝒙) can be used to estimate 𝑍̂𝑡0

(𝒙) the sub-snow topography. Given an area with little 

to no change in the ground topography over time, the estimated sub-snow topography is 

usually assumed to equal the elevations at the time of a snow-free elevation model either 

obtained before or after the time of the snow-covered DEM. However, in the case that the 

surface topography of the snow-free elevation model is likely different than the actual sub-

snow topography, meaning there are active deformation processes occurring, the sub-snow 

topography can be obtained by transforming a snow-free DEM 𝑍𝑡1
(𝒙) to represent the bare-

ground topography conditions at the time of the snow-covered DEM.  

To determine this transformation 𝑻𝒖(𝒙), we treat this as a registration problem which aims to 

find the displacement field 𝒖(𝒙) that makes the snow-free DEM 𝑍𝑡1
(𝒙 +  𝒖(𝒙)) as close as 

possible to the actual sub-snow topography 𝑍𝑡0
(𝒙). Since the sub-snow topography is 

unknown, we estimate the transformation by scaling displacements 𝒂(𝒙), which have been 

determined a priori, that map the general surface deformation patterns of the bare-ground 

topography. We define the estimate of the transformation 𝑻̂𝑢(𝒙) as 

𝑻̂𝑢(𝒙, 𝑐̂)  = 𝒙 + 𝑐̂𝒂(𝒙); (15) 

the estimated sub-snow topography is therefore determined by applying the estimated 

transformation to the snow-free DEM 𝑍𝑡1
(𝒙) 

𝑍̂𝑡0
(𝒙) = 𝑍𝑡1

(𝑻̂𝑢(𝒙, 𝑐̂)), (16) 

where 𝑐̂ is an estimate of a scale factor 𝑐, used to find displacements 𝒖(𝒙) by scaling the known 

displacements 𝒂(𝒙). The scale factor 𝑐 is basically a measure of the position of the deforming 

topography relative to the reference snow-free topography 𝑍𝑡1
(𝒙).  

The general deformation pattern 𝒂(𝒙) can be obtained by finding a transformation 𝑻𝒂(𝒙) from 

non-rigid registration that makes the snow-free DEM 𝑍𝑡1
( 𝑻𝒂(𝒙)) as close as possible to 

another snow-free DEM, 𝑍𝑡2
(𝒙), where the transformation 𝑻𝒂(𝒙) = 𝒙 + 𝒂(𝒙) is a model of the 

surface deformation.  Note that the change in time between the snow-free DEMs, 𝑍𝑡1
(𝒙) and 

𝑍𝑡2
(𝒙), should be large enough to detect surface deformations. The snow-free DEM 𝑍𝑡1

(𝒙) 

should be defined as the snow-free elevation model that is closest in time to the snow-covered 

DEM since the interpolation of an estimated sub-snow DEM will likely become more unstable 

as the time between the acquisition dates of the snow-covered and snow-free DEMs increases. 

Additionally, the accuracy of the estimated transformation 𝑻̂𝑢(𝒙) of the snow-free DEM highly 

depends on how well the model of surface displacements, as determined by 𝑻𝒂(𝒙), represents 
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the general deformation of the bare-ground surface topography over time, and on our ability 

to determine a suitable scale factor 𝑐. 

A displacement field mapped using deformable (non-rigid) image registration will have a 

vector magnitude and direction for each corresponding DEM grid cell that can vary spatially. 

It is therefore assumed that the displacements 𝒂(𝒙), which are used to model the creeping 

processes acting on the landscape, have a spatial pattern that remains similar during the period 

between snow-free DEMs, 𝑍𝑡1
(𝒙) and 𝑍𝑡2

(𝒙). A constant displacement rate is not assumed. 

Instead, by finding an optimal scale value for a given date, we allow our model to account for 

variations in displacement rates over time. 

 

5.2.3 Finding an optimal scale factor 
Given that the transformation 𝑻𝒂(𝒙) provides a good model of the surface deformation 

movements, the ability to produce a good estimation of the sub-snow topography for a given 

time depends on the scaling of this transformation. In this study we apply several methods for 

estimating an optimal scale factor 𝑐̂ based on manually mapped surface displacements, snow-

free areas in the snow-covered DEM and in-situ snow depth measurements. 

Provided there are exposed blocks that can have their movement tracked from the snow-free 

DEM 𝑍𝑡1
(𝒙) to the snow-covered DEM 𝑆𝑡0

(𝒙), we may determine 𝑐̂ as the average ratio of the 

magnitude of displacements observed from matching displaced features in 𝑍𝑡1
(𝒙) to 𝑆𝑡0

(𝒙𝑖) 

for a set corresponding snow-free (i.e., bare-ground) cell locations, Ω𝑍, within the domain of 

the snow-covered DEM 𝑆𝑡0
(𝑥), 

𝑐̂ ∶=
1

|Ω𝑍|
∑

𝒗(𝒙𝑖)

𝒂(𝒙𝑖)
𝑥𝑖∈Ω𝑍

 
(17) 

where 𝒗(𝒙𝑖) are displacements mapped from locations in the snow-free DEM 𝑍𝑡1
(𝒙𝑖) to the 

corresponding snow-free cell locations in the snow-covered DEM 𝑆𝑡0
(𝒙𝑖), 𝒂(𝒙𝑖) are the 

displacements from transformation  𝑻𝒂(𝒙), and |Ω𝑍| is the number of snow-free cell locations. 

The matched features in 𝑍𝑡1
(𝒙𝑖) and 𝑆𝑡0

(𝒙𝑖) can be mapped manually, or, depending on the 

magnitude of the mapped displacements 𝒗(𝒙𝑖), an automatic feature extraction algorithm such 

as the scale-invariant feature transform (SIFT; Lowe, 2004) may be applied.  

Alternatively, the estimated scale factor 𝑐̂ can be optimized using snow-free cells in locations 

of active terrain in the snow-covered DEM 𝑆𝑡0
(𝒙𝑖) (e.g., during snow melt conditions) to 

iteratively calculate the estimated sub-snow topography 𝑍̂𝑡0
(𝒙𝑖) with different scale factor c 

values. The optimal estimated 𝑐̂ value would result in the an estimated sub-snow topography 

𝑍̂𝑡0
(𝒙𝑖) that has the greatest similarity to the snow-free cells in the snow-covered DEM 𝑆𝑡0

(𝒙𝑖), 

such as defined by the root mean squared error (RMSE),  

𝑐̂ ∶= arg min
𝑐

RMSE𝑍 (𝑆𝑡0
(𝒙), 𝑍̂𝑡0

(𝒙, 𝑐)) (18) 

where 
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RMSE𝑍 (𝑆𝑡0
(𝒙), 𝑍̂𝑡0

(𝒙, 𝑐)) = √
1

|Ω𝑍|
∑ (𝑆𝑡0

(𝒙𝑖) − 𝑍̂𝑡0
(𝒙𝑖, 𝑐))

2

𝑥𝑖∈Ω𝑍

 
(19) 

In the scenario where there are no snow-free areas, a set of snow-probe recorded depths in the 

active terrain, Ω𝐷 within the domain of  𝑆𝑡0
(𝒙), can take the place of snow-free areas to 

iteratively search for an optimal scale factor. The locations of the snow-depths should be 

highly accurate to match the location accuracy of the DEMs: e.g., the snow-depth locations 

determined from a Global Navigation Satellite System (GNSS) survey. Here, the RMSE is 

determined for the number of observed snow depth locations |Ω𝐷| 

𝑐̂ ∶= arg min
𝑐

RMSE𝐷 (𝑆𝑡0
(𝒙), 𝑍̂𝑡0

(𝒙, 𝑐)) (20) 

where 

RMSE𝐷 (𝐷(𝒙), 𝐷̂(𝒙, 𝑐)) = √
1

|Ω𝐷|
∑ (𝐷(𝒙𝑖) − 𝐷̂(𝒙𝑖, 𝑐))

2

𝑥𝑖∈Ω𝐷

 
(21) 

 

5.2.4 Modelling surface deformation 
Rock glacier surface displacements from the snow free DEMs, 𝑍𝑡1

(𝒙) and 𝑍𝑡2
(𝒙), were obtained 

by performing non-rigid registration using a free-form deformation model based on B-splines 

(Rueckert et al., 1999). In general, B-splines can be used to create a smooth, continuous and 

deformable image transformation by manipulating a mesh of control points embedded in an 

image. A larger spacing of the mesh control points results in modelling more global 

deformations, while smaller spacing captures local deformations (Rueckert et al., 1999). Thus, 

a hierarchical multi-resolution approach that uses large to small mesh spacing can model 

deformations occurring at different scales. 

For this paper, we used the bUnwarpJ algorithm for multi-resolution, elastic and consistent 

2D image registration represented by B-Splines. bUnwarpJ, which was developed by 

Arganda-Carreras et al., 2006) is available as a plugin in ImageJ, an open-source image 

processing software (Schindelin et al., 2015). Its registration process can be guided using image 

intensity, a consistency constraint, vector regularization and/or a set of landmarks. This 

algorithm has already been applied for various biological image analysis problems (Komsta et 

al., 2011; Grocott et al., 2016; Ku et al., 2016). 

The bUnwarpJ algorithm is designed to perform bidirectional registration (forward and 

reverse directions), 𝑍𝑡2
→ 𝑍𝑡1

 and 𝑍𝑡2
← 𝑍𝑡1

. Bidirectional registration can help reduce the 

number of ambiguous correspondences between the forward and reverse transformation, 

which may result in improving the registration accuracy (Johnson and Christensen, 2002). The 

Oct-2017 DEM was used as the source image (𝑍𝑡1
), and the Aug-2012 DEM as the target image 

(𝑍𝑡2
). The bUnwarpJ settings for the multi-resolution iterations were set to initiate with a 

“Fine” deformation and finish with “Super fine” deformation. In our case, the initial 

deformation could be set to “Fine” since the DEMs were already georectified, and as we are 
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interested in the local deformations between the DEMs. We also set the registration to use both 

image intensity and feature points; these weights were set to 1. The consistency weight was 

left at the default value of 10. At first, we experimented with the use of automatic feature 

detection for extracting corresponding points; however, it was evident that some of the rock 

debris displacements occurring between 2012 and 2017 were too large to find accurate 

matches. As a result, we manually identified 233 corresponding points across the scene to 

assist in the image registration process. DEM-derived hillshade models were used to help 

identify the corresponding points. 

The resulting direct (or forward) B-spline transformation, 𝑍𝑡2
→ 𝑍𝑡1

, was used to model the 

general deformation patterns as a transformation function 𝑻𝒂(𝒙). This transformation was 

converted from the B-spline parameters to a transformation format containing the 𝑥 and 𝑦 

direction displacements for each grid cell (i.e., the displacement field 𝒂(𝒙)). Since bUnwarpJ is 

a 2D image registration method, it only describes the horizontal (𝑥, 𝑦) movement of the 

corresponding points over time. To determine the 3D displacement (𝑥, 𝑦, 𝑧) required to 

interpolate the elevations to estimate the sub-snow topography, we used the change in 

elevation of the corresponding points between snow-free DEMs, 𝑍𝑡1
 and 𝑍𝑡2

, to find the 

displacement in the 𝑧 direction.  The resulting (𝑥, 𝑦, 𝑧) displacements representing 𝒂(𝒙) were 

scaled using an estimated scale factor 𝑐̂  and applied to transform the snow-free DEM 𝑍𝑡1
to 

estimate the sub-snow topography (Equation 15). After the transformation  𝑻̂𝑢(𝒙, 𝑐̂) is applied, 

there may be some grid cells in the estimated DEM 𝑍̂𝑡𝑜
(𝒙) without an assigned value for which 

interpolation is needed. Inverse distance weighting (IDW; Shepard, 1968) was used to fill these 

missing elevation values.  

 

5.2.5 Applying sub-snow topography estimates 
For the winter scene (Feb-2017 DEM), manual tracking by mapping exposed rock debris 

(Equation 17), and an optimization of the scale factor based on the snow depths was applied 

(Equation 20). The manually mapped displacements were based on both aerial imagery and 

hillshade models from the UAV surveys. We were able to map the displacements of five 

exposed rocks. For the spring scene (Jun-2017 DEM), the optimization of the scale factor was 

based on snow-free elevations and snow-depth observations in active terrain (Equation 18). 

The snow-free areas in the Jun-2017 were mapped from an orthomosaic derived from the UAV 

imagery. The snow depths for both scenes were based on snow probing in combination with 

a GNSS (positional accuracy ≤ 2 cm at 1σ) survey of observed depth locations (Figure 13). 

There were 63 field-surveyed snow depth observations made over the rock glacier on February 

22, 2017 and 58 on June 2, 2017.  

Since the snow-free DEMs used in this study were obtained before (𝑍𝑡2
; Aug-2012) and after 

(𝑍𝑡1
; Oct-2017) the snow-covered DEMs (𝑆𝑡0

; Jun and Feb-2017) the optimized scale factors 𝑐̂ 

were determined by applying the transformation (Equations 18 and 20) with a range of c values 

from 0.0 to 1.0 (with a step of 0.01). As c approaches 0 and 1 the resulting estimated DEM 𝑍̂𝑡0
 

becomes closer to the snow-free DEMs 𝑍𝑡1
 (Oct-2017 DEM) and 𝑍𝑡2

 (Aug-2012 DEM), 

respectively. In this case, the scale values can be interpreted as an approximation of the 

proportion of surface movement occurring between the dates used for mapping surface 



 

54 

deformation, where one step of 0.01 would be expected to represent 2.68 weeks until October 

5, 2017 (or 4.4 cm of average creep movement of the rock glacier). This scale ratio was used to 

explore the general plausibility of the scale values by determining how far off they are from 

the actual time between the snow-covered DEM and the Oct-2017 DEM. An overview of the 

processes involved to estimate the sub-snow topography are presented in Figure 14. 

 

 

Figure 14. A flowchart outlining the processes involved in estimating the sub-snow topography using 

non-rigid registration. The source and target snow-free DEMs used to model the general surface 

deformation pattern related to permafrost creep were the Oct-2017 and Aug-2012 DEMs, respectively. 

The optimal scale factor ĉ was obtained from mapped surface displacements, snow-free areas or in-situ 

snow-depth measurements. ĉ was optimized for the corresponding snow-cover date: either February 

22, 2017 or June 2, 2017. 

 

5.2.6 Error analysis 
The performance of the sub-snow topography estimates was assessed by comparing the 

estimated snow depths to in-situ snow-probed measurements (Table 6). For each date, the 

snow depth errors were calculated for the estimated snow depths based on the untransformed 

snow-free DEMs (Oct-2017 and Aug-2012 DEMs) and the transformed snow-free DEMs (i.e., 

est. Jun-2017 or est. Feb-2017 DEMs). Since the Jun-2017 DEM contained snow-free areas, the 

performance of the estimated elevation model (est. Jun-2017 DEM) was also assessed using a 

GNSS field survey (positional accuracy ≤ 2 cm at 1σ) conducted on June 2, 2017. This survey 



 

55 

allowed for validation of the est. Jun-2017 DEMs independent from the procedure used for 

optimizing the scale factor. For general comparison, the accuracy was calculated for stable and 

active terrain. In total 70 points located in exposed stable (N=35) and active (N=35) terrain were 

collected. These observed elevations were compared to the nearest grid cells in the Jun-2017 

DEM and the est. Jun-2017 DEMs to measure the corresponding elevation errors. Additionally, 

the error relative to these GNSS surveyed locations to the Oct-2017 and the Aug-2017 DEM 

were measured as a benchmark for accuracy. The elevation and snow depth errors were 

reported using the interquartile range (IQR) and median relative absolute error (RAE) to 

account for the potential presence of outliers. The RMSE was also reported along with the IQR 

since it is a standard measure of accuracy for measuring elevation height and snow depths. 

 

5.3 Results 
5.3.1 Mapped surface deformations 
The direction of the modelled surface displacements follows the general downslope path of 

the rock glacier, where the front is moving slightly northeast (Figure 15). The stable areas were 

modelled as the areas adjacent to and along the sides of the rock glacier. The faster movements 

(> 1.0 m/yr) in the upper part of the rock glacier occurred in an area where the hillslope is 

relatively steep compared to the rest of the rock glacier body. There were also modelled fast 

movements (>1.4 m/yr) on the steep rock face (Figure 15c). These high displacement 

magnitudes on the rock face were not expected since this is a stable outcrop and indicate an 

area where the image alignment was difficult.  

 

 

Figure 15. A map of the study site terrain illustrated using a hillshade map and a 5 m contour interval 

(a), and the 2D (b) and 3D (c) displacement fields obtained from a free-form deformation model based 

on B-splines. The displacements magnitudes are shown here as the mean annual surface velocities 

(m/yr) from 2012-2017. The size of the arrows depicting the direction of the rock glacier movement is 

proportional to the magnitude of the displacements.  
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5.3.2 Optimal scale factors 
The scale factors optimized using the snow-free elevation and snow-depth data were in 

general agreement (Figure 16). The snow-free areas (ĉ=0.08) and snow-depth (ĉ=0.08) 

optimized scale factors for the est. Jun-2017 DEM were the same. The mapping based (ĉ=0.14) 

and snow-depth optimized (ĉ=0.13) scale factors for the est. Feb-2017 DEM differed by a single 

step (0.01 or 4.4 cm of average creep movement of the rock glacier). The scale factors were also 

plausible in terms of their expected displacement on the respective dates (Figure 17). The 

expected scale factors based on the number of weeks that the June 2, 2017 (18) and February 

22, 2017 (32) dates were before October 5, 2017 were 0.07 and 0.12, respectively. Optimized 

scale factors for June and February were found within 3 weeks of these expected values (Figure 

17). 

 

Figure 16. The performance of scaled values for est. Jun- and Feb-2017 DEMs based on optimization 

using snow-free elevation grid cells (Jun-2017) and in-situ snow-depth measurements (Jun-2017 and 

Feb-2017). 

 

Figure 17. Estimated scale factor c compared to expected weeks 

 

5.3.3 Performance of estimated DEMs  
As assessed using GNSS field observations in snow-free areas, the est. Jun-2017 DEM had the 

best overall vertical accuracy compared to the Oct-2017 and Aug-2012 DEMs (Table 7). The 

spread of the vertical errors in the est. Jun-2017 DEM (IQR = 5.5 cm) was also considerably 

lower for the active terrain compared to the Oct-2017 (21.8 cm) and Aug-2012 (54.4 cm) DEMs 

(Figure 18, Table 7). The est. Jun-2017 DEM also had a lower spread in errors for active terrain 

compared to the Jun-2017 DEM. The spread of the errors in the stable terrain were generally 
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similar between the snow-free DEMs with a range in IQRs from 8.4 cm to 9.0 cm (Table 7). 

Additionally, there was a tendency to overestimate the elevations in stable terrain and 

underestimate them in active terrain. 

Table 7. Error in elevations relative to the snow-free GNSS measurements in the Jun-2017 DEM. The 

errors have been grouped into active (i.e., on the rock glacier) and stable terrain. The est. Jun-2017 DEM 

where ĉ=0.07 was obtained from the expected scale factor on 2-Jun-2017 DEMs, and ĉ=0.08 was obtained 

from optimization of the elevation and in-situ snow-depth measurements. The Oct-2017 and Aug-2017 

were untransformed DEMs. The median and mean error are reported as measures of bias. 

 2-Jun-2017 GNSS elevation error (cm)  

DEM IQR Median RMSE Mean 

Overall     

Jun-2017 13.8 0.2 9.5 1.6 

est. Jun-2017 (ĉ=0.07) 9.7 -2.8 13.4 -3.1 

est. Jun-2017 (ĉ=0.08) 9.2 -1.9 13.5 -3.0 

Oct-2017 17.2 -2.8 19.8 -7.8 

Aug-2012 51.3 -6.8 50.9 -24.3 

Active     

Jun-2017 8.1 -3.9 6.7 -4.1 

est. Jun-2017 (ĉ=0.07) 5.0 -5.0 17.1 -8.6 

est. Jun-2017 (ĉ=0.08) 5.5 -5.1 17.3 -8.3 

Oct-2017 21.8 -12.0 26.8 -18.3 

Aug-2012 54.4 -48.1 70.9 -49.6 

Stable     

Jun-2017 7.3 8.0 11.7 7.4 

est. Jun-2017 (ĉ=0.07) 8.9 2.8 8.2 2.4 

est. Jun-2017 (ĉ=0.08) 9.0 2.9 8.2 2.4 

Oct-2017 8.5 2.6 7.8 2.6 

Aug-2012 8.4 1.5 12.8 1.1 

 

The comparison to the GNSS field observations also illustrated that the reliability of the snow-

free DEMs decreases as the time between acquisitions dates increases. The Oct-2017 and Aug-

2012 DEMs tended to underestimate the actual elevations in snow free areas (Figure 18). The 

Aug-2012 had the highest overall error (RMSE=51.3 cm, IQR=50.9 cm). 

The differences in elevations of the DEMs relative to the snow-free areas in the June-2017 DEM 

were used to determine which elevation model best represented the sub-snow topography on 

June 2, 2017. Overall, the est. Jun-2017 DEM had the highest similarity to the snow-free cell 

locations in the June-2017 DEM followed by the Oct-2017 DEM (Table 8). The higher similarity 

of the est. Jun-2017 DEM compared with the Oct-2017 DEM was mainly attributed to the better 

performance of the est. Jun-2017 DEM to represent the sub-snow topography in active terrain 

(Table 8). 

The highest differences to the Jun-2017 DEM were observed in areas where mass-wasting 

processes additional to the overall rock glacier creep occur (Figure 19).  Elevations in the est. 

Jun-2017 DEM and the Oct-2017 DEM were underestimated where small debris channels 

formed on the rock glacier front. They were also underestimated in an area just next to the 
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steep rock face, located in the southeast corner of the scene, where there is evidence of a debris 

flow. The elevations on the rock glacier front for the est. Jun-2017 and Oct-2017 DEM were for 

the majority overestimated. However, the front in the est. Jun-2017 DEM appears to have a 

smaller area of overestimation. The Aug-2012 DEM suffered from high elevation 

underestimation at the front slope, and high overestimation in snow-free areas located in areas 

upslope of the rock glacier front. 

 

 

Figure 18. Elevation errors of the Jun-2017 DEMs based on GNSS surveyed elevations of snow-free 

areas. The errors have been grouped into active (i.e., on the rock glacier) and stable terrain. The est. Jun-

2017 DEMs where ĉ=0.07 were obtained from the expected scale factor on 2-Jun-2017, and ĉ=0.08 was 

obtained from optimization of the elevation and in-situ snow-depth measurements. The Oct-2017 and 

Aug-2017 were untransformed DEMs. 

In terms of reducing snow depth errors for the June data, the estimated DEMs had the lowest 

errors measured by the IQR and median RAE compared to the untransformed DEMs (Table 

8). As previously observed in the snow-free locations (Table 7), the better performance of the 

estimated DEMs was related to reducing errors in active terrain. Except for the Aug-2012 DEM, 

the errors in snow-depth were similar in stable areas (Table 8). It was also observed that the 

June snow depths were generally underestimated in active terrain (all median values <-6.0 cm; 

Figure 20A). The snow depth errors were considerably lower in stable terrain than in active 

terrain (IQR difference of up to 10 cm); however, the snow depth errors in the stable terrain 

also contained major outliers (Figure 20a). 
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Table 8. Differences in elevations relative to the snow-free areas in the Jun-2017 DEM, and the errors in 

snow-depth estimation for 2-Jun-2017 based on the comparison of snow-probed measurements and 

DEM-derived snow depths. The errors have been grouped into active (i.e., on the rock glacier) and stable 

terrain. The est. Jun-2017 DEMs where ĉ=0.07 was obtained from the expected scale factor on 2-Jun-2017, 

and ĉ=0.08 was obtained from optimization of the elevation and in-situ snow-depth measurements. The 

Oct-2017 and Aug-2017 were untransformed DEMs. The median and mean error are reported as 

measures of bias. 

2-Jun-2017 

Snow-free elevation difference 

(cm)  

 Snow depth error (cm)   

DEM 

IQR Median RMSE Mean  IQR Median RMSE Mean Median 

RAE % 

Median 

depth (cm) 

Overall            

est. Jun-2017 (ĉ=0.07) 9.5 -1.2 14.5 -2.3  12.2 -1.4 47.1 7.0 6.7 115.8 

est. Jun-2017 (ĉ=0.08) 9.6 -1.3 14.6 -2.5  13.0 -1.4 47.0 6.8 6.6 114.9 

Oct-2017 12.5 -1.8 16.1 -0.8  16.5 -0.9 47.8 8.1 7.4 118.4 

Aug-2012 52.5 -6.4 61.0 -23.0  36.5 0.5 66.7 3.2 15.9 114.5 

Active            

est. Jun-2017 (ĉ=0.07) 8.6 1.3 15.1 -0.5  15.5 -6.9 24.4 -5.2 8.9 94.8 

est. Jun-2017 (ĉ=0.08) 8.6 1.3 14.9 -0.8  16.5 -7.1 24.3 -5.5 9.2 95.3 

Oct-2017 15.8 2.1 18.4 1.6  19.5 -6.0 27.6 -3.2 11.0 93.0 

Aug-2012 100.4 -18.4 75.1 -34.1  61.4 -21.6 70.5 -18.8 35.8 99.0 

Stable            

est. Jun-2017 (ĉ=0.07) 5.1 -5.0 13.3 -5.7  9.9 1.4 61.1 18.3 5.3 166.3 

est. Jun-2017 (ĉ=0.08) 5.2 -5.0 13.9 -5.7  9.7 1.4 61.1 18.3 5.0 166.3 

Oct-2017 5.3 -4.9 10.7 -5.3  9.8 2.0 61.0 18.7 5.0 166.5 

Aug-2012 12.1 -3.4 12.8 -2.4  17.0 4.9 62.9 23.7 5.1 172.2 

 

 

Figure 19. Maps of the difference in elevations for the est. Jun-2017 (ĉ=0.08), Oct-2017 and Aug-2012 

DEMs from the snow-free areas in the Jun-2017 DEM.  
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Table 9. Errors in snow-depth estimation for 22-Feb-2017 based on the comparison of snow-probed 

measurements and DEM-derived snow depths. The errors have been grouped into active (i.e., on the 

rock glacier) and stable terrain. The est. Feb 2017 DEMs where ĉ=0.12 obtained from the expected scale 

factor on 22-Feb-2017, ĉ=0.13 from the optimization of the in-situ snow depth measurements, and ĉ=0.14 

from the manually mapped displacements. The Oct-2017 and Aug-2017 were untransformed DEMs. 

The median and mean error are reported as measures of bias.  

22-Feb-2017 Snow depth error (cm)    

DEM 

IQR Median RMSE Mean Median 

RAE % 

Median 

depth (cm) 

Overall       

est. Feb-2017 (ĉ=0.12) 17.5 3.3 55.0 15.5 7.1 152.5 

est. Feb-2017 (ĉ=0.13) 17.6 3.2 55.0 15.7  7.5 152.4 

est. Feb-2017 (ĉ=0.14) 18.3 3.3 55.1 15.8  7.2 151.8 

Oct-2017 23.1 3.7 57.0 14.2  10.1 152.0 

Aug-2012 58.7 8.1 80.7 23.3 26.7 144.0 

Active       

est. Feb-2017 (ĉ=0.12) 21.4 0.8 44.0 10.8 9.1 149.7 

est. Feb-2017 (ĉ=0.13) 22.7 1.8 44.0 11.0  8.2 149.4 

est. Feb-2017 (ĉ=0.14) 25.5 1.7 44.1 11.2  8.2 148.2 

Oct-2017 32.0 -0.8 47.1 9.0  13.1 146.6 

Aug-2012 80.4 20.4 80.5 22.1 35.8 141.0 

Stable       

est. Feb-2017 (ĉ=0.12) 9.2 5.5 78.3 29.1 5.4 159.6 

est. Feb-2017 (ĉ=0.13) 9.1 5.4 78.4 29.1  5.4 159.6 

est. Feb-2017 (ĉ=0.14) 8.9 5.4 78.5 29.1  5.4 159.6 

Oct-2017 9.6 5.6 78.7 29.0  4.9 159.1 

Aug-2012 9.6 6.7 81.5 26.6 5.3 160.3 

 

For the February data, the lower IQRs and median RAEs demonstrate that the estimated 

elevation models performed better at estimating snow depths compared to the untransformed 

DEMs (Table 9). Like the June results, the spread of the snow depth errors was larger in active 

terrain (all IQRs >22.7 cm) than in stable terrain (all IQRs <9.6 cm).  
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Figure 20. Box plots of the error between snow-probed measured and the DEM-derived snow depths 

for 2-Jun-2017 (a) and 22-Feb-2017 (b). The snow depth error has been grouped by active (i.e., on the 

rock glacier) and stable terrain. Est. Jun-2017 DEMs where ĉ=0.07 was obtained from the expected scale 

factor on 2-Jun-2017, and ĉ=0.08 was obtained from optimization of the elevation and in-situ snow-depth 

measurements. The est. Feb 2017 DEMs where ĉ=0.12 obtained from the expected scale factor on 22-Feb-

2017, ĉ=0.13 from the optimization of the in-situ snow depth measurements, and ĉ=0.14 from the 

manually mapped displacements. The Oct-2017 and Aug-2017 were untransformed DEMs. 

 

 

Figure 21. Snow depth maps derived from the est. Jun-2017 DEM (ĉ=0.08) (a) and the Oct-2017 DEM (b) 

for 2-Jun-2017, as well as a map of the difference in snow depth estimated by these DEMs (c). Positive 

values in the difference map indicate areas where the est. Jun-2017 DEM derived snow depths were 

deeper than the Oct-2017 DEM derived snow depths. 
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Figure 22. Snow depth maps derived from the est. Feb-2017 DEM (ĉ=0.13) (a) and the Oct-2017 DEM (b) 

for 22-Feb-2017, as well as a map of the difference in snow depth estimated by these DEMs (c). Positive 

values in the difference map indicate areas where the est. Feb-2017 DEM derived snow depths were 

deeper than the Oct-2017 DEM derived snow depths.  

By qualitatively examining the snow depth maps, it appears at the scale of meters that the 

general patterns were similar between the est. DEMs and the Oct-2017 DEM derived snow 

depths (Figure 21ab and Figure 22ab). However, by looking at the sub-meter scale (Figure 21c 

and Figure 22c), the pattern of snow depth varied substantially in the area on the rock glacier, 

particularly at the rock glacier front, and where compression ridges are present. 

 

5.4 Discussion 
5.4.1 Performance of the deformation model 
The ability to improve the estimate of the sub-snow topography and to reduce errors in the 

resulting snow depths weighed heavily on the ability of the surface deformation model to 

correctly represent the spatial pattern of the rock glacier movement. Our model-based on non-

rigid image registration using B-splines to model surface deformations appeared to perform 

well throughout most of the scene. The model displacement magnitudes and directions of the 

rock glacier movement and stable areas agreed with our knowledge of the scene. The GNSS-

assessed accuracy of the est. Jun-2017 DEMs were most similar to the snow-free areas of the 

Jun-2017 snow-covered DEM, and the elevation accuracy was nearly 50% better than the Oct-

2017 DEM. Additionally, the overall pattern of the displacements on the rock glacier matched 

well to the patterns obtained using the IMCORR image matching algorithm in a study by 

Bodin et al. (2018). However, there were some areas where it was clear where the deformation 

model did not perform well (Figure 15). 

The rock glacier front was one of the most difficult areas for the registration algorithm to 

perform. The movement of rock debris on the rock glacier front was more dynamic than the 

rest of the rock glacier body due to the steep slope. Here, the main mass-wasting processes 

were rock-falls and small debris slides. This dynamic nature of the rock glacier front, or any 

area on the rock glacier where more rapid mass wasting processes occur, can make it more 

difficult determine pixel correspondences. Alternatively, if features are identified on the rock 

glacier front, such as large boulders, we have to be cautious to map these correspondences, as 
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it may result in modelling displacements that are unrelated to the overall rock glacier creep 

movement. It is likely that the errors in the deformation model related to other mass-wasting 

processes can be reduced by performing non-rigid registration using DEMs acquired in the 

snow-free period directly before and after the snow-cover season. However, deformations 

related to seasonal erosion (Bernard et al., 2017) and frost-heaving (Nolan et al., 2015) would 

still be difficult to spatially model since they occur locally beneath the snow-cover. 

The steep rock face of a stable outcrop was also an area where the deformation model did not 

perform well. It is likely that the errors in vertical displacement for the steep rock face were 

due to vertical disagreements between the LiDAR Aug-2012 and SFM-MVS Oct-2017 derived 

DEMs in this stable area. The vertical accuracy of DEMs derived from both airborne LiDAR 

and SFM-MVS data are known to deteriorate on steeper terrain (Hodgson and Bresnahan, 

2004; Tonkin et al., 2014). To overcome this issue, it may be necessary to align the stable areas 

of these DEMs before performing registration on the entire scene. In general, more accurate 

SFM-MVS DEMs can be obtained by using lower UAV flying heights (Smith and Vericat, 2015; 

Goetz et al., 2018). Broad systematic errors in SFM-MVS DEMs can be mitigated using well-

distributed high-quality GNSS measured ground control (Tonkin and Midgley, 2016; James et 

al., 2017a; James and Robson, 2014), and by including images taken at oblique angles to the 

ground surface in the UAV imagery collection (James and Robson, 2014).  

 

5.4.2 Finding the optimal the scale factor 
The proposed methods for finding the optimal scale factor (i.e., manually mapping 

displacements, using probed snow depths, or using snow-free areas) were shown to produce 

estimates of the sub-snow topography that were more accurate than using the acquired snow-

free DEM. During spring melt conditions containing snow-free areas, finding an optimal c was 

rather straightforward, and required no additional data collection. In contrast, finding the 

scale factor during the times of complete snow cover may require additional data.  

Some winter scenes may have exposed debris that can be utilized to determine c, as 

demonstrated in this study. Yet, there will be occasions when the scene is completely snow 

covered. In this case, we illustrated how snow probed depths can be used to find an optimal 

c. If the DEMs are derived from UAV or terrestrial imagery (i.e., SFM-MVS 3D reconstruction), 

the required depths for optimization can be measured after image acquisition during the 

collection of ground control points. DEMs derived from SFM-MVS methods generally require 

the use of a network of GNSS surveyed ground control for accurate DEM construction (Tonkin 

and Midgley, 2016; James et al., 2017b). However, collecting snow probed depths can be 

challenging and dangerous depending on the given snow conditions and terrain complexity.   

 

Although it was not initially proposed, we found that the expected scale factor determined as 

the proportional time before October 5, 2017 also produced estimated DEMs that reduced 

errors in the DEM representing the sub-snow surface and reduced the corresponding snow 

depth errors compared the Oct-2017 DEM. That is, given the rate of permafrost creep 

movement is rather constant, a suitable scaling factor can also be determined based on the date 
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of the snow-covered scenes alone (as illustrated in Figure 17) for occasions when the scene is 

completely snow covered. 

The general agreement of the snow-free based and snow-depth based optimization of the scale 

factors illustrates a promising potential of manual snow depth probing, in combination with 

an accurate surface deformation model, to monitor interannual variations of permafrost creep 

during snow-covered periods. Since the scale factor can be expressed as the displacement rate 

relative to the time of one of the snow-free DEMs, seasonal variation may be observed by 

comparing the determined scale factors from snow probe surveys taken from a range of dates 

during the snow-covered period. 

 

5.4.3 Snow depth errors 
The reduction in snow depth errors related to using the estimated sub-snow surface DEM 

compared to the available snow-free DEM illustrates that surface deformation processes, such 

as permafrost creep, can lead to errors in high-resolution snow depths determined from 

differencing of DEMs. It also illustrates that kinematic models of the surface deformation can 

be used account for the permafrost creep related changes in topography between snow-

covered and snow-free DEM acquisition dates to reduce errors in snow depth estimation. 

In previous studies, the observed accuracies of snow depth estimated from high-resolution 

DEMs measured as the RMSE varied from of 7 cm to 30 cm (Nolan et al., 2015; Vander Jagt et 

al., 2015; Bühler et al., 2016; Harder et al., 2016; Michele et al., 2016). The overall accuracy of 

the est. Feb-2017 DEM snow depths (55 cm) and the est. Jun-2017 DEM snow depths were just 

outside of the range (47 cm). Outliers influenced these comparatively high RMSE values, 

ranging from 50 cm to 300 cm (Figure 20), of the snow depth errors based on snow probe 

measurements. Since the majority of these outliers were overestimating the snow depths, we 

believe they may have been caused by occasions where the snow probe failed to penetrate the 

ground. To account for outliers in the survey data, the IQR was used as an alternative to the 

RMSE as a measure of the spread of the error.  

Although the spread of error between the stable and active terrain in snow-free areas of the 

Jun-2017 DEMs were similar (min. IQR difference of 3.5 cm), the snow depth errors were lower 

on stable terrain than active terrain (6.8 cm). This dissimilarity in snow depth errors was also 

found with the Feb-2017 derived snow depths (13.6 cm).  Given the surface of the stable terrain 

is not as rough as the active terrain, we believe this dissimilarity in snow depth errors may be 

due the challenges of obtaining accurate snow probe measurements in rock-debris filled 

terrain. That is, due to the higher variability in the surface topography, the accuracy of the 

snow probe measurements is more sensitive to GNSS-related location errors, and errors in 

reading of the snow depth caused by the snow probe penetration not being perpendicular to 

the ground. An improved GNSS surveyed snow depth sampling scheme could be applied in 

future works.  For example, Harder et al (2016) used the average snow depth measurement 

around a given location (i.e., within a 40 cm x 40 cm square) to account for snow depth reading 

errors related to the terrain’s surface roughness when validating snow depths derived from 

high-resolution DEMs. 
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5.5 Conclusion 
Errors in high-resolution snow depths derived from DEMs in mountain areas can be reduced 

by accounting for slope deformation, in this study by permafrost creep. This error reduction 

comes from being able to accurately model terrain surface deformations related to permafrost 

creep using non-rigid image registration. Multiple methods, which account for variable 

surface displacements over time, can be used to find a scaling factor to transform the 

displacement field for estimating a DEM representing the terrain surface beneath snow cover. 

In this study, they all resulted in estimated DEMs that provided an improved representation 

of the sub-snow topography relative to the original snow-free DEM. Surprisingly, a scale factor 

simply estimated based on the time before the snow-free scene resulted in an improvement of 

the estimate sub-snow topography similar to the optimization techniques.  

Although the free-form deformation model based on B-splines for non-rigid image registration 

was performed for modelling only the movement of permafrost creep, we expect it could also 

be used to improve surface deformation modelling of other Earth surface processes such as 

landslide creep or glacial flow. Additionally, non-rigid image registration is not limited to 

DEM data, and can also be applied to optical remote sensing imagery to obtain displacement 

fields of the horizontal movement of Earth surface processes.  

 

5.6 Acknowledgements 
We would like to thank the Parc national des Ecrins and the Joseph Fourier Alpine Research 

Station (SAFJ) for their support, and everyone else who assisted us in the collection of this 

data. Also, thanks to the constructive comments provided by the anonymous referees. The 

Natural Sciences and Engineering Research Council (NSERC) of Canada through an 

Alexander Graham Bell Graduate Scholarship awarded to J. Goetz and funding from the Carl 

Zeiss Foundation awarded to A. Brenning have supported this research.  

  



 

66 

 

Chapter 6 

 General discussion and conclusions 
The goal of this thesis was to enhance the understanding of the measurement uncertainties in 

SFM-MVS snow depth mapping with UAV surveying. To reach this goal, this thesis focused 

on developing methods for quantifying, characterizing and correcting errors in SFM-MVS 

elevation models and snow depths for alpine environments. In this section the importance of 

this work related to the research questions outlined in Section 1.2 is discussed. Additionally, 

how the methods, results and findings in this thesis relate to general topographic mapping 

and change detection analysis with SFM-MVS elevation models are discussed. 

 

6.1 Uncertainties in SFM-MVS DEMs 
Most research on SFM-MVS applied to snow depth mapping, and geosciences in general, has 

focused on validating the performance of the SFM-MVS elevation models by comparison to 

more traditional topographic surveying methods such as lidar, and high-accuracy and 

precision differential GNSS surveys (Westoby et al., 2012; Carrivick et al., 2016). SFM-MVS 

methods have been tested for a wide range of geoscientific mapping applications; however, 

no standards for robustly validating the quality of the SFM-MVS elevation models are 

generally available (Smith et al., 2015). Also, many authors use different terminology to define 

SFM-MVS elevation model errors, which can make comparing results from one study to 

another difficult. To help resolve this issue, definitions for describing the spatial pattern of 

errors in DEMs depending on the available validation data were presented in this thesis. 

In addition to describing errors, visualizing the errors is essential to support the quality of the 

SFM-MVS DEMs (James et al., 2017a; Goetz et al., 2018). For example, bubble plots illustrating 

the magnitude of errors determined from a well distributed set of check points are important 

to reveal if any major systematic errors are present in the DEM. Clusters of relatively large 

errors can indicate problems in the quality of the SFM-MVS reconstruction (James and Robson, 

2014; Javernick et al., 2014; Magri and Toldo, 2017). Additionally, as shown in this thesis, 

repeated measurements can help illustrate how uncertainty can spatially vary and how it 

depends on the survey design. 

As illustrated in this thesis, quantifying the spatial distribution of DEM precision from 

repeated surveys can be used to express the uncertainty related to random variations in SFM-

MVS derived elevations. The major advantage of the repeated surveying methods for 

estimating precision is that they communicate one of the main concerns of topographic 

surveyors, which is knowing the actual variation in topographic mapping from one survey to 

the next (Lane et al., 2003; Wheaton et al., 2010; Passalacqua et al., 2015). 
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There are other methods for producing spatially varying estimates of precision for SFM 

models. For example, measuring the variation in the SFM model parameters like the 3D 

locations of the tie-points can provide a measure of precision. This method can also be 

extended to consider the variation in the tie-point locations related to georeferencing errors by 

performing a Monte Carlo simulation of the bundle adjustment using a distribution of GCP 

errors (James et al., 2017b). Precision can also be estimated by measuring the local roughness 

of each point in the dense point cloud (Lague et al., 2013). Both these methods produce 

precision estimates by quantifying the consistency of estimated point locations internally 

based on a single dataset. This contrasts with the methods used in this thesis, which estimates 

precision by measuring the actual variation in elevation values using repeat observations 

obtained from multiple UAV surveys. 

Additionally, precision estimates based solely on the SFM model are limited to the tie points 

in the sparse point cloud. That is, precision is not estimated for the corresponding dense point 

cloud that is typically used to produce the DEM. Therefore, for detailed precision analysis, 

such as required for topographic change detection, interpolation of precision across the 

elevation model may be required (James et al., 2017b). The approach proposed in this thesis 

using repeated-surveys can calculate the precision for each grid cell without the need of 

interpolation. However, if only the general pattern of uncertainty is required, or the study 

areas is too large to perform repeated flights, the internal SFM model- and surface roughness-

based precision estimates are good alternative approaches. 

Although in-situ field measurements for measuring bias and repeated-survey based estimates 

of precision are crucial for assuring the quality of SFM-MVS DEMs from UAV surveys (Smith 

et al., 2015; James et al., 2017a; Goetz et al., 2018), it can be challenging to always obtain 

validation data depending on the field site size and complexity. Performing repeated flights 

and collection GNSS surveyed validation data can be time consuming and thus difficult to 

perform for large study areas. Therefore, at the very least, it is recommended to perform a 

detailed uncertainty analysis or a pilot test of the UAV and SFM-MVS survey design for a 

small segment of a study area. By doing so, a better picture can be drawn of how the particular 

camera sensor, distribution of ground control, environmental conditions, UAV survey design 

and SFM-MVS software will affect DEM uncertainty (Smith et al., 2015; Benassi et al., 2017; 

James et al., 2017a; Goetz et al., 2018; Hendrickx et al., 2019). Generally in sciences pilot studies 

have a key role in making certain that applied surveying methods are suitable for investigating 

given research questions (Lancaster et al., 2004). 

Some of the most widely used software for performing SFM-MVS reconstruction, including 

Agisoft PhotoScan and Pix4D provide black-box reconstruction solutions (Carrivick et al., 

2016; Hendrickx et al., 2019). As a result, internally estimating uncertainties can be challenging. 

James et al. (2017b) provided a customized solution based on Monte Carlo simulations of 

errors. However, this is currently only a solution that can be applied when using PhotoScan. 

Therefore, one of the biggest advantages of repeated-survey based precision estimating is that 

it is software independent. This means that regardless of the SFM-MVS software used for 

elevation modelling, a measuring of the spatial variation of uncertainties can be produced. As 

a result, determining repeated-survey based precision estimates are highly suitable for 
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benchmarking the 3D reconstruction performance of different SFM-MVS methods and 

software. 

Furthermore, the repeated UAV image collection surveys performed on February 22nd, June 

1st, and October 5th, 2017 are therefore a unique dataset for testing methods for assessing 

uncertainties in the SFM-MVS DEMs. Accessible datasets are needed for benchmarking SFM-

MVS reconstruction methods for geoscience applications (Smith et al., 2015). The June and 

October UAV surveys and in-situ field measurements have therefore been published on an 

open-access data repository (Goetz et al., 2019). It is highly suggested that this data is used for 

helping assess the limitations of different SFM-MVS reconstruction software solutions. 

 

6.1.1 Characterizing SFM-MVS DEM error 
Knowing where and what is influencing the SFM-MVS DEM uncertainty can be used to 

improve future UAV surveys, or for simply understanding the limitations of the SFM-MVS 

method. In this thesis, regression modelling was applied to determine UAV survey 

characteristics (e.g., image overlap, camera height and GCP distribution) and field site 

conditions (e.g., shadows and hillslope angle) that effect the spatial variation in uncertainty of 

the SFM-MVS DEMs. This work was the first study performed that comprehensively 

investigated the effect of these factors on precision using a multiple variable approach, and it 

was also the first study to explore the precision of applying SFM-MVS methods for obtaining 

a DEM of a snow-covered surface. 

No two SFM-MVS DEMs derived from UAV surveying will be identical. Changing 

environmental factors such as weather (e.g., variation in wind and lighting conditions) and 

technical limitations like the precision of the UAV navigation system make collecting identical 

image networks practically impossible in the outdoor environment. This issue is due to SFM 

procedures being highly sensitive to the set of tie points and the bundle adjustment for fine 

tuning the estimation of intrinsic and extrinsic camera parameters (James and Robson, 2012; 

Harwin et al., 2015). While SIFT’s feature matching is robust to variation in feature appearance, 

substantial appearance changes can make it difficult to determine feature correspondences 

(Snavely et al., 2008). Therefore, small changes in the appearance and viewing angle of images 

from one survey to another can result in different tie points, which results in variations of the 

elevation surface between DEMs from repeated UAV surveys. 

Random procedures in the SFM method, like filtering erroneous feature correspondences 

using RANSAC, can also result in different tie points (Dickscheid et al., 2008). Hendrickx et al. 

(2019) assessed the variation in DEMs from repeated SFM-MVS processing of a rock glacier 

front using PhotoScan. While using identical images and pixel locations of marked GCPs they 

found that the reconstructed elevations varied substantially on steep slopes (standard 

deviation up to 10 cm) and at the edge of the reconstructed model where image overlap was 

low (standard deviation up to 3 m). Consequently, in addition to variability in image networks, 

some of the variation in elevations observed using repeated UAV surveys can also be 

attributed to the built-in random variability of the SFM procedure.  
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This mixing of contributions of random error to the precision estimate can pose a problem 

when trying to model the direct influence of UAV survey design on DEM uncertainty. In this 

thesis, to account for the random error from the SFM procedure, the mean image reprojection 

error was included as variable in the model of the DEM precision. The mean image 

reprojection error, which is a measure of the SFM quality, can be a proxy for areas within a 

reconstructed scene that may be more sensitive to uncertainties in the SFM procedure. 

In general, areas that typically have higher reconstruction uncertainty are also areas that are 

more sensitive to variation in the SFM procedure. This uncertainty can be expressed by 

reprojection errors. The quality of feature matching and the corresponding measure of 

reprojection error are influenced by image quality (e.g., blurry), image texture (e.g., repeated 

patterns or smooth surfaces) and feature movement (e.g. vegetation) (Westoby et al., 2012; 

Fonstad et al., 2013; Micheletti et al., 2015b). 

  

6.1.2 Uncertainties in SFM-MVS reconstruction of snow-covered surfaces 
Reconstructing fresh snow-covered surfaces is a major challenge for SFM-MVS snow depth 

mapping (Bühler et al., 2015; Harder et al., 2016; Cimoli et al., 2017; Fernandes et al., 2018). 

Smooth surfaces with little texture are in general difficult to reconstruct with SFM-MVS 

methods. Smooth surfaces can result in low key-point densities due to images lacking features 

for matching, which can result in large data gaps or noisy data in the reconstructed surface 

(Bühler et al., 2016a; Cimoli et al., 2017; Fernandes et al., 2018).  

Using a near infrared (NIR) band in images has been found to help mitigate errors caused 

smooth snow-covered surfaces such as fresh snow (Bühler et al., 2016a). Alternatively, simply 

waiting a day after fresh snow can substantially improve the quality of the reconstructed 

surfaces and the resulting accuracy of the snow depths (Gindraux et al., 2017; Fernandes et al., 

2018). By just waiting a day after fresh snowfall, subtle features in the snow cover (e.g. from 

snow drift) can appear that provide textures for good SFM-MVS performance (Fernandes et 

al., 2018). However, subtle features in the snow-cover topography are only useful under 

optimal lighting conditions (Bühler et al., 2016a)  

Mapping snow-cover topography with cloudy overcast lighting conditions has similar 

challenges to SFM-MVS reconstruction of fresh snow. Overcast can result in diffuse lighting 

conditions that reduce the appearance of subtle snow features that can be used for image 

textures. The surface texture is therefore more homogenous, which results in errors in the 

reconstructed surface that resembles those of a fresh (i.e. smooth) snow-cover (Harder et al., 

2016; Cimoli et al., 2017; Gindraux et al., 2017). 

In terms of favourable lighting conditions for reconstruction of snow-covered surfaces, 

sunlight and shadow are good (Bühler et al., 2016a). Subtle shading variations can give texture 

to a seemingly texture-less surface (Seitz et al., 2006). Deeps shadows, such as produced in 

steep slope areas with low sun elevation, can cause errors in the SFM-MVS snow depths 

(Bühler et al., 2016b). However, it was observed in this thesis, when other environmental 

factors such as slope angle and the image network are considered, the effect of shading 

contributed very little to the uncertainty in the SFM-MVS DEM. In this study there were large 
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areas covered by deep shadows. Therefore, this finding may indicate that the benefits of 

shadows to improve contrast of subtle features may outweigh the negative effect deep 

shadows have on the reconstruction of snow-covered area. 

Overall, like most optical remote sensing processing, the quality of the SFM-MVS modelling 

is highly dependent on the lighting conditions. 

 

6.2 Quantifying SFM-MVS snow depth uncertainties 
Accounting for uncertainty is essential for determining the suitability and describing the limits 

of the SFM-MVS measured snow depths. As observed in this this thesis, even within a short 

period (e.g., 15 minutes; Goetz et al., 2018), there will be variation in the SFM-MVS elevation 

models results from one survey to another. This measurement uncertainty is compounded by 

requiring two separate elevations models that each have their own uncertainties in addition 

to possible registration errors. However, uncertainties in the SFM-MVS models can be 

estimated using repeat UAV surveys. Essentially, the observed variation in the snow-covered 

and snow-free DEMs can be used to create an error propagation model of SFM-MVS snow 

depths as demonstrated in this thesis. 

Error propagation models for DEM differencing are commonly used in topographic change 

detection analysis to estimate areas where actual changes in DEM elevations are observed. 

They are used to remove undetectable measurements from an analysis, or to quantifying 

uncertainty by calculating a range of likely measured values (Anderson, 2019). In topographic 

change analysis, thresholding is a common method used to reduce positive biases in total 

erosion and deposition estimates (Wheaton et al., 2010; Lague et al., 2013; James et al., 2017b).  

Thresholding reduces biases by removing areas that are confidently believed to be stable – i.e. 

where no statistically significant geomorphic change is detected (Anderson, 2019).  

In snow depth mapping, we similarly want to avoid including areas that are snow-free (i.e. 

stable) from our snow depth calculations and reduce any biases in observed changes in snow 

distribution. However, thresholds can lead to wrong observations if applied to data consisting 

of systematic errors (Schaffrath et al., 2015). Due to biases in the SFM-MVS DEMs that can 

occur from survey design and from geomorphic changes between DEM acquisition dates, 

thresholds should not be applied for modelling changes in snow distribution from SFM-MVS 

data. Besides, since a co-registered orthomosaic from the UAV imagery can be easily obtained 

and used for delineating snow cover, there is no need to use thresholds to reduce biases in 

snow distribution changes.  

Instead, as demonstrated in this thesis, thresholding individual measurements (i.e. at each grid 

cell) can be used as a tool for visualizing potential sources of errors in the SFM-MVS snow 

depth map – for example caused by SFM-MVS related systematic error, or from geomorphic 

changes that have altered the snow-free topography in the time between DEM acquisition 

dates. 
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6.2.1 Spatially varying snow depth uncertainty 
Modelling the distribution of uncertainties across the surveyed area is important for validating 

the suitability and determining the limitations of the snow depth data for applications like 

snowpack modelling (Hedrick et al., 2018). As illustrated in this thesis, many factors can 

influence uncertainties in the spatial distribution of the SFM-MVS DEM errors which are 

propagated into the computed snow depths. These factors including UAV survey design, 

terrain complexity, the presence of vegetation, geomorphic changes in the DEM over time and 

co-registration errors, can occur in highly heterogeneous spatial patterns, which is a strong 

reason why a spatially variable propagation model should be applied.  

This thesis presented a new method for spatial modelling error propagation in the SFM-MVS 

snow depths at the grid cell level. By utilizing the repeated DEM observations, a straight 

forward approach to quantifying the uncertainty in snow depths could be applied based on 

the Student’s t distribution. Additionally, it was illustrated how snow depth uncertainty can 

be expressed by determining the spatially varying error bounds for a given confidence level. 

This approach has the advantage of being able to communicate to users where and what 

measurement levels of snow depths can be confidently detected. This contrasts with 

traditional global or spatially uniform estimates of snow depth uncertainty obtained from 

reference data that communicates only one uncertainty value for the entire area, which as seen 

in the results of this work and others does not represent the actual heterogeneous spatial 

nature of the SFM-MVS elevation model and DEM differencing errors (Tinkham et al., 2014; 

Cimoli et al., 2018; Adams et al., 2018; Buehler et al. 2017). 

 

6.2.2 Co-registration errors 
A major source of error and uncertainty in DEM differencing, and thus SFM-MVS snow 

depths, are co-registration errors (Nuth and Kääb, 2011; Nolan et al., 2015; Vander Jagt et al., 

2015). In this thesis, it was illustrated that with high-quality GNSS surveyed GCPs (e.g. RTK-

GNSS that are post-processed using a local base station), additional registration procedures 

like applying iterative closest point (ICP) algorithms may not always be required for obtaining 

high-accuracy (< 10 cm) snow depths. 

Co-registration of the SFM-MVS DEMs can be challenging, in particular for fresh snow and 

high snow accumulation periods due to a lack of snow-free (i.e. stable) areas for registration 

(Bühler et al., 2016b; Marti et al., 2016; Fernandes et al., 2018). The initial SFM reconstruction 

is generally without scale, or location, and thus ground control is necessary for transforming 

the reconstruction into real-world coordinates. The registration error can therefore be 

estimated by comparing the mean error of the snow-on and snow-off DEMs from either an 

individual set of control points or the GCPs. This comparison provides an estimate of the mean 

distance of the individual DEMs from the datum, which can be used to approximate the co-

registration error. 

In general, the co-registration error of the SFM-MVS DEMs is controlled by the precision, 

accuracy and distribution of the surveyed locations of the ground control (James et al., 2017b; 

Goetz et al., 2018). Therefore, if necessary, one could include the overall estimate of the vertical 

accuracy of the ground control as another uncertainty term in the error propagation model. 
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However, in the case studies in this thesis, the co-registration errors, which were measured as 

the mean error from the distance from the datum (i.e. GNSS surveyed check points), were 

below the 1 cm measurement limit of the snow depth pole (- 8 mm for February 22nd and + 6 

mm for June 1st). Consequently, if high quality ground control is used for SFM processing, it 

is likely that the co-registration errors have a negligible impact on SFM-MVS snow depth 

errors.  

However, in the case of combining UAV and satellite-based DEMs, co-registration errors will 

likely become a larger component of the uncertainty in measured snow depths. Artificial 

ground control may be required for registering satellite imagery due to a lack of stable areas 

in the snow-covered area for obtaining high accuracy snow depths in complex terrain (Marti 

et al., 2016). If stable areas are present between DEMs, affine registration technique can be 

applied to reduce co-registration errors (Nuth and Kääb, 2011). 

 

6.2.3 SFM-MVS DEM spatial resolution 
Depending on terrain complexity, the spatial resolution of the snow-on and snow-off DEMs 

can affect the accuracy of the SFM-MVS snow depths. In this thesis, it was found for an 

example of complex terrain in an alpine environment that the accuracy of the snow depths 

was mainly controlled by the spatial resolution of the snow-off DEM. Additionally, it was 

observed that in general you can expect a 5 cm increase in the RMSE of snow depth for every 

meter increase in spatial resolution. This result contrasts findings of others who found little 

variation in SFM-MVS snow depth accuracy for spatial resolutions less than 2 m (Marti et al., 

2016; Michele et al., 2016). These studies were conducted in relatively more gentle alpine 

terrain than the case study in this thesis. 

The effects of the spatial resolution on the accuracy of DEM differencing is not only important 

for snow depth detection, but also in topographic change detection. It has been observed in 

high alpine environments that error in DEM differencing increases with lower spatial 

resolution (i.e. lower point densities), higher surface roughness (e.g., coarse-rocky debris 

material), and steeper slopes (Liu et al., 2007; Guo et al., 2010; Sailer et al., 2014). That is, 

uncertainties in DEM differencing increase as terrain complexity increases, which was 

observed in this study as well. 

In general, since small scale variability in snowpack is correlated to local variability in 

topography (López-Moreno et al., 2015; Cimoli et al., 2017), it is recommended that higher 

snow-off DEM resolutions are used for complex terrain to reduce snow depth errors from 

DEM differencing. Higher spatial resolutions can be obtained by increasing the point density 

of the SFM-MVS reconstruction by for example flying UAV surveys closer to the ground, and 

by waiting for optimal snow texture and lighting conditions.  

 

6.2.4 Errors from vegetation 
Although this thesis focused on alpine areas with very low vegetation, the presence of 

vegetation can have a strong influence on the SFM-MVS based snow depth values (Bühler et 

al., 2015; Nolan et al., 2015; Harder et al., 2016; Cimoli et al., 2017; Fernandes et al., 2018). 
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Vegetation can lead to underestimating snow depths because the snow-free elevations are 

overestimated (Bühler et al., 2015).  

The exact influence of vegetation on errors in SFM-MVS snow depth has yet to be examined 

in detail. Perhaps by modelling the bias in snow depth errors from vegetation corrections 

could be applied (Nolan et al., 2015). Tinkham et al. (2014) investigated the bias in lidar snow 

depths related to different vegetation cover using random forest regression based on field 

measurements; a similar approach could be done to determine SFM-MVS snow depth biases 

related to vegetation. 

Lidar remains to be the best solution for high-resolution surveying of the snow-free 

topography beneath vegetation cover (Wallace et al., 2016). Combining lidar snow-free DEMs 

with SFM-MVS snow-covered DEMs is probably the most convenient approach to reducing 

errors from vegetation (Bühler et al., 2015; Cimoli et al., 2017). Due to these issues with snow 

depth mapping in vegetated areas, SFM-MVS methods seem to be most appropriate for high-

alpine areas (i.e. above the tree-line) and periglacial landscapes that have very shallow or no 

vegetation. 

 

6.3 Correcting SFM-MVS snow depths in active alpine terrain  
One of the main challenges in SFM-MVS snow depth mapping in alpine areas is accounting 

for uncertainties in snow depths related to sub-snow surface elevation changes occurring 

between UAV survey acquisition dates (Nolan et al., 2015; Bühler et al., 2016a). In this thesis, 

it was found that depending on the time between DEM acquisition, slope deformation 

processes such as permafrost creep, can considerably contribute to uncertainties in high 

spatial-resolution snow depth maps in alpine areas. Additionally, depending on the terrain 

complexity and deformation processes, the spatial pattern of snow depth uncertainties can be 

highly heterogeneous. To account for this uncertainty this thesis illustrated that modelling and 

applying appropriate scaling of sub-snow surface deformations can substantially reduce snow 

depth errors. These snow depth corrections can help provide more reliable snow distribution 

data. 

Correcting snow depths from DEM differencing (e.g., from SFM-MVS and lidar) is also 

important for accurate estimates of snow accumulation on glaciers for winter mass balance 

and ice thickness distribution (Abermann et al., 2010; Sold et al., 2013; Helfricht et al., 2014; 

Schöber et al., 2014; Brun et al., 2018). Uncertainties in estimating glacier snow accumulation 

can occur due to firn compaction and ice flow occurring between the DEM surveys  (Sold et 

al., 2013; Schöber et al., 2014). Sold et al. (2013) provided a similar method for correcting snow 

depths as presented in this thesis, which was applied for glacier snow accumulation. However, 

their approach estimates and scales only the vertical displacement of the sub-snow surface (i.e. 

the ice surface) caused by glacier flow. The approach in this thesis applied a correction to the 

snow depths by modelling both horizontal and vertical displacements (i.e. 3D displacements) 

of the sub-snow surface.  

Accounting for the horizontal and vertical displacement of the deforming snow-free surface is 

important for correcting snow depths from sub-snow surface flow movement.  For example, 
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only modelling of the vertical displacements can result in implausible geomorphic changes of 

the estimated surfaces that may introduce snow depth errors (Figure 23).  In contrast, a scaled 

3D displacement model like the one presented in this thesis can produce a more realistic 

representation of elevation changes over time that occur due to downslope movements of 

surface topography.  

 

Figure 23. Profile of the rock glacier front illustrating transformed snow-free surfaces represented by 

(a.) scaling a model of only the vertical of displacements over time and (b.) by scaling a model of the 3D 

displacements over time. The transition colours from red to blue represent the modelled change in the 

snow-free rock glacier surface from 2012 (red) to 2017 (blue) obtained by scaling the modelled 

displacements using factors from 0 to 1 with a step of 0.1. The dotted line represents the snow-cover 

surface on 22-Feb-2017. The first plot (a.) shows that scaling only the vertical displacements does not 

capture the transition in elevations over time due to the movement of the rock glacier. The second plot 

(b.) shows how scaling modelled 3D displacements more realistically represents the elevation changes 

over time. 
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6.3.1 In-situ measurements to constrain snow depth corrections 
When applying deformation models to correct for snow depth or ice thickness, in-situ 

measurements are important for constraining the model (Sold et al. 2013; Brun et al., 2018; 

Rabatel et al., 2018). In this thesis, it was shown that the use of in-situ snow depth 

measurements from probing was crucial for constraining the transformation of the snow-free 

DEMs to correct for errors due to surface deformations of the sub-snow topography. 

Otherwise, the deforming rate can be approximated based on average movement rates; 

however this approach may not account for temporal variations in the movement rates.  

Similar to the findings in this thesis, Sold et al (2013) found that the error in snow depths over 

a glacier were substantially reduced by correcting for sub-snow surface deformations 

occurring between the DEM acquisitions. Additionally, they found that the greatest reduction 

in depth errors came from calibrating the correction using a factor that was optimized using 

in-situ snow depths from probing. Just as found in this thesis, this better result was due to the 

ability to account for interannual and seasonal variations in the sub-snow surface (i.e. glacier 

surface) deformation. 

In addition to in-situ measurements, the work in thesis also demonstrated a novel approach 

to constrain deformation models using snow-free areas in the DEM where ground 

deformation is occurring. For spring snowpack conditions, using snow-free areas to calibrate 

the deformation model means having to spend less time in the field snow probing. 

 

6.4 Future work 
6.4.1 Benchmarking SFM-MVS algorithms 
The DEMs for computing snow depths in this thesis were derived from only one SFM-MVS 

3D reconstruction software: Agisoft PhotoScan. However, there are many other commercial 

and open-source software available that may result in different reconstructions (Niederheiser 

et al., 2016). Therefore, future work remains in benchmarking SFM and MVS algorithms for 

reconstructing snow-covered surfaces. For example, different MVS algorithms can be tested to 

deal with gaps in the point cloud data due to occlusions or lack of features (e.g. surface 

evolution techniques) (Tagliasacchi et al., 2011).  

In commercial SFM-MVS software such as PhotoScan and Pix4D it is difficult to control the 

reconstruction workflow; however, open-source software like MicMac provides a flexible 

environment to customize the SFM-MVS solution (Rupnik et al., 2017). 

Benchmarking can be challenging due to random sub-procedures in SFM that can influence 

the errors in the 3D reconstruction (Dickscheid et al., 2008). Therefore, repeated surveys, such 

as illustrated in this thesis, may provide suitable data for benchmarking because some of the 

random errors in individual SFM-MVS processing steps can be accounted for. This data is also 

not limited to SFM-MVS processing for snow depth, it is also relevant for elevation modelling 

in general. Furthermore, other factors should be considered. For example, if aim of the SFM-

MVS snow depth data is to assist in real-time snowpack modelling, similar to examples with 

lidar (Hedrick et al., 2018), the ability to reduce processing time and self-determine systematic 

errors remains important (Dickscheid et al., 2008).  
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In general, SFM-MVS performance varies from site to site, and the future of SFM-MVS 

mapping will likely focus on determining optimal workflows to obtain a high quality 3D 

reconstruction for a given application. 

 

6.4.2 Applying SFM-MVS snow depths for snow modelling 
Given the proven quality of SFM-MVS snow depth observations, and the ability of UAVs to 

help acquire frequent observations, SFM-MVS techniques are suitable for mapping snow 

distribution. They also may have the benefit of being less costly to operate than traditional 

airborne lidar systems (Buehler et al., 2016; Webb et al., 2018). 

Currently, few studies have used SFM-MVS snow depths for analysis of snow distribution 

(Harder et al., 2016; Fernandes et al., 2018). This is therefore a promising area for research 

growth. As demonstrated in this work, a major advantage of SFM-MVS snow depth mapping 

is the ability to quantify the spatial distribution of measurement uncertainties in a rather 

uncomplicated approach (e.g. repeat surveys). Therefore, for monitoring changes of snow 

depth over time, the methods presented in this thesis are recommended to be applied to ensure 

that reliable observations are being made.  

Snow depth observations are not enough to determine water content of a snowpack, 

information on the snowpack density is also required. Therefore, in addition to monitoring 

snow surface elevation changes, SFM-MVS snow depth data can be integrated into numerical 

snowpack models (e.g. Crocus, SNOWPACK and iSnobal) for modelling local hydrological 

conditions as done recently with lidar data (Painter et al, 2016; Revuelto et al., 2016; Hedrick 

et al, 2018). Constraining numerical snow models by updating snow depth distribution data 

has seen improvements in the accuracy of snow disappearance dates (Revuelto et al., 2016), 

snow melt patterns (Hedrick et al., 20818), and run-off (Brauchli et al., 2017) in alpine 

environments. Furthermore, a strong understanding of snow depth uncertainties is required 

since the performance of snowpack modelling is dependent on the uncertainties of their model 

variables (Revuelto et al. 2016; Hedrick et al., 2018). 

Therefore, combining distributed snow distribution models with high spatial-temporal snow 

depth data acquired from UAV imagery and SFM-MVS processing has potential to improve 

our prediction of snow pattern changes and snowpack evolution. High-resolution snow depth 

data also has the possibility to improve liquid water content estimation by fusing with ground 

penetrating radar data (Webb et al., 2018).  

 

6.5 Conclusions 
The goal of this thesis was to improve our understanding of the uncertainties in snow depth 

mapping using UAVs and SFM-MVS. To obtain this goal, novel methods for quantifying, 

characterizing and correcting errors were presented in this thesis. 

Although this thesis focused on snow depth mapping, the mapping of DEM uncertainty, 

determining spatially varying detection limits, and surface deformation modelling are 
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methods that may also be applied for improving Earth surface process and landform 

monitoring from UAV data and SFM-MVS 3D modelling.   

Here, a summary of the main conclusions of this thesis is presented. 

1. Due to the sensitivity of SFM-MVS reconstruction performance to SFM-MVS 

processing, UAV survey design and environmental factors, performing detailed 

analysis of the elevation model errors is essential for assuring the quality of any 

corresponding geoscientific analysis – including snow depth mapping. As presented 

in this thesis, uncertainty estimation from repeated surveys is a crucial tool for 

investigating sources of errors in SFM-MVS elevation models. Additionally, by 

quantifying the spatial distribution of SFM-MVS uncertainties, the effects of UAV 

survey design for a field site can be investigated, which help to improve survey design 

to reduce SFM-MVS errors for a given application.  

 

2. In this thesis, the image height, distribution of GCPs and image overlap were found to 

have the strongest influence on the uncertainty in DEMs derived from SFM-MVS 

reconstruction in ideal snow cover surface conditions (i.e., textured snow). These are 

factors that can be controlled by the survey design and can therefore be optimized to 

obtain a desired survey quality. Since fresh snow cover and overcast lighting 

conditions can also lead to errors in the elevation models due to poor SFM-MVS 

reconstruction of a low texture surface, considering the timing of the UAV surveying 

is also important for reducing model uncertainties. 

 

3. The uncertainties in SFM-MVS snow depths can be spatially highly heterogeneous. The 

main contributors to uncertainty are the quality of the SFM-MVS derived snow-free 

and snow-covered elevation models and the quality of co-registration. Mapping these 

uncertainties is important for communicating the quality of the computed snow 

depths. As presented and discussed in this thesis, spatially varying error propagation 

models, which can be expressed as detection limits, can be determined from repeated 

UAV surveys. Additionally, since random variations in error can result from the UAV 

survey design and random procedures in the SFM processing, this work illustrated that 

the Student’s t distribution can be applied to a set of repeated UAV observations to 

determine if the observed snow depths (i.e., difference in elevations) could occur due 

to chance alone. 

 

4. In complex alpine terrain (i.e., coarse material and steep), having a very fine resolution 

snow-off DEM can reduce errors in the computed snow depths. Due to the gentler 

topography, the spatial resolution of the snow-on DEM has a much smaller effect on 

snow depth accuracy. Interestingly, there was little variation in the snow depth 

accuracy in spatial resolutions finer than 5 m when a high-resolution (<10 cm) snow-

off DEM was used for computing depths. Also, it was generally observed that when 

the spatial resolution of the snow-on and snow-off DEMs were both coarsened, the 

RMSE measured by probing tends to increase 5 cm for every 1 m increase in resolution. 
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5. The methods for uncertainty analysis based on repeated UAV surveys presented in this 

thesis are independent from any SFM-MVS software. Consequently, this thesis has 

developed a framework in which comparing the performance of SFM-MVS methods 

can be standardized. Being able to adequately assess the performance of different SFM-

MVS elevation models can assist in determining best practices for SFM-MVS snow 

depth mapping. 

 

6. Changes in the ground surface between acquired snow-free and snow-covered DEMs 

can contribute considerably to errors in the computed snow depths. A novel approach 

based on kinematic surface deformation modelling to correct errors due to on-going 

creep was presented in this thesis. The key component of the corrections was ensuring 

that the modelled surface beneath the snow-cover was accurately scaled (i.e., 

transformed). Currently, the best approach for all snow cover conditions is to constrain 

the scaling of the deformation model using in-situ snow depths from probing. 

However, in sparse snow cover conditions, such as during the melt period, areas in the 

snow-on elevation model that are snow-free can also be useful for constraining the 

scaling. Both these methods can account for variations in deformation rates over time.  

Future work can focus on improving SFM-MVS methods for reconstructing various snow-

cover conditions, the application of SFM-MVS snow depth data for monitoring patterns of 

snow distribution change, and local modelling of snowpack characteristics. For example, SFM 

and MVS algorithms can be benchmarked using repeatedly surveyed UAV data to determine 

which are better at reducing model uncertainties. Error propagation models can be applied to 

ensure quality analysis of snow depth changes. Additionally, fusing SFM-MVS snow depth 

data with numerical models may lead to novel insights regarding local snowpack 

characteristics. 

Overall, implementing uncertainty analysis and correcting snow depth data is recommended 

not only to provide strong support for the quality of the SFM-MVS derived snow depths, but 

also to find areas where the SFM-MVS approach and UAV surveying can be improved. Given 

the potential stresses on water supply from a warmer climate, having quality snow depth 

distribution data is essential for assisting in future water resource management decisions.  
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Appendix 
 

Detailed UAV flight and SFM-MVS processing information 
 

Table 10. Summary of Agisoft PhotoScan processing settings 

Image Processing Settings in Agisoft Photoscan (version 1.4.2)  

Align photos 

Accuracy: High  

Key point limit: 40 000 

Tie point limit: 4 000 

Selected generic preselection, reference preselection, and adaptive camera model 

fitting 

 

Reference settings 

Coordinate system RGF93/Labert-93 + NGF-IGN69 height (EPSG::5698) 

Camera accuracy: 10 m 

Marker accuracy: 0.02 m 

 

Markers 

14-19 GCPs (RTK GNSS with positional accuracy ≤ 2 cm at 1σ) 

 

Sparse point cloud filtering (using the General Selection tool) 

Reconstruction uncertainty level: 10 

Reprojection error: 0.5 

Projection accuracy: 3.0 

 

Optimize camera alignment 

Selected Fit f, Fit cx, Fit cy, Fit k1, Fit k2, Fit b1, Fit b2, Fit p1, Fit p2 

 

Build dense point cloud 

Quality: High 

Depth filtering: Mild 
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Table 11. Summary of survey details for October 5, 2017 (13 GCPs) and PhotoSscan processing results 

Scene Time of 

acquisit

ion 

No. 

images 

Average 

flying 

height 

(m) 

Ground 

resolution 

(cm/pixel) 

Coverage 

area 

(km2) 

RMS 

reproj. 

error 

(pixels) 

Vertical 

error from 

GCPs (cm) 

Oct-1356 13:56 108 66.3 2.58 0.084 0.476 2.37 

Oct-1407 14:07 92 67.9 2.64 0.078 0.472 3.22 

Oct-1435 14:35 121 69.5 2.72 0.090 0.494 2.66 

Oct-1446 14:46 111 66.2 2.59 0.085 0.458 2.82 

Oct-1456 14:56 108 62.4 2.41 0.081 0.458 1.93 

Oct-1525 15:25 114 65.3 2.55 0.085 0.442 3.87 

Oct-1535 15:35 108 66.9 2.57 0.083 0.507 2.06 

 

 

Table 12. Summary of survey details for June 2, 2017 (19 GCPs) and PhotoSscan processing results 

Scene Time of 

acquisit

ion 

No. 

images 

Average 

flying 

height 

(m) 

Ground 

resolution 

(cm/pixel) 

Coverage 

area 

(km2) 

RMS 

reproj. 

error 

(pixels) 

Vertical 

error from 

GCPs (cm) 

Jun-1006 10:06 70 59.1 2.26 0.057 0.573 1.76 

Jun-1015 10:15 74 59.6 2.23 0.058 0.527 2.48 

Jun-1023 10:23 67 60.6 2.31 0.056 0.547 2.45 

Jun-1038 10:38 77 59.5 2.26 0.061 0.558 2.08 

Jun-1053 10:53 70 60.8 2.32 0.056 0.480 2.10 

Jun-1104 11:04 76 61.6 2.34 0.061 0.699 1.97 

 

Table 13. Summary of survey details for Feb 22, 2017 (15 GCPs) and PhotoSscan processing results 

Scene Time of 

acquisit

ion 

No. 

images 

Average 

flying 

height 

(m) 

Ground 

resolution 

(cm/pixel) 

Coverage 

area 

(km2) 

RMS 

reproj. 

error 

(pixels) 

Vertical 

error from 

GCPs (cm) 

Feb-1357 13:57 68 60.2 2.33 0.056 0.446 0.49 

Feb-1405 14:05 66 61.9 2.32 0.053 0.768 0.47 

Feb-1411 14:11 68 63.4 2.41 0.057 0.737 0.69 

Feb-1420 14:20 66 57.8 2.28 0.053 0.402 0.88 

Feb-1428 14:28 68 59.7 2.27 0.053 0.801 0.54 
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Table 14. Summary of UAV survey conditions 

February 22, 2017 conditions 

- Cloud free 

- Predominantly snow covered, some areas of exposed boulders and rock debris 

- Strong texture in the snow, some of the scene marked by ski-tracks 

- A couple of weeks since previous snowfall 

- Air temperature from -1 to 6 C. 

June 2, 2017 conditions 

- Partial snow cover 

- Rainfall in the previous week leading up to the survey (1 + 6 + 11.8 + 7.2 + 4 + 8.6 mm 

on June 31, 30, 29, 28, 27, 26, 24), avg. daily temperature between 5 and 15 C 

- Air temperature from 2 to 10 C 

- Suncups present on snow surface 

October 5, 2017 conditions 

- Mainly sunny, sometimes with partial cloud cover 

- Scene entirely snow free 

- Air temperature from 7 to 16 C 

- Little precipitation in the previous week (< 5 mm) 

   

 

Overview of digital elevation model registration settings 
 

Table 15. Summary of bUnwarpJ processing settings using ImageJ for image registration 

bUnwarpJ Plugin Processing Settings (version 2.6.8) – ImageJ (version 1.51u) 

Source image: mean DEM 5-Oct-2017 from SFM-MVS using imagery from a UAV survey 

Target image: resampled DEM 16-Aug 2012 from airborne lidar 

Registration mode: Accurate 

Advanced Options 

Initial Deformation: Fine 

Final Deformation: Super Fine 

Divergence Weight: 0.0 

Curl Weight: 0.0 

Landmark Weight: 1.0 

Image Weight: 1.0 

Consistency Weight: 10.0 

Stop Threshold: 0.01 
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