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Abstract 

Flooding is a natural hazard that affects millions of people throughout the world every 

year.  Hydrodynamic models are a key tool in delineating current and future flood hazard, and 

provide a key resource for decision makers to reduce flood risk. However, hydrodynamic 

models need data to drive them, with many parts of the world not having high-quality data at a 

high-resolution. These areas are considered data-sparse. Data-scarcity is partially characterised 

by a lack of high-resolution (<30m) topographic data, with this elevation data previously shown 

to be a key control on the propagation of a flood. Therefore, hydrodynamic models at the 

intermediate scale (270-1000m) are needed to estimate flood hazard given the lack of high-

resolution data, computational resources and a Monte Carlo approach to estimate uncertainties 

in predictions. This thesis presents three results chapters assessing the ability of an 

intermediate scale hydrodynamic model to estimate flooding in a large river delta, before going 

on to establish the effects of uncertain topographic information of flood predictions 

and connectivity between river channels and floodplains. In the first chapter, an intermediate 

scale hydrodynamic model of the Mekong Delta is built, with results showing that a model at 

this scale has a good level of skill and thus a similar approach could be used to estimate flooding 

in other data-sparse river deltas. However, it is shown that uncertainty in topography from the 

global digital elevation models (DEMs) had a large influence on flood predictions. This finding 

inspired the subsequent chapters. Chapter 2 characterised the spatial error structure of 

floodplains in two global DEMs, and used these relationships to simulate plausible versions of 

the DEM. By using DEM ensembles, probabilistic flood hazard maps could be produced, with 

these maps avoiding the spurious precision compared to flood maps that use a single 

deterministic DEM. Chapter 3 further explored the influence of DEMs by developing a novel 

method to quantify river-floodplain connectivity across scales and DEM products. 

Results demonstrated that the DEM product had more influence on river-floodplain connectivity 

than scale, with the quantification of river-floodplain connectivity shown to be a useful indicator 

of the appropriateness of a DEM to be used in a hydrodynamic model. This thesis has 

subsequently enhanced our understanding of the skill of hydrodynamic models at the 

intermediate scale to model flooding in large data-sparse river deltas, as well as improving our 

understanding of the impact uncertain topography has on flood predictions by promoting the 

treatment of topography as a probabilistic entity as opposed to a deterministic one as it 

currently is. 
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Chapter 1 Introduction 

 

1.1  Background 

Floods are a major natural hazard that cause widespread damage to land, property, the 

economy and humanity. Indeed, there does not seem to be a week that goes by without a 

report of a devastating flood in some part of the world. In the past two decades alone, 

UNISDR (2015)  estimated that flooding has affected 2.3 billion people, resulting in 

157,000 deaths. Deaths from flooding occur predominantly in lower-income countries, whilst 

economic damages are dominated by a small number of events in higher-income countries, 

with estimated flood damages in 2016 alone totaling $56 billion (MunichRE, 2016).  Flooding 

in the future is expected to increase in severity and frequency due to a warming climate 

(Hirabayashi et al., 2013, Kundzewicz et al., 2014, Arnell and Gosling, 2016, Arnell et al., 

2018, Dottori et al., 2018, Winsemius et al., 2015), with several studies already demonstrating 

that recent flood events have been exacerbated by climate change (Schaller et al., 2016, Pall et 

al., 2011). Moreover, the cumulative cost of frequent events (‘nuisance’ floods) may exceed 

the cost of extreme events which societies usually prepare for (Moftakhari et al., 

2017a)  Coupled with an increased severity and frequency of the hazard, there is an increase 

in exposure to flooding as world population increases and humans continue to build in 

more at-risk areas due to land pressures and marginalization (Douglas et al., 2008, Donner 

and Rodriguez, 2008). The ability to effectively predict flooding is crucial for planning and 

management to limit the risk from flooding both in the current day and in the future.  

Hydrodynamic models have proved to be the key tool in delineating current and future 

flood hazard, providing crucial information to help manage flood risk (Wing et al., 2018, 

Sampson et al., 2015, Dung et al., 2011, Apel et al., 2009, Bates and De Roo, 2000, Zanobetti et 

al., 1970, Hrodadka and Yen, 1986, Ward et al., 2013b). These hydrodynamic models 

are physically-based computational models that are based on the theory of fluid dynamics 
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and have been shown to effectively delineate flooding from coastal, fluvial and pluvial 

sources. To implement hydrodynamic models, information is needed on how much water is 

going into the catchment/river, how it is routed through the catchment and the topography 

of the floodplain for when water flows out of bank of the river. Even in this age where 

information is so readily available, especially with the proliferation of remote sensing, there 

is still a chronic lack of high-quality data to use within hydrodynamic models. High quality 

data is typically found in more developed countries which suffer more damages but less 

casualties than developing countries (MunichRE, 2016). Therefore, in a great deal of the 

world, lower quality globally available data are used in flood models. These areas can be 

considered to be data-sparse.   

 By their very nature, hydrodynamic models are an approximation of reality and even with 

the highest quality data will always be incorrect to some degree (Beven et al., 2011). The 

challenge in data-sparse areas is obtaining an acceptable level of flood prediction with 

the available data. To this end, intermediate scale models are often used in data-sparse areas 

owing to a lack of data to drive a finer resolution, more detailed model and a limitation in 

computational resources. For this thesis we define intermediate scale flood models as those 

with a resolution between 270m to 1km as set out in Table 1-1. Resolutions of 270 m to 1 km 

are chosen for an intermediate scale as the random vertical error of the most commonly used 

source of topography (Shuttle Radar Topography Mission; SRTM) has a random height error 

of approximately 6m (Rodriguez et al., 2006), resulting in a random height error of 

approximately 2 m for 270 m or 0.6 m at 1 km. These values are suitably appropriate for a 

flood model as the random error becomes smaller than  typical flood wave amplitudes (4-

6m) but retains a suitable level of detail that valley shapes and some floodplain topographic 

features such as relic channels and oxbows can be resolved (Wilson et al., 2007, Neal et al., 

2012a). For example, Wilson et al. (2007) justify a model resolution of 270 m as the random 

height error is less than the flood pulse of the Amazon (~10 m) and the vertical scale of the 

key controlling floodplain morphologic features (channels, levees, scroll bars of ~3-5 m). 

Indeed, hydrodynamic model resolution can substantially alter computational runtime, with 

Savage et al. (2016b) finding that halving the model resolution increases the computational 

runtime by an order of magnitude. Therefore, a balance needs to be struck for appropriate 
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complexity given the available computational resources and data and the application the 

hydrodynamic model results are intended for.  

Scale Domain 

Size 

Grid 

Size 

(m) 

Topographic Data Source Channel 

Representation 

Floodplain 

Features  

Example 

Studies 

Hyper Building <5 Terrestrial LiDAR; LiDAR; 

Airborne Photogrammetry 

2D; 3D Buildings; Rills Chen et al. 

(2012) 

Reach 1 – 30 LiDAR; Airborne 

Photogrammetry; 

TanDEM-X 

1D; 2D Roads; Levees; 

Ditches 

Neal et al. 

(2011) 

High Catchment 30 – 

270 

LiDAR; ASTER; MERIT; 

TanDEM-X; SRTM 

1D; 2D Channels; 

Levees; Scroll 

bars 

Wood et al. 

(2016) 

Intermediate Regional 270 – 

1000 

ASTER; MERIT; SRTM 1D; 2D Larger Channels 

and Levees 

Neal et al. 

(2012a) 

Coarse Global >1000 ASTER; MERIT; SRTM; 

GMTED2010 

1D Large 

Depressions 

Alfieri et 

al. (2014) 

ASTER = Advanced Spaceborne Thermal Emission and Refection Radiometer; GMTED2010 = Global Multi-Resolution Terrain 

Elevation Data 2010; LiDAR – Light Detection and Ranging, airborne unless stated otherwise; MERIT = Multi Error Removed 

Improved Terrain; SRTM = Shuttle Radar Topography Mission 

Data-sparsity is partly characterised by a lack of hyper scale (<30 m) topographic 

data. Topography is a key control on the propagation of a flood (Horritt and Bates, 2002). 

For a flood to occur, the river must connect to a floodplain. The ability of a DEM to 

accurately capture river-floodplain connectivity is therefore crucial to accurately predict 

flooding. Yet the ability of global DEMs to depict river-floodplain connectivity can be weak, 

with Trigg et al. (2012)  finding that SRTM omitted 96% of river-floodplain channels 

that were pivotal in the flood dynamics.    

Table 1-1 Definition of hydrodynamic model scale and associated resolution 
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Hydrodynamic models use topographic information from a gridded dataset of topographic 

heights called a digital elevation model (DEM).  Despite being almost 2 decades old, the 

SRTM (Shuttle Radar Topography Mission) DEM remains the most popular choice of 

topographic information for flood inundation models when high resolution LIDAR (Light 

Detection and Ranging) is unavailable. Nevertheless, SRTM is characterised by an estimated 

~6m vertical error (Rodriguez et al., 2006), with errors stemming from vegetation (Shortridge 

and Messina, 2011, Carabajal and Harding, 2006, Hofton et al., 2006), steep relief (Falorni et 

al., 2005), an inability to resolve features in urban areas (Gamba et al., 2002)  proximity to 

metallic objects (Becek, 2008), speckle noise (Rodriguez et al., 2006, Farr et al., 2007) and 

striping caused by instrument setup (Walker et al., 2007). Error removal has tended to focus 

on hydrological correction (Jarvis et al., 2008) and vegetation removal (Baugh et al., 2013, 

O'Loughlin et al., 2016b, Zhao et al., 2018).The recent release of the Multi-Error-Removed-

Improved-Terrain (MERIT) DEM (Yamazaki et al., 2017) saw the most comprehensive error 

removal from SRTM, with notable improvements over SRTM reported particularly in flat 

areas. Despite calls for a concerted effort to produce a more accurate free global DEM 

(Schumann et al., 2014), there is little sign that such a dataset will be produced soon. 

Therefore, a flood modeller has 3 choices to improve the topographic information in their 

model: 1) Obtain high-accuracy LIDAR data (expensive and/or unavailable); 2) Use an error 

reduced version of SRTM (e.g. MERIT) or manually edit the DEM (time-consuming); 3) 

Simulate plausible versions of a global DEM based on spatial error characteristics. This last 

idea is well-known in the field or geostatistics (Goovaerts, 1997, Holmes et al., 2000, 

Kydriakidis et al., 1999) but has only been applied in a single fluvial flood study (Wilson and 

Atkinson, 2005).   

 A number of intermediate scale hydrodynamic models (270 m-1 km) have been run across 

the world with examples from the Amazon (270 m) (Baugh et al., 2013, Wilson et al., 2007), 

Damador (270 m) (Sanyal et al., 2013), Ob (1 km) (Biancamaria et al., 2009), Oti (480-960 m) 

(Komi et al., 2017), Niger (905 m) (Neal et al., 2012a) and Zambezi (1 km) (Schumann et al., 

2013) rivers. An inherent problem with these models has been the poor quality of 

topographic information, with the models using Shuttle Radar Topography Mission (SRTM) 

Digital Elevation Model (DEM) data which has a vertical error of ~6m (Rodriguez et al, 
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2006). Furthermore, examples of intermediate scale models are not always found in areas of 

high flood risk, with large river deltas typically neglected due to the challenging nature of 

modeling in these areas primarily because of the incredible flatness of the delta and the 

uncertainties involved with flow splitting at bifurcations.   

Yet, large-scale river deltas form some of the most flood prone areas in the world, with this 

widely expected to increase (Syvitski et al., 2009, Hallegatte et al., 2013). These areas are 

among the most productive and economically important ecosystems in the world, acting as 

a home for an estimated 600 million people, and a nexus of agriculture and trade (Day et al., 

2016, Passalacqua, 2017). The most populous of these deltas are mostly located in Asia, 

which has seen a distinct recent shift to urbanisation in deltas (Seto, 2011). Yet, Asia also 

bears the brunt of the majority of floods (UNISDR, 2015).   

 Even though flooding in deltas is widely recognised as a major challenge (Ericson et al., 

2006, Syvitski et al., 2009, Tessler et al., 2015), hydrodynamic models focused on large river 

deltas are scarce. Studies exist in developed countries, such as in the Rhine Delta (Klerk et 

al., 2015), but in developing countries studies are mostly focussed on the Mekong Delta  and 

the Ganges-Brahmaputra (Karim and Mimura, 2008, Lewis et al., 2013, Ikeuchi et al., 2017) . 

Data-sparse deltas can be modelled with intermediate (270m-1km) or coarse scale 

models (>1km)  based on open-data but these have been found to perform poorly in such 

locations (Trigg et al., 2016). Yet, these types of models are important as they do not rely on 

detailed data so can be applied to data-sparse regions, and are computationally efficient 

such that Monte Carlo methods can be applied.   

Therefore, there is a clear need for intermediate scale flood models that can effectively utilise 

the limited data available and have an appropriate computation time that allows for Monte 

Carlo simulations. By applying an intermediate scale hydrodynamic model to large river 

deltas we can improve our understanding of the flood hazard in these at-risk areas. Owing 

to the incredibly flat terrain of a delta, topography is very likely to be a key control on 

uncertainty. To date, the effects of DEM uncertainty on hydrodynamic models have been 

limited with most studies investigating resolution effects but with access to high resolution 

DEMs which are not available in data-sparse areas (Horritt and Bates, 2001a, Sanders, 2007, 
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Neal et al., 2009b, Fewtrell et al., 2011). In data-sparse areas, modellers are thus limited to 

global DEMs and typically just use a single layer of topography. The impact of varying other 

hydrodynamic model inputs stochastically have been investigated in hydrodynamic models 

in data-sparse areas (Wechsler, 2007), but not for topography owing to the lack of datasets. 

A significant step forward in understanding the implications of topographic uncertainty of 

flood inundation would be to simulate plausible versions of global DEMs at native 

resolution so an ensemble of DEMs can be used in a stochastic simulation. Additionally, the 

ability of a DEM to accurately depict river-floodplain connectivity is a key control in 

flooding and is inherently related to uncertainties in DEMs. To date, the ability to quantify 

river-floodplain connectivity has been extremely difficult, so it would be useful to quantify 

river-floodplain connectivity and assess the ability of a range of DEM products to 

depict river-floodplain connectivity. This thesis aims to fill these research gaps by first 

building an intermediate scale hydrodynamic model of a data-sparse delta, before 

progressing to investigate the impact of DEM uncertainty through stochastic simulation of 

DEMs and quantifying river-floodplain connectivity amongst various DEM products at 

various resolutions.   

1.2  Research Aims and Objectives   

 The main aim of this thesis was to further our understanding of how uncertainty in 

topography impacts flood inundation predictions in data-sparse environments, and 

specifically deltas. A pre-cursor to fulfil this aim is to build an intermediate scale 

hydrodynamic model of a large river delta that has a lack of data to distinguish how much 

of a control topography has on flood inundation prediction. To enhance our understanding 

of how uncertain topography affects flood inundation predictions, this thesis aims to 

use geostatistics to characterize the spatial error structure of global DEMs in floodplains and 

stochastically simulate plausible versions of global DEMs so an ensemble of DEMs can be 

used in flood studies even in data-sparse locations. This thesis will further assess and 

quantify river-floodplain connectivity of DEMs to ascertain the ability of DEMs across 

resolutions to portray river-floodplain connectivity. Overall, this thesis will enhance our 

understanding of how to build intermediate scale hydrodynamic models in data-sparse 
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deltas and improve our knowledge of the impacts of DEM uncertainty on flood predictions, 

as well as providing a tool to simulate plausible versions of global DEMs.  

To achieve these aims the following objectives and questions will be addressed: 

Objective 1: Determine whether an intermediate hydrodynamic model at a regional scale 

can accurately represent flooding in a data-sparse delta   

• Can an intermediate scale hydrodynamic model be built for a data-sparse delta using 

freely available data that accurately represents flooding?  

• What aspects of the flood model structure and data are most important for inundation 

prediction?  

Objective 2: Assess the implications of simulating global DEMs for flood inundation 

studies  

• What is the spatial error structure of the MERIT and SRTM DEMs in floodplains, and 

how does the spatial error structure vary between landcover types? 

• How can plausible versions of MERIT and SRTM DEMs be simulated? 

• What is the impact of using an ensemble of simulated DEMs to estimate flood extent 

compared to a deterministic prediction? 

Objective 3: Identify and quantify river-floodplain connectivity of DEMs across 

resolutions  

• Can river-floodplain connectivity be quantified?  

• How does river-floodplain connectivity differ across DEM products and resolutions?  

• Is the accurate representation of river-floodplain connectivity more important for 

smaller flood events?  

 The aims, objectives and research questions identified above will be explored within 

three results chapters. Work contained within these chapters has so far been published in 1 
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paper in an international peer-reviewed journal, with a freely available R Package created to 

disseminate the work (https://github.com/laurencehawker/DEMsimulation).  

Results Chapter 1: An intermediate Scale Hydrodynamic Model of the Mekong Delta 

built using freely available data. In the first results chapter an intermediate scale 

hydrodynamic model of the Mekong Delta is built using freely available data. Analysis of 

what level of complexity is needed is carried out by varying the level of detail of channel 

width, depth and friction parameters. Following this an assessment of how different DEMs 

affect flood inundation prediction is carried out.  

Results Chapter 2: Implications of Simulating Global Digital Elevation Models for Flood 

Inundation Studies. The second results chapter simulates plausible versions of the Shuttle 

Radar Topography Mission (SRTM) and Multi-Error-Removed-Improved-Terrain (MERIT) 

DEMs and assesses the impact of using an ensemble of DEMs on flood inundation 

prediction. The spatial error structure of SRTM and MERIT in 20 floodplain locations around 

the world are calculated, with these error relationships used with geostatistical techniques to 

implement simulation of statistically plausible DEMs. Flood models utilizing DEM 

ensembles are run for 2 locations with flood probability maps produced for each location. 

From this chapter a package in the R language was created whereby a user can simulate 

versions of SRTM or MERIT in floodplain locations.  

Results Chapter 3: Measuring Floodplain Connectivity of DEMs. The final results 

chapter uses connected component analysis and patch statistics to quantify river-floodplain 

connectivity. A range of DEM products and scales are assessed to determine the ability of a 

DEM to represent river-floodplain connectivity. Moreover, river-floodplain connectivity is 

assessed for various water height scenarios to assess how the magnitude of the flood 

impacts river-floodplain connectivity. The developed technique is a rapid way to assess the 

ability of a DEM to be able to depict river-floodplain connectivity.  

1.3 Thesis Structure   

Following this introduction, Chapter 2 provides a general review of the literature concerning 

flooding and hydrodynamic models. More specific literature is then found within each 
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results chapter. Chapter 3 briefly describes the hydrodynamic model used in the thesis. 

Chapters 4-6 contain the three results sections. A synthesis of the key findings and the 

conclusions of the thesis are outlined in Chapter 7, followed by a bibliography in Chapter 8.  

1.4  Peer Reviewed Work 

Material in this thesis has been presented in peer-reviewed journals and at academic 

conferences. All of which are my own work and are detailed below. 

1.4.1 Peer-Reviewed Publications (Published, In Review and In 

Preparation) 

• Hawker, L., Rougier, J., Neal, J. C., Bates, P. D., Archer, L., & Yamazaki, D. (2018). 

Implications of Simulating Global Digital Elevation Models for Flood Inundation 

Studies. Water Resources Research. 54. https://doi.org/10.1029/2018WR023279 

• Hawker, L., Bates, P. D., Neal, J. C., & Rougier, J. (2018). Perspectives on Digital 

Elevation Model (DEM) Simulation for Flood Modeling in the Absence of a High-

Accuracy Open Access Global DEM. Frontiers in Earth Sciences. 6:233. doi: 

10.3389/feart.2018.00233 

• Hawker, L., Bates, P. D., & Neal, J. C. (n.d.). Flood Modelling in data-sparse deltas – 

the case of the Mekong Delta. Hydrological Processes (In Preparation). 

• Hawker, L., Bates, P. D., & Neal, J. C. (n.d.). Measuring Floodplain Connectivity of 

DEMs. In Preparation. 

 

1.4.2 Conference Presentations 

• Hawker, L., Rougier, J., Neal, J. C., Bates, P. D. & Yamazaki, D. (2018). Simulating 

DEMs for flood models. Global Flood Partnership, Delft, Netherlands: Poster 

Presentation.  

• Hawker, L., Rougier, J., Neal, J. C., & Bates, P. D. (2018a). Simulating candidate DEMs 

for flood inundation studies. European Geophysical Union, Vienna, Austria: Poster 

Presentation.  
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• Hawker, L., Rougier, J., Neal, J. C., & Bates, P. D. (2018b). Analysing semi-variograms 

for floodplains to generate candidates of the true DEM for flood inundation studies. 

European Geophysical Union, Vienna, Austria: Oral Presentation. 

• Hawker, L., Rougier, J., Neal, J. C., & Bates, P. D. (2017). Assessing uncertainty in 

SRTM elevations for global flood modelling. American Geophysical Union, New 

Orleans, LA: Oral Presentation. 

• Hawker, L., Bates, P. D., & Neal, J. C. (2017a). An intermediate scale flood inundation 

model of the Mekong Delta. UK Young Coastal Scientists: Oral Presentation. 
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Sparse Deltas. European Geophysical Union, Vienna, Austria: Poster Presentation. 
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inundation Modelling in deltas? Community Surface Dynamics Modelling System 
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Modelling – An initial exploration of the Mekong Delta. Poster. Japanese Geophysical 

Union, Chiba, Japan: Poster Presentation. 

• Hawker, L., Bates, P. D., & Neal, J. C. (2017e). Flood inundation modelling in data 

sparse deltas – The case of the Mekong Delta. International Conference Flood 

Management: Poster Presentation. 

• Hawker, L., Bates, P. D., & Neal, J. C. (2016). Modelling floodplain inundation of the 

Mekong Delta using a regional hydrodynamic model with a view to future scenarios. 

Japanese Geophysical Union, Chiba, Japan: Oral Presentation. 
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Chapter 2 Scientific Background 

 

2.1  Introduction to Flooding 

"Floods are 'acts of God,' but flood losses are largely acts of man." 

Gilbert White (1945) 

A flood is defined as the condition where river discharge exceeds bankfull limitations. In 

normal conditions rivers flow in well-defined channels, but at instances of extreme 

discharges, banks are overtopped and floodplains become inundated. This type of flooding 

is called fluvial flooding and is the type of flooding considered in this thesis. Other common 

types of flooding include pluvial flooding, which is caused by intense rainfall in urban areas 

that runs off the impervious surfaces, and coastal flooding, which is caused by coastal water 

inundated land through high tides and storm surges. Less common types of flooding are 

dam-break floods, groundwater flooding ice-jam floods and glacial outburst floods. Drivers 

of floods include heavy rainfall and/or storm surges. Often two or more extreme events can 

occur simultaneously or successfully to create so-called compound events (Wahl et al., 2015, 

Leonard et al., 2014). The definitions of the key components of a flood are outlined in Table 

2-1. 

Component Definition 

Annual Flood Maximum daily flow during a year 

Bankfull 

Discharge 

Discharge at which a river channel is full to capacity. 

Flood Event A series of flows that comprise of a progressive rise, culminating in a peak and then receding to a normal 

flow 

Table 2-1 Definitions of the key components of a Flood 
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Flood Extent The areal extent of flood water on a floodplain 

Flood Peak Highest elevation reached by the flood waters during a flood event 

Flood Stage Elevation of the Water Surface 

Return Period Statistical occurrence of a flood of a particular magnitude at a location. E.g. A return period of 50 years 

means on average a flood of that magnitude occurs once every 50 years. 

 

The aforementioned discussion of floods refers to the physical component of a flood, or in 

other words the flood hazard. A flood becomes damaging when assets and/or people 

become exposed, in what is commonly termed as exposure. The ability of the exposed to 

anticipate, cope with and resist the impact of the hazard is termed the vulnerability and is 

related to a complex nexus of political-institutional, economic and socio-cultural factors. 

These 3 factors combine to form flood risk which is defined as the probability that a flood of 

a given magnitude and given loss will occur within a given time span and is related in the 

following equation: 

𝐹𝑙𝑜𝑜𝑑 𝑅𝑖𝑠𝑘 = 𝐹𝑙𝑜𝑜𝑑 𝐻𝑎𝑧𝑎𝑟𝑑 𝑥 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 𝑥 𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (1) 

Flooding is one of the most significant causes of economic losses and fatalities amongst 

natural hazards, with the number of loss events increasing (Figure 2-1). The seriousness of 

flooding should not be understated. In the past 2 decades, UNISDR (2015) estimate that a 

staggering 2.3 billion people have been affected by flooding, resulting in 157,000 fatalities. 

The greatest economic losses are generally found in higher-income countries where a 

relatively small number of large events can cause substantial damages. For example, in 2017 

the hurricane trio of Harvey, Irma and Maria caused an estimated US$220 billion in 

damages out of the $US340 billion in total damages for all natural catastrophes for that year 

(MunichRE, 2018). Yet these events largely overshadowed the devastating floods in South 

Asia which caused an estimated 2,700 fatalities (MunichRE, 2018). In 2016 alone, flooding 

caused an estimated $56 billion worth of damage (MunichRE, 2016). Societies choose what 
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risk level to protect against with the notion of acceptable risk. Of course no risk is acceptable 

but is a combination of the costs and benefits (Kaplan and Garrick, 1981). 

 

Figure 2-1 Loss Events Worldwide 1980-2017 from MunichRE (2018). Note the increasing 

number of hydrological (e.g. flooding) and meteorological hazards 

Flood risk is expected to increase in the future for several reasons. The flood hazard is 

expected to increase in magnitude and frequency due to a warming climate (Hirabayashi et 

al., 2013, Dottori et al., 2018, Kundzewicz et al., 2014, Winsemius et al., 2015, Arnell et al., 

2018, Arnell and Gosling, 2016). Furthermore, exposure to flooding is expected to increase as 

world population continues to increase, prompting humans to build in more at-risk areas 

due to land pressures and marginalization (Donner and Rodriguez, 2008, Douglas et al., 

2008, Jongman et al., 2012). Thirdly, those that are most vulnerable to flooding are predicted 

to become disproportionally more affected by flooding in the future (Sayers et al., 2018). 

These factors have led authors to predict increased damages and fatalities from flooding in 
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the future (Hirabayashi et al., 2013, Dottori et al., 2018, Sayers et al., 2018, Winsemius et al., 

2015, Wing et al., 2018, Alfieri et al., 2017), with Alfieri et al. (2017) for example reporting 

that even for an optimistic warming scenario of 1.5°C there will be more than a doubling of 

global flood risk compared to 1976-2005. Therefore, there is a clear need to effectively predict 

flooding to plan and manage the risk from flooding both in the current day and the future. 

Hydrodynamic models have been a key tool to delineate current and future flood hazard 

(Wing et al., 2018, Sampson et al., 2015, Teng et al., 2017). They have been used in numerous 

flood-related applications including flood risk mapping (Wing et al., 2017), flood damage 

assessment (Merz et al., 2010), real-time flood forecasting (Barthélémy et al., 2018), flood 

related engineering (Gallegos et al., 2009) and water resource planning (Hanington et al., 

2017). Yet by their very nature, hydrodynamic models are an approximation of reality and 

will always be incorrect even if the highest quality data is used (Beven et al., 2011). 

However, most parts of the world do not have hyper (<5m) or even high-resolution data (1-

30m) data or a dense network of hydrologic measurements to drive hydrodynamic models, 

so model results are subject to substantial uncertainties. Furthermore, even state of the art 

hydrodynamic models can take a long amount of time for computation, especially at high 

resolutions meaning that even if high quality data is available a tradeoff needs to be made 

between model resolution and runtime. To be able to explore the many uncertainties in their 

predictions, modellers need to run hydrodynamic models multiple times which often results 

in models being run at a coarser resolution than the scale of the best available data. One key 

input into a hydrodynamic model is information on topography from a digital elevation 

model which has been found to be a key control on predicted flood extent (Horritt and 

Bates, 2002). 

This chapter will outline the scientific background of how floods are modelled, before 

selecting a flood model and justifying why its selection was appropriate. It should be noted 

that each results chapter contain a considerable amount of scientific background that 

pertains to the topic of that chapter. For instance, results chapter 1 contains scientific 

background of large river deltas, threats to large river deltas, as well as a background of the 

Mekong Delta. Results Chapter 2 contains an overview of DEMs, their uncertainties and the 

geoscientists behind DEM simulation. Finally, results Chapter 3 contains the scientific 
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background of river-floodplain connectivity. This structure was selected to aid the reader in 

each chapter, creating a more modular document.  

2.2  Modelling Flood Inundation 

To effectively plan and manage flood risk, it is useful to predict which areas are at greatest 

threat to the flood hazard. The most common way to simulate and predict the flood hazard 

is to use a hydrodynamic model (Bates and De Roo, 2000, Neal et al., 2012a, Sampson et al., 

2015). Hydrodynamic models can be operated at a range of scales and complexities, 

incorporating one, two or even three spatial dimensions. Outputs of hydrodynamic models 

are temporally distributed and give the water depth, velocity and areal extent. To this end, 

this section will give an overview of hydrodynamic models as well as other methods to 

evaluate flooding, before proceeding to justifying the choice behind the hydrodynamic 

model used for this thesis. 

2.2.1 Hydrodynamic Models 

A hydrodynamic model is computer code that simulates the movement of water using 

computational fluid dynamics theory. Another term for a hydrodynamic model is a 

hydraulic model which is also frequently used in the literature. Hydrodynamic models are 

applied to simulate fluvial, pluvial and coastal flooding. In fluvial applications, water is 

routed along a river channel, and when the river channel overtops the water is then routed 

onto the floodplain (Bates and De Roo, 2000). In pluvial applications, water is routed 

through typically urban areas and is driven by water originating from rainfall (Sampson et 

al., 2013) or point sources such as manholes (Leandro et al., 2009). In coastal applications, 

water from tidal oscillations or storm surges are routed up river channels or when water 

overtops coastal defenses (Bates et al., 2005b). Outputs of these hydrodynamic models are a 

map of the spatial extent of flood inundation along a time series which are in turn used by 

flood risk managers and planners to inform planning and risk mitigation strategies. 

The main controls on a flood wave is the balance between gravitational forcing and friction 

(Bates, 2012), therefore topography and friction parameters are key in controlling flood 

predictions. Although water flows in 3 dimensions, in hydrodynamic models the 
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representation of flow can be either in one (1D), two (2D) or three (3D) dimensions, with 1D 

models being the least complex and 3D models being the most complex and 

computationally demanding. A modeler must make a tradeoff between available data, 

computational resources available and expertise. Bates and De Roo (2000) nicely sum up the 

choice of model complexity when they note that “the best model will be the simplest one 

that provides the information required by the user whilst reasonably fitting the available 

data”. 

Type Description Computation 

Time 

Software Example 

0D No physical laws included in simulations Seconds ArcGIS 

1D Solution of 1D Saint-Venant equations Minutes HEC-RAS; MIKE 11 

1D+ 1D plus flood storage cell for floodplain flow Minutes to 

Hours 

HEC-RAS; MIKE 11 

1D/2D 1D for river channel flow and 2D for floodplain 

flow 

Minutes to 

Hours 

LISFLOOD-FP; MIKE FLOOD; SOBEK; 

TUFLOW 

2D Solution of 2D shallow water equation Hours to Days CaMa-Flood; LISFLOOD-FP; MIKE 21 

TELEMAC 2D 

2D+ 2D plus a solution for vertical velocities using 

continuity only 

Days TELEMAC 3D 

3D Solution of 3D Navier Stokes Equations Days Delft 3D 

 

2.2.2 Flow in Hydrodynamic models 

In hydrodynamic models, water flow is calculated by mathematical equations known as the 

shallow water equations (SWEs). The SWEs are a set of equations derived from the Navier-

Stokes equations that in turn are derived from Newton’s second law of motion. These 

Table 2-2 Types of Hydrodynamic Models. Adapted from Pender and Neelz (2007) 
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equations are used in a variety of applications in computational fluid dynamics such as 

climate modeling and aerodynamics. Different SWEs are applied to calculate flow 

depending if the flow is steady (uniform) or unsteady.  

2.2.2.1 Steady Flow in Open Channels 

Steady flow requires the properties of flow (e.g. water depth and velocity) within an open 

channel to be unvarying in time (Chaudhry, 2007). Uniform flow is similar as it is 

characterized by a constant mean velocity and constant water depth along the direction of 

flow for a given length of channel (Brandimarte, 2012). For steady/uniform flow to occur, the 

discharge, bed slope and Manning’s roughness must be constant. Steady and uniform flows 

are represented using either the Chezy or Manning’s equations. The Chezy equation 

calculates the mean velocity by multiplying the square root of hydraulic radius R and slope 

S with a coefficient known as the Chezy coefficient C that relates channel roughness with 

hydraulic radius. 

𝑉 = 𝐶√𝑅𝐶 (2) 

Similarly, Manning’s equation relates mean velocity to Manning’s roughness coefficient n, 

the hydraulic radius R and the bed slope. 

𝑉 =
1

𝑛
𝑅
2
3 𝑆

1
2 (3) 

To calculate discharge Q, these equations can be combined with cross sectional area of a 

channel A. 

𝑉 = 𝐴𝑉 = 𝐴
1

𝑛
𝑅
2
3 𝑆

1
2 (4) 

However, the complexity of nature often makes the assumptions for these steady flow 

equations too simplistic and thus hydrodynamic models tend to instead represent flow with 

equations describing unsteady flow. 
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2.2.2.2 Unsteady Flow in Open Channels 

Flows within natural systems are inherently unsteady as the conditions of flow very in time 

and are non-uniform in space as velocity and depth varies. To describe unsteady flows, the 

Navier-Stokes equations describe flow through continuity (conservation of mass) and 

momentum (conservation of energy). Based on several assumptions (e.g. fixed channel 

boundaries), the Navier-Stokes equations can be simplified to what are known as the Saint-

Venant Equations.  The simplest spatial representation of flow in hydrodynamic models is in 

1D and involves solving the 1D Saint Venant equations, or a simplification of these, which 

are in the following form: 

𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦 =  
𝛿𝐴

𝛿𝑥
+
𝛿𝑄

𝛿𝑥
= 0 (5) 

𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚 =
𝛿𝑄

𝛿𝑡⏟
𝐴𝑐𝑐𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛

+
𝛿

𝛿𝑥
[
𝑄2

𝐴
]

⏟    
𝐴𝑑𝑣𝑒𝑐𝑡𝑖𝑜𝑛

+
𝑔𝐴𝛿(ℎ + 𝑧)

𝛿𝑥⏟      
𝑊𝑎𝑡𝑒𝑟 𝑆𝑙𝑜𝑝𝑒

+
𝑔𝑛2𝑄2

𝑅
4
3𝐴⏟  

𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛 𝑆𝑙𝑜𝑝𝑒

= 0 (6)
  

Where A is the cross-sectional area of the channel, x is the distance in the x Cartesian 

direction and Q is the discharge. In the momentum equation, the additional terms are z (bed 

elevation), R (hydraulic radius), g (acceleration due to gravity) and n (Manning’s coefficient 

of Friction). The degrees of complexity can be split into the following 4 categories: 

Kinematic, Diffusive, Inertial and Fully Dynamic. Kinematic models are the simplest and 

only contain the friction slope term. Diffusive models contain the friction slope and water 

slope. Inertial models contain the friction slope, water slope and local acceleration term. 

Finally, a fully dynamic model contains all the terms. In its 2D formulation, the Saint-Venant 

have the extra dimension y and are computationally more expensive to solve. Flows can also 

be solved in 3D but this is often deemed unnecessarily complex (Bates and De Roo, 2000). 

However, in situations when vertical turbulence, vortices and spiral flows are important 

(e.g. levee breaches, dam breaks), 3D models may be necessary. These equations have no 

analytical solution but can be solved using numerical techniques. Developers have varied 

the degree of complexity by removing some components within the full Saint-Venant 

momentum equations.  
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2.2.2.3 Types of Numerical Solvers 

SWEs are solved differently depending on how the equations are discretized in time and 

space, with the common distinction between explicit and implicit methods (Popescu, 2012). 

For explicit methods, St Venant equations are solved for every point within the model 

domain at a particular time. At the next timestep, information from the previous timestep is 

taken to solve the St Venant equations again at every point. The model follows this pattern 

until completion. However, if the timestep is too large, instabilities can occur, allowing 

water to traverse through a cell in a timestep. Conversely, if the timestep is too small, the 

model runtime will be prohibitively long. To obtain a suitable timestep to avoid instabilities, 

the Courant Friedrichs Lewy (CFL) equation can be used and can be written as: 

𝑡𝑐

𝑥
< 1 (7) 

Where t is the timestep, c is the velocity of the flood wave and x is the spatial resolution. 

Setting a CFL threshold very close to 1 runs the risk of instabilities arising, so modellers 

typically set the CFL threshold slightly below 1. In the CFL equation the timestep is related 

to spatial resolution, and subsequently scales. In other words, the smaller the spatial 

resolution, the smaller the distance the flood wave can travel before traversing two grid cells 

(which causes instabilities), thus the timestep must reduce to insure this does not occur. 

Therefore, in hyper and high-resolution models, the timestep becomes very small. 

Implicit methods use information from both the previous and current timestep to perform 

calculations. As a result, implicit methods are always stable and thus do not require the CFL 

equation. However, implicit methods come at a cost that they are complex to step-up and 

the computation time is substantially larger per timestep compared to explicit methods 

(Popescu, 2012). If the timestep is too long however, the accuracy of the solution can 

degrade. 

Whilst implicit and explicit methods describe how SWEs are solved in time, methods are 

needed to specify how they are solved in space. Two common methods to describe how 

these equations are solved in space are to use either finite difference or finite volume 
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approaches (Hervouet, 2007, Di Baldassarre, 2012a). In finite difference methods, 

calculations are made at multiple points in the model domain based on how the points 

relation to nearby points. The finite volume approach builds on this with cells having 

volumes, with the associated value of a cell assigned to the centre of each cell.  Finite 

element is similar to finite volume difference in that the model domain is split up into a 

number of elements, with the drawback that the mathematical methods to produce solutions 

are computationally expensive (Néelz and Pender, 2013). Finite volume, finite element and 

finite difference can be used in unstructured grids (e.g. TELEMAC, Galland et al. (1991)) 

allowing cells in a model to vary in size which is particularly useful in areas of complex 

topography where cell size can be decreased in areas of complex topographies but increased 

in less complex topography. Using structured grids is substantially computationally cheaper 

than running unstructured grids (Horritt and Bates, 2001a). Furthermore, many input 

datasets (e.g. Digital Elevation Models) are available in structured grids, making setting up 

models based on finite difference methods less complex. 

2.2.3 Data Requirements for Hydrodynamic Models 

In essence, hydrodynamic models describe how water flows through a landscape. Therefore, 

the principle data requirements for hydrodynamic models are data describing the 

topography of the landscape, how much water is flowing in and out of the model, and the 

friction acting against the flow of water. Additionally, some hydrodynamic models may 

require data on channel geometry and other factors such as infiltration. The more complex 

the hydrodynamic model the more data is required, with general data requirements and 

outputs by hydrodynamic model type outlined in Table 2-3. Therefore, even if a more 

complex hydrodynamic is available, a modeler could be restricted by data availability. On 

the contrary, a modeler may have a wealth of data but has a lack of experience or the 

computational time required for simulations. 

Type Input Data Output 

Table 2-3 Input and output data by type of hydrodynamic model. Adapted from Di Baldassarre 

(2012a) 
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0D DEM; Upstream water level; Downstream water 

level 

Inundation extent and water depth 

1D Surveyed cross sections of channel and floodplain; 

Upstream discharge hydrographs; Downstream 

stage hydrographs 

Water Depth & average velocity at each cross section; 

Inundation extent by intersecting predicted water depths 

with DEM; Downstream outflow hydrograph 

1D+ As 1D models As 1D Models 

1D/2D DEM; Upstream discharge hydrographs; 

Downstream stage hydrographs 

Inundation Extent; Water Depths; Downstream outflow 

hydrographs 

2D DEM; Upstream discharge hydrographs; 

Downstream stage hydrographs 

Inundation Extent; Water Depths; Downstream outflow 

hydrographs; Depth averaged velocities at each 

computational node 

2D+ DEM; Upstream discharge hydrographs; 

Downstream stage hydrographs; Inlet velocity 

distribution 

Inundation Extent; Water Depths; Downstream outflow 

hydrographs; Velocity vector at each computational cell 

3D DEM; Upstream discharge hydrographs; 

Downstream stage hydrographs; Inlet velocity 

distribution and turbulent kinetic energy 

distribution 

Inundation Extent; Water Depths; Downstream outflow 

hydrographs; Velocity vector and kinetic energy at each 

computational cell 

 

2.2.3.1 Topography 

One of the key controls on predicted inundation extent is topography (Bates and De Roo, 

2000). Small errors in topography can have an especially large influence on flood predictions 

due to the low gradients associated with floodplains. The typical topography input into a 

hydrodynamic model is a gridded representation of elevation called a digital elevation 

model (DEM). A DEM can be created from ground surveys, digitizing existing hardcopy 

topographic maps or by remote sensing techniques. DEM’s are now predominantly created 

using remote sensing techniques with Smith and Clark (2005)  observing the benefits that a 

large spatial area can be mapped by fewer people at a lower cost. Remotely sensing 

techniques include photogrammetry (Coveney and Roberts, 2017, Uysal et al., 2015), 

airborne and spaceborne Interferometric Synthetic Aperture Radar (InSAR) and Light 
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Detection And Ranging (LiDAR). Spaceborne DEMs (e.g. Shuttle Radar Topography Mission 

(SRTM) Farr et al. (2007)) are of high/intermediate scale, whilst photogrammetry and LiDAR 

derived DEMs are of hyper scale (Table 1-1). Hyper resolution DEMs are rarely available, 

with approximately 0.005% of the earth’s land area having free LiDAR data. Therefore, for 

the vast majority of the world (and assuming little to no funds are available to acquire a 

hyper scale DEM), the best source of topographic information is from global DEM’s (Table 

2-4).  

 Dataset Coverage Acquisition 

Years 

Sensor Wavelength Resolution 

(m) 

Vertical 

Accuracy 

Reference 

Free Global 

DEMs 

ALOS 

AW3D30 

82°S - 

82°N 

2006-2011 Optical 0.52-0.77um 30 4.4m 

(RMSE)1 

Tadono et 

al. (2014) 

 ASTER 

GDEM 

83°S - 

83°N 

2000-2011 Optical 0.78-0.86 30 17m (95% 

conf.)2 

Tachikawa 

et al. 

(2011a) 

 GMTED2010 Entire 

Earth 

Completed 

2010 

Derived from 11 

sources of elevation 

information 

250,500,1000 26m 

(RMSE)3 

Danielson 

and Gesch 

(2011) 

 SRTM 56°S - 

60°N 

2000 SAR C 

Band 

5.66cm 30,90 6m 

(MAE)4 

Farr et al. 

(2007) 

 TanDEM-X 

90 

Entire 

Earth 

2010-2015 SAR X 

Band 

3.1cm 30,90 Unknown Rizzoli et 

al. (2017) 

Error 

Reduced 

Versions of 

SRTM 

EarthEnv 60°S - 

83°N 

ASTER & SRTM 90 4.15m 

(RMSE)5 

Robinson 

et al. (2014) 

 NASADEM Expected release late 2018  Crippen et 

al. (2016) 

 MERIT Entire 

Earth 

AW3D30, SRTM & Viewfinder 

Panorama 

90 5m 

(LE90)6 

Yamazaki 

et al. (2017) 

 No Name Same as SRTM 90 5.9m 

(RMSE)7 

O'Loughlin 

et al. 

(2016b) 

 No Name Same as SRTM 90 1m 

reduction 

in RMSE8 

Zhao et al. 

(2018) 

 Viewfinder 

Panorama 

Entire 

Earth 

ASTER, SRTM & Other Sources 90 Not 

Reported 

de Ferranti 

(2014) 

Commercial 

Global DEMs 

ALOS AW3D 82°S - 

82°N 

2006-2011 Optical 0.52-0.77um 5 2.7m 

(RMSE)9 

Takaku 

and 

Tadono 

(2017) 

 PlanetDEM 

30 Plus 

Entire 

Earth 

Same as SRTM 30 Not 

reported 

Planet 

(2017) 

 NEXTMap 

World 10 

Entire 

Earth 

Not Reported 10 10m 

(LE95)10 

InterMap 

(2018) 

 WorldDEM Entire 

Earth 

2010-2015 SAR X 

Band 

3.1cm 12 <1.4m 

(RMSE)11 

Rizzoli et 

al. (2017) 

N.B. Older Global DEMs ACE GDEM (Berry et al., 2000) and GTOPO30 (Gesch et al., 1999) were not included in the table as these 

products have been superseded by more recent GDEMs. 1) Tadono et al. (2016)  2) Tachikawa et al. (2011b) 3) Danielson and Gesch (2011) 

Table 2-4 Global DEM Products 
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4) Rodriguez et al. (2006) 5) Robinson et al. (2014) 6) Yamazaki et al. (2017) 7) O'Loughlin et al. (2016b) 8) Zhao et al. (2018) 9) Takaku 

et al. (2016) 10) InterMap (2018) 11) Wessel et al. (2018) 

Despite the recognized importance of topography on flood predictions, uncertainty in flood 

predictions from uncertain topography has been largely overlooked, with studies typically 

focusing instead of other hydraulic parameters such as friction (Wechsler, 2007). The reason 

behind this is twofold. First, there is a perceived lack of DEM products (even though this 

argument is becoming weaker as evidenced by the number of DEM products outlined in 

Table 2-4), so flood studies typically take a single DEM and assume this to be the best 

available source of topographic information. The practice is especially prevalent in data-

sparse regions, where a perceived lack of DEM products dictates that only a single DEM is 

used, with this most commonly being SRTM (Yan et al., 2015b). So, whilst studies may vary 

other parameters (e.g. friction), they rarely vary DEM products. Secondly, for most locations 

the best source of topographic information is at 90m so there is limited scope to vary model 

resolution whilst still obtaining useful results as coarsening the resolution too greatly result 

in important floodplain topography being ‘lost’. Studies that do use multiple DEMs either 

resample DEMs to a coarser resolution to explore the effect of resampling strategies and/or 

scale (Horritt and Bates, 2001a, Fewtrell et al., 2011, Neal et al., 2009b, Savage et al., 2016a, 

Komi et al., 2017, Saksena and Merwade, 2015), or compare flood extents using different 

DEM products (Li and Wong, 2010, Jarihani et al., 2015, Bhuyian and Kalyanapu, 2018). See 

Table 2-5 for an overview of studies that have assessed the impact of topographic 

uncertainty on flood predictions. Usually, the quality of flood predictions increases as DEM 

resolution increases, but there is often a point where the increase in flood prediction quality 

increases negligibly and is not worth the additional computational power. For example, 

Savage et al. (2016b) conclude that models with a resolution finer than 50m offered little gain 

in flood prediction quality for a hydrodynamic model of the Imera basin, Sicily. Conversely, 

the same authors also found that flood prediction quality deteriorated markedly at 

resolutions coarser than 100m. Higher resolution DEMs are more important when modelling 

urban environments (Fewtrell et al., 2008) so buildings can be captured. On the other hand, 

too much detail can induce spuriously precise results which does not represent the 

uncertainties in making flood predictions (Savage et al., 2016b, Dottori et al., 2013).  
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Reference Location DEM Resolutions Model Main Finding 

Horritt and 

Bates 

(2001a) 

River Severn LiDAR 10,20,50,100,250

,500,1000 

LISFLOO

D-FP 

Below 100m resolution model performance similar. For one model 250m resolution best 

Haile and 

Rientjes 

(2005) 

Tegucigalpa, 

Honduras 

LiDAR 1.5,4.5,7.5,15 SOBEK Large differences in predicted flood extent. Variations occur with DEM re-sampling 

techniques 

Wilson and 

Atkinson 

(2005) 

River Nene, 

UK 

PROFILE Contour 

DEM, DGPS 

30 LISFLOO

D-FP 

100 versions of DEM were simulated using Sequential Gaussian simulation. Uncertainty in 

predicted inundation extent greatest where elevation gradients were smallest 

Yu and 

Lane (2006) 

Tadcaster, UK LiDAR 4,8,16,32 JFLOW 

(Similar) 

Small changes in resolution can have considerable effects. Inundation affected by lack of 

connectivity in coarser resolutions which in part can be compensated with by wetting and 

roughness parameters 

Sanders 

(2007) 

Santa Clara 

River near 

Castaic 

Junction 

LiDAR, IfSAR, 

NED, SRTM 

3,10,30,60,90 BreZo 

(2D) 

LiDAR is the best source of terrain data, with its ability to detect bare earth important. NED 

DEMs flood zones 25% smaller than other DEMs. Little difference predicted in flood 

predictions between SRTM at 30 and 90m 

Fewtrell et 

al. (2008) 

Greenfield, 

Glasgow 

LiDAR 2,4,8,16 LISFLOO

D-FP 

For urban areas representation of buildings important so finer resolution required. 

Response of Manning's friction coefficient to model resolution is non-stationary 

Li and 

Wong 

(2010) 

Kansas River LiDAR, NED, 

SRTM 

2,10,30 MicroDE

M 

LiDAR and NED similar. SRTM noticeably different, with flood prediction fragmented. 

DEM source more important than resolution for flood extent 

Fewtrell et 

al. (2011) 

Alchester, UK LiDAR (Terrestrial) 0.5,1,2,5 LISFLOO

D-FP 

Step change in performance between 2m and 5m grid resolution due to degradation of road 

network and camber representation 

Manfreda 

et al. (2011) 

River Arno, 

Italy 

ASTER GDEM, 

SRTM, Local DEM 

20,40,60,80,100,

120,140,160,180,

260,360,720 

0D 

Method 

Best result at 100m. SRTM offered best result. Only shows geomorphic characteristics of a 

floodplain. 

Neal et al. 

(2011) 

Tewkesbury, 

UK 

LiDAR 2,10,20,40 LISFLOO

D-FP 

Greatest loss of accuracy between 10m or 20m. Best accuracy at 2m. Finest resolutions could 

simulate inundation dynamics best. Valley filling flow magnitudes similar all resolutions 

Yu and 

Lane (2011) 

River Wharfe, 

UK 

LiDAR 4,8,16,32 FloodMa

p 

Using subgrid information in coarse meshes improved model performance but 

improvement only relatively small. High resolution features (walls, buildings) are 

important 

Table 2-5 Effect of DEM resolution and product on flood inundation predictions 
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Reference Location DEM Resolutions Model Main Finding 

Sampson et 

al. (2012) 

Alchester, UK LiDAR (Airborne & 

Terrestrial) 

0.1,1 LISFLOO

D-FP; 

ISIS-

FAST 

Bigger difference between DEM source than resolution 

Wang et al. 

(2012) 

South Tibet ASTER GDEM, 

SRTM, DEM from 

aerial photography 

90 HEC-

RAS 

ASTER 2.2% smaller and SRTM 6.8% larger inundation extent compared to high resolution 

DEM 

Ozdemir et 

al. (2013) 

Alchester, UK LiDAR (Terrestrial) 0.1,0.5,1 LISFLOO

D-FP 

Loss of hydraulic connectivity if micro terrain features not included 

Jarihani et 

al. (2015) 

Thomson 

River, 

Australia 

ASTER GDEM, 

SRTM 

30,60,90,120,250

,500,1000,2000 

TUFLOW 

2D 

Model Performance noticeably worsened after 120-250m. SRTM better than ASTER GDEM 

Saksena 

and 

Merwade 

(2015) 

6 Stream 

reaches in 

USA 

LiDAR, NED, 

SRTM 

1,3,6,30,90 HEC-

RAS 

Mean water surface elevation has a strong positive linear relationship with grid size. 

Predicted flood extent increases with coarser DEM resolutions. DEM source important, as 

LiDAR derived DEM at 30m gave better prediction than NED at 30m 

Ali (2016) Kigali, 

Rwanda 

ASTER GDEM, 

SRTM, DEM from 

aerial photography 

5,10,20,30 SOBEK DTM essential to represent urban flooding as ASTER and SRTM were found to be 

inadequate without correction. Models above 15m began to show significant inaccuracies 

Savage et 

al. (2016b) 

Imera Basin, 

Sicily 

LiDAR 10,20,50,100,200

,250,300,350,400

,450,500 

LISFLOO

D-FP 

Model performance deteriorates at resolutions coarser than 50m. Below 50m little gain in 

performance. Doubling model resolution lengthens computation rime by order of 

magnitude 

Komi et al. 

(2017) 

Oti River, 

West Africa 

SRTM 30,60,120,240,48

0,960 

LISFLOO

D-FP 

Best index of fix at 480m. Worst performance at 30m. Local scale noise the likely reason for 

worse performance. Noise smoothed in coarsening DEM. 

Bhuyian 

and 

Kalyanapu 

(2018) 

American 

River 

ASTER, 

LiDAR,NED, SRTM 

3,10,30,90 HEC-

RAS 

ASTER & SRTM overestimated inundated areas >4x compared to LiDAR and NED. Low 

hydraulic connectivity in ASTER. 30m Resolution gave the lowest errors. 
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2.2.3.2 Boundary Conditions 

The amount of water entering a model is described by the upstream boundary condition 

(typically from a gauge), whilst the amount of water exiting the model is described by the 

downstream boundary condition. In a fluvial setting, upstream boundary conditions are 

described by hydrographs, whilst for coastal applications tidal gauges describe boundary 

conditions and for pluvial applications point sources (e.g. burst water main) or direct rain on 

grid are used. For the downstream boundary, the water stage, flow or slope is defined to 

determine how much water leaves the model domain, and can be informed by a water stage 

reading. For fluvial applications on which this thesis focuses, boundary condition 

uncertainties arise from uncertainties in the discharge measurements and the water heights 

on which the downstream boundary is based. Discharge is commonly estimated by first 

measuring the water stage and then applying a rating curve. Measuring the water stage and 

discharge on multiple occasions at the gauge location and subsequently determining the 

relationship between the two are used to derive rating curves. This approach is favoured as 

one can easily estimate the discharge just by measuring the water level. However, for large 

floods a number of uncertainties occur from the measurement of the water level, the cross 

sectional area of the channel (especially if flow goes out of bank), and the extrapolation of 

the rating curve (Di Baldassarre and Montanari, 2009, Domeneghetti et al., 2012). Extreme 

events can also destroy gauging equipment so even if a location is normally gauged it may 

not be in an actual flood event. In a comprehensive literature review, McMillan et al. (2012) 

suggests discharge uncertainties of between 10-20% for medium to high flows and 

approximately 40% when flow goes out of bank. As a result, studies have tested the 

sensitivity of flood predictions to boundary conditions by varying the upstream and 

downstream boundary conditions (Pappenberger et al., 2006, Apel et al., 2008, Domeneghetti 

et al., 2013, Pappenberger et al., 2008). 

2.2.3.3 Friction 

The friction term is typically described by Manning’s roughness coefficient (n) and varies by 

surface. A larger Manning’s roughness value means a greater frictional force acts upon the 



 

27 

 

flow of water. Values of Manning’s n are dependent on the roughness of a surface and 

consequently vary by channel bed material and land use type. Typical values of Manning’s n 

can be found in Chow (1959). Friction parameters are usually lumped into two separate 

parameters to describe the channel friction and the floodplain friction, with floodplain 

friction typically having higher values of Manning’s n (Horritt and Bates, 2001a, Aronica et 

al., 2002, Horritt et al., 2007). In reality, Manning’s n varies in time and space (Di 

Baldassarre, 2012b), so some attempts have been made to parameterize further by splitting 

channels into sections (Hall et al., 2005), deriving distributed friction values from remote 

sensing (Schumann et al., 2007, Wood et al., 2016, Tarpanelli et al., 2013), classifying by 

floodplain land-use type (Wilson and Atkinson, 2007, Mtamba et al., 2015, Afshari et al., 

2018) or floodplain characteristics (Manh et al., 2014). Whilst friction is a physically based 

characteristic that can be measured, values vary in time and space and are scale dependent 

(Horritt et al., 2007). Therefore, friction parameters can be classed as effective parameters 

during calibration in that they can be calibrated to make up for other errors from boundary 

conditions, topography and model structure (Di Baldassarre, 2012b, Bates et al., 2005a). 

Some may quaff at such a practice as if the model cannot produce reality with physically 

plausible values then it is evidence that the model is wrong (Cunge, 2003). This sentiment 

may be correct if all data and model structure are error free, and the friction values specified 

can correctly represent the momentum losses, but such is the complexity of nature that this 

is not the case. Additionally, it should be noted that the purpose of a hydrodynamic model 

for flood prediction is to correctly predict water depths and flood extent, and not friction 

values(Di Baldassarre, 2012b). 

Being an effective parameter makes estimating a priori a distribution of values difficult, and 

thus published values (e.g. Chow (1959)) should be treated at best as a guide to a likely 

range (Horritt et al., 2007).  Therefore, friction parameters are frequently altered to perform 

sensitivity analysis, usually with Manning’s n values kept within physically realistic ranges. 

By treating Manning’s n as an uncertain parameter, hydrodynamic models have been 

calibrated to a specific flood event by comparing model output to an observation of a 

recorded event (Di Baldassarre, 2012b). Once a hydrodynamic has been suitably calibrated 

to an observed event, the hydrodynamic model has been shown to be effective in making 
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flood predictions (Horritt and Bates, 2002, Bates et al., 2004). However, there is often some 

degree of equifinality as multiple combinations of model parameters often produce very 

similar levels of performance (Aronica et al., 2002). Furthermore, if model performance is 

sharply higher for a narrow region of parameters, then calibrating a model for the given 

flood event can cause the hydrodynamic model to be over-conditioned for the given flood 

event. (Hunter et al., 2006). In other words, if a hydrodynamic model can only model a given 

event for a very specific range of optimum parameter values, it is possible that for a different 

event the optimum parameter set would be different, and thus the model performance 

would be sub-optimum. This case is prevalent when poor observational, or ‘disinformative’ 

data is used to calibrate a model (Beven and Westerberg, 2011) as modelers can become 

overconfident in model performance but in reality the model is only matching poor, 

erroneous data. Therefore, the model would be making a poor prediction in reality, which 

could be particularly problematic if acted upon for flood management. Whilst calibrating 

hydrodynamic models with Manning’s n is popular, it is clear it can have a substantial 

influence on model outputs and should be carefully considered in the calibration process. 

2.2.3.4 Channel Geometry 

For many rivers there is a lack of information on channel geometry as bathymetric surveys 

are very costly and time-consuming. However, 2D models require information on river 

channel bathymetry. Therefore, approximations of channel geometry have to be made. It is 

common to assume the channel shape is rectangular (e.g. Bates and De Roo (2000)). Whilst 

this assumption is reasonable, there is clearly enough variation in nature that means this 

assumption is too basic. As a result, studies have investigated model sensitivity to varying 

channel shape and have found that calibrating depth and/or channel shape may be 

preferable to assuming a rectangular shape and calibrating friction alone (Neal et al., 2015). 

Further uncertainty comes from a lack of knowledge of river widths. Whilst river widths can 

be estimated manually from satellite images, this is time-consuming and cumbersome, and 

is only suitable for a small reach. An alternative is deriving river widths automatically based 

on satellite optical images (Landsat or Sentinel), with global databases available such as 

GWD-LR (Yamazaki et al., 2014a) or GRWL (Allen and Pavelsky, 2018), or automatic tools 
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such as RivaMap (Isikdogan et al., 2017).To date, little attention has been paid to 

hydrodynamic model sensitivity to uncertain width values.  

Channel bathymetry remains a key unknown with no global dataset available (Bates, 2012). 

Estimating channel bathymetry from remote sensing has proved difficult as signals 

detectable from satellite sensors cannot penetrate far into the water surface. Therefore, a 

number of different methods have been proposed. Remotely sensed observations of water 

surface elevation and river width have been used to estimate bathymetry for several 

locations, but as of yet not on a global scale (Mersel et al., 2013). This has positive 

implications for the upcoming Surface Water and Ocean Topography (SWOT) mission that 

will provide a record of water surface height and river width. Moreover, synthetic SWOT 

outputs have been successfully used in a data assimilation approach with hydrodynamic 

models (Yoon et al., 2012, Durand et al., 2008). Alternatively, river bathymetry has been 

estimated from optical imagery and geostatistical techniques (Adnan and Atkinson, 2012, 

Legleiter and Overstreet, 2012). When available, hyper resolution LiDAR (Hilldale and Raff, 

2008) or structure-from-motion photogrammetry (Javernick et al., 2014) have been used to 

estimate bathymetry, with the usefulness of these techniques only really relevant to the 

reach scale. Recently, Lee et al. (2018) applied a principal component geostatistical approach 

for bathymetry estimations using velocity observations through 2D SWE. Even when there 

are bathymetric measurements, these measurements are usually restricted to certain 

locations along a reach. Therefore, GIS techniques are applied, with the choice of 

interpolation technique found to give different river profiles (Merwade et al., 2008, Zhang et 

al., 2016). Several studies have investigated the impact of uncertain channel depth of flood 

prediction (Wong et al., 2015, Grimaldi et al., 2018, Cook and Merwade, 2009, Neal et al., 

2012a). In essence the channel geometry is intrinsically linked to the capacity of the channel 

and is thus directly related to the bankfull discharge. The relationships between channel 

geometry and channel width, depth, velocity and discharge are described by the term 

‘hydraulic geometry’ (Leopold and Maddock, 1953)  
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2.2.4 0D Models 

0D models do not consider any physical processes in flood inundation and are based on the 

most simple hydraulic principles (Pender, 2006). They are orders of magnitude quicker to 

run than hydrodynamic models and can be useful for a broad-scale assessment of flood 

extents and depths (Pender, 2006, Teng et al., 2017). The so called ‘bathtub method’ is one 

such example of a 0D model whereby a DEM is intersected by water stage planes to 

delineate the areal extent of a flood (Figure 2-2), with studies using such an approach using 

focused on coastal flooding (Leon et al., 2014, van de Sande et al., 2012). Alternatively, flood 

prone areas can be detected by calculating the topographic index from DEMs (Samela et al., 

2015, Manfreda et al., 2011). 

 

Figure 2-2 Bathub Method Schematic: a) Intersection of DEM with multiple water surfaces. b) Flood 

extent based on connectivity between the water planes. From Teng et al. (2017) 

2.2.5 Empirical Methods 

Historical catastrophic floods are often studied by geologic or historical clues left behind. 

For instance, during large floods slack-water deposits (sand and silt) accumulate rapidly as 

flood waters suspend sediment. Subsequently, when flow velocities drop, suspended 

sediment is abruptly deposited leaving a layer of deposits. By studying the stratigraphy, 

Sheffer et al. (2003) documented historical flooding in the Ardeche river. Geochemical 

analysis of floodplain deposits can further add to the record (Berner et al., 2012). 

Alternatively, historic records such as city accounts (Glaser and Stangl, 2001), etchings 

(Herget and Meurs, 2010), flood marks, legal documents (Kiss, 2009), narratives (Brázdil et 

al., 2006), newspapers (Guzzetti et al., 1994), photographs (Smith et al., 2011), songs (Brázdil 

et al., 2006), taxation records (Brázdil et al., 2014) and weather recordings (Brázdil et al., 
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2006) have be used to construct historic flood records. Whilst interesting, the usefulness of 

this information to modern planners could be seen to be limited as society and river 

geometry has changed beyond recognition to the historic times when these floods were 

modelled. Nevertheless, such information is valuable to inform about the potential flood 

hazard. 

2.2.6 What type is best? 

When discussing model selection, the famous quote of statistician George Box is often cited, 

where he noted “All models are wrong, but some are useful”. Whilst true, models can be 

ranked as being useful, partially useful and completely useless for their intended application 

(Burnham and Anderson, 2002). The art of modeling is to choose the correct model that will 

achieve the goal of the task. So, for a flood model application, a modeler should consider 

that their main task is to provide a reliable prediction of flood inundation. All other details 

are unnecessary. A useful way to conceptualize this tradeoff is the principle of parsimony as 

schematized by Box and Jenkins (1970) in Figure 2-3. In the principle of parsimony, as the 

model complexity increases, the bias tends to decrease, but the uncertainty tends to increase. 

This idea is also known as Occam’s razor that states that all unnecessary detail should be 

removed. Therefore, the task of the modeler is to build a suitable model that is a trade-off 

between bias and uncertainty – or in other words to build a parsimonious model.  

unparsimonious models can range from models that are not complex enough to represent 

the dominant process, to models that are unnecessarily complex in that by adding additional 

parameters a model can fit almost any data and thus such a model might make poor 

predictions as the parameterization will be affected by the relatively high uncertainty (Di 

Baldassarre, 2012a). 
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Before choosing a suitable hydrodynamic model, the modeler should make 4 main 

considerations:  

• What are the dominant processes controlling flood inundation? 

• What data are available? 

• What are the computational resources available? 

• When do the results need to be available? 

First the modeler should assess the likely flood inundation processes. For instance, if one is 

tasked with modeler a reach where flooding is controlled by topographic discontinuities 

(e.g. manmade embankments), a 1D model would be principally suited. Taking another 

example, if the location under consideration is a large floodplain where floodplain 

topography is a key control on flood extent, then a 2D model is likely to be most appropriate 

(Di Baldassarre, 2012a).  

Figure 2-3 Principle of Parismony. A concept of trade-off between bias (grey) and uncertainty (black) 

in model complexity. From Di Baldassarre (2012a) 



 

33 

 

Second the modeler must consider the data available. Models are only as good as the data 

used to calibrate and verify them (Abbot, 1979, Beven and Westerberg, 2011). Indeed, 

including too much detail can be potentially misleading as detail can breed overconfidence 

in results (Dottori et al., 2013). As an increasing amount of high-resolution data becomes 

available, there is a danger that a reductionist approach can be taken where modelers 

become fixated with higher resolution and more complexity but miss the added uncertainty 

that this brings (refer to Figure 2-3). However, if better data is needed to capture the correct 

processes, a modeler should do their upmost to obtain this additional information if time 

and money allows (though rarely the case). Or at least a modeler should evaluate the 

epistemic uncertainties associated with the data, elicit information about uncertainty from 

experts and efficiently audit their workflow so the assumptions made are clear (Beven et al., 

2018) 

Thirdly, the modeler should consider the computational resources available. It is unsuitable 

to choose a complex model that will take an exorbitant amount of time or will simply not 

work on the machine at hand. Equally, if the results of a project are to be disseminated and 

used by those not primarily trained as a hydrodynamic model, it is important to choose a 

model that will be easily understandable for the intended user. Additionally, it is beneficial 

to choose a model that is being continuously developed so that advancements in 

computational architecture can be exploited to maximize efficiency. If the model is intended 

for sensitivity analysis or to produce flood probability maps, a lower complexity model is 

needed that allows multiple simulations. Model resolution can have a large impact on 

simulation time, with Savage et al. (2016b) finding that simulation time increases by an order 

of magnitude by halving the model resolution. 

Lastly, a time consideration should be made. If a project has a deadline in 6 months, it is 

unwise to choose a model that will take weeks to months to run, especially with the 

additional time needed to set up the model. Also, the time constraints relating to the 

applications should be considered. For instance, flood forecasting requires fast models.  

All in all, there is no one best type of model. The choice of model is dependent on the 

application, data available, computational resources and time available. However, wherever 
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possible the best model will be the simplest one that gives the required information whilst 

reasonably fitting the data (Bates and De Roo, 2000). 

 

2.3 Hydrodynamic Model Choice 

2.3.1 Model Requirements 

For the requirements of this thesis a hydrodynamic model must fulfill the following criteria: 

• Computationally efficient enough to run multiple simulations at a regional scale at an 

intermediate resolution 

• Few data requirements (i.e. suitable for a data-sparse location) 

• Ability to represent flood inundation over a large floodplain 

• Ability to represent backwater effect 

• Access to source code  

The intended focus area of this thesis – the Mekong Delta – is an extremely large area. A 

trade-off is needed between model complexity and resolution, so the model can capture the 

correct processes but can in turn be run multiple times. As flood inundation spreads over 

topography, it is necessary to simulate flow over the complex topography of the floodplain 

so a 2D model is most appropriate. A 1D model would be inappropriate as it would be too 

simple to resolve the complex floodplain topography. Conversely, a 3D model would be far 

too computationally expensive and would not have the required data to make the flood 

predictions effective. Additionally, the model should take in the order of minutes to hours to 

compute to allow for a suitable exploration of the complexity needed in a timely manner. 

Moreover, the hydrodynamic model must be able to run at different resolutions to be able to 

investigate the effects of scale. The model should be able to represent backwater effects that 

have a strong influence in the Mekong Delta, both from the coastal area and the Tonle Sap 

lake. Lastly, it is beneficial to have access to the source code to make any changes. As a 

result, we choose to use the LISFLOOD-FP hydrodynamic model, which will be briefly 

discussed below. 
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2.3.2 LISFLOOD-FP 

A model that satisfies the aforementioned criteria is LISFLOOD-FP (Bates et al., 2010). The 

model has been continually improved since its inception in 2000 (Neal et al., 2018), with its 

computational efficiency and ability to utilize high performance computing a particular 

advantage when performing multiple simulations. LISFLOOD-FP has performed well when 

tested against a range of academic and commercial hydrodynamic models in both rural and 

urban settings and across a range of scales (Horritt and Bates, 2001a, Horritt and Bates, 2002, 

Hunter et al., 2008, Bates et al., 2010, Neal et al., 2012b, Néelz and Pender, 2013). For 

example, when comparing the diffusive, inertial and full 2D shallow water equations of 

LISFLOOD-FP, (Neal et al., 2012b) found that the inertial model only had small differences 

in model predictions when compared to the fully dynamic 2D models for sub-critical flow. 

The model has been applied to fluvial (Neal et al., 2012a, Horritt and Bates, 2001a), pluvial 

(Fewtrell et al., 2008, Neal et al., 2009b, Fewtrell et al., 2011, de Almeida et al., 2012) and 

coastal flooding (Lewis et al., 2013, Purvis et al., 2008, Bates et al., 2005b, Quinn et al., 2013) 

across a range of scales from hyper resolution (Fewtrell et al., 2011, Sampson et al., 2012), to 

high (Horritt and Bates, 2001a, Wing et al., 2017, Ettritch et al., 2018) and to intermediate 

scales (Neal et al., 2012a, Komi et al., 2017, Schumann et al., 2013, Wilson et al., 2007, Sanyal 

et al., 2013, Biancamaria et al., 2009, Lewis et al., 2013, Altenau et al., 2017). Recently, 

LISFLOOD-FP has been used to create a global flood model (Sampson et al., 2015) currently 

run by Fathom Global Ltd. Consequently, LISFLOOD-FP has been found to accurately 

simulate flooding in a computationally efficient manner and is thus appropriate for this 

thesis. Other models could be used, but doing so would produce similar results, and at the 

expense of time in setting them up. It is expected that any conclusions reached in this thesis 

would be transferable to other hydrodynamic models.  

2.3.2.1 LISFLOOD-FP – A Brief Model History and Description 

LISFLOOD-FP was first presented by Bates and De Roo (2000). The published model 

development of LISFLOOD-FP can be found in Table 2-6. The premise behind LISFLOOD-

FP was to create a simple as possible model that could be used with the ever-increasing 

number of high-resolution DEMs. This involved representing the channel in 1D to simulate 

the propagation of the flood wave, and the floodplain in 2D to enable the simulation of 
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floodplain water depths and subsequent inundation extent (Bates and De Roo, 2000). In the 

original version of LISFLOOD-FP, channel flow was calculated using a kinematic wave 

model which simplifies the St Venant momentum equation by eliminating the local 

acceleration, convective acceleration and pressure terms. Each channel cell has a value for 

cross-sectional area, bed elevation and friction, with the assumption of a wide and shallow 

rectangular channel shape which means the wetted perimeter can be approximated as the 

channel width. Channel flow was solved using implicit scheme. Once the bankfull depth of 

the channel is exceeded, water is routed onto the adjacent floodplain pixels. The volume of 

water flowing into the floodplain pixels is calculated at each time step from the 4 

neighboring cells (upstream, downstream, left, right), with the flowrate also calculated using 

Manning’s equation. Floodplain flow is then approximated as a 2D diffusion wave, where 

flow is calculated using an explicit scheme after the water depths has been updated. Each 

floodplain pixel are treated as individual storage volumes, with the flow between them 

calculated using the Manning’s equation based on the free surface slope between floodplain 

pixels (Horritt and Bates, 2001a). Hence each floodplain pixel must also have a Manning’s 

friction value with the elevation of the floodplain cell derived from the DEM. In the original 

scheme presented in Bates and De Roo (2000), the channel was represented as a set of pixels 

running through the computational grid, where water depth is calculated using the channel 

flow rather than the floodplain flow scheme (Horritt and Bates, 2001a). This created a scaling 

issue, whereby the channel width was included as a parameter, with this width likely being 

different from the floodplain grid size. For large pixel sizes this causes a discrepancy 

whereby the channel occupies a much larger area of the floodplain than necessary. As a 

result, a slightly different scheme was implemented whereby the channel occupies no 

floodplain pixels, but instead the channel overlays the floodplain pixels with flow 

interaction between the overlying pixels calculated using Manning’s equation (Horritt and 

Bates, 2001a). The initial versions of LISFLOOD-FP was found to perform well with other 

academic and commercial models (Horritt and Bates, 2001b, Horritt and Bates, 2002), whilst 

the computational efficiency made Monte Carlo simulations possible (Aronica et al., 2002) 

and simulations in large domains (Horritt and Bates, 2001a). 

Table 2-6 Published model development of LISFLOOD-FP 
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Year  Development Reference 

2000 LISFLOOD-FP First Presented. 1D Channel, 2D Floodplain Bates and De Roo 

(2000) 

2005 Adaptive timestep scheme implemented Hunter et al. (2005) 

2009 OpenMP Parallelisation Neal et al. (2009a) 

2010 Inertial formulation of shallow water equations.  Bates et al. (2010) 

2012 q-centered numerical scheme implemented  de Almeida et al. 

(2012) 

2012 Subgrid scheme implemented Neal et al. (2012a) 

2013 Rainfall Routing Scheme Sampson et al. (2013) 

2015 Parameterisation of Channel shape Neal et al. (2015) 

2018 Further optimisation (parallelisation, wet/dry cell marking, data access, 

vectorisation) 

Neal et al (2018) 

 

Since the initial release of LISFLOOD-FP there have been numerous developments. For 

instance, Hunter et al. (2005) introduced a diffusive wave version of LISFLOOD-FP with an 

adaptive timestep. This was designed to overcome the limitation of a fixed timestep in the 

initial model. If the model timestep was too large, water was found to traverse through a 

whole cell during one timestep leading to a chequerboard oscillation where the model 

becomes unstable with large flows transferred into a cell in one timestep which then all 

flows back in the next timestep (Hunter et al., 2005). One solution is to use a flow limiter to 

replace the calculated floodplain flow. The flow limiter is a function of grid size and model 

timestep as opposed to floodplain friction, thus floodplain flow became insensitive to 

Manning’s friction for the floodplain. To resolve this, Hunter et al. (2005) introduced an 

optimal adaptive timestep determined by the CFL condition for model stability which 

allowed the model timestep to become temporally variable. Although the adaptive timestep 

made better flood predictions than the fixed time step model, with improvements 

particularly in the wetting and drying of the floodplain, Hunter et al. (2006) found that 

simulation time was typically 6x more than the fixed timestep model. The reasons behind 

this behavior are twofold. First, the optimum timestep reduces quadratically with 

decreasing grid size, which leads to simulation times 2-10x greater for resolutions between 

25-100m. Secondly, the optimum timestep is linked to water surface slope, so when the flow 

rate (and thus the water surface slope) reduced to zero so did the timestep (Bates et al., 

2010). As a result, most diffusive models with the adaptive scheme took longer to run than 

fully dynamic 2D models (Hunter et al., 2008) In addition, acceptable parameter sets 

occurred over a broader parameter space for the adaptive scheme compared to the fixed 
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timestep scheme suggesting the adaptive scheme may be easier to calibrate (Hunter et al., 

2006). 

The next major development in LISFLOOD-FP combatted the high computation cost of 

running the adaptive scheme by incorporating local inertial terms (Bates et al., 2010). The 

study of Hunter et al. (2008) identified that the lack of mass and inertia was the key reason 

behind the strict time step control. Taking the momentum equation from SWE, Bates et al. 

(2010) drops the advection term, as floodplain flow advection was found to be relatively 

unimportant (Hunter et al., 2007), but keeps the acceleration term. By including the 

acceleration term, water now has mass, and is therefore less likely to generate rapid 

reversals in flow that can lead to a chequerboard oscillation effect (Bates et al., 2010). 

Therefore, the continuity equation which describes the change in water height for a given 

cell for this formulation of LISFLOOD-FP is described by: 
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where ℎ is water depth (m) at the center of a cell, 𝑖 and 𝑗 are the spatial indices of the cell in 

the x and y Cartesian directions respectively, 𝑡 is the current time (s), ∆𝑡 is the timestep, 𝑡 +

∆𝑡 is the time at the next timestep, 𝑄 is the flow (m3s-1) between two cells and 𝐴 is the water 

surface area in a cell (m2). To calculate the water flow between cells, the momentum 

equation for this formulation of LISFLOOD-FP becomes: 
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where ∆ 𝑥 is cell resolution (m), 𝑞𝑡  is the flow from the previous timestep 𝑄𝑡  divided by cell 

resolution ∆ 𝑥,  𝑔 is acceleration due to gravity (ms-1), 𝑛 is the Manning’s coefficient of 

roughness (sm1/3) , 𝑆 is the water surface slope and ℎ𝑓𝑙𝑜𝑤
𝑡  is the depth that water can flow 
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through between cells, and is calculated as the difference between the highest bed elevation 

and the highest water surface between two cells (m).  

Whilst the CFL condition can be used to identify an appropriate timestep, it is not sufficient 

to ensure model stability as the assumption of a small amplitude in calculating the wave 

celerity is not always valid and because the friction term is included (Bates et al., 2010). To 

ensure model stability, Bates et al. (2010) introduced a coefficient 𝛼 in the following equation 

to calculate maximum timestep  𝑡𝑚𝑎𝑥 

𝑡𝑚𝑎𝑥 =  𝛼
𝑥

√𝑔ℎ𝑡
(10) 

Where x is the cell width and the remaining terms described previously. The coefficient term 

𝛼 has a range between 0.2-0.7. The new formulation allows the stable timestep to scale with 

1/∆𝑥 rather than 1/∆𝑥2 in the diffusive cell code. As a result, stable maximum timesteps 

increased between 1-3 orders of magnitude. In testing the new formulation, Bates et al. 

(2010) report a maximum speed up of 1120x over the diffusive storage model, although this 

was dependent of water surface gradient and model resolution. The RMSE difference 

between the new formulation of Bates et al. (2010) was only 1cm compared to the scheme of 

Hunter et al. (2005). Some instabilities occurred when low floodplain friction values were 

used that can be especially prevalent in urban environments Bates et al. (2010). By 

introducing numerical diffusion from a q-centered numerical scheme, de Almeida et al. 

(2012) enhanced stability at a negligible additional computational cost compared to the 

formulation of Bates et al. (2010). 

The next major development to LISFLOOD-FP has been the inclusion of a sub-grid scheme 

by Neal et al. (2012a). In the sub-grid scheme, any size channel below grid resolution can be 

represented. This development is important for intermediate scale models as for model 

resolutions >100m the grid size imposed an increasingly severe restriction on the simulation 

of channelized flow (Altenau et al., 2017). Channel flow is calculated by a 1D interpretation 

of the 2D scheme presented by Bates et al. (2010) with two additional variables of channel 

bed elevations and channel widths. Unlike previous versions of LISFLOOD-FP, the sub-grid 

scheme does not assume a rectangular channel where the hydraulic radius is approximated 
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by the flow depth. This is because the subgrid model could be required to simulate small, 

narrow and deep channels, so the formulation was changed to define the hydraulic radius as 

the area of flow between cells divided by the wetted perimeter (which is defined by the 

cannel width and water depth). Neal et al. (2012a) note that this formulation can suffer 

instability issues in situations where large channels flow into small channels. In the subgrid 

formulation the momentum equation becomes: 

𝑄𝑐
𝑡+∆𝑡 = 

𝑄𝑐
𝑡 − 𝑔𝐴𝑐,𝑓𝑙𝑜𝑤 

𝑡 Δ𝑡 𝑆𝑐
𝑡  

(1 + 𝑔∆𝑡𝑛2|𝑄𝑐
𝑡|/[(𝑅𝑐,𝑓𝑙𝑜𝑤

𝑡 )
4
3𝐴𝑐,𝑓𝑙𝑜𝑤 

𝑡 ])

(11) 

Where 𝑄𝑐
𝑡 is flow, 𝐴𝑐,𝑓𝑙𝑜𝑤 

𝑡 is the area of the flow between cells and 𝑅𝑐,𝑓𝑙𝑜𝑤
𝑡  is the hydraulic 

radius. To obtain the hydraulic radius, the width of flow at each edge is calculated by: 

𝑤𝑐,𝑓𝑙𝑜𝑤 = min(𝑤𝑐,𝑖, 𝑤𝑐,𝑖+1) (12) 

Where 𝑤𝑐 is the channel width. Channel flow area is then calculated based on the depth of 

flow: 

𝐴𝑐,𝑓𝑙𝑜𝑤 
𝑡 = 𝑤𝑐,𝑓𝑙𝑜𝑤 ℎ𝑐,𝑓𝑙𝑜𝑤 

𝑡 (13) 

Finally, hydraulic radius is defined as: 

𝑅𝑐
𝑡 =

𝐴𝑐,𝑓𝑙𝑜𝑤 
𝑡

𝑤𝑐 + 2ℎ𝑐,𝑓𝑙𝑜𝑤
𝑡 (14) 

However, for many rivers, information on the channel bed elevation is not available. 

Therefore, Neal et al. (2012a) use hydraulic geometry (Leopold and Maddock, 1953) to 

estimate channel depth based on applying a coefficient and fractional exponent to river 

width. This makes the sub-grid version of LISFLOOD-FP particularly useful in large data-

sparse floodplains. A schematic diagram of the different types of model is given in Figure 

2-4. 
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Other LISFLOOD-FP developments have included a rainfall routing scheme (Sampson et al., 

2013), parameterizing channel shape (Neal et al., 2015) and optimization of the code through 

parallelization (Neal et al., 2009a) , tracking of wet/dry cells, data access efficiency and 

vectorization (Neal et al., 2018). The latest optimization work yielded performance 

improvements of between 4.2x and 8.4x faster on a single core machine, and 34-60x faster on 

a 16 core machine (Neal et al., 2018). LISFLOOD-FP has also been coupled to the CAESAR 

landscape evolution model (Coulthard et al., 2013) and to a global hydrological model (PCR-

GLOBWB) through the GLOFRIM project (Hoch et al., 2017). Continuing development of 

LISFLOOD-FP is ongoing. 

2.4 Summary 

This chapter has outlined flooding, how floods are modelled and a discussion of the choice 

of LISFLOOD-FP for the hydrodynamic model used in this thesis. Further discussion of 

DEMs, their uncertainty, geostatistics and river floodplain connectivity are described in 

further detail in subsequent chapters. 

Figure 2-4 Conceptual diagram of types of hydrodynamic models (a) 2‐D channel flow model, (b) 

hybrid 1‐D/2‐D channel flow model, (c) 1‐D channel flow model, (d) 2‐D raster cell with relevant 

variables, and (e) 1‐D subgrid raster cell with relevant variables. Courtesy of Altenau et al. (2017) 
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Chapter 3 An Intermediate Scale Hydrodynamic 

Model of the Mekong Delta built using freely 

available data 

 

Paper in Preparation 

3.1 Preface 

This first results chapter consists of work currently under preparation for submission. All 

simulations, analysis, writing and figures were completed by the lead author with advice 

from Paul Bates and Jeffrey Neal. Flow estimates of the Tonle Sap were provided by Matti 

Kummu of Aalto University. Detailed channel information was provided by the WISDOM 

Project through Claudia Kuenzer of the German Aerospace Center. Satellite Imagery to 

estimate flood extent was provided by Akihiko Kotera of Kobe University. Matthew Lewis 

of Bangor University provided guidance on using the FES2014 data.    

3.2  Context 

As the main aim of this thesis was to further our understanding of how uncertainty of 

topography impacts flood inundation predictions in data-sparse environments, a pre-

requisite was to build a hydrodynamic model that can be used as a tool to determine how 

uncertain data propagate into flood predictions. An intermediate scale (540 m) was chosen 

(see Table 1-1) to allow for a suitable computation time for Monte Carlo simulations. A data-

sparse river delta (Mekong) was chosen as a test case for two reasons – 1) River deltas have a 

high flood risk but are not modelled at the intermediate scale despite the obvious need. 2) A 

hydrodynamic model at an intermediate scale of such an environment does not presently 

exist and fits within the local to global scale models that currently exist for the delta. This 

chapter will investigate the level of detail needed to make accurate flood predictions in a 

data-sparse river delta environment and will provide guidance on how a hydrodynamic 
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model should be built at an intermediate scale which could be utilised in other less studied 

deltas. An intermediate scale model is suitable for data-sparse deltas for three reasons. 1) A 

lack of data to calibrate and validate the model; so even if a high-resolution model could be 

built, data is often not available to evaluate it.  2) Multiple scenarios can be run to explore 

uncertainties in the model structure and parameterization. 3)  High-resolution can provide a 

false level of confidence in results, pushing modelers to a deterministic mapping approach 

which has the danger of missing some at-risk areas. At a practical level, flood risk 

management requires a map of potentially flooded areas, and for that to be readable high-

resolution model results often have to be aggregated to a coarser scale, thus negating the 

need for high-resolution models (Dottori et al., 2013). The key question remains as to 

whether an intermediate scale model can accurately simulate flooding. To this end this 

chapter will aim to address this question.  

3.3  Introduction 

River deltas are highly dynamic, low topographic slope areas that form when a river 

deposits sediment into a standing body of water. In the context of this work, a delta is 

considered the ‘seaward area of a river valley after the main stem of a river splits into 

distributary channels (Syvitski and Saito, 2007).  River deltas are among the most productive 

and economically important ecosystems in the world, acting as a hotspot for biological 

productivity, a home to an estimated 600 million people and an area of high agricultural 

productivity (Day et al., 2016, Passalacqua, 2017). Yet, river deltas are also one of the most 

threatened global ecosystems, primarily because of human activities. Recently, there has 

been a growth in population in river deltas with much of this increase in growth 

concentrated in deltaic mega cities, heralding a shift from economies dominated by 

agriculture towards economies increasingly reliant on manufacturing and export processes 

(Syvitski et al., 2009, Seto, 2011, Day et al., 2016). Yet, river deltas form one of the most flood 

prone areas in the world, and this is widely expected to increase in the future as a result of 

sea level rise, subsidence and precipitation increases (Syvitski et al., 2009, Hallegatte et al., 

2013). 
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Despite this, flood models focused on river deltas are scarce. Studies exist in developed 

countries, such as in the Rhine Delta (Klerk et al., 2015), and in developing countries studies 

mainly focus on the Mekong Delta (see Table 3-2) and the Ganges-Brahmaputra (Karim and 

Mimura, 2008, Lewis et al., 2013, Ikeuchi et al., 2017, Ikeuchi et al., 2015). River deltas in 

developing countries have a high flood risk (Syvitski et al., 2009, Ericson et al., 2006), and 

tend to be characterized by a lack of data, making flood modelling in these regions 

challenging. Data sparse deltas can be modelled with coarse scale models based on open 

data, but these have been found to perform poorly (considered models that correctly predict 

<50% of observed flooding) in these areas (Trigg et al., 2016). Yet, coarse and intermediate 

scale models are important as they do not rely on detailed data so can be applied to data-

sparse regions and are computationally efficient such that Monte Carlo methods can be 

applied. Recently, Ikeuchi et al. (2017) devised a method that can be used across multiple 

deltas by downscaling results from the global CaMa-Flood which is run at 0.1° 

(approximately 10 km at the equator) and coupling it with the Global Tide and Surge 

Reanalysis (GTSR) dataset. Whilst valuable, the coarse resolution of the global model makes 

accurate simulations of inundation extent difficult as the model resolution is too coarse to 

resolve floodplain features that control the flood inundation. With the need to better 

understand the flood risk in deltas, an approach is needed whereby open data can be 

utilised to build a flood model at an appropriate scale to give accurate results. 

Hydrodynamic models at the coarse scale (>1 km) cannot represent the key floodplain 

features that control flood inundation and, in turn, almost all the world’s deltas do not have 

the topographic data to model at the hyper resolution scale (<30 m). Therefore, we are left 

with the choice to model at the high-resolution scale (30-270 m) or the intermediate scale 

(270-1000 m). Whilst topographic data are available globally through the Shuttle Radar 

Topography Mission (SRTM) DEM at 90 m, data are noisy at that resolution with a random 

height error of approximately 6m which is above the height of a typical flood wave 

amplitude (4-6 m). However, by coarsening the DEM to intermediate scales, the random 

height error drops to ~10% of the flood wave amplitude (~0.6 m random height error at 1 

km). Whilst not perfect, modelling at the intermediate scale provides a compromise between 

vertical noise, resolution and computational resources. Previous studies in the Amazon 

(Wilson et al., 2007) and Niger (Neal et al., 2012a) have found that this approach produces 
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acceptably accurate results. Thus, in this thesis the aim is to address whether an 

intermediate scale can produce acceptably accurate results on a large river-delta 

environment. To this end, this chapter sets out to address the following questions: 

• Can an intermediate scale hydrodynamic model be built for a data-sparse delta using 

freely available data that accurately represents flooding?   

• What aspects of the flood model structure and data are most important to inundation 

prediction?  

 

For this study, the Mekong Delta is selected as a study site. This is justified as the delta can 

be considered as being data-sparse and experiences the threats and challenges that many of 

the world's large deltas experience, thus, can be considered a typical heavily populated large 

delta. These threats include sea-level rise (Wassmann et al., 2004), salinity intrusion (Smajgl 

et al., 2015), shoreline retreat (Anthony et al., 2015), subsidence (Erban et al., 2014, 

Minderhoud et al., 2017), tidal deformation (Nhan, 2016) and upstream damming (Räsänen 

et al., 2017) . Secondly, there has been a range of flood inundation studies in the Mekong 

Delta ranging from coarse resolution global type models to high resolution models that rely 

on bespoke data (Table 3-2) , so the intermediate scale model developed in this chapter 

positions itself between these models on the complexity scale, allowing for comparison 

between the approaches. 

3.3.1 Challenges in River Deltas 

River deltas are facing a host of key challenges. Upstream damming is starving sediment 

supply (Giosan, 2014, Kondolf et al., 2014), which is also important in providing nutrients 

for agriculture. In some deltas, the demand for building material has driven channel bed 

mining (Brunier et al., 2014). Anthropogenically built channels linking irrigated paddies, are 

becoming more prevalent, posing management challenges. An increase in demand for 

groundwater and hydrocarbons has led to increased extraction and, thus, subsidence that 

can outpace sea-level rise by one to two orders of magnitude (Syvitski et al., 2009, Higgins, 

2016). Aquaculture contributes to this water demand, and is becoming increasingly 

widespread (Ottinger et al., 2016). At the coast, mangroves are being depleted in many 
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areas, despite widespread recognition of their ability in attenuating storm surges (Zhang et 

al., 2012, Quartel et al., 2007, Horstman et al., 2014). Salt-water intrusion is increasingly 

becoming a problem in some deltas, damaging crops (Smajgl et al., 2015). With the reduced 

sediment supply, coastal erosion is more prevalent (Besset et al., 2016). Lastly, storm surges 

can be catastrophic for deltas, as demonstrated by Cyclone Nargis and Hurricane Katrina 

devastating the Irrawaddy and Mississippi deltas respectively. To survive, deltas need to be 

in equilibrium – or in other words enough sediment needs to come in to replenish the 

eroded material. Yet this is increasingly not the case, with deltas effectively sinking making 

them more susceptible to flooding.  For example,  Syvitski et al. (2009) conservatively 

estimated a 50% increase in deltaic areas vulnerable to flooding by the end of the 21st 

century.  
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3.4  Study Site 

The Mekong Delta is considered the world’s third largest by area (Coleman and Huh, 2004) 

with the Vietnamese part home to almost 20 million people (Szabo et al., 2016) and the 

Cambodian part home to around 10 million people. Despite falling fertility and relatively 

high out migration, population has continued to grow, particularly in urban centres such as 

Can Tho city (Dun, 2011). The region is biodiverse (Campbell, 2012) and plays a crucial role 

in regional food security, supplying 50% of Vietnam’s food, 90% of Vietnam’s rice and 60% 

of Vietnam’s fish, with the region is known colloquially as the rice bowl of Vietnam 

(Anthony et al., 2015, Käkönen, 2008). Two monsoonal systems, the southwest Indian 

Monsoon and the northwest Pacific Monsoon, cause two distinct seasons within the Delta: A 

dry season from December to the end of April, and a wet season from May to November 

(Hung et al., 2012). The mean discharge of the Mekong at the Kratie gauge to the North of 

the delta is 14,500 m3/s (MRC, 2010b), with approximately 85% of river discharge in the wet 

season and the remaining 15% in the dry season (Le et al., 2007).  

Figure 3-1 Threats & Challenges to Deltas: a) Upstream Damming; b) Reduced Sediment Delivery; c) 

River channel bed mining; d) Anthropogenically built channels; e) Irrigation; f) Groundwater & 

hydrocarbon extraction; g) Aquaculture; h) Mangrove Depletion; i) Salt-water Intrusion; j) Coastal 

Erosion; k) Storm Surges   
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Figure 3-2 Map of Study Domain. The study site was defined using the delta definition of Syvitski & 

Saito (2007) but extended to encompass Tonle Sap Lake and the Kratie river gauge. Zones are 

delineated in black and are referred to throughout the text. Dark blue refers to the main channels of 

the Mekong Delta and lighter blue channels depict the smaller channels included in most of the 

models (far more smaller channels exist in reality). Gauges used to calibrate and validate the model 

are shown by red stars and the two major cities in the region are shown by yellow circles.  
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The development of the Mekong Delta can be traced back to the French Colonial rule (1887-

1954), when French dredgers opened up the Mekong wetlands by digging hundreds of 

kilometres of canals (van Staveren et al., 2018, Biggs, 2010). This opened up the sparsely 

populated wetlands for agriculture and settlement, consequently resulting in the relocation 

of tens of thousands of farmers from the north of Vietnam (Janssen, 2015). The dredged 

material was subsequently used to construct dikes. The 1970s saw a shift from flood 

avoidance and adaptation to flood control with the construction of so-called ‘August dikes’ 

which allowed inundation of rice fields in August (Howie, 2011). The ‘doi moi’ policy 

reforms of 1986 heralded a shift towards the intensification of rice cultivation under 

relatively flood free conditions, resulting in the Vietnamese government heightening the 

dike network. This has continued further, especially in the northern provinces of the 

Vietnamese Mekong Delta which have seen a large growth of high dikes in recent years 

(Tran et al., 2018b). However, the recent adoption of the Mekong Delta Plan (MDP) 

(Vietnam, 2013) has changed the development trajectory of the delta back towards a system 

with more flood control.  

The Mekong main stem flows into the floodplains of southern Cambodia before splitting 

into 3 branches just to the north of Phnom Penh.  These branches are the Bassac (Hau) River, 

the Mekong (Tien) River and the Tonle Sap River. The latter river links to the Tonle Sap Lake 

which plays a crucial role in the hydraulics of the area. As the Bassac and Mekong rivers 

flow into Vietnam, they briefly meet again at Vam Nao Island, before splitting out through 

the Mekong delta.  The Bassac splits into three channels and the Mekong into five (formerly 

six) to flow out of eight outlets. The Mekong’s Sino-Vietnamese name, Cuu Long, translates 

as the ‘nine dragons’, referring to the nine outlets (now eight) of the river (van Staveren et 

al., 2018).  

The area under consideration in this chapter can be split into four areas: The Cambodian 

floodplains; Tonle Sap Lake; Vietnamese Mekong Delta (VMD) and the coastal zones. To the 

north of the domain, the Cambodian floodplains are a comparatively natural system with 

little human interference, despite a recent push to intensify the agricultural productivity of 

the area (Erban and Gorelick, 2016). During the flood season this region is largely inundated, 

and provides important flood attenuation (Fujii et al., 2003).  
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The Tonle Sap Lake forms the largest freshwater body in Southeast Asia. The importance of 

the lake is profound, acting as a natural flood reservoir which reduces flooding downstream 

in the wet season and providing dry season flow to the delta from September/October 

onwards (Kummu et al., 2014). During the wet season, 20% of the Mekong mainstream 

enters the lake, whilst in the dry season between October-March 20-50% of the discharge at 

the Chaktomuk confluence on the Mekong main stem comes from the Tonle Sap (Kummu et 

al., 2014).  Possible future development of irrigation and hydropower, as well as climate 

change, is expected to bring considerable alterations to the flood pulse of the Tonle Sap 

(Kummu and Sarkkula, 2008). 

The Vietnamese Mekong Delta is a highly complex, anthropogenically dominated region. At 

the Cambodian-Vietnamese border, approximately 80% of floodwater (20,500-25,500 m3 s-1) 

is carried in the Tien River at Tan Chau, whilst 20% (6500-7660 m3 s-1)  is carried in the Hau 

river at Chau Doc (Tri, 2012). This 19,500 km2 area has an estimated 91,000 km of channel 

network, compromising a plethora of channels, dikes, sluice gates and pumps (Manh et al., 

2015). The floodplains in this area are highly compartmentalised, with areas ranging from 

50-500ha (Manh et al., 2015). These compartments are mostly used for rice production, with 

flow controlled depending on flood magnitude and crop types/patterns.  

Water levels within the region have altered in recent years because of upstream dams, flood 

prevention systems, subsidence and sea level rise (Cochrane et al., 2014, Fujihara et al., 2016, 

Dang et al., 2016, Duc Tran et al., 2018). Thus far, the impact of dams on water levels in the 

Mekong Delta has been limited, but with the major planned developments this could alter 

(Dang et al., 2016, Dang et al., 2018).  In the northern Vietnamese Mekong Delta, particularly 

in An Giang province, flooding has been reduced by approximately 40% when comparing 

two hydrologically similar floods (2000 and 2011). As a result of less flooding in the northern 

part of the Vietnamese Mekong Delta, the flood wave has shifted downstream resulting in 

higher water levels and more flooding in the southern part of the Vietnamese Mekong Delta 

(Dang et al., 2016). In the future, scenarios of upstream damming, flood prevention 

strategies, rainfall changes, subsidence and sea level rise are expected to demonstrably alter 

the flow regime, presenting a considerable challenge for future planning (Dang et al., 2018, 
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Dang et al., 2016, Anh et al., 2018, Wassmann et al., 2004, Tri et al., 2013, Delgado et al., 2012, 

Takagi et al., 2016, Van et al., 2012) 

The coastal area extends southwards from the Can Tho and My Thuan gauges towards the 

coast and encompasses the Cau Mau peninsula. Much of this area is below sea level.  Tides 

in the region are a mixture of diurnal (Gulf of Thailand) and semi diurnal (South China Sea), 

with a high range of up to 4m in the South China Sea (Nguyen and Savenije, 2006, Hung et 

al., 2012).  The rivers in this area are affected by tidal backwater influences, especially in the 

dry season with tidal influences evident in water levels more than 120 km inland (Fujihara et 

al., 2016). In areas closer to the coast, flood events are typically a mixture of high-water 

levels during the flood season, high tides and storm surges. Presently, storm surges are not a 

major source of flood hazard, even though Typhoon Linda’s storm surge in 1997 produced 

the highest water level in some parts of the Mekong Delta for a 20 year period (Le et al., 

2007). It was previously thought that storm surge awareness was low (<40% respondents 

knew what a storm surge was) (Takagi et al., 2013), but this has since been questioned (Anh 

et al., 2017). However, in the future storm surges are expected to increase for the Mekong 

Delta (Takagi et al., 2013), exasperated by expected sea level rise (Wassmann et al., 2004, 

Doyle et al., 2010). Information on coastal water levels are difficult to obtain for the region 

with a limited spatial and temporal coverage.  

3.4.1 Threats to the Mekong Delta 

The Mekong Delta experiences a host of threats aside from flooding as outlined in Table 3-1. 

These threats are intrinsically linked to flood hazards and highlight the dynamic nature of 

the delta. Social challenges are not highlighted here, but of course exist. 

Challenge Headline  References 

Channel Bed 

Mining 

Between 1998-2008 average 

deepening of channels 1.3m1 

1Brunier et al. (2014) 

Table 3-1 Threats to the Mekong Delta 
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Challenge Headline  References 

Mangrove 

Depletion 

Average mangrove width 140m 

due to depletion2. 

2Phan et al. (2015); Nguyen et al. (2017) 

Salinity Intrusion Rice production will be affected 

and/or adaptation methods 

needed3. 

Wassmann et al. (2004); Renaud et al. (2015) ; 3Smajgl et al. 

(2015); Kantoush et al. (2017) 

Sea Level Rise 4mm/yr-1 4. By 2050, sea level rise is 

expected to be 30cm along the 

South Vietnamese coast5 

5Smajgl et al. (2015); Dang et al. (2016); 4Fujihara et al. (2016) 

Shoreline Retreat 50% of 600km shoreline 

experiencing shoreline retreat 

between 2003-20126 

6Anthony et al. (2015); Besset et al. (2016) 

Subsidence Subsidence rates due to 

groundwater pumping of ~1-

4cm/yr-1. Thus by 2050, land 

subsidence could be ~0.88m (0.35-

1.4m)7 

7Erban et al. (2014); Erban and Gorelick (2016); Minderhoud et 

al. (2017); Minderhoud et al. (2018) 

Tidal 

Deformation 

Maximum tidal water levels and 

tidal amplitude are increasing 

quicker than sea level alone as the 

tides themselves are deformed by 

sea-level rise8. 

8Nhan (2016) 

Upstream 

Damming 

Under a definite build scenario, 

there will be a 51% reduction in 

sediment to the delta, and a 96% 

reduction if all planned dams are 

built9. 

Kummu and Sarkkula (2008); Grumbine and Xu (2011); MRC 

(2011a); Lauri et al. (2012); Orr et al. (2012); Piman et al. (2013); 

Arias et al. (2014); Cochrane et al. (2014); Lu et al. (2014); 

9Kondolf et al. (2014); Manh et al. (2015), Rubin et al. (2015); 

Räsänen et al. (2017); Dang et al. (2018) 

 

Dang et al. (2018) investigated future hydrological alterations based on several threats. The 

authors concluded that the Cambodian floodplains would be most affected by upstream 

damming. The Vietnamese Mekong Delta would be most affected by water infrastructure in 
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the wet season and sea level rise in the dry season, with planned canal widening found to 

make little difference to the flood depth. In the coastal regions, land subsidence and sea level 

rise are predicted to have the greatest impact. It should be noted that the Mekong Delta is a 

highly dynamic system (Le et al., 2018) that has rapidly changed in the past 2 decades 

making understanding the threats and challenges extremely challenging. 

3.4.2 Flooding in the Mekong Delta 

Flooding in the delta occurs annually. Nguyen et al. (2007) estimated that 2.5 million people 

in the VMD live in areas affected by deep flood water (up to 3 metres) and 3 million in areas 

affected by medium flooding (up to 1.5 metres). However, too much flooding causes 

damage to crops and infrastructure, as well as fatalities. Causalities occur either as the flood 

hits or as people are living for several weeks on water, epidemic diseases (such as marsh 

fever, dengue and diarrhoea) spreads and threatens the most vulnerable (Nguyen et al., 

2007). The most severe recent flood occurred in 2000, causing an estimated 500 fatalities and 

US$500 million worth of damage (Hien et al., 2005, Chinh et al., 2016). Yet this flood only 

had an estimated return period of one in 20 years (Le et al., 2007). Consequently, the 

Vietnamese government embarked on a major flood defence project, particularly focused in 

the north of the VMD. Other, 'living with flood' strategies have been applied, including 

moving households from flood prone areas to safe locations and diversifying crops to 

reduce potential losses (Chinh et al., 2016). The effects of the flood defence projects were 

noted by Dang et al. (2016) as the 2011 flood was hydrologically similar, but considerably 

less inundation occurred in some regions. Other damaging floods with costs over $US 50 

million occurred in 1991, 1994, 1995, 1996, 2001, 2002 and 2011 (Chinh et al., 2016). Flood 

relief and disaster recovery are implemented by Vietnamese political and social 

organisations as well as some international organisations. Government efforts tend to focus 

on recovering public infrastructure, with support for affected households being very limited 

(Garschagen, 2013), with no flood insurance in the area (Chinh et al., 2016).  

However, benefits of small to medium scale flooding outweighs the disadvantages, and are 

indeed welcome (Duc Tran et al., 2018). Small and medium scale floods bring supplies of 

fertile sediment and fish which are pivotal for those who rely on agriculture for their 
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livelihoods (Käkönen, 2008, Hung et al., 2012). These floods are known as the ‘beautiful’ 

floods (Nguyen et al., 2007). It is estimated that approximately 160 million tons of fluvial 

sediment is deposited annually by seasonal floods (Tri et al., 2013, Marchand et al., 2014). In 

addition, small and medium scale flooding improves soil fertility by flushing fields, 

reducing harmful toxins and salinity (Nguyen et al., 2007, Hung et al., 2012). With increased 

intensification of rice cultivation and a shift towards triple cropping (Kontgis et al., 2015, 

Nguyen et al., 2016), dike height has increased meaning fields are no longer flushed 

naturally (Duc Tran et al., 2018). The recently endorsed Mekong Delta Plan [MDP] (Vietnam, 

2013) recognizes the environmental sustainability challenges of the high dikes associated 

with triple rice cropping and proposes a shift back towards controlled flooding, thus the 

contesting policy of flood prevention that has dominated the last several decades. With 

reference to the ‘9 dragons’ popular name of the Mekong, van Staveren et al. (2018) calls this 

encouraged seasonal flooding as the ‘tenth dragon’. Yet, despite rules stating that 8 crops 

should be grown within 3 years (the so called 3-3-2 cycle), allowing for recovery of the 

paddy system, this is largely ignored as the economic benefits outweigh the costs (Chapman 

et al., 2016, Tran and Weger, 2017, Tran et al., 2018b). This triple rice cropping system has 

increased the reliance on fertilisers and pesticides (Howie, 2011) and reduced the importance 

of the ‘beautiful’ flood. In general farmers feel less connected to the natural regime, with the 

intensification of rice cultivation being recognized as the main reason why ecosystem 

services has reduced (Berg et al., 2017). This situation could potentially change with Tran et 

al. (2018a) concluding that the long-term economic benefits are only marginally improved 

compared to sticking with double cropping, and that alternative farming 

methods/diversification can offer greater economic benefits. Additionally, farmers are 

concerned with environmental sustainability, but the stable rice market and lack of 

promotion of other farming methods makes a shift towards controlled flooding difficult 

(Tran et al., 2018b). 

Awareness of a positive perception of flooding is useful when considering flood inundation 

modelling as the general discourse around the subject portrays flooding as being negative or 

even catastrophic. If flooding is welcomed, consideration of what constitutes ‘good’ and 

‘bad’ flooding is an important question when communicating the risk to the users. Indeed, it 
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is a paradox to the general conception of flood risk, with small scale and regular flooding 

potentially enhancing economic wellbeing and safety. 

3.4.3 Flood Models in the Mekong Delta 

Despite the relative lack of data, there are several flood inundation models of the Mekong 

Delta across a range of scales and complexities. Table 3-2 provides details of flood 

inundation models in the Mekong Delta, with Table 2-2 in section 2.2.2 reminding the reader 

of the model types. However, many of the models are very detailed and use non-freely 

available data. Whilst this is valuable, it is difficult to easily reproduce for other data-sparse 

deltas. Most of the models use a 1D river channel representation plus a storage cell 

representation of floodplain areas, with only the Apel et al. (2016) study using a 2D 

modelling approach like this study. However, the Apel et al. (2016) 2D model is only for Can 

Tho city and utilises a bespoke ‘1D plus storage cell’ model developed by Dung et al. (2011) 

as a boundary condition. All these studies, except Yamazaki et al. (2014b) rely on some non-

freely available data. Additionally, none of the models use the Multi Error Removed 

Improved Terrain (MERIT) DEM, with elevation errors in this data source shown to be 

noticeably reduced in the Mekong Delta (Yamazaki et al., 2017). In addition, the models 

outlined in Table 3-2 do not always include a tidal downstream boundary condition. 

Therefore, the intermediate scale (540 m) LISFLOOD-FP subgrid model built in this chapter 

fills an important gap within the suite of Mekong Delta models, as it is a 2D model across 

the whole delta which has a computation time that allows for scenario analysis but has 

sufficient complexity to simulate comparatively detailed patterns of flood inundation.  
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Study Simulation Period Type Resolution Study Extent Data Used 

Zanobetti et al. (1970) Not Specified 1D channel and storage units 300 meshes Cambodia and 

Vietnam 

Field Studies 

Khue (1986) 1996 in Wassmann et al. (2004) 1D channel and storage units 1,505 nodes and 

555 storage cells 

Cambodia and 

Vietnam 

Water level and discharge from 

gauges. Rainfall and 

Evaporation. 

Dutta et al. (2007) 01/07/2002 – 31/10/2002 1D channel and storage units 1km Cambodian 

Floodplain 

Largely from Mekong River 

Commission (MRC). Freely 

available. 

Le et al. (2007) 01/06/2002 – 31/12/2002 1D channel and storage units 100m Cambodia and 

Vietnam 

Gauge information from Mekong 

River Commission (MRC but 

dike/sluice information not freely 

available. 

Table 3-2 Flood Models in the Mekong Delta 
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Study Simulation Period Type Resolution Study Extent Data Used 

Hoa et al. (2008) 01/07/2000 – 30/11/2000 & 

01/07/2001 – 30/11/2001 

1D channel and storage units 100m Cambodia and 

Vietnam 

Gauge information from Mekong 

River Commission (MRC) but 

dike/sluice information not freely 

available. 

Dung et al. (2011) 01/06/2008 – 31/12/2008 Quasi 1D/2D model based on 

MIKE 11 

Compartments 

and branches 

used for 

floodplain 

Cambodia and 

Vietnam  

Mekong River Commission 

(MRC) and Shuttle Radar 

Topography Mission (SRTM) 

data (Freely available). Some 

additional weir/dike information 

(Not freely available). 

Duong et al. (2014) 2000 & 2011 Quasi 1D/2D model based on 

MIKE 11 

Compartments 

and branches 

used for 

floodplain 

Cambodia and 

Vietnam  

Same as Dung et al. (2011) 

Manh et al. (2014) 2009 - 2011 Quasi 1D/2D model based on 

MIKE 11 coupled with sediment 

transport model 

Compartments 

and branches 

used for 

floodplain 

Cambodia and 

Vietnam 

Same as Dung et al. (2011) but 11 

zones used instead for zonation 

of parameters.  
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Study Simulation Period Type Resolution Study Extent Data Used 

Yamazaki et al. (2014b) 01/05/2001 – 30/04/2002 1D+ 

Global hydrodynamic model 

(CaMa Flood) 

10km Cambodia and 

Vietnam 

Mekong River Commission 

(MRC) and Global Width 

Database for Large Rivers 

(GWD-LR) (Freely Available) 

Apel et al. (2016) 26/09/2011 – 02/10/2011 & 

24/10/2011 – 31/09/2011 

1D channel and storage units 

model fed boundary to 2D 

model for Can Tho 

15m Can Tho city Mekong River Commission 

(MRC) and WISDOM Project 

data (Freely available). 5 and 

15m DEM (Not freely available) 

Triet et al. (2017) 2000 & 2011 floods Quasi 1D/2D model based on 

MIKE 11 

Compartments 

and branches 

used for 

floodplain 

Cambodia and 

Vietnam  

Mekong River Commission 

(freely available) Other gauge 

data from Southern Regional 

Hydro-Meteorology Center of 

Vietnam (SRHMC). Dike 

information from Southern 

Institute of Water Resources 

research (SIWRR) and LIDAR 

DEM from Ministry of Natural 

Resources and Environment of 

Vietnam (MONRE). Not freely 

available 
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Study Simulation Period Type Resolution Study Extent Data Used 

Dang et al. (2018) 2000 and future scenarios Quasi 1D/2D model based on 

MIKE 11 

Compartments 

and branches 

used for 

floodplain 

Cambodia and 

Vietnam 

Based on Dung et al. (2011) 

model with 6 future scenarios. 

Duc Tran et al. (2018) 2011 & 2013  Quasi 1D/2D model based on 

MIKE 11 

Compartments 

and branches 

used for 

floodplain 

Cambodia and 

Vietnam 

Based on Dung et al. (2011) 

model with updated dike 

information from SIWRR. SRTM 

used for DEM 

Ngo et al. (2018) 2000-2002;2011 1D SWMM Model 37 Nodes and 40 

Links 

Can Tho City Gauge information from Mekong 

River Commission (MRC) 
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3.5  Methodology 

An intermediate scale hydrodynamic model that will run multiple simulations requires a 

computationally efficient numerical scheme and a model structure that does not rely on 

detailed field data being available. The coastal nature of the domain also dictates that the 

model must be able to simulate backwater effects and bifurcations. 

3.5.1 Choice of Model 

Based on the aforementioned required model specifications, the raster-based hydrodynamic 

model LISFLOOD-FP version 6.3 (Neal et al., 2012a) was chosen. Alternative 2D models 

such as TUFLOW or Mike 21 could have been used, but LISFLOOD-FP was chosen as 2D 

models generally produce similar results if set up in a controlled way (Hunter et al., 2008, 

Neal et al., 2012b), with LISFLOOD-FP being particularly attractive owing to its speed and 

having access to the source code. In this version of LISFLOOD-FP the river channel and 

floodplain flow are represented using the local inertia approximation of the 1D Saint-Venant 

equations. The subgrid version of LISFLOOD-FP implements a sub-grid scheme for channel 

flow, so channels below model resolution can be represented in an efficient manner. In a 

regional scale deltaic context this is especially useful as the domain size means that a 

relatively coarse (>100 m) model resolution can be used whilst still representing the complex 

network of smaller channels that cross the study area. In a study on the Niger Delta, Neal et 

al. (2012a) found that including subgrid channels in the floodplain increased model accuracy 

when compared to a model without channels  (2D), a model without a floodplain (1D) and a 

model of the main channels and floodplain (1D/2D). Therefore, a sub-grid model can 

represent river-connectivity provided by smaller channels at an intermediate scale, with 

these smaller channels being prevalent in deltaic environments.   Furthermore, the model 

can simulate backwater effects which can be important when high river flows interact with 

high tides, compounding the flood hazard. In previous studies, LISFLOOD-FP has been 

found to become unstable at low Manning’s Friction values (less than 0.01), or under 

supercritical flow conditions (Bates et al., 2010, de Almeida et al., 2012), but these conditions 

are not present in a deltaic environment. Lastly, LISFLOOD-FP is computationally efficient, 
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with recent optimization of the code reporting a 4-8x performance increase for a single core 

and 34-60x when combined on 16 cores compared to a single core model, with performance 

comparing favorably to other commercial models (Neal et al., 2018).  

LISFLOOD-FP simulations of large-scale floodplains have been conducted in several regions 

the Amazon (Wilson et al., 2007, Baugh et al., 2013), Damador (Sanyal et al., 2013), Logone 

(Fernández et al., 2016), Gambia (Ettritch et al., 2018), Ob (Biancamaria et al., 2009), Oti 

(Komi et al., 2017), Niger (Neal et al., 2012a) and Zambezi (Schumann et al., 2013). Recently 

LISFLOOD-FP has been applied at a global scale  (Sampson et al., 2015). However, there has 

yet to be a study that specifically examines the sub-grid model’s performance in a large 

coastal delta that is subject to substantial anthropogenic influences. 

Because of the above, the choice of LISFLOOD-FP is justified. The model does not rely on 

detailed inputs making it appropriate for data-sparse environments, and the computational 

efficiency allows for Monte Carlo simulations.  

3.5.2 Model Setup 

The core inputs for the model are topography, upstream and downstream boundary 

conditions (discharge upstream, stage downstream), channel width and channel and 

floodplain roughness parameters. Optional inputs include channel bathymetry, evaporation, 

precipitation and channel shape where such data are available.  When bathymetry is not 

known, approximations can be made using hydraulic geometry theory (Leopold and 

Maddock, 1953), based on empirical relationships between remotely sensed river widths and 

bank height. 

3.5.2.1 Topography  

Topography is a crucial factor in the estimation of flood extent (Horritt and Bates, 2002). 

Digital Elevation Models (DEM) provide a gridded representation of topography and are 

frequently used in geoscience models. From previous studies, we know that the quality of 

the DEM affects the quality of flood estimates, with higher resolution DEMs typically giving 

more accurate flood estimates (Horritt and Bates, 2001a, Fewtrell et al., 2008, Neal et al., 

2009b, Fewtrell et al., 2011, Jarihani et al., 2015, Savage et al., 2016a, Savage et al., 2016b). 
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However, this comes at a computational cost with Savage et al. (2016b) noting that halving 

the model resolution in LISFLOOD-FP increases the simulation time by an order of 

magnitude. The use of a high-resolution DEM (<30m) is also restricted by data availability. 

High resolution DEMs, most commonly created using LIDAR technology, are rarely freely 

available and are largely confined to developing countries. 

From previous flood studies in the Mekong Delta (Apel et al., 2016, Triet et al., 2017), we 

know that LIDAR data exists for the Vietnamese part of the delta. However, this LIDAR 

data were not freely accessible. Late into the project, LIDAR data for An Giang province was 

acquired, which allowed for multiple DEMs to be used in the model build (LIDAR, MERIT, 

SRTM) and subsequently for the analysis of how different DEM products impact flood 

predictions. Concurrently, a field campaign in September 2017 to Cambodia and Vietnam 

was completed as part of an expedition led by the University of Hull and the university of 

Southampton in the UK. As part of the field campaign ground observations of elevation 

were collected using a Leica GNSS receiver which were then used to assess the accuracy of 

the global DEM products (MERIT & SRTM).  

As a result of the limited access to hyper-scale/high-resolution LIDAR data, an open-access 

global DEM is needed. Even if the all the available LIDAR data were obtained, it remains to 

be seen how the LIDAR data would have been integrated with other DEMs as Cambodia 

does not have any LIDAR data as far as the authors are aware. The Shuttle Radar 

Topography Mission (SRTM) is the most widely used global DEM, covering 99.97% of the 

Earth’s land surface between 56°S and 60°N at resolutions of 3 arc seconds (≈90 m) and more 

recently at 1 arc second (≈30 m) (Rabus et al., 2003, Farr et al., 2007). Various versions of 

SRTM exist, with the CGIAR-CSI developed void filled version (Jarvis et al., 2008) the most 

widely used. Other freely available DEMs include the Advanced Spaceborne Thermal 

Emission Radiometer at 90 m resolution (ASTER) (Abrams, 2000), and the Advanced Land 

Observing Satellite (ALOS AW3D30) (Takaku and Tadono, 2017) at 30 m resolution. The 

recent DLR (German Space Center) TanDEM-X global DEM at 12.5 m resolution has 

potential to give more accurate flood estimates (Archer et al., 2018), but is only available for 

educational purposes via a lengthy application, with the area to be requested smaller than 

the study area being considered here.  Despite being acquired in 2000, the SRTM DEM is still 
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the most popular global DEM because of its better accessibility, feature resolution and 

vertical accuracy and a smaller number of artefacts and noise compared to alternative global 

DEMs (Jing et al., 2014, Rexer and Hirt, 2014, Jarihani et al., 2015, Sampson et al., 2016, Hu et 

al., 2017) . As a result, the CGIAR-CSI developed void filled version SRTM DEM was used in 

this study. 

Even though SRTM is widely used, there are numerous critical issues. Sampson et al. (2016) 

highlight five issues of these: 1) poor vertical accuracy due to noise (see Rodriguez et al., 

2006 for detail); 2) difficulty in resolving a bare-earth DEM due to radar reflection from the 

top of the vegetation canopy and within it; 3) large positive elevation biases in urban areas 

due to the inability to resolve street-scale features, often resulting in urban areas 

unrealistically not flooding; 4) systematic errors relating to instrument pitch and yaw 

resulting in "striping"; 5) inability to resolve bathymetry of water bodies due to radar 

reflection. As a result, numerous efforts have been made to correct errors, such as void 

filling (Jarvis et al., 2008), hydrological correction (Lehner et al., 2008) and the removal of 

vegetation bias (Baugh et al., 2013, O'Loughlin et al., 2016b, Zhao et al., 2018, Pinel et al., 

2015). Absolute bias in floodplains is relatively low, with the majority of error being random 

error which has been found to be approximately 6 m for SRTM data (Rodriguez et al., 2006). 

This chapter also uses a recently released multiple error removed version of the Shuttle 

Radar Topography Mission (SRTM) called the Multi-Error-Removed-Improved-Terrain 

(MERIT DEM) (Yamazaki et al., 2017). In the MERIT DEM, errors have been reduced by 

separating absolute bias, stripe noise, speckle noise and vegetation bias with the most 

noticeable improvements in accuracy reported in flat regions (Yamazaki et al., 2017). With 

fewer artefacts (Hirt, 2018) and a better performance in flood models compared to SRTM 

(Chen et al., 2018), the MERIT DEM is to date the most effective global DEM correction. With 

the MERIT DEM being comparatively new, few flood studies have used it, thus, to test the 

impact of reduced errors, it is included in this study. It should also be noted the MERIT does 

not currently correct for urban biases, nor does it consider bathymetry. 
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3.5.2.2 Choice of model resolution 

Many modellers tend to focus on the nominal resolution of the DEM, but the vertical 

accuracy is of greater importance to flood modelling (Sampson et al., 2016). Numerous 

studies have found that model performance improves with increasing resolution but this 

plateaus when a certain resolution is reached (Horritt and Bates, 2001a, Fewtrell et al., 2008, 

Savage et al., 2016b). For LISFLOOD-FP, halving the model resolution increases the 

computational run time by an order of magnitude (Savage et al., 2016b), so a trade-off 

between resolution, vertical accuracy and run time is needed. This is especially important 

when multiple models are being run for probabilistic flood predictions or future scenario 

analysis.  

Floods are essentially a shallow water flow, meaning vertical noise within a DEM alters the 

flood dynamics as noisy pixels act as blockages or sinks. To reduce random noise in the 

DEM, the grid size can be resampled to a coarser resolution. By aggregating, elevation errors 

cancel out to some extent with the assumption of random noise. The standard deviation of 

the SRTM error is unknown for the Mekong Delta. Rodriguez et al (2006) found elevation 

errors to be 4.68 m for Africa, and Yamazaki et al (2017) a value of 5 m for flat areas, so we 

will assume an error of 5 m for this study.  Assuming errors are normally distributed, the 

sampling error in the aggregated cell will decrease based on 1/√𝑁 , where N is the number 

of observations. In reality, the error in the DEM sample will not have a zero mean, be 

normally distributed or be spatially uncorrelated, meaning this approach will underestimate 

the error in the DEM. Nevertheless, it can be a useful guide when choosing a resolution. To 

obtain a difference of less than 1m between two aggregated blocks with a probability of 95%, 

Neal et al (2012) aggregated 100 SRTM pixels giving a model resolution of 900 m (10x10 90 

m pixels) for their study of the Niger Delta. As computational power has increased since the 

Neal et al (2012) study, so a model resolution of 540 m is used in this study (i.e. 6x6 SRTM 

cells). The standard deviation of errors reduces to 0.83 m for this aggregation block size 

under the best-case scenario of random normal errors. Typical small scale-scale floodplain 

features that control inundation in the delta are embankments that are in the order of 1-3 m 

in height, thus the standard deviation of errors for a 540 m block at 0.83 m is appropriate. 

Yet the floodplain topography is spatially complex, especially in the Vietnamese part of the 
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Delta where embankments border the dense network of channels, thus a coarser resolution 

is inappropriate as the spatial complexity would be lost. This trade-off allows for an 

appropriate model run time and minimizes the loss of small-scale features. 

3.5.2.3 Upstream Boundary 

Daily inflows for the main stem were available from the Kratie gauging station, available 

from the Mekong River Commission (hereafter known as MRC). Due to the importance of 

the Tonle Sap Lake on the regional hydrodynamics, the model also needs inflows and 

outflows from the Tonle Sap Lake.  A reliable long-standing record of flow does not exist for 

the Tonle Sap River, so flow estimates from a detailed water balance model of the Tonle Sap 

Lake developed by Kummu et al. (2014) were used.  The water balance model of the Tonle 

Sap Lake of Kummu et al. (2014) was constructed using measured data and compared well 

with simulation results. 

3.5.2.4 Downstream Boundary 

Tidal heights at each Mekong outlet were used as downstream boundary conditions for the 

model and are estimated using harmonic analysis. First, 18 constituents covering both 

diurnal and semi-diurnal constituents were extracted from the FES2014 global tide model  

(Carrere et al., 2015), and then processed through the T-Tide package in Matlab (Pawlowicz 

et al., 2002). A selection of 18 constituents were made to cover the main tidal signals. The 

result is tidal height estimates on a 1/16° grid at every 15 minutes. The closest grid to an 

outlet is assigned to that outlet (Figure 3-3). This technique provides hindcast and future tide 

predictions and thus is applicable to a wide range of flood modelling applications where 

detailed data are unavailable. 
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3.5.2.5 Channel Widths 

Today, several global river width databases and tools are available (Andreadis et al., 2013, 

Yamazaki et al., 2014a, Pavelsky and Smith, 2008, Allen and Pavelsky, 2018). These products 

Figure 3-3 FES2014 Global Tide Model cells (red) and selected cells that overlap outlets (yellow) 
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are either based on hydraulic geometry relationships (Andreadis et al., 2013) or satellite 

image processing techniques (Pavelsky and Smith, 2008, Yamazaki et al., 2014a). For this 

study, the GWD-LR database of Yamazaki et al. (2014a) was used. The GWD-LR product is 

derived from Landsat imagery and flow direction maps based on the SRTM Water Bodies 

and the HYDROSHEDS flow direction map. The code of GWD-LR was edited to reduce the 

island threshold value, thus allowing for channels that flow around islands to be delineated. 

Otherwise, branching of the river is not represented, with the channel appearing to go right 

through an island. The output was processed to ensure connectivity and then converted to a 

kml file to visually inspect and edit within Google Earth™. The limitation of this product is 

that the minimum channel width detected was 170 m, so only a limited number of channels 

outside the main stem were detected. To supplement this product we gained additional 

channel data from the WISDOM project, which consists of shapefiles of width and depth 

values for surveyed channels of >20 m in the Vietnamese Mekong Delta (WISDOM, 2016). 

Even with this additional dataset, some channels are still missing. The importance of 

including smaller channels in the flood estimates is unknown and, thus, was tested in this 

study.  

3.5.2.6 Channel Bathymetry 

Bathymetry data exist for the main stem for the years 1998 and 2008 and were supplied by 

the MRC. This consists of cross section surveys with points at approximately every 100 m. 

Approximately 250 m separate each cross-sectional survey. Uncertainty in the data comes 

from the lack of consensus about converting the vertical datum used (Ha Tien 1960) to the 

vertical datum of SRTM (EGM96). The 1998 dataset covers the mainstem of the whole 

domain but not the Bassac from Phnom Penh to Vam Nao (see Figure 3-2 for a reminder of 

locations), whilst the 2008 dataset covers a limited area of the Vietnamese main stem. The 

average elevation from the cross-sectional survey was taken as the bed elevation value for 

the channel pixels within the hydrodynamic model. This negates the impact of pits in the 

channel. When bed elevations were not known, they were linearly interpolated based on 

nearby channel slopes. Yet, for most data-sparse deltas, no bathymetry information was 

available, so model performance assuming no prior knowledge of bathymetry was also 

tested. This was investigated to determine how much influence bathymetry data had on 
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model performance. Previous studies have used bankfull discharge to estimate channel 

depth with Manning's equation (Andreadis et al., 2013) (equations 15,16) 

 

Where Qbf = bankfull discharge; n = Manning's channel roughness coefficient; h = channel 

depth; S = Water surface slope; W = width 

To calculate channel depth, the values of the roughness coefficient, slope and width will 

remain the same for each channel pixel within a reach throughout the duration of the 

simulation. The roughness coefficient is estimated based on the best value from the All 

Bathymetry + Width model (Table 3-4) and the width is already known from the GWD-LR 

database and WISDOM project dataset.  Water surface slope can be estimated from the slope 

of the DEM, satellite radar altimetry data or from gauges. As the study area has several 

water height gauges, slope is estimated by interpolating water surface heights between 

them. This can be supplemented with altimetry data such as ICESat (O'Loughlin et al., 

2016a). Thus, the only varying parameter is the value of bankfull discharge. In general, 

bankfull discharge is considered to be a flow with a return period between 1 and 2.5 years 

for natural stable rivers (Andreadis et al., 2013, Pickup and Warner, 1976). Flooding occurs 

annually in the Mekong Delta, so the mean annual flow is used as a base bankfull discharge 

estimate. Typically, a more extreme flow is used, but as the delta floods for several months a 

year a lower value (in this case the mean annual flow) is used as the maximum annual flow 

would be an overestimation of the bankfull discharge. Subsequently, the mean annual flow 

(which is known as scale=1 in this chapter) is scaled to give a range of bankfull discharge 

values. Using the annual mean discharge is justified as the system floods for a prolonged 

period annually unlike most typical rivers. Bankfull discharge is assigned to each channel 

pixel based on the gauges along the reach associated with a gauge. 

ℎ =
𝑛𝑄𝑏𝑓

(√𝑆𝑊)
3
5

(16) 

𝑄𝑏𝑓 =
1

𝑛
ℎ
5
3√𝑆𝑊 (15) 
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An additional complication in a deltaic environment are bifurcations and flows around 

islands, so the discharge needs to be split otherwise an unrealistic depth value is assigned to 

the narrowing channels. To split the Qbf, bifurcation points along the river network are 

identified. The widths of the two splitting channels are extracted, added together and then 

the percentage of this total for each channel calculated. Based on these percentages, the Qbf is 

split. Using this technique, a set of river bathymetry estimates are generated. 

 

 

Figure 3-4 Bathymetry Data Coverage 
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3.5.3 Banks 

To estimate channel bed elevation using the above technique, bank heights were required. 

This was achieved by using the river widths extracted from the GWD-LR database as a 

water mask and finding SRTM elevations on the outer edges of the channel. Due to the noise 

even in a vegetation smoothed DEM, these elevations must be smoothed to reduce errors in 

the bank heights used in the model. With the low gradient of the delta, a large smoothing 

window could be used following the principles discussed by Neal et al. (2012a) as the 

gradient of the delta is considerably less than the vertical error in the SRTM data. A 5 km 

window was chosen, so bank heights were estimated based on an average of SRTM 

elevations within the 5 km window.  

3.5.3.1 Evaporation & Precipitation 

For simplicity, uniform evaporation and precipitation rate were used. Several precipitation 

and evaporation measurements are available from the Mekong River Commission, but the 

data are largely incomplete. However, the meteorological station at Chau Doc has a 

complete record for the period required, so values from here were chosen as a representative 

rate. When local data are unavailable, global precipitation and evaporation products can be 

used. 

3.5.4 Experimental Design 

An initial benchmark model (called All Bathymetry + Width) was built using all available 

data at a resolution of 540 m. The All Bathymetry + Width model contained 375,472 cells, 

covering an area of 90,000 km2. Of these cells, there were 13577 subgrid channel cells for the 

All Bathymetry + Width model, totaling over 7,300 km of river network. For the model 

variations with less channel detail, this figure was less. The All Bathymetry + Width model 

took 78 minutes per simulation year on a quad core 3.6 GHz Intel i7-4790 processor. 

Simulations were run for a 7-year period from 1 January 2001 to 31st December 2007. A 

sensitivity analysis on the All Bathymetry + Width model was then carried out by varying 

channel and floodplain friction values. These friction parameters can be estimated prior to 

running the model, but the relatively cheap computation time of the model allows for a 
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sensitivity analysis to be implemented. In a more data rich environment, the friction 

parameters can be provided by field survey, but for this study this were unavailable, so the 

range of friction values were estimated based on previous modelling versions of LISFLOOD-

FP (Bates and De Roo, 2000, Bates et al., 2010, Neal et al., 2012a), other Mekong studies (e.g. 

Dung et al. (2011)) and inspecting land use maps and satellite imagery. Models were run 

using parameter values and sampling intervals as set out in For the DEM comparison a 

separate hydrodynamic model was built of An Giang Province, Vietnam. The year 2001 was 

chosen for simulation as this year had a large amount of damages (US$200 million), with 

approximately 300,000 homes damaged (Chinh et al., 2016). Only a single year was selected 

in the interest of computation time. The An Giang Province hydrodynamic model was run 

using LIDAR, MERIT and SRTM data at 3 arc-second resolution. Additionally, a 1 arc-

second (30 m) LIDAR model was run to act as a benchmark. Hydrographs from Chau Doc 

and Vam Nao were taken as the upstream boundary conditions, whilst the downstream 

water level was set as the height of the Long Xuyen gauge. Channel widths were from the 

GWD-LR database (Yamazaki et al., 2014a) and bathymetry from the Mekong River 

Commission as in the larger Mekong Delta model presented in this chapter. DEM accuracy 

assessment of MERIT and SRTM were carried out by collecting ground observations using 

the Leica GS10 GNSS receiver. In total, 881 points were taken near Kampong Cham, 

Cambodia and Can Tho, Vietnam. 

 

Table 3-3. The importance of having measured bathymetry in the model is tested by a 

collection of models known as Qbf Bathymetry + All Width which were constructed by 

scaling the bankfull discharge estimates (Table 3-3).  To assess the importance of missing 

channels, additional channel detail provided by the WISDOM project was stripped away, 

based on intervals selected from the histogram of channel widths, with this model known as 

All Bathymetry + Reduced Channel Detail. Details of all the models are outlined in Table 3-4. 

Analysis of flood extent was analysed for three calendar years which were classified as 

climatologically wet, normal and dry (Table 3-5), to assess model performance for different 

severity of flooding. For the DEM comparison a separate hydrodynamic model was built of 

An Giang Province, Vietnam. The year 2001 was chosen for simulation as this year had a 



 

73 

 

large amount of damages (US$200 million), with approximately 300,000 homes damaged 

(Chinh et al., 2016). Only a single year was selected in the interest of computation time. The 

An Giang Province hydrodynamic model was run using LIDAR, MERIT and SRTM data at 3 

arc-second resolution. Additionally, a 1 arc-second (30 m) LIDAR model was run to act as a 

benchmark. Hydrographs from Chau Doc and Vam Nao were taken as the upstream 

boundary conditions, whilst the downstream water level was set as the height of the Long 

Xuyen gauge. Channel widths were from the GWD-LR database (Yamazaki et al., 2014a) and 

bathymetry from the Mekong River Commission as in the larger Mekong Delta model 

presented in this chapter. DEM accuracy assessment of MERIT and SRTM were carried out 

by collecting ground observations using the Leica GS10 GNSS receiver. In total, 881 points 

were taken near Kampong Cham, Cambodia and Can Tho, Vietnam. 

 

 Minimum Maximum Sampling Interval 

Floodplain Friction 0.02 0.10 0.0050 

Channel Friction 0.02 0.10 0.0025 

Width Threshold 25 150 25 

Qbf scaling 1 5 0.5 

Variant name Floodplain 

Friction 

Channel Friction Channel Width Channel 

Bathymetry 

Number of 

models 

Table 3-3 Ranges of model parameters and calibration sampling intervals 

Table 3-3 Ranges of model parameters and calibration sampling intervals 

 

Table 3-4 Model Variants 
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All Bathymetry+ 

Width 

Range from For 

the DEM 

comparison a 

separate 

hydrodynamic 

model was built 

of An Giang 

Province, 

Vietnam. The 

year 2001 was 

chosen for 

simulation as 

this year had a 

large amount of 

damages 

(US$200 million), 

with 

approximately 

300,000 homes 

damaged (Chinh 

et al., 2016). Only 

a single year was 

selected in the 

interest of 

computation 

time. The An 

Giang Province 

hydrodynamic 

model was run 

using LIDAR, 

MERIT and 

SRTM data at 3 

arc-second 

resolution. 

Additionally, a 1 

arc-second (30 

m) LIDAR 

model was run 

to act as a 

benchmark. 

Hydrographs 

from Chau Doc 

and Vam Nao 

Range from For 

the DEM 

comparison a 

separate 

hydrodynamic 

model was built 

of An Giang 

Province, 

Vietnam. The 

year 2001 was 

chosen for 

simulation as 

this year had a 

large amount of 

damages 

(US$200 

million), with 

approximately 

300,000 homes 

damaged (Chinh 

et al., 2016). 

Only a single 

year was 

selected in the 

interest of 

computation 

time. The An 

Giang Province 

hydrodynamic 

model was run 

using LIDAR, 

MERIT and 

SRTM data at 3 

arc-second 

resolution. 

Additionally, a 1 

arc-second (30 

m) LIDAR 

model was run 

to act as a 

benchmark. 

Hydrographs 

from Chau Doc 

All available 

measured 

widths (GWD-

LR & WISDOM 

datasets) 

All available 

measured 

bathymetry. 

Missing values 

linearly 

interpolated 

561 
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were taken as 

the upstream 

boundary 

conditions, 

whilst the 

downstream 

water level was 

set as the height 

of the Long 

Xuyen gauge. 

Channel widths 

were from the 

GWD-LR 

database 

(Yamazaki et al., 

2014a) and 

bathymetry from 

the Mekong 

River 

Commission as 

in the larger 

Mekong Delta 

model presented 

in this chapter. 

DEM accuracy 

assessment of 

MERIT and 

SRTM were 

carried out by 

collecting 

ground 

observations 

using the Leica 

GS10 GNSS 

receiver. In total, 

881 points were 

taken near 

Kampong Cham, 

Cambodia and 

Can Tho, 

Vietnam. 

and Vam Nao 

were taken as 

the upstream 

boundary 

conditions, 

whilst the 

downstream 

water level was 

set as the height 

of the Long 

Xuyen gauge. 

Channel widths 

were from the 

GWD-LR 

database 

(Yamazaki et al., 

2014a) and 

bathymetry 

from the 

Mekong River 

Commission as 

in the larger 

Mekong Delta 

model presented 

in this chapter. 

DEM accuracy 

assessment of 

MERIT and 

SRTM were 

carried out by 

collecting 

ground 

observations 

using the Leica 

GS10 GNSS 

receiver. In total, 

881 points were 

taken near 

Kampong 

Cham, 

Cambodia and 
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Table 3-3 

Can Tho, 

Vietnam. 

 

Table 3-3 
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Qbf Bathymetry + All 

Width 

Best from All 

Bathymetry + 

Width model 

Range from 

Table 3-3 

All available 

measured 

widths 

Estimated using 

Manning's Qbf 

technique. 

Scaled as 

outlined in For 

the DEM 

comparison a 

separate 

hydrodynamic 

model was built 

of An Giang 

Province, 

Vietnam. The 

year 2001 was 

chosen for 

simulation as 

this year had a 

large amount of 

damages 

(US$200 million), 

with 

approximately 

300,000 homes 

damaged (Chinh 

et al., 2016). Only 

a single year was 

selected in the 

interest of 

computation 

time. The An 

Giang Province 

hydrodynamic 

model was run 

using LIDAR, 

MERIT and 

SRTM data at 3 

arc-second 

resolution. 

Additionally, a 1 

arc-second (30 

m) LIDAR model 

was run to act as 

a benchmark. 

330 
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Hydrographs 

from Chau Doc 

and Vam Nao 

were taken as the 

upstream 

boundary 

conditions, 

whilst the 

downstream 

water level was 

set as the height 

of the Long 

Xuyen gauge. 

Channel widths 

were from the 

GWD-LR 

database 

(Yamazaki et al., 

2014a) and 

bathymetry from 

the Mekong 

River 

Commission as 

in the larger 

Mekong Delta 

model presented 

in this chapter. 

DEM accuracy 

assessment of 

MERIT and 

SRTM were 

carried out by 

collecting 

ground 

observations 

using the Leica 

GS10 GNSS 

receiver. In total, 

881 points were 

taken near 

Kampong Cham, 

Cambodia and 
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Can Tho, 

Vietnam. 

 

Table 3-3  
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All Bathymetry + 

Reduced Channel 

Detail 

Best from All 

Bathymetry + 

Width model 

Range from For 

the DEM 

comparison a 

separate 

hydrodynamic 

model was built 

of An Giang 

Province, 

Vietnam. The 

year 2001 was 

chosen for 

simulation as 

this year had a 

large amount of 

damages 

(US$200 

million), with 

approximately 

300,000 homes 

damaged (Chinh 

et al., 2016). 

Only a single 

year was 

selected in the 

interest of 

computation 

time. The An 

Giang Province 

hydrodynamic 

model was run 

using LIDAR, 

MERIT and 

SRTM data at 3 

arc-second 

resolution. 

Additionally, a 1 

arc-second (30 

m) LIDAR 

model was run 

to act as a 

benchmark. 

Hydrographs 

from Chau Doc 

Width detail 

stripped away 

based on 

thresholds in For 

the DEM 

comparison a 

separate 

hydrodynamic 

model was built 

of An Giang 

Province, 

Vietnam. The 

year 2001 was 

chosen for 

simulation as 

this year had a 

large amount of 

damages 

(US$200 

million), with 

approximately 

300,000 homes 

damaged (Chinh 

et al., 2016). 

Only a single 

year was 

selected in the 

interest of 

computation 

time. The An 

Giang Province 

hydrodynamic 

model was run 

using LIDAR, 

MERIT and 

SRTM data at 3 

arc-second 

resolution. 

Additionally, a 1 

arc-second (30 

m) LIDAR 

model was run 

to act as a 

All available 

measured 

bathymetry. 

Missing values 

linearly 

interpolated 

198 
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and Vam Nao 

were taken as 

the upstream 

boundary 

conditions, 

whilst the 

downstream 

water level was 

set as the height 

of the Long 

Xuyen gauge. 

Channel widths 

were from the 

GWD-LR 

database 

(Yamazaki et al., 

2014a) and 

bathymetry 

from the 

Mekong River 

Commission as 

in the larger 

Mekong Delta 

model presented 

in this chapter. 

DEM accuracy 

assessment of 

MERIT and 

SRTM were 

carried out by 

collecting 

ground 

observations 

using the Leica 

GS10 GNSS 

receiver. In total, 

881 points were 

taken near 

Kampong 

Cham, 

Cambodia and 

benchmark. 

Hydrographs 

from Chau Doc 

and Vam Nao 

were taken as 

the upstream 

boundary 

conditions, 

whilst the 

downstream 

water level was 

set as the height 

of the Long 

Xuyen gauge. 

Channel widths 

were from the 

GWD-LR 

database 

(Yamazaki et al., 

2014a) and 

bathymetry from 

the Mekong 

River 

Commission as 

in the larger 

Mekong Delta 

model presented 

in this chapter. 

DEM accuracy 

assessment of 

MERIT and 

SRTM were 

carried out by 

collecting 

ground 

observations 

using the Leica 

GS10 GNSS 

receiver. In total, 

881 points were 

taken near 

Kampong Cham, 

Cambodia and 
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Can Tho, 

Vietnam. 

 

Table 3-3 

Can Tho, 

Vietnam. 

 

Table 3-3 

 

 

Start Date End Date Description 

20/07/2001 03/12/2001 Wet  

01/05/2004 02/12/2004 Dry 

10/06/2007 03/12/2007 Normal 

 

Table 3-5 Flood Extent Validation Period 
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Figure 3-5 Elevation ground measurements using a Leica GS10 GNSS receiver (purple dots) 

for Can Tho, Vietnam (left) and Kampong Cham, Cambodia (right) 

 

 Figure 3-6 Surveying near Kampong Cham, Cambodia 



 

84 

 

3.5.5 Model Validation 

An essential component of hydrodynamic model evaluation is the ability to validate the 

predictions against previous recorded measurements. In this chapter, a variety of local and 

global data were used to do this that are outlined below.   

3.5.5.1 Observed Gauge Measurements 

Daily records for four discharge gauges (Can Tho, Chau Doc, My Thuan and Vam Nao) and 

five water level gauges (Can Tho, Koh Khel, Tau Chau, Tra Vinh and Vam Nao) were used 

for validation (Figure 3-2). These gauges are maintained by the Mekong River Commission 

(MRC), with data available from their website. Gauge discharge errors are not reported. 

These gauges have been used in other Mekong models (Table 3-2) with no mention of errors. 

3.5.5.2 Remotely Sensed Gauge Measurements 

The gauge data has a limited spatial coverage, so to validate the model at additional spatial 

locations remotely sensed virtual gauges were derived. Snapshots of river water heights 

were used from the ICESat derived water surface heights dataset by O'Loughlin et al. 

(2016a). This database contains over 0.5 million quality checked transect averaged water 

surface heights from 2003-2009, with vertical accuracy of ~10 cm mean absolute error 

comparing favourably to other altimetry data such as from Envisat (mean absolute error ~28 

cm) (O'Loughlin et al., 2016a). Whilst, ICESat derived water heights are a useful tool to 

broaden spatial coverage of validation, the record is temporally sparse and limited to a 

relatively short period.  

3.5.5.3 Flood Extent 

Surveyed flood extents exist for the Mekong Delta (Ling et al., 2015, Chinh et al., 2016) but 

these are limited in spatial and temporal coverage so are not appropriate for a study area of 

this size. For a study area of the Mekong Delta, flood extent measured by remote sensing is 

appropriate as it covers a large area. Remote sensing of flooding can be based on either 

optical or SAR (Synthetic Aperture Radar) imagery. SAR works by beaming a signal to the 

Earth’s surface and recording the backscattered signal at a receiving unit. The major 

advantage of SAR is that it can penetrate clouds that commonly exist during flood events 
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and work day or night, so it is the preferred method for flood inundation mapping (Di 

Baldassarre et al., 2011, Matgen et al., 2007). Several studies have delineated flood extent in 

the Mekong Delta using optical (from the Moderate Resolution Imaging Spectrometer 

(MODIS) sensor) and SAR (from ENVISAT-ASAR-WSM) imagery. Details of the mapped 

flooding in the Mekong Delta are found in Table 3-6.  In general, flood maps of Mekong 

Delta generated by remote sensing have been reported to underestimate flooding, 

particularly in urban and heavily vegetated areas (Table 3-6) (Kuenzer et al., 2013). The 

MODIS record provided by Dr Kotera was used as it covered the period simulated in this 

chapter in its entirety. In Kuenzer et al. (2015), MODIS based flood inundation mapping of 

deltas was reported to have an accuracy of between 79-99%, with errors mostly occurring at 

water boundaries. Furthermore, rice paddies are often classified as flooded, which is the 

reality, but one could question whether these should be included for validation purposes as 

these rice paddies are deliberately flooded and can have a shallow water depth. To be used 

to calculate skill scores, the MODIS data needed to be resampled to 540 m, which was 

carried out using bilinear resampling. There was relatively little difference in scale between 

MODIS resolution (250 m) and model resolution (540 m), so the error introduced to the 

resampled MODIS data by interpolation was likely to be minimal.    

Satellite Time 

Frame 

Resolution Limitations Author(s) 

MODIS 2000-2005 

8-day 

composite 

500m Separating 'mixed' pixels from 

water pixels a challenge  

Sakamoto et al. (2007) 

Table 3-6 Remotely Sensed Flood Inundation Extent of the Mekong Delta 
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Satellite Time 

Frame 

Resolution Limitations Author(s) 

MODIS 2013 250m Water Bodies below resolution 

not detected. 

Sediment rich water not 

detected as water bodies. 

Detection accuracy could be 

improved by including more 

bands. 

Results in underestimation of 

water surface. 

Kuenzer et al. (2015) 

MODIS 2000-2015 

8-day 

composite 

250m Separating 'mixed' pixels from 

water pixels a challenge. 

Will not penetrate through 

vegetation 

In Chao Phraya, Thailand, 

flood overestimated. 

Data supplied by Dr 

Akihiko Kotera using 

technique from 

Sakamoto et al. (2007) 

Related papers - 

(Kotera et al., 2016) 

ENVISAT- 

ASAR-WSM 

2007-2011 

Repetition 

Rate 35 

days 

150m Poor detection of flooded areas 

under vegetation. Particularly 

a problem for mangrove areas 

and overgrown banks. 

When there are multiple 

surfaces within a cell, the 

returned signal is too 'bright' 

for the flood detection 

algorithm, thus some cells that 

are partially flooded go un-

detected. 

Urban areas often appear 

never flooded. 

Kuenzer et al. (2013) 
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3.6  Results 

In total, 1,079 models were run with model performance assessed by comparing to four 

discharge gauges, five stage gauges, ICESat records and MODIS. Performance metrics used 

are root mean square error (RMSE), Nash-Sutcliffe efficiency (Nash and Sutcliffe, 1970), and 

Critical Success Index (CSI). 

3.6.1 Simulation of Water Level & Discharge 

Water levels were evaluated using five gauges and ICESat data. The RMSE range for the 

gauges was between 0.436 m and 0.889 m for the most detailed model (All Bathymetry + 

Width) (Table 3-7 & Table 3-8). These RMSE values compare well the error from random 

noise in the DEM that is 0.83 m for the 540 m resolution that the models are run at. Results 

from the sensitivity analysis indicate that model performance is best (by RMSE and NSE 

scores) at lower friction values, and that water level is barely sensitive to the floodplain 

friction parameter. The ICESat results provide a further useful validation dataset even 

though the number of observed points is limited. There is very good agreement with ICESat 

1 Stage point. However, for ICESat 2 Stage point there are several potentially erroneous 

points, which could be due to the ICESat signal deflecting off boats. 

 Overall  Kok Khel Tan Chau Vam Nao Can Tho Tra Vinh 

RMSE (m) 0.688 0.678 0.889 0.641 0.436 0.805 

Floodplain n  0.020 0.020 0.020 0.020 0.100 0.020 

Channel n  0.020 0.035 0.020 0.020 0.020 0.020 

 

Table 3-7 Optimal RMSE values for the All Bathymetry + Width model with associated Manning's 

friction values for 2001-2007.  
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 Overall  Kok Khel Tan Chau Vam Nao Can Tho Tra Vinh 

RMSE (m) 0.608 0.493 1.211 0.608 0.353 0.668 

Floodplain n 0.020 0.020 0.020 0.020 0.100 0.020 

Channel n 0.020 0.035 0.020 0.020 0.025 0.060 

 

 Overall  Chau Doc My Thuan Vam Nao Can Tho 

NSE  0.627 0.746 0.493 0.904 0.459 

Floodplain n 0.095 0.100 0.095 0.040 0.020 

Channel n 0.035 0.035 0.040 0.027 0.035 

 

Discharge results had a higher NSE score (1 corresponds to perfect match) at the upstream 

gauges. This is primarily due to the difficulty of accurately simulating the backwater effect 

from the tides due to the lack of bathymetry data. Additionally, by moving downstream 

more bifurcations are present. There is a lack of knowledge about how flows split at these 

bifurcations due to a lack of detailed data, with these errors propagating by moving 

downstream. Like the water level, discharge is not sensitive to the floodplain friction 

parameter, with optimum model performance between 0.027 – 0.040, which is typical for 

agricultural floodplains. 

Table 3-8 Optimal RMSE values for the All Bathymetry + Width model with associated Manning's 

friction values for 2001-2007 when only considering flows above the annual median 

Table 3-9 Optimal NSE values for the All Bathymetry + Width model with associated Manning's 

friction values for 2001-2007 
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Figure 3-7 Daily observed and simulated water level for Koh Khel for 2001-2007 for best performing 

All Bathymetry + Width model. Observed water level in red and simulated water level in blue.  

Figure 3-8 Daily observed and simulated water level for Vam Nao for 2001-2007 for best performing 

All Bathymetry + Width model. Observed water level in red and simulated water level in blue. 
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Figure 3-9 Daily discharge at Chau Doc for best performing for best performing All Bathymetry + 

Width model. Observed water level in red and simulated water level in blue. 

Figure 3-10 Simulated daily water level for best performing All Bathymetry + Width model at ICESat 

point 1 (see Figure 3-2 for location). Observations from the ICESat satellite are shown by the black 

marker and the daily simulated water level is shown by the blue line. 
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Figure 3-11 Simulated daily water level for best performing All Bathymetry + Width model at ICESat 

point 2 (see Figure 3-2 for location). Observations from the ICESat satellite are shown by the black 

marker and the daily simulated water level is shown by the blue line. 
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Figure 3-12 Sensitivity of RMSE values to Manning's friction parameters for All Bathymetry + Width 

model. Blue indicates lower RMSE values, whilst red indicates higher RMSE values. The most 

accurate models are those in blue, especially those in dark blue. 
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Figure 3-13 Sensitivity of NSE scores to Manning's friction parameters for All Bathymetry + Width 

mode. Blue indicate NSE values closer to 1 (with 1 corresponding to a perfect match between 

simulated discharge and observed discharge). Red corresponds with a poor match between simulated 

and observed discharge. The most accurate models are those in blue, especially those in dark blue 
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There is no clear optimum set of friction parameters for the All Bathymetry + Width model.  

However, the All Bathymetry + Width model is more sensitive to channel friction than 

floodplain friction. For the All Bathymetry + Width model, best results for water level 

(lowest RMSE value) are realized when channel friction is minimised, but for discharge the 

best results (NSE value closest to 1) were between Manning’s friction values of 0.027 – 0.040. 

Clean, earthen channels typically have a channel friction of 0.02, with natural streams 

ranging up to 0.035 (Chow, 1959). Parts of the system have been heavily managed, thus 

reducing channel friction, whilst the heavily vegetated channels with higher friction values 

(>0.04) are typically smaller channels which are mostly excluded from the model. Therefore, 

optimum model results align with physically realistic values. The All Bathymetry + Width 

model had NSE values closer to 1 for higher floodplain friction values, whilst had 

marginally lower RMSE values for water level at lower floodplain friction values. Manning’s 

friction values above 0.075 are considered unrealistic for the floodplains in the Mekong 

Delta as Manning’s values for agricultural areas range between 0.030-0.040 for cultivated 

cropland, 0.050-0.100 for brush and approximately 0.100 for woodland (Chow, 1959). As 

most of the study site is cultivated, physically realistic Manning’s friction values should be 

approximately around 0.030-0.040. When also considering the presence of mangroves, 

orchards and adjusting for the degree of irregularity and obstructions (Arcement and 

Schneider, 1989), physically realistic values are likely to be larger. Yet in calibration efforts, 

friction is an effective parameter that also compensates for other errors. Thus, the optimum 

values are not always what are expected (Horritt and Bates, 2002, Hunter et al., 2007, Savage 

et al., 2016a). 

To proceed in the investigation of how much detail is needed to build an accurate flood 

model of the Mekong Delta, a set of Manning’s friction values needed to be selected. There is 

no obvious set of values that work for all gauges from the sensitivity analysis. Therefore, a 

compromise was needed. For the channel, Manning’s friction values of 0.0225 was selected 

as the optimum, with this value at the lower end of friction values for main channels (Chow, 

1959). For the floodplain, a Manning’s friction value of 0.050 was selected which falls within 

expected values of cultivated areas mixed with trees and adjusting for obstacles and/or 
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irregularities (Chow, 1959, Arcement and Schneider, 1989). The selected Manning’s friction 

values are similar for channels compared to those used in the study of Manh et al. (2014), 

who used 10 zones to assign friction values. However, the floodplain friction values selected 

as the optimum for the All Bathymetry + Width model (0.050) are considerably larger than 

the values used by Manh et al. (2014) (0.018 and 0.036) which could be considered 

unrealistically low (and in fact lower than the channels). Both the channel and floodplain 

friction agree with values used in Dung et al. (2011). 

3.6.2 Flood Extent 

To assess model performance in predicting flood extent, the Critical Success Score (CSI) was 

calculated. CSI is a widely used metric that combines the hit rate, false alarms and miss rate 

to produce a combined score that penalises for both underprediction and overprediction 

(Horritt and Bates, 2001a, Sampson et al., 2015, Stephens et al., 2014). 

𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 𝐼𝑛𝑑𝑒𝑥 =
𝐴

𝐴 + 𝐵 + 𝐶
(17) 

Where A is the hit rate, B is false alarms and C is misses, with scores ranging from 0 (no 

match between model and observations) and 1 (perfect match between model and 

observation). The hit rate is the rate of correctly predicted inundated pixels, whilst the miss 

rate is the rate of pixels not flooded in the model but flooded in observations. The false 

alarm rate is the rate where the model predicts flooding, but the pixel is dry in the 

observations. To compute CSI, a binary Wet/dry map is needed. The threshold depth of 

water that is considered a flood is open to debate, so this study uses 3 values to assess 

whether this makes a difference to CSI values (Figure 3-14). Threshold depths of 0.1m 

(typically used), 0.5 m and 0.83 m are used. The value of 0.83 m is chosen as that is the 

random height error of the DEM at the 540 m resolution of this model. The MODIS imagery 

was resampled to the model resolution (540 m), with both model and MODIS images 

converted to a binary wet/dry to perform the calculations. For the 2001-2007 period for 

which the model was run, there were a total of 322 MODIS images to compare (Figure 3-14). 

CSI scores for different flood depth thresholds are plotted for the whole time-series of the 

model. Additionally, CSI and the False Alarm Ratio are plotted by month to distinguish the 
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performance of the model between the wet and dry season (Figure 3-15 & Figure 3-16). 

Lastly, CSI scores are calculated per pixel for 2001, 2004 and 2007 to delineate where the 

model is performing well or poorly (Figure 3-17 & Figure 3-18 & Figure 3-19). 

 

 

Figure 3-14 Critical Success Index (CSI) score by flood depth thresholds of 0.1 m, 0.5 m and 0.83 m for 

the All Bathymetry + Width model. CSI scores calculated over a 7-year period (2001-2007) at the time 

of the MODIS observations (approximately every 8 days; Total 322 images). A CSI score of 1 indicates 

a perfect match between simulated and observed flood extent, whilst a CSI score of 0 indicates no 

match between simulated and observed flood extent.  
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Figure 3-15 Maximum Critical Success Index (CSI) score per calendar month split by year for the All Bathymetry + Width model. A CSI score of 1 indicates a 

perfect match between simulated and observed flood extent, whilst a CSI score of 0 indicates no match between simulated and observed flood extent.   
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Figure 3-16 Maximum False Alarm Ratio score per calendar month split by year for the All Bathymetry + Width model. The false alarm ratio is the ratio of 

pixels predicted as wet in the model and dry in the observations. Maximum value of 1. Values of 1 suggest pixels predicted as wet in the model but dry in the 

observations. 
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Figure 3-17 Critical Success Index (CSI) score per pixel for the All Bathymetry + Width model for 2001 

which is considered a 'Wet' year. 
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Figure 3-18 Critical Success Index (CSI) score per pixel for the All Bathymetry + Width model for 2004 

which is considered a 'Dry' year. 
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Figure 3-19 Critical Success Index (CSI) score per pixel for the All Bathymetry + Width model for 2007 

which is considered a 'Normal' year. 
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In general, annual CSI scores shows the model has a good level of skill, with the known 

flooded areas largely flooding. The largest CSI score was in October 2002 (Figure 3-14) with 

a CSI Score of 0.62 (with 1 being a perfect match between model simulation and observation) 

for a flood depth threshold of 0.1 m. Another wet year, 2001, also performed well (Figure 

3-17). The model performed worse when the years were dryer (Figure 3-18 & Figure 3-19). It 

was interesting to note that CSI scores are influenced by the flood depth threshold value, as 

for higher flood threshold depths, CSI scores decreased. If a flood depth threshold of DEM 

noise (0.83 m) is considered, best CSI scores drop to 0.60. The model performs well (blue) 

near the channels, with performance suffering the further away from the channels (red and 

yellow). The CSI scores compare favorably with those of the more detailed quasi 1D/2D 

model based on MIKE 11 (Dung et al., 2011) which have an approximate CSI score of 0.7 

(personal communication Dr N Hung, October 2017). The LISFLOOD-FP model in this 

chapter over-predicted flood extent in some areas, particularly to the west of the domain 

and in the central coastal region. Dynamics were mostly resolved, with the simulated results 

flooding marginally too soon (~ 7 days). However, flooded areas were slow to dissipate, 

with flooded areas still visible in late December. In the MODIS imagery, the flood has 

receded by November, so the model fails to drain correctly. This is particularly prevalent in 

the far west of the domain and in the marshy areas of southern Cambodia. As a result, the 

CSI score is decreased.  

From Figure 3-14 it is striking how CSI scores vary throughout the year. To explore this in 

more detail, CSI scores and False Alarm Ratio were plotted by month (Figure 3-15 & Figure 

3-16). It is clear from  Figure 3-15, that CSI scores are considerably greater in the wet season 

(May-November) compared to the dry season (December-April). Indeed, in the dry season, 

there is very little skill in the model with CSI values close to 0. Conversely, in the wettest 

months (September & October) the model has the largest CSI scores. Thus, the model has a 

certain amount of skill in predicting the largest floods. The reason for the low CSI scores in 

the dry season (and to a lesser extent the wet season) can be seen in Figure 3-16, which plots 

the False Alarm Ratio. The False Alarm Ratio refers to the ratio of total wet pixels that are 

incorrectly predicted as being flooded. In other words, a high False Alarm Ratio 

(maximum=1) indicates that a large number of pixels are being predicted as being flooded 
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where in fact they are not. Therefore, in the dry season in particular, the model in this 

Chapter has a large number of predicted flooded pixels which are not flooded in reality. 

These pixels would give a ‘false alarm’. The reason why there is such a high False Alarm 

Ratio is due to the models inability to dewater in the dry season. This is in spite of 

evaporation. It is very likely that the lack of dewatering is due to not respecting the river-

floodplain connectivity at lower water heights where negative relief forms and smaller 

channels are dominant. The problem of dewatering has also been reported in other 

intermediate scale models (Wilson et al., 2007) and high resolution models (Neal et al., 2011), 

with the loss of topographic features and non-representation of smaller channels attributed 

to a lack of dewatering. The lack of dewatering may also be due to an incorrect downstream 

boundary which is not allowing water to flow into the ocean as much as it should. The 

misrepresentation of river-floodplain connectivity is likely to be a by-product the DEM 

being unable to represent the micro-topography and negative relief features that control 

river-floodplain connectivity at lower flood levels. One possible reason is the aggregation of 

the DEM to 540 m. However, even at high resolution scale, Trigg et al. (2012) found that 

SRTM at 90 m missed 96% of channels in the middle reach of the Amazon which greatly 

restricted the modelled river-floodplain connectivity. The ability of the subgrid model to 

include smaller channels does somewhat negate the ability of SRTM to represent small 

channels, but it cannot help with the missed micro-topography or negative relief forms. It 

should also be noted that there is some uncertainty with the MODIS imagery. Despite these 

limitations, the model does well in the periods of the highest flood, so does have some use in 

predicting the most damaging flood hazard.  

3.6.3 DEM Comparison 

3.6.3.1 Accuracy of MERIT & SRTM DEMs 

To calculate the error in MERIT/SRTM the GNSS points were first resampled to the grid of 

MERIT/SRTM. This resulted in 222 cells filled with GNSS measurements which are taken as 

observational data. For some MERIT/SRTM pixels there were more than 1 GNSS point, so 

when this occurred the values of all GNSS elevations were averaged. To visualize the data, 

flat violin plots were plotted alongside the points and overlaid with a histogram (Figure 

3-20Error! Reference source not found.). The distribution of errors in the MERIT DEM are 
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noticeably narrower than that of SRTM. Additionally, error statistics were calculated (Table 

3-4Error! Reference source not found.). If a normal distribution is assumed, error statistics 

of mean error (ME), standard deviation (STD), and root mean square error (RMSE) can be 

applied. Furthermore, robust accuracy measurements for non-normal distributions are 

considered as DEM error is not always normal (Höhle and Höhle, 2009). These robust 

accuracy measurements are median absolute distribution (MAD), normalized median 

absolute deviation (NMAD) and absolute deviation at the 90% quantile (LE90). The paper of 

Höhle and Höhle (2009) provides an excellent overview of using the aforementioned 

accuracy measurements. The NMAD can be regarded as an estimate for the standard 

deviation for heavy tail distributions. If the distribution was normal the STD would be the 

same as NMAD which is not the case. All the error statistics are larger for SRTM, thus for the 

simple DEM accuracy experiment carried out in this chapter, MERIT is considerably more 

accurate. 

 

Figure 3-20 DEM Error in the Mekong Delta for SRTM and MERIT. The plot shows the distribution of 

errors for GNSS points resampled to the MERIT/SRTM grid. In total 222 points are assessed from 881 

raw GNSS readings. MERIT = Multi-Error-Removed-Improved-Terrain. SRTM = Shuttle Radar 

Topography Mission 
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DEM ME (m) STD (m) RMSE (m) MAD (m) NMAD (m) LE90 (m) 

MERIT -0.72 2.59 2.68 2.06 3.05 1.98 

SRTM -1.60 3.79 4.10 2.83 4.20 2.09 

 

3.6.3.2 Different DEMs and Flood Predictions 

Manning's friction parameters (Chow, 1959) were set as 0.03 for the channel and 0.05 for the 

floodplain, which are both realistic and performed well in the larger Mekong flood model 

presented in this chapter. The maximum inundation water depths are presented in Figure 

3-21Error! Reference source not found.. 

Table 3-4 Error Statistics for MERIT and SRTM DEMs measured against GNSS points 
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It is obvious from Error! Reference source not found. that the DEM has a large control on 

predicted maximum inundation. There is a notable difference in flood predictions between 

resolutions (LIDAR 30 m and LIDAR 90 m) which corroborates with other studies 

investigating the impacts of resolution on predicted flood extents (Horritt and Bates, 2002, 

Savage et al., 2016b). A less well-researched finding is that there is a stark difference in flood 

extents for the same resolution (90 m). The SRTM considerably underpredicts flood extent 

(compared to the LIDAR 30 m model), whilst the MERIT 90 m and LIDAR 90 m have 

noticeable differences to the LIDAR 30 m model. This finding poses the question that when a 

single DEM is used whether the results can be trusted, especially when that DEM is a global 

DEM product such as MERIT or SRTM. Many studies focus on the effects of other 

hydrological parameters on model results, with topography largely ignored despite the 

recognized impact it has on flood predictions (Wechsler, 2007).  

Figure 3-21 Maximum Flood Inundation for 2001 for four DEMs in An Giang Province, Vietnam. 

LIDAR = Light Detection and Ranging. MERIT = Multi-Error-Removed-Improved-Terrain. SRTM = 

Shuttle Radar Topography Mission 
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3.6.4 Bathymetry from Bankfull Discharge Measurements 

To test the importance of bathymetry on model results, the model was run again with the 

nine versions of bathymetry based on scaling the Qbf values. As the model was found to be 

insensitive to floodplain friction, the floodplain friction value was set to 0.050 to minimize 

the number of model runs. The friction values for the channel were altered based on the 

range outlined in Table 3-3. RMSE’s were computed at each gauge for each bathymetry 

variation. 

 

Figure 3-22 RMSE Values using the different bed variations. Numbers in the lower right refer to Qbf 

scaling factor. 
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Unsurprisingly, the best bathymetry profile is the known bathymetry. However, the Qbf 

technique did offer a good alternative when bathymetry data are not available. For Tan 

Chau, the Qbf 1.5 profile has the smallest RMSE value for water level. Bathymetry Qbf profiles 

of <1.5 perform similarly to the original bathymetry profile, albeit with smaller RMSE values 

at larger channel friction values. When Qbf >3.0, RMSE scores are generally only marginally 

larger, but channel friction values are unrealistically large. Therefore, if bathymetry 

information is not known, using a scaling range of 1-2 for Qbf to generate bathymetry profiles 

gives similar results compared to the known bathymetry for realistic channel friction values. 

3.6.5 Channel Detail 

To assess the importance of channel detail on model results, six variations of channel masks 

(All Bathymetry + Reduced Channel Detail) were produced based on thresholds outlined in 

Table 3-3. Each model variation was run across the range of channel friction values, with 

floodplain friction set at 0.050. The inundation extent changed most notably when channels 

below 25 m were excluded, especially in the Cau Mau Peninsula to the south west of the 

delta (Figure 3-23). The model with the greatest channel detail (25 m width threshold) had 

the least amount of flooding in terms of area. As less channels are included as the width 

threshold increases, the amount of flooded area increases. The range of values for total 
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flooded area range from 24457 km2 for model with all channels above a width of 25 m 

included, to 27578 km2 for the model that contains channels only above 150 m (Table 3-11). 

 

 

 

Width Threshold Flooded Area (km2) 

25m 24457 

50m 26167 

75m 26346 

Figure 3-23 Maximum flood inundation for 2004 for different levels of channel detail. The channel 

width threshold is given in the top right of each map. Flood depth is shown on a scale from blue 

(shallowest) to yellow (deepest). 

Table 3-11 Total Maximum Flooded Area for All Bathymetry + Reduced Channel Detail models for 

2004 
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100m 27335 

125m 27331 

150m 27578 

 

3.6.6 Downstream Boundary Estimates 

The quality of tide height estimates from the harmonic analysis of FES2014 data used in this 

chapter was assessed against the Vam Kenh tidal gauge (Figure 3-24 & Figure 3-25). 

Unfortunately, only records from 2011 were available for the Vam Kenh tidal gauge. 

Modelled values were in general underestimated at the beginning and end of the calendar 

year and overestimated in the middle of the year. However, the peak of the flood season 

(September – November) was generally well estimated. An analysis for the whole of 2011, 

found an RMSE of 0.37 m.  

 

Figure 3-24 Comparison of tide height estimates from harmonic analysis using FES2014 (red line) and 

observed measurements at Vam Kenh (blue line) for a 5 day period in January 2011. R2 and RMSE 

values are given in the top left corner 
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3.7 Discussion 

To structure the discussion, each question set out in Section 3.3 is answered 

3.7.1 Can an intermediate scale hydrodynamic model be built for a 

data-sparse delta using freely available data that accurately 

represents flooding?   

 

To answer this question, it depends on the definition of “accurately” and the intended 

purpose. This model would be inappropriate for a small-scale engineering project, but it is 

more than suitable to delineate flooding at a sub-national level. RMSE scores are within the 

standard deviation of errors (0.83 m) for the aggregated DEM for three gauges and are very 

close to the other two. Inundation extent and dynamics are difficult to quantitatively 

evaluate using the traditional binary metrics due to the differing resolutions of the model 

and MODIS data and the uncertainty that surrounds the MODIS classification of wet pixels. 

Figure 3-25 Comparison of tide height estimates from harmonic analysis using FES2014 (red line) and 

observed measurements at Vam Kenh (blue line) for 2011. R2 and RMSE values are given in the top 

left corner 
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Qualitative assessment reveals that the areas of the Cambodian floodplains and the VMD 

near the Cambodian border flooded as expected. Quantitative assessment suggests that the 

model has a relatively high skill in the wettest months (largest CSI score 0.62), but a poor 

level of skill in the dryer months (CSI score close to 0). This model evaluation score 

compares to a CSI score of 0.7 for the MIKE11 based model of Dung et al (2011). Several 

areas to the west and in the central coastal region have overestimated flooding, as the model 

did not dewater correctly, but this is likely to be due to the lack of channel detail and the 

incorrect/missing micro topography. Therefore, a method to explore the impact of 

topographic uncertainty on flood predictions in data-sparse areas would be useful and one 

which will be explored in the following results chapter. The model developed in this chapter 

could be used to delineate the most at-risk areas for the more extreme events but will 

overestimate the flood extent and especially the length of flooding. The most appropriate 

use of this model for would be to identify the most at-risk areas and apply a more detailed 

dataset like that of several of the studies outlined in Table 3-2. Using more detailed 

topography and channel information, possibly with added information such as agricultural 

abstraction practices, would give more accurate and credible flood predictions. For scenario-

based analysis of future flood predictions in the Mekong Delta (i.e. changing crop practices 

and climate change), the MIKE 11 based model of Dung et al (2011) is best with several 

studies already utilizing this work for scenario-based analysis (e.g. Triet et al, 2017). Yet, 

outside of the Mekong in other data-sparse deltas that have not had a detailed model built of 

them, the approach taken in this chapter may have some use in providing an initial estimate 

of flood hazard and how this may change in the future. Where possible, local information 

should be incorporated into the model. Equally, if model ensembles are required, the 

efficiency of model developed in this chapter allows for such analysis. 

Therefore, an intermediate scale model built using freely available data can accurately 

simulate flooding in the wettest months in the highly complex, yet relatively data-sparse 

Mekong Delta. The next question is what data are important which will be needed so the 

model can be applied to other locations. 
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3.7.2 What aspects of the flood model structure and data are most 

important to inundation prediction?  

 

To answer this question, important aspects of the data are discussed one-by-one, with an 

additional discussion of how hydrodynamic models can be improved in data-sparse deltas. 

3.7.2.1 Channel Bathymetry 

The lack of bathymetry data is the plight of many flood modelers working in data sparse 

areas. This research has indicated that although having bathymetry measurements is useful, 

it is not essential to accurately simulate flooding at this scale. The caveat to the bankfull 

discharge approach is the reliance on gauge data. This study used four gauges, but other 

study areas are likely to have less. Alternatively, discharge could be estimated by remote 

sensing, such as in the River Watch program (https://www.dartmouth.edu/~floods/AMSR-

E%20Gaging%20Reaches/IndexMap.htm) . In this study context, appropriate Qbf scaling, 

(with the scale of 1 equal to mean annual discharge) is found to produce the best RMSE and 

NSE scores between 1-2.5. Results suggest that if a single scaling factor is used to calculate 

the bathymetry based on a bankfull discharge, a scaling factor of 1.5x the mean of the annual 

flow gives the most accurate bathymetry estimates. If computational resources allow, a 

range of bankfull discharge estimates should be explored to test the sensitivity of flood 

predictions to different bathymetry estimates. It is worth noting that the bankfull discharge 

values are low compared to more traditional floodplains where bankfull discharge is 

assumed to occur every 1-2 years (Pickup and Warner, 1976). However, deltas typically 

flood annually (and for long durations), so taking a maximum discharge for every 1-2 years 

would lead to an overestimation of bathymetric depth. 

3.7.2.2 Channel Detail 

Intuitively, one would expect more cells to be flooded with less channels as the river 

network would have less capacity. This study found that including more channel detail 

resulted in less total flooded area. The analysis assessed maximum inundation which 

appears to be dominated by sheet flow at high water levels, thus suggesting that including 

smaller channels does not improve the river-floodplain connectivity at high water levels as 

https://www.dartmouth.edu/~floods/AMSR-E%20Gaging%20Reaches/IndexMap.htm
https://www.dartmouth.edu/~floods/AMSR-E%20Gaging%20Reaches/IndexMap.htm
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the river and floodplain are connected by sheet flow at high water levels. Yet, including 

smaller channels is important for lower water stage and dewatering of the floodplain as they 

act to connect the river and the floodplain, and thus should be included if possible. The 

inability of SRTM to represent river-floodplain connectivity (Trigg et al., 2012) means that 

these important processes are typically missed. Thus, in Chapter 5 an assessment of the 

ability of various DEMs to represent river-floodplain connectivity at a range of resolutions is 

carried out. Humans heavily control the smaller channels and those near the coast, so 

including them in a flood model that does not represent human controls may not be 

appropriate. Using just the GWD-LR database is acceptable, but if more detailed channels 

are available (particularly below 25 m), the modeller should aim to include them.  

3.7.2.3 DEM 

The recently released MERIT DEM (Yamazaki et al., 2017) was used over the more 

commonly used SRTM product. In their paper, Yamazaki et al. (2017) used the Mekong 

Delta as an example of how their error reduction method has improved the accuracy of the 

DEM, particularly in removing striping. Furthermore, 222 elevation observation points were 

collected in Cambodia and Vietnam using a GNSS receiver, with the results suggesting that 

MERIT is more accurate than SRTM in the region and, thus, further justifying the choice to 

use MERIT over SRTM. Using the MERIT DEM instead of SRTM improved flood extent 

results, noticeably along areas where striping was present in SRTM. Running the model at 

540m resolution smoothed out much of the noise present in the DEM and allowed an 

appropriate runtime. The model could have been run at 90m but this would have taken 

considerably longer, with Savage et al. (2016b) noting that halving the model resolution 

increases the model runtime by an order of magnitude. Thus, using these findings, 90m 

resolution model would have taken approximately 3900 minutes (or 27 days) for a single 

simulation, or almost 80 years for all 1,079 models used in this chapter.  Therefore, running 

at 90m would have been inappropriate for the number of simulations carried out in this 

chapter. Moreover, if a multi-delta experiment with various scenarios (e.g. climate change or 

dam scenarios) was carried out over such a long period (7 years), a resolution of 540m is 

more practical. Using a resolution of 540m, which is deemed here as intermediate, is an 

improvement on the previous versions of Mekong flood models that use global flood 
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models (e.g. CaMa-Flood (Yamazaki et al., 2014b)) but still allows for scenario based 

simulation. Finer scale models of the Mekong Delta (e.g. Can Tho city model of Apel et al. 

(2016)) use non-freely available topographic data (LIDAR), which is not only unavailable to 

all modellers but does not cover the whole delta. Furthermore, even if LIDAR data was 

available for the whole data, the computation time would be prohibitive and indeed 

unworkable if a scenario based stochastic approach was taken. Therefore, the model 

presented here at an intermediate scale is an appropriate tradeoff between available data, 

desired outputs and computation time, especially if an ensemble of models are to be run.   

3.7.2.4 Friction Parameters 

The model was found to be more sensitive to channel friction than floodplain friction. 

Optimum channel friction values for water elevation was found at low values (0.020) and for 

discharge at slightly higher (~0.035), all of which are within the realms of physical reality. 

For the floodplain, Manning’s values of approximately 0.050 were found to give best model 

performance. The low computational cost of the model allowed for such a wide parameter 

space to be explored, but for other studies this could be reduced. A spatially uniform 

distribution of friction values was implemented in this study, but the model is capable of 

spatially distributing friction values both for the channel and floodplain. One could calibrate 

the model using zones of different friction much like the work of Dung et al. (2011) and 

Manh et al. (2014), but this was not done in this chapter as it would create a very large 

parameter space. Besides, particularly in Cambodia, the friction parameters fluctuate 

throughout the year as the flood disperses overbank, effectively creating a huge channel that 

is littered with vegetation. 

3.7.2.5 Improvising Hydrodynamic Models in Data-Sparse Deltas – what is 

needed?  

Despite the promising results, we believe that flood inundation modelling in data sparse 

deltas can be practically improved in four main ways: 1) Adding extra channel detail from 

remote sensing; 2) using additional DEM products; 3) separating deliberate flooding of rice 

paddies from damaging flooding; 4) adding levee information.  
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Extra channel detail, particularly below 50 m would help river-floodplain connectivity 

which is particularly prevalent in deltas. The recent launch of the Sentinel 2 satellite offers 

the possibility of generating a 10m water mask (Du et al., 2016b), whilst the Landsat TM, 

ETM+ and OLI images offers the possibility of generating 30m water masks as far back as 

1984. Once a water mask has been delineated, river width extraction algorithms such as 

RivWidth (Pavelsky and Smith, 2008) or RivaMap (Isikdogan et al., 2017) can be used to 

estimate values.  

Perhaps more importantly, additional DEM products should be investigated, owing to the 

relatively poor quality of MERIT/SRTM and the fact that these products were acquired in 

2000 and thus could be considered outdated in the dynamic deltaic environment. The 

TanDEM-X DEM at 12.5m resolution (Rizzoli et al., 2017) could be one such DEM to 

investigate, but it has suffered from numerous delays and is only available for a limited 

number of educational purposes free of charge. Even if TanDEM-X at 12.5m were acquired, 

the whole of the delta would not be covered due to limitations of the number of DEM tiles 

that can be acquired. A further alternative is the NASADEM, which will be a reprocessed 

version of SRTM (NASA, 2017), but ultimately does still rely on SRTM acquired way back in 

2000 and seems to be delayed.  Additional recent DEMs such as a vegetation removed 

version of SRTM (Zhao et al., 2018) or CoastalDEM (Kulp and Strauss, 2018) could 

potentially be used, even though to date their availability is unclear. A further alternative is 

the idea of DEM simulation, whereby plausible versions of a DEM are simulated based on 

the spatial error structure. The idea of DEM simulation was fairly popular in in the 1990’s 

and early 2000’s (Holmes et al., 2000, Fisher, 1991, Goovaerts, 1997, Deutsch and Journel, 

1998) but has faded out of fashion despite the wealth of DEM products  and computational 

resources now available. More surprisingly is the fact that the technique has been seldomly 

used in flooding applications with only the study of Wilson and Atkinson (2005) using DEM 

simulation in fluvial flooding and a handful of simple coastal flooding applications (Leon et 

al., 2014, Fereshtehpour and Karamouz, 2018). Therefore, there is an opportunity to produce 

plausible DEMs at the resolution of a global DEM (e.g. MERIT at 90 m) allowing the 

possibility to explore the effects of topographic error at the minimum resolution of 
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topographic information available in a data-sparse location (i.e. resolution of a global DEM 

assuming no high-resolution LIDAR is available).  

Thirdly, good and bad flooding needs to be separated so flood maps can be produced 

delineating more accurately the truly at-risk areas. Flooding generally is thought of as a 

negative phenomenon but for many in deltas it is essential to sustain their agricultural 

livelihoods. Delineation of good/bad flooding (otherwise thought of as deliberate and non-

deliberate flooding) could be implemented by including an irrigation scheme. Taking the 

Mekong Delta as an example, remote sensing confirms the prevalence of irrigated rice 

paddies (Kontgis et al., 2015, Nguyen et al., 2016, Nguyen et al., 2015). Rice paddies have 

been found to demonstrably attenuate flooding (Masumoto et al., 2008, MRC, 2010a), but 

with the move towards triple rice cropping are becoming less frequently flooded. Water 

levels in paddies are controlled by sluice gates and pumps to the level required by the crop 

at the time in the crop cycle. From remote sensing paddies could appear flooded, but in fact 

are deliberately flooded to grow rice. Yet, if too much water is in a paddy, bad (or non-

deliberate flooding) occurs. Delineating these deliberately and non-deliberately flooded 

paddies would be useful in gauging where the most negatively affected by flooding areas 

are as opposed to just wet areas. In addition, the presence of paddies suggest that irrigation 

channels are nearby as typically paddies are irrigated from river water (although 

increasingly groundwater is also used).  A schematic of water balance in a paddy is given in 

Figure 3-26. Essentially to include such an irrigation scheme in a hydrodynamic model, one 

would need to obtain data on where the irrigated areas are, what the crop calendars are, and 

what water depths are needed at key points in the crop calendar. With evaporation and 

rainfall, water volume can be calculated based on paddy water demand. Global datasets are 

available for irrigated areas (GMIA; (Siebert et al., 2015)) and crop calendars (SACRA; 

(Kotsuki and Tanaka, 2015)), and should be supplemented by water depth guidelines for the 

crop in question. The water height at each model timestep would be updated and water 

either withdrawn or deposited back into the nearest river cell.  
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Fourthly, including levee height information would be highly beneficial and remains one of 

the key challenges for all flood inundation studies on how best to capture this, especially 

over a large area. Whilst obtaining bathymetry data and a DEM with a low vertical error 

(e.g. LIDAR) is favoured, the practicality, cost and timeframe involved is prohibitive. It may 

be possible for a section of a delta, but not for a whole delta or multiple deltas, certainly 

within the next decade. Therefore, the four proposed improvements are a practical step in 

enhancing flood inundation modelling in data-sparse deltas. 

3.8  Limitations 

This study has some caveats. This chapter only assesses fluvial flooding, with the 

justification that the Mekong Delta has not suffered from major coastal flooding in the recent 

past. Yet, for other data-sparse deltas, this type of flooding is more pronounced. Coastal 

Figure 3-26 Schematic of the water balance for a paddy. WL refers to water level. Vin is volume in and 

Vout is volume out. 

 

Figure 3-27 Paddy flooded so crops damaged but acting as flood attenuation. Considered negative 

flooding as crops damaged 
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flooding analysis of such data-sparse deltas is difficult to model with the MERIT/SRTM 

DEM due to the noise in the data being particularly prominent in coastal areas and the lack 

of forcing data. Furthermore, friction parameters were assumed to be uniform across the 

domain. Evaporation was included, but this was uniform and did not consider the 

transpiration component. Rainfall can be included in the model, but the noisy nature of the 

DEM resulted in routing problems, so was omitted. The biggest caveat however is the lack 

of detail about channels and dikes which the MIKE11 based model of Dung et al (2011) has. 

The model of Dung et al (2011) and the follow up studies have the ability to more accurately 

represent the important links between the river and the floodplain which are particularly 

important in deltas as evidenced by the stark difference in flood extents when using three 

different DEMs (LIDAR, MERIT and SRTM). The LISFLOOD-FP based model developed in 

this chapter simply cannot represent the river-floodplain connectivity adequately, which is 

likely to be due to the lack of channels and the inaccuracies of the DEM used. The model 

developed in this chapter suffers from the inability to dewater correctly, so although model 

evaluation metrics such as CSI are reasonably high in the wet season (0.62), they are very 

low in the dry season (close to 0) and, thus, the model shows very little skill in these periods. 

3.9  Conclusions 

This chapter presents an intermediate scale flood inundation model of the Mekong Delta 

built using freely available data and the LISFLOOD-FP subgrid model. A benchmark model, 

called the All Bathymetry + Width Model, was built using all freely available data. 

Sensitivity analysis was carried out on the All Bathymetry + Width Model by varying 

channel and floodplain friction parameters, resulting in 561 model variations. The All 

Bathymetry + Width Model showed a good level of skill with RMSE values across 5 gauges 

at 0.608m, NSE values of 0.627 across 4 gauges and a CSI score of 0.62. The model was also 

found to perform considerably better in wetter years and periods of high flow. Using the set 

of friction parameters found to work best for the All Bathymetry + Width Model (channel n 

0.0225 and floodplain n 0.050) 2 further investigations were carried out to test the 

importance of knowing channel bathymetry and representing smaller channels not in the 

GWD-LR database, resulting in an additional 550+ model runs. Bathymetry was estimated 

based on bankfull discharge estimates and scaling these. Using only a global database of 
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river widths (GWD-LR) and estimating bathymetry using the bankfull discharge method 

yielded marginally worse results than the All Bathymetry + Width Model, indicating that a 

global type flood inundation model of the Mekong Delta that accurately depicts flooding 

can be built using freely available data. The model built in this chapter is the first 2D model 

of the Mekong Delta and fits in between the detailed models that need non-freely available 

data (e.g. LIDAR data) and coarse resolution global models. It is also the first to have 

estimated the downstream tidal boundary so comprehensively using harmonic analysis and 

the FES2014 dataset, allowing for some representation of the tidal backwater effect. 

Therefore, a flood model of any data-sparse delta could in theory be built using global 

datasets – MERIT/SRTM for the DEM; GWD-LR for channel widths; GRDC or local 

authorities for gauge information and FES2014 for downstream tidal boundaries, with 

bathymetry estimated using bankfull discharge. This leads to the possibility that other data-

sparse deltas can be modelled in a similar manner to identify those areas at flood risk, 

paving the way for a much-needed analysis of flooding in these deltas which is not solely 

focused on coastal flooding. However, the model developed in this chapter in its current 

guise would be inappropriate for such analysis in the Mekong delta as the model does not 

dewater correctly leading to very poor skill (CSI score close to 0) in the dryer months. To 

improve flood modelling in data-sparse deltas, 4 additional pieces of data and/or model 

capabilities should be explored: 1) Adding extra channel detail; 2) Using additional and/or 

an ensemble of DEMs; 3) Adding an irrigation scheme to delineate good/bad flooding and 

include a human component and 4) Adding levee data. Yet, a key finding of this chapter is 

the stark difference in flood predictions by using different DEM products. The impact of 

DEM uncertainty has been rarely focused upon despite its recognized importance in flood 

predictions, especially in situations in data-sparse areas only global DEMs. Thus, the 

following results chapters will focus on DEM uncertainty and their impact on flood 

inundation prediction in data-sparse areas.  
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Chapter 4 Implications of Simulating Global 

Digital Elevation Models for Flood Inundation 

Studies 

 

• Hawker, L., Rougier, J., Neal, J. C., Bates, P. D., Archer, L., & Yamazaki, D. (2018). 

Implications of Simulating Global Digital Elevation Models for Flood Inundation 

Studies. Water Resources Research. 54. https://doi.org/10.1029/2018WR023279 

• Hawker, L., Bates, P. D., Neal, J. C., & Rougier, J. (2018). Perspectives on Digital 

Elevation Model (DEM) Simulation for Flood Modeling in the Absence of a High-

Accuracy Open Access Global DEM. Frontiers in Earth Sciences. 6:233. doi: 

10.3389/feart.2018.00233 

4.1 Preface 

This results chapter consists of papers that has been published in Water Resources Research 

and Frontiers in Earth Science. Simulations, analysis, writing and figures were completed by 

the lead author with advice and commenting of the manuscript from Paul Bates, Jeffrey Neal 

and Jonathan Rougier. The flood model of Ba, Fiji was kindly supplied by Leanne Archer. 

The MERIT DEM is the work of Dai Yamazaki and colleagues. Jonathan Rougier helped 

with the initial setup of the geostatistical code.  

4.2  Context 

The previous chapter built a regional scale 2D flood model of the Mekong Delta using freely 

available data. Inaccuracies in topography were suspected in having an influence on 

predicted inundation quality. Yet it was difficult to explore this source of uncertainty with a 

lack of: (a) high accuracy datasets for topography that could be used to assess errors in the 

MERIT DEM; and (b) knowledge of the spatial structure of these errors and (c) a method to 

simulate plausible DEM’s suitable for flood modelling. Therefore, this chapter sets out to 
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simulate plausible versions of floodplains in global DEMs and test the impact of using 

ensembles of DEMs on predicted inundation extent.  

4.3  Introduction 

“People trust a map. It contains sharp lines, bright colours, and implies a great deal of effort by field 

staff, analysts and cartographers. Maps are a definitive statement , yet the world we commonly 

experience is far from definitive” (Davis and Keller, 1997b) p410 

4.3.1 Digital Elevation Models 

The first digital representation of terrain can be traced back to the 1950s and the pioneering 

work of Prof. Charles L Miller and colleagues at Massachusetts Institute of Technology who 

were tasked with expediting highway design by digital computation of 

photogrammetrically acquired terrain data. In each model, the X axis was aligned to the 

proposed direction of the highway and subsequently tied to the State Plane coordinate 

system using control points. Records of elevations were recorded by Kelsh plotters that were 

moved at regular intervals along the Y direction. This process was automated and several 

computer programmes were created where operators could interact with the data. All this 

was deployed on an IBM 650 computer which had a maximum storage capacity of just 2000 

words. Despite the simple approach, this is widely recognised as the birth of digital 

representation of terrain (Doyle, 1978). Therefore, the earliest definition of a Digital Terrain 

Model given by Miller and Laflamme (1958) is ‘a statistical representation of the continuous 

surface of the ground by a large number of selected points with known xyz coordinates in 

an arbitrary coordinate field’.   

In the subsequent decades, the introduction of concepts such as a Digital Elevation Model 

(DEM) and Digital Surface Model (DSM) have created a confusing picture. We clarify these 

definitions in Table 4-1. For the remainder of this thesis we will focus on DEMs, especially as 

this is most relevant to flood models.  

Table 4-1 Definitions of DEM, DTM and DSM 
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Product Definition 

Digital Elevation Model 

(DEM) 

A numerical representation of the bare-earth surface arranged as a set of regularly 

spaced points on a Cartesian grid. Normally these grids are square and the elevations 

exclude buildings and vegetation, but variations do exist where these may not be the 

case. In other words, DEMs are any set of elevations measurements of the earth’s 

surface that also record spatial proximity or spatial relationships between the 

elevation measurements, so a simple list of elevations does not constitute a DEM 

(Fisher and Tate, 2006). Land surface parameters are derived from the DEM. 

Digital Terrain model 

(DTM) 

All-encompassing original term to describe models of terrain elevation. A DTM is a 

synonym of a bare earth DEM (Maune, 2001). 

Digital Surface Model 

(DSM) 

The model represents the top of reflective surfaces such as buildings and vegetation 

(Maune, 2001). A good DSM should portray the surface adequately which could 

require high resolution as many surfaces (e.g urban areas) are highly complex. 

 

DEMs are generated by first collecting elevation measurements from either: 1) Ground 

surveying techniques (e.g Global Positioning Units); 2) Existing hardcopy topographic maps; 

3) Remote sensing (airborne lasers, airborne/satellite photogrammetry, airborne/satellite 

interferometry) (Nelson et al., 2009). These measurements are then processed to reduce 

errors, with further error propagation through the decisions made in the processing stage, 

such as the decisions made about treating unwanted depressions (Wilson, 2012). These set of 

points are then recorded onto a regular grid in Cartesian space – most commonly a square 

grid, and less frequently on a triangular or rectangular grid. By gridding the elevation points 

error is introduced through the interpolation process. Thus, for some very high-resolution 

applications a user may prefer to use the raw elevation data in point cloud format which is 

becoming increasingly available to the end-user. The DEM is subsequently interpreted and 

visualised before being used in a wide range of applications (Table 4-2). 

Application Reference 

3D Visualisation Zanchi et al. (2009) 

Archaelogy Menze et al. (2006) 

Table 4-2 Examples of DEM Applications 
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Application Reference 

Climate Change Impact Kramer et al. (2010) 

Flood Models Bates and De Roo (2000) 

Forest Ecology Simard et al. (2011) 

Forest Fire Hernández Encinas et al. (2007) 

Geomorphology Bailey et al. (2007) 

Glaciology Paul and Haeberli (2008) 

Hydrology Wise (2000) 

Landscape Dynamics Allen et al. (2013) 

Planning Support Aerts et al. (2003) 

Pollution  Shamsudduha et al. (2008) 

Seismology Allen and Wald (2009) 

Soil Mapping Mulder et al. (2011) 

Soil Redistribution Claessens et al. (2005) 

Solar Radiation Reuter et al. (2005) 

Species Dynamic Range Models Schurr et al. (2012) 

Urbanisation  Linard et al. (2013) 

Valuation of landscape beauty Schirpke et al. (2013) 

Video Games/synthetic Terrains Zhou et al. (2007) 

Volcanology Huggel et al. (2008) 

 

4.4  DEM Error 

“No Dataset is perfect. Each has its own limitations. Nevertheless, the temptation is to assume digital 

datasets are perfect” (Giles et al., 2010) p141 

“Landscapes are not uncertain, but knowledge about them is” (Davis and Keller, 1997b) p432 

To most the word error has an aura of negativity. It indicates that if more care was taken, a 

mistake could have been avoided (Taylor, 1997). The term also has monetary connotations 

with the colloquial term costly error. When referring to a DEM, we can consider the term 

error to refer to the departure of the measurement from the true value (Wechsler, 2007). 

Error is the part of uncertainty that is well defined (Oksanen, 2006). It is an irrefutable fact 

that errors are a part of spatial data and cannot be avoided (Wechsler, 2007, Gonga-

Saholiariliva et al., 2011). 
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Error in the DEM can occur in both the horizontal (XY) and the vertical (Z) planes (Fisher 

and Tate, 2006). Typically, efforts have focussed on vertical errors as planimetric errors 

produces elevation errors but not vice-versa. Wise (2000) categorized vertical errors as 

systematic, blunders or random. Systematic errors occur in the DEM generation procedure 

and stem from processing techniques that can cause bias or artefacts. If this cause is known 

it can be removed or reduced (Wechsler, 2007). Blunders arise from human error (Wise, 

2000) or equipment failure (Fisher and Tate, 2006) and are typically corrected if they are 

identified. Random errors occur in any system of measurement due to the wealth of 

measurement and operational tasks performed to create a DEM (Wise, 2000, Fisher and Tate, 

2006), and remain even after known blunders and systematic errors are removed (Wechsler, 

2007). Identifying random errors is challenging, with Lopez (1997) attempting it using 

principal component analysis. Blunders, systematic error and random error occur from 3 

sources as identified by Wechsler (2007) and are (a) data error as a result of deficient spatial 

sampling or observations and age of data; (b) processing errors such as interpolation or 

numerical errors; and (c) measurement errors such as positional inaccuracy, faulty 

equipment or observer bias. 

DEM error is most commonly quantified using the root mean square error (RMSE) statistic 

(Hunter and Goodchild, 1997, Fisher and Tate, 2006, Wechsler, 2007). Calculating this single 

global accuracy metric has its advantages as it is quick to calculate, easy to report and has 

been used widely in the literature (Carlisle, 2005). Yet, the disadvantage of such a global 

measure is widely discussed in the literature (Burrough and McDonnell, 1998, Wise, 2011, 

Wechsler, 2007, Carlisle, 2005, Kydriakidis et al., 1999, Zhang and Montgomery, 1994, 

Oksanen and Sarjakoski, 2006). Using such a global measure implies the error is aspatial, or 

in other words is the same across the entire area in question. By intuition we know this not 

to be the case and this will be discussed in detail in the next section as this idea is imperative 

to this work. Moreover, RMSE assumes that DEM errors are random and requires an 

assumption of normality, but in a number of studies this has been found not to be the case 

(Monckton, 1994, Fisher, 1998), with mean error being used instead by Fisher (1998). RMSE 

is also sensitive to larger errors. Error quantification metrics of DEMs have often been based 

on a small number of reference points. For example, Wechsler and Knoll (2006) report that 
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RMSE for a USGS 7.5 min DEM tile containing 161,355 data points was estimated using just 

28 reference points. In later work, Wechsler (2007) uses an example of 120 million LIDAR 

points with a reported RMSE of 0.15 m which was calculated using just 174 ground survey 

points or 0.00014% of the data. With a normal distribution and a mean of 0 m, the standard 

deviation would range from -0.62 m to +0.62 m. Therefore, the vendor is stating that 95% of 

the data could deviate from the stated elevation by 0.15 m or less. Yet, 5% of the data could 

deviate by ±0.15 m to ±0.30 m and 1% (or 1.2 million points in this case) could deviate by 

±0.30 m to ±0.62 m, leading Wechsler (2007) to conclude that the ability of the RMSE metric 

to represent the DEM accuracy is ‘questionable’. 

4.4.1 Spatial Error  

In his 1970 paper, Waldo Tobler invoked what became known as Tobler’s First Law of 

Geography, whereby he noted that “nearby things are more similar than distant things” 

Tobler (1970). Whilst this may appear to be a simple observation, it provides a useful 

theoretical framework when considering how error is related in space. First let us consider 

the scenario whereby the error in a DEM elevation pixel is spatially independent of its 

neighbour. In other words, the error in a pixel is uncorrelated to that of its neighbour. When 

considering error in relation to vegetation height, there is a general agreement that there is a 

positive bias in the errors, as with vegetation present the elevation is higher than the terrain. 

So, in general a pixel with a tree in it will likely have a larger error (or a larger positive bias) 

than a pixel containing a vegetation type with a much lower height (e.g grass). Similarly, a 

pixel with a steeper slope, or a particular aspect, typically has a larger error (positive or 

negative) than a flat surface. Taking this first scenario, and with our error assumptions laid 

out, the landscape would consist of a complete random selection of land cover and slope. 

From intuition, we know this to be completely unrealistic. A tree is likely to be next to 

another tree to form a forest. Grass is likely to be next to grass to form a field. A steep slope 

is likely to be next to another steep slope to form a mountain, and so on. Therefore, Tobler’s 

First Law of Geography is a completely reasonable observation. Thus, we can consider the 

error in a DEM to be spatially dependent, or in geostatistical language, spatially 

autocorrelated. If we maximise the degree of spatial autocorrelation, all errors are perfectly 

correlated. Again, we know this to be unrealistic as this scenario would assume every pixel 
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to have the same characteristic (e.g vegetation height, slope, aspect) and the area to be small 

enough that the instrument errors (e.g striping) would not be present. Additionally, 

instrumentation used to sample the elevations tend to correlate errors in space 

independently, making this idealised scenario even more unrealistic. Perhaps if we consider 

a small area of a completely flat landscape this assumption would hold, but finding such a 

place on the highly heterogeneous Earth is impossible. Holmes et al. (2000) observes that the 

“global average error is small” but “local error values can be large, and also spatially 

autocorrelated”. Consequently, we can deduce that the error in a DEM has some degree of 

spatial dependence.  

4.4.2 Error Propagation  

In the creation and utilisation of DEMs, uncertainty is introduced and perpetuates through 

four phases as schematised in Figure 4-1.  

 

Figure 4-1 Process of constructing a Digital Elevation Model (DEM) and the propagation of 

uncertainty into the decision making (Oksanen (2006) modified from Hutchinson and Gallant (2000)) 
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4.4.2.1 Data Capture 

To create a DEM, one first needs to capture elevation data. In the past, the most prominent 

sources of elevation data were surface specific point elevation data (field surveys) and 

contour data derived from field surveys/point clouds. Nowadays, remote sensing is the 

favoured approach, with techniques ranging from photogrammetry, airborne and 

spaceborne interferometric Synthetic Aperture Radar (SAR) or LIght Detection And Ranging 

(LIDAR). Indeed, Smith and Clark (2005) note that the advent of remote sensing has meant 

that a larger area can be mapped by fewer people and at a diminishing cost.  

4.4.2.1.1 Photogrammetry 

Photogrammetry data are collected by attaching cameras to aircraft, with the more recent 

trend of using unmanned aerial vehicles (UAV) being used to generate DEMs at a low cost 

(Gonçalves and Henriques, 2015). In this technique, elevations are estimated using stereo-

pairs of aerial photographs and so the process is largely suited to small landscapes (Hancock 

and Willgoose, 2001).  

4.4.2.1.2 InSAR 

InSAR (interferometric synthetic aperture radar) data utilises radar, often on satellite 

platforms, and takes advantage of the ability of the technology to extract continuous 

information over a large area without being restricted by clouds and night time that affects 

optical sensors.  To collect the elevation data using SAR, the interferometric synthetic 

aperture radar (InSAR) technique is used which was first put into practice in the 1980’s 

(Zebker and Goldstein, 1986). This technique is depicted in Figure 4-2. It involves two SAR 

satellites flying (ideally) in parallel tracks in slightly different directions and calculating the 

phase difference between the radar phases. Additionally, and now most commonly, two 

SAR antennas are placed on the same satellite as in SRTM. Radars can have different 

wavelengths (e.g X-band and C-band). For best results, the two SAR antennas should be 

operated simultaneously. In this particular setup, the primary antenna transmits and 

receives pulses, whilst the second antenna only receives. Using this setup has the advantage 

that an elevation is measured by antennas that are passing over a location very near (in 

temporal terms) to each other, reducing the impacts of changes in water vapour 

concentration and vegetation change that introduces phase errors when using repeat-pass 
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InSAR as for the latter the SAR instrument may pass over up to a month apart. The Shuttle 

Radar Topography Mission (SRTM) was the first single pass (two SAR antennas operated 

simultaneously) InSAR in space due to the high costs of using such a technique (Rabus et al., 

2003). 

 

 

 

4.4.2.1.3 LIDAR 

LIDAR data is collected by flying an aircraft over a landscape and emitting laser pulses to 

the surface which are subsequently reflected. The time taken for the laser pulse to be 

reflected back to the aircraft is measured, with the elevation subsequently calculated. This 

allows for a dense network of measurements to be collected over a large area very quickly. 

Pulsed laser beams are typically used to decipher multiple laser hits. Artefacts are then 

filtered to create either a DTM or DSM surface. For instance, in vegetated areas, the first 

return is assumed to be the canopy and the last the bare earth, thus vegetation height and a 

bare-surface can be inferred (Shan and Toth, 2008). Horizontal resolutions typically range 

between 0.5m-5m, with reported RMSE values typically less than 0.2m. 

Figure 4-2 Across-track InSAR configuration. Courtesy of Rabus et al. (2003) 
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All these data sources have a form of error. For instance, GPS measurements, often seen as 

the gold standard for elevation measurements, are less accurate when the instrument’s view 

to the sky is blocked by terrain and are limited to locations that are accessible (Carlisle, 

2005). Contour data, produced from point cloud or field measurements, can be digitised, but 

this is subject to human error and the technique is known to undersample between contour 

points which is especially problematic in low-relief areas (Hutchinson and Gallant, 2000). 

Remotely sensed methods have the advantage of a broad spatial coverage, but are generally 

limited by sensors being unable to fully penetrate vegetation coverage and buildings, as well 

as issues related to instrument setup and terrain characteristics.  

4.4.2.2 DEM Generation 

Next the elevation data needs to be interpolated and gridded to create a DEM at a particular 

scale (Hutchinson and Gallant, 2000). Gridded products are generally favoured as they are 

compatible with other geophysical models that tend to work with grids (Wise, 2000). 

Numerous interpolation techniques exist, with four broad categories identified by 

Hutchinson and Gallant (2000) as triangulation; local surface patches and locally adaptive 

gridding. Indeed, by interpolating the error is intrinsically spatially dependent (Carlisle, 

2005). Some of the most well-known interpolation methods are bilinear, inverse distance 

weighting, radial basis function, spline, local polynomial, ordinary kriging, universal 

kriging, multiquadratic radial basis function and regularized spline with tension (Wise, 

2011, Chaplot et al., 2006, Mitas and Mitasova, 1999). The more traditional elevation data 

sources (points and contour lines) are spatially irregular and are processed with specific 

interpolation techniques to form triangulated irregular networks. Remotely sensed data are 

particularly conducive to the creation of regularly gridded DEMs, with gridding methods 

that have been adapted to filter out the noisy data (Hutchinson and Gallant, 2000). A 

multitude of empirical studies have investigated the effects of interpolation methods, 

usually by comparing interpolated surfaces to a higher accuracy reference surface or a 

subset of original points (Wise, 2000, Wise, 2011, Wise, 2007, Chaplot et al., 2006, Erdogan, 

2009, Heritage et al., 2009, Desmet, 1997, Guo et al., 2010, Rees, 2000, Kidner, 2003, Bater and 

Coops, 2009). Several of these studies have also looked into the impact of spatial resolution 

in the interpolation process (Bater and Coops, 2009, Wise, 2011, Guo et al., 2010). Despite all 
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these studies there is no clear consensus on the best interpolation method (Fisher and Tate, 

2006) .  Errors in phase 2, or the DEM generation phase (see Figure 4-1), also occur with the 

choice of DEM approximation and the level of detail (e.g. mesh size or TIN density) 

(Oksanen, 2006).  For some types of analysis it is necessary to further modify the DEM by 

removing erroneous depressions, also known as sinks or pits. Doing this is a ‘necessary evil’ 

for hydrologic analysis according to Burrough and McDonnell (1998), as one must be careful 

not to remove components that are real. Techniques to hydrologically condition the DEM 

include stream burning (Saunders, 1999), AGREE (Hellweger, 1997), ANUDEM 

(Hutchinson, 1989), outlet breaching (Martz and Garbrecht, 1999), iterative flow direction 

resolution (Kenny et al., 2008), Priority-Flood (Barnes et al., 2014) and 

TopologicalBreachBurn (Lindsay, 2016). 

Phases 1 & 2 (DEM Capture and DEM Generation in Figure 4-1) are the input error in the 

DEM. When a DEM is produced by a user, perhaps for a bespoke study, the error in the data 

capture and processing is generally well understood and well-documented (Januchowski et 

al., 2010). This situation is now less common as users routinely acquire DEMs by purchasing 

or obtaining publicly available products. Yet these DEM vendors frequently do not supply 

adequate metadata on data collection and processing, leaving the user unsure of the 

uncertainty, and especially the spatial dependency of the uncertainty. This has led to calls 

from for DEM vendors to provide more detailed information (Kydriakidis et al., 1999, 

Wechsler, 2007). 

4.4.2.3 Analysis & Visualisation 

Phase 3 (Figure 4-1) constitutes the uncertainty introduced as part of the visualisation and 

analysis process. In other words, this phase (and subsequently phase 4) refers to the output 

from the DEM. Visualisation can be both a tool for identifying and communicating error. 

The most basic visualisation or errors are difference maps, or residual maps, but can also 

include graphs of summary statistics. Uncertainty introduced from DEM analysis refers to 

the propagation of errors into terrain parameters (e.g. slope, aspect etc). DEM users typically 

use these parameters in their analysis or models, so it is important to understand how error 

propagates to these parameters. Calculating these impacts is further complicated as often 
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there are different algorithms to calculate the same parameter (e.g. slope) (Wechsler, 2007).  

According to Thompson et al. (2001) several factors play an important role in the quality of 

the derived terrain parameters including terrain roughness and complexity, terrain 

modelling aspects (e.g. interpolation method), pixel size, vertical accuracy and the type of 

algorithm used. A wide body of literature has assessed these impacts by using strategies 

such as comparing terrain parameters calculated from a variety of DEM sources or by 

investigating the impact of different phase 2 processing techniques (e.g. interpolation or sink 

filling) on the terrain parameters. An example of the former is the work of Januchowski et al. 

(2010) who derive slope and aspect from five DEMs, with almost all DEMs providing 

overestimates of the parameters. Interestingly, they estimate a cost/accuracy ratio, 

suggesting that the relatively coarse SRTM (Shuttle Radar Topography Mission) provides 

the most appealing cost (cost of data and man hours to process)/accuracy ratio but this can 

alter depending on the threshold of accuracy required. The link between elevation error and 

slope has been well researched, with the largest errors in slope not necessarily 

corresponding to the largest errors in elevation (Holmes et al., 2000, Thompson et al., 2001, 

Januchowski et al., 2010, Gonga-Saholiariliva et al., 2011, Hunter and Goodchild, 1997, 

Carlisle, 2005, Fisher, 1998). Other terrain parameters are also assessed in conjunction with 

slope such as aspect (Goulden et al., 2016, Mashimbye et al., 2014, Januchowski et al., 2010), 

curvature (Wise, 2011), drainage basin area (Oksanen and Sarjakoski, 2005) and upslope 

contributing area (Wu et al., 2008). DEM resolution has been found to influence the quality 

of terrain parameters with higher resolutions generally giving more accurate terrain 

parameters, with the impact varying considerably across landforms (Kienzle, 2004, Deng et 

al., 2007, Chow and Hodgson, 2009, Sørensen and Seibert, 2007, Vaze et al., 2010, Wu et al., 

2008, Zhang et al., 1999, Thompson et al., 2001, Thomas et al., 2017, Hancock, 2005, Shi et al., 

2012). Differing interpolation techniques can seriously alter topographic parameters with 

curvature found to be particularly sensitive (Wise, 2011, Wise, 2007, Wise, 2000).  The sink 

filling procedure has been found to seriously alter the spatial and statistical distributions of 

terrain parameters such as slope (Wechsler, 2000, Lindsay and Creed, 2005, Callow et al., 

2007, Woodrow et al., 2016) as the elevation of the depression is raised (thus resulting in a 

larger positive bias in elevation) and consequently slope decreases. This brief overview of 
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the impact of DEM error on terrain parameters is far from exhaustive so the reader should 

consult the quoted references if additional information is required.  

4.4.2.4 Interpretations & Applications 

The last phase, phase 4, refers to the interpretations and applications derived from a DEM. 

In effect this is the impact DEM error has on a geoscientific model that utilises a DEM. For 

example, landslide hazard models usually calculate a factor of safety from the slope. As 

these models can rely on several terrain parameters, the uncertainty from the DEM has 

propagated through the phases as outlined in Figure 4-1. DEM resolution has been shown to 

impact model outputs for a wide range of geoscientific modelling applications including: 

landslide models (Claessens et al., 2005, Holmes et al., 2000), landscape models (Schoorl et 

al., 2000), the TOPMODEL hydrologic model (Wolock and Price, 1994, Zhang and 

Montgomery, 1994, Wise, 2007), the SWAT hydrologic model (Chaplot, 2005, Chaubey et al., 

2005), the WEPP hydrologic model (Zhang et al., 2008), the HSPF model (Yang et al., 2014)  

and the  LISFLOOD-FP hydrodynamic model (Savage et al., 2016b, Bates and De Roo, 2000, 

Horritt and Bates, 2001a). Yet, modellers often tend not to ask questions about model 

sensitivity to DEM derived parameters and instead focus on attributes such as hydrograph 

estimations and Manning’s roughness coefficients (Wechsler, 2007). 

What is not mentioned above is the uncertainty introduced by time. A landscape evolves, be 

it geomorphologically or more commonly with the help of humans, so one can be less 

certain about the accuracy of the DEM product as time goes on. It is unlikely one would use 

a map that is almost 20 year old to plan a hiking expedition as the landscape and footpaths 

may have changed in that period. Yet, this is effectively what a lot of DEM users are doing, 

and often users do not fully address or even recognise this issue.  

Despite DEMs being frequently used, users are not always aware of DEM errors or how to 

treat them. Whatever the source, DEM products provide a definite and plausible 

representation of the terrain which often lulls the user into a false sense of security regarding 

the accuracy of the product (Wechsler, 2007). Wechsler (2003) provides an intriguing insight 

into the matter when she surveyed 216 DEM users from 26 countries to gauge perceptions of 

DEM uncertainty. Half of the respondents recognised that they are ‘sometimes’ or ‘always’ 
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affected by uncertainty, whilst 25% reported a lack of awareness as to whether DEM errors 

affected their results at all (Wechsler, 2003). Less than half of respondents accounted for 

uncertainty, with RMSE the most commonly reported metric, and most DEM users, despite 

recognising the importance of uncertainty, were only willing to dedicate the minimal 

amount of time to it. As far as we are aware there has been no follow up to this 15-year-old 

study which highlights the lack of understanding of the impact of DEM uncertainty and the 

unwillingness to address it. Certainly, in the case of flood modelling, the impact of DEM 

uncertainty on flood estimates has not been as stridently investigated compared to other 

sources of uncertainty. As a result, Wechsler (2007) proposed the development of a DEM 

uncertainty toolbox  to be implemented into GIS. This would form a one-stop-shop where 

DEM error could be quantified, simulated and communicated so users could get a stronger 

grip on how DEM error impacts on their work. 

4.4.3 Global DEM Products 

Freely available high accuracy airborne hyper-scale DEMs (<10m horizontal resolution) are 

only available for a very small proportion of Earth’s land surface (~0.005%), so spaceborne 

global DEMs offer the best source of topographic information for most of the Earth. Several 

freely and commercially available global DEM products exist as outlined in Table 4-3. 

 Dataset Coverage Acquisition 

Years 

Sensor Wavelength Resolution 

(m) 

Vertical 

Accuracy 

Reference 

Free Global 

DEMs 

ALOS 

AW3D30 

82°S - 

82°N 

2006-2011 Optical 0.52-0.77um 30 4.4m 

(RMSE)1 

Tadono et 

al. (2014) 

 ASTER 

GDEM 

83°S - 

83°N 

2000-2011 Optical 0.78-0.86 30 17m (95% 

conf.)2 

Tachikawa 

et al. (2011a) 

 GMTED2010 Entire 

Earth 

Completed 

2010 

Derived from 11 

sources of elevation 

information 

250,500,1000 26m 

(RMSE)3 

Danielson 

and Gesch 

(2011) 

 SRTM 56°S - 

60°N 

2000 SAR C 

Band 

5.66cm 30,90 6m 

(MAE)4 

Farr et al. 

(2007) 

 TanDEM-X 

90 

Entire 

Earth 

2010-2015 SAR X 

Band 

3.1cm 30,90 Unknown Rizzoli et al. 

(2017) 

Error 

Reduced 

Versions of 

SRTM 

EarthEnv 60°S - 

83°N 

ASTER & SRTM 90 4.15m 

(RMSE)5 

Robinson et 

al. (2014) 

 NASADEM   Expected release late 2018  Crippen et 

al. (2016) 

Table 4-3 Overview of Global DEM Products 
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 MERIT Entire 

Earth 

AW3D30, SRTM & Viewfinder 

Panorama 

90 5m (LE90)6 Yamazaki et 

al. (2017) 

 Bare-Earth 

SRTM 

Same as SRTM 90 5.9m 

(RMSE)7 

O'Loughlin 

et al. (2016b) 

 No Name Same as SRTM 90 1m 

reduction 

in RMSE8 

Zhao et al. 

(2018) 

 Viewfinder 

Panorama 

Entire 

Earth 

ASTER, SRTM & Other Sources 90 Not 

Reported 

de Ferranti 

(2014) 

Commercial 

Global 

DEMs 

ALOS AW3D 82°S - 

82°N 

2006-2011 Optical 0.52-0.77um 5 2.7m 

(RMSE)9 

Takaku and 

Tadono 

(2017) 

 PlanetDEM 

30 Plus 

Entire 

Earth 

Same as SRTM 30 Not 

reported 

Planet 

(2017) 

 NEXTMap 

World 10 

Entire 

Earth 

Not Reported 10 10m 

(LE95)10 

InterMap 

(2018) 

 WorldDEM Entire 

Earth 

2010-2015 SAR X 

Band 

3.1cm 12 <1.4m 

(RMSE)11 

Rizzoli et al. 

(2017) 

N.B. Older Global DEMs ACE GDEM (Berry et al., 2000) and GTOPO30 (Gesch et al., 1999) were not included in the table as these 

products have been superseded by more recent GDEMs. 1) Tadono et al. (2016)  2) Tachikawa et al. (2011b) 3) Danielson and Gesch (2011) 

4) Rodriguez et al. (2006) 5) Robinson et al. (2014) 6) Yamazaki et al. (2017) 7) O'Loughlin et al. (2016b) 8) Zhao et al. (2018) 9) Takaku 

et al. (2016) 10) InterMap (2018) 11) Wessel et al. (2018) 

 

Of all the global DEM products, the Shuttle Radar Topography Mission (SRTM) remains the 

most widely used. SRTM is a freely available DEM covering 99.97% of the earth’s land 

surface between 56°S and 60°N (Rabus et al., 2003, Farr et al., 2007) and is the most widely 

used global DEM product owing to its coverage and accessibility.  Data was collected by a 

single-pass interferometric Synthetic Aperture Radar system over an 11 day period in 

February 2000. This NASA led mission resulted in a 3 arc second (≈90 m) near global DEM 

being initially released, before a 1 arc second (≈30 m) was released in late 2015. Various 

versions of SRTM exist including the original non-void filled SRTM V1, void filled products 

SRTM V2, SRTM V3 and the CGIAR-CSI developed version (Jarvis et al., 2008). In the near 

future the NASADEM (Crippen et al., 2016), which will be a reprocessed version of the 

original SRTM dataset, is due to be released. Other freely available global DEMs include the 

Advanced Spaceborne Thermal Emission Radiometer (ASTER) (Abrams, 2000) with the 

global product at 90m and spanning to 83°S and 83°N, the Advanced Land Observing 

Satellite (ALOS AW3D30) (Tadono et al., 2016) at 30 m, and the Global Multi-resolution 

Terrain Elevation Data 2010 from 250 m resolution (Danielson and Gesch, 2011). Error 

reduced versions of SRTM have also been produced, usually by fusing with other DEM 

products, with examples including EarthEnv (Robinson et al., 2014) and Viewfinder 
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Panorama (de Ferranti, 2014). These have all superseded older DEMs such as the ACE 

GDEM (Berry et al., 2000) and GTOPO30 which have a resolution of 1km. Recently, the DLR 

(German Aerospace Center) led TanDEM-X global DEM (Krieger et al., 2007, Moreira, 2017, 

Rizzoli et al., 2017) has become increasingly available for educational/research purposes, but 

the public private partnership consortium nature of the mission has restricted the product’s 

ease of access, resulting in a lack of applications. However, as of the 29/09/2018, a 90 m 

version of TanDEM-X called TanDEM-X 90 has been released and is freely available. 

TanDEM-X was collected using a high resolution interferometric SAR configuration, 

providing a ground resolution of 12 m. Importantly, Tan DEM-X covers all land surfaces, 

with data collection from December 2010 to early 2015 (Rizzoli et al., 2017), thus providing 

an important update on SRTM.  Performance assessment of the product has found it to out-

perform mission criteria, with Rizzoli et al. (2017) finding a vertical error of 3.49m at 90% 

confidence, or 0.88 m if forested areas and ice are excluded. To date, most applications of 

TanDEM-X have focussed on quantifying vegetation heights (e.g Schreyer et al. (2016)), with 

Martone et al. (2018) recently calculating a global forest/non-forest map at 50 m. Flooding 

related studies have so far been limited to a method proposed by Mason et al. (2016) to 

improve TanDEM-X in floodplains based on flood extents. Until very recently, there had 

been no flood inundation studies utilising Tan-DEM-X data, with Archer et al. (2018) 

demonstrating that the flood model skill scores improves when using TanDEM-X with 

vegetation removal compared to SRTM, MERIT and the DSM version of TanDEM-X.  

However, Archer et al. (2018) notes that the complex data acquisition process has limited the 

use of the product, despite the potential to improve flood inundation estimates. On a similar 

note, commercially available DEMs are also available (such as Nextmap World10™, 

World30™ and Airbus WorldDEM™), but their restricted rights, prohibitive costs and lack 

of independent validation studies comparing them to other DEMs and ground observations 

make their use limited. With all this considered, the SRTM dataset is generally still favoured, 

particularly the CGIAR-CSI Version 4 (Jarvis et al., 2008), due to ease of access, greater 

feature resolution, reduced number of artefacts, lower noise and better vertical accuracy 

than other global DEM products and older versions of SRTM (Jing et al., 2014, Rexer and 

Hirt, 2014, Jarihani et al., 2015, Sampson et al., 2016, Hu et al., 2017). Therefore, the SRTM 

and its derivatives still form a crucial resource in providing topographic information to 
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many hazard and risk assessment models, particularly in data-poor locations where high 

resolution topographic data such as LIDAR (light detection and ranging) either does not 

exist or is not accessible. Despite calls for a concerted effort to produce a free accurate global 

DEM (Schumann et al., 2014), there is little sign that such a dataset will be produced soon, 

thus SRTM remains the best option for elevation data for much of the earth now, and for the 

foreseeable future. 

Errors in the SRTM dataset was most comprehensively characterised by a large global study 

carried out by Rodriguez et al. (2006). Using nearly 9.4 million Kinematic Global Positioning 

System (KGPS) samples collected along roadways in six continents, Rodriguez et al. (2006) 

found that 90% of the errors were less than 5m, well within the missions’ accuracy 

requirements of an absolute height error of 16m (Rabus et al., 2003). Other more localised 

studies have also assessed SRTM absolute errors, with most of these focussed on vertical 

error (Table 4-4). Reporting vertical accuracy as a single measurement such as root mean 

square error (RMSE) has its advantages as it is quick to calculate and easy to report, but it 

does not portray the heterogeneity of the error and can imply on first glance that the error 

across the DEM is uniform. In section 4.4 we explain why this pitfall is incorrect 

Location RMSE 

(m) 

MAE 

(m) 

Landcover Vegetation 

Error 

Terrain 

Error 

Spatial 

Dependence 

Reference 

Global 
 

6 Mixed No No Yes Rodriguez et al. (2006) 

Argentina 8.3 -0.6 Mixed No Yes No Gómez et al. (2012) 

Australia 4.5 
 

Mixed Yes No No Rexer and Hirt (2014) 

Bhutan 11.3 
 

Mountainous No Yes No Fujita et al. (2008) 

China 
 

1.5-2.6 Mixed Yes Yes No  Hu et al. (2017) 

China 2.26-3.61 Low Relief No No No  Du et al. (2016a) 

China 
 

-3.49 Mixed Yes Yes No  Huang et al. (2011) 

China 12.44 
 

Mixed Yes Yes No Jing et al. (2014) 

Costa Rica 4.5 Forest Yes No No Hofton et al. (2006) 

Croatia 3.8 0.2 Mixed Yes Yes No Varga and Bašić (2015) 

French Guiana 10.2 Forest Yes Yes No Bourgine and Baghdadi 

(2005) 

Table 4-4 Overview of SRTM Error Studies. Vertical errors from each study are reported, either as 

Root Mean Squared Error (RMSE) or MAE (Mean Absolute Error). Landcover refers to the landcover 

class of the location in each study. Inclusion of error assessment from vegetation or terrain, or an 

analysis of spatial dependence are assessed on a yes/no basis. The stated figures only give a headline 

and interested readers are referred to the referenced studies for more details on the methods used. 
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Location RMSE 

(m) 

MAE 

(m) 

Landcover Vegetation 

Error 

Terrain 

Error 

Spatial 

Dependence 

Reference 

Ghana 4.4-14.5 
 

Mixed No No No Forkuor and Maathuis 

(2012) 

Greece 25 19 Mixed No Yes No Miliaresis and Paraschou 

(2005) 

Greece 
 

6.4 Mixed No Yes No Mouratidis et al. (2010) 

India 17.76 
 

Mountainous No No No Mukherjee et al. (2013) 

Indonesia 3.25 
 

Mixed No No No Suwandana et al. (2012) 

Mozambique 1.95 Mixed No No No Karlsson and Arnberg 

(2011) 

Norway 6.5 
 

Mixed Yes No No Weydahl et al. (2007) 

Poland 14.74 4.31 Mountainous Yes Yes No Kolecka and Kozak 

(2014) 

Thailand 
 

7.58 Mixed No Yes No Gorokhovich and 

Voustianiouk (2006) 

Tunisia 3.6 2.9 Dryland No No No Athmania and Achour 

(2014) 

Turkey 9.8 
 

Mixed No No No Bildirici et al. (2009) 

USA 
 

5 Low Relief Yes No Yes LaLonde et al. (2010) 

USA 
 

4.07 Mixed No Yes No Gorokhovich and 

Voustianiouk (2006) 

USA 8.6 
 

Mixed Yes Yes Yes Shortridge and Messina 

(2011) 

USA 7.18 
 

Mixed No Yes No Falorni et al. (2005) 

USA 6.32 3.23 Mixed Yes Yes Yes Shortridge (2006) 

 

Sources of errors in the SRTM are numerous and complex. Errors can originate from 

instrument setup, causing characteristics such as speckle noise (Rodriguez et al., 2006, Farr 

et al., 2007) and striping (Walker et al., 2007, Tarakegn and Sayama, 2013, Sampson et al., 

2016). Novel research by Becek (2008) compared elevation data from 302 airport runways 

worldwide to SRTM heights, thereby concentrating on instrument error and excluding 

vegetation, with their findings suggesting an RMSE error of ±1.55m with proximity to large 

metallic objects being a suspected source of the larger SRTM errors in their study. The Becek 

(2008) study is also important as it focuses on runways which have a low slope. Substantial 

errors are also found in areas of high and steep relief, with the slope causing frequent data 

voids (Falorni et al., 2005) and the steeper the slope, the greater the error (Shortridge and 

Messina, 2011). In their study in the USA, Shortridge and Messina (2011) also analysed 

aspect and vertical error, concluding that a strong association existed with the greatest 

positive error magnitudes in northwest orientated aspects and the greatest negative error 

magnitudes in the southeast orientated aspects. Indeed, the authors surmise that directional 

error component is almost certainly caused by the sensor’s orientation during the mission, 

with direction of travel on ascending orbits 57° east of north, and 327° on descending orbits, 
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thereby the largest positive errors being exactly perpendicular to the ascending orbits as 

illumination over the study region was always towards the north. Yet, the authors could not 

explain the reason behind the negative bias on the southeast facing slopes. Moreover, SRTM 

has an inability to resolve features in urban areas owing to resolution and radar reflectance 

issues (Gamba et al., 2002, Farr et al., 2007, Avtar et al., 2015). Yet, the biggest body of 

research in this area has focussed on vegetation. The SRTM radar signal tends to be reflected 

from the canopy or scattered within it. This is primarily due to the C band radar having a 

similar wavelength (5.6cm) to scattering elements such as leaves, branches and twigs 

(Walker et al., 2007). Numerous studies have shown the largest errors in SRTM to be found 

in heavily forested areas, with larger vegetation height correlated to a larger positive bias 

(Carabajal and Harding, 2006, Hofton et al., 2006, Shortridge, 2006, Weydahl et al., 2007, 

LaLonde et al., 2010, Shortridge and Messina, 2011). It should also be noted that seasonality 

can potentially impact the vegetation height error as SRTM was collected in February, thus 

winter in the northern hemisphere and summer in the southern hemisphere, thereby trees 

can be either bare leaved or in full foliage respectively. This recognition of vegetation 

derived error has led to various vegetation removal attempts from SRTM. In a study in the 

Amazon, Baugh et al. (2013) created a vegetation removed SRTM and assessed its 

performance in a flood inundation study.  Su et al. (2015) applied a regression model to 

remove vegetation bias in the Sierra Nevada Mountains, California, and Wendi et al. (2016) 

applied an Artificial Neural Network to the problem for a small forested area in Singapore. 

In a coastal environment, vegetation and urban features have created a positive bias in 

elevation resulting in an underestimation of sea level rise and flooding exposure (Kulp and 

Strauss, 2016), leading to a Coastal bare earth DEM being developed called CoastalDEM 

(Kulp and Strauss, 2018).Most recently, Ettritch et al. (2018) used Landsat imagery to remove 

vegetation from SRTM 30m to be used in a LISFLOOD-FP model in The Gambia. Vegetation 

removal has also been applied to the whole SRTM dataset to create various bare-earth 

versions of the SRTM DEM (O'Loughlin et al., 2016b, Yamazaki et al., 2017, Zhao et al., 2018) 

with these products demonstrating an accuracy improvement over the original SRTM 

dataset. 
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The recent release of the MERIT (Multi-Error-Removed-Improved-Terrain) DEM sees the 

most comprehensive error removal from SRTM by not only removing vegetation error, but 

also separating absolute bias, stripe noise and speckle noise, with the most pronounced 

improvements reported in flat regions (Yamazaki et al., 2017). Aside from the improvements 

over SRTM reported by Yamazaki et al. (2017), the only other comparative study between 

MERIT and SRTM was carried out by Hirt (2018). The Hirt (2018) found that MERIT 

contained 12x fewer artefacts than CGIAR CSI version 4 (Jarvis et al., 2008) based on 0.1 x 0.1 

degrees sub-divisions and a 5m/m slope threshold (or 450m for two adjoining 90 x 90m 

pixels), with these artefacts largely as a result of the void-filling process with the vast 

majority found in high topographic areas. At the time of writing, MERIT is the most 

comprehensive readily available bare-earth version of SRTM and thus the one we will adopt 

for our analysis. 

4.4.4 Geostatistics & DEM Simulation 

With the notion that error is spatially autocorrelated, we can explore the error in the DEM 

with geostatistics. The field of geostatistics fundamentally differs from that of classical 

statistics in that it assumes the existence of spatial autocorrelation (Olea, 2006). Geostatistics 

can provide the tools to simulate plausible versions of the DEM, with the methods and 

examples to do this reviewed in this section. 

The simulation school (Chrisman, 1989) regards a DEM as a single rendering of a possible 

realization of the true map, and to characterise the true value requires a number of 

realizations. Generating equiprobable distributions of maps is referred to as stochastic 

modelling, or more commonly Monte Carlo Simulation. The basic assumption of Monte 

Carlo simulation is that the DEM is only a single realization of a host of potential 

realizations. By simulating DEMs, a single true DEM is not created, but instead the 

realizations provide a bound where the true values lie.. The Monte Carlo technique is the 

most popular (Heuvelink et al., 2007) with this being attributed to the simplicity of the 

concept and the advances in computing power that allow a brute force approach (Heuvelink 

et al., 2007, Wechsler, 2007), especially as Heuvelink (1998) recommends that 50-2000 

simulations are needed to avoid simulations converging. In the following paragraphs, the 
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methods to translate this idea into practice are given, followed by a comprehensive 

overview of examples. 

An important component of geostatistics is the concept of a random field (RF), or a random 

function, which can be considered as a set of spatially dependent random variables defined 

over an area of interest or study site.  Taking a step further back, a random variable is a 

variable that can take a variety of outcomes based on some probability distribution and 

forms the basis of predictive statistics (Deutsch and Journel, 1998). Random variables can be 

either discrete or continuous, with Goovaerts (1997) providing an excellent overview of the 

concept.  

In essence the random field represents the potential spatial uncertainty. This error map is 

subsequently added to the DEM in question to form a realization. This can then be 

conditioned based on observations, where the implicit DEM error is effectively eliminated at 

the observation points. By producing multiple random fields, one can produce multiple 

realizations. Stationarity is a property of the random field model and is needed for inference. 

The choice of stationarity is a decision made by the user and is not necessarily a 

characteristic of the phenomenon being investigated (Goovaerts, 1997).  To calculate the 

error Z (or the difference between the simulation and the DEM) at location x, we can use the 

following equation; 

𝑍(𝑥) = 𝑢(𝑥) + 𝑒(𝑥) (18) 

Where 𝑢(𝑥) is the mean of Z(x) which assuming a normal distribution can be assumed to be 

zero. The random field is 𝑒(𝑥), which assuming second-order stationarity and isotropy has a 

mean of zero, a variance (random error) and spatial correlation given by the semi-

variogram. 

In geostatistics the most common tool for investigating the spatial structure of data is the 

semi-variogram (γ(h)), which measures the average dissimilarity between data separated by 

a vector (h), or in geostatistical jargon the lag (Goovaerts, 1997). In other words, a semi-

variogram relates semi-variance to spatial separation (Curran, 1988). So in practice, when 
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two sites are a lag of h apart, the semi-variogram is half the average squared difference 

between the paired data. In the case of DEM error assessment, this is the difference between 

a DEM and the reference elevation measurement. These error residuals could be any 

number of things with studies ranging from gravity anomalies (Olea, 2006) to mineral 

prediction (Goovaerts, 1997).  

An empirical semi-variogram and is calculated with the following equation;  

                                    𝛾(𝐡) =
1

2𝑁(𝐡)
∑[{𝑋(𝑠) − 𝑋(𝑠′)}]2   

𝑁(𝐡)

𝑖=1

                                                (19) 

where γ is the semi-variogram, N(h) is the number of pairs, h is the lag and s and s’ are the 

vectors of spatial coordinates X.  

To geostatistically simulate, a fitted or modelled semi-variogram becomes mandatory to 

create a continuous surface. One must decide whether this should be isotropic or 

anisotropic. Detecting anisotropy is usually carried out by computing semi-variograms in 

several directions or generating semi-variogram maps, and supplemented by ancillary 

information about the study site (see 4.6.5)) (Goovaerts, 1997). Fitted semi-variograms are 

represented by a semi-variogram model which guarantees that the autocovariance function 

used in further geostatistical analysis is positive definite, or in other words where all 

possible values for the covariance matrix are nonnegative. Common models include, 

Spherical, Exponential, Gaussian and Power, although a wide range exist and are presented 

in Figure 4-3. These semi-variogram models are commonly characterised by three 

parameters: nugget, sill and range. The nugget represents the magnitude of discontinuity in 

semi-variance near the origin and occurs because of measurement errors and spatial 

variability at distances smaller than the shortest sampling distance. The sill refers to the 

semi-variance value at which the semi-variogram levels off and is the marginal standard 

deviation. The range refers to the lag distance where the semi-variogram effectively reaches 

the sill value. For the Exponential and Gaussian models, the semi-variogram reaches the sill 

asymptotically, so a practical range is defined as the distance at which the model value is at 

95% of the sill.  
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Kriging is a well-known set of methods to generate a surface based on a set of generalised 

least regression methods for minimising the estimation variance defined from a prior 

covariance model (Deutsch and Journel, 1998). Methods of kriging include simple kriging, 

ordinary kriging, universal kriging, indicator kriging and co-kriging. Even though kriging 

gives the best estimate in terms of least squares, the surface is unrealistically smooth as in 

effect the variogram produced is very different to the original with an evident 

underestimation in the short-range structure of the random field (Goovaerts, 1997). Thus, to 

overcome these limitations, stochastic simulation is required. 

To simulate a DEM, the random field is required. A simple uncorrelated random field is 

normally distributed with a mean of 0 and a standard deviation approximately equivalent to 

the RMSE of the DEM error (Hunter and Goodchild, 1997, Wechsler, 2007, Deutsch and 

Journel, 1998, Fisher and Tate, 2006). Yet, from section 4.4.1, we know that error is spatially 

dependent. Indeed, the uncorrelated representation of error fields is seen as the worst case 

Figure 4-3 - Semi-variogram models available in the gstat package in R (Pebesma, 2004) 
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scenario (Oksanen and Sarjakoski, 2005), with the possible scenario that if spatial 

autocorrelation of error is ignored a situation can arise whereby adjacent pixels have an 

error assigned that is at the opposite end of the error envelope (Davis and Keller, 1997b). To 

address this challenge the following methods have been developed to account for spatial 

autocorrelation in random fields. 

Simulated annealing (Deutsch and Journel, 1998) is the practice of perturbing an original 

image until it matches the characteristics of a target written as an objective function. This 

objective function may be a prespecified semi-variogram. To perturb an image, pairs of pixel 

values are swapped and, thus, the technique is sometimes known as Pixel swapping 

(Goodchild, 1980, Fisher, 1991). Each perturbation is either accepted or rejected depending 

on whether the perturbation carries the image towards an objective. The technique can be 

extremely computationally intensive if used in a brute force manner, so judgements need to 

be made quickly on the quality of the perturbations and whether the perturbation is moving 

towards the objective function. The technique can also be vulnerable to converging to local 

optima. Examples of studies utilising this method include Fisher (1991), Lee et al. (1992), 

Davis and Keller (1997b), Veregin (1997), Endreny and Wood (2001) and Lindsay (2006). 

Spatial moving averages applies a filter to the random field to increase its spatial 

autocorrelation (Wechsler, 2007). The kernel size of the filter can vary from a simple 3x3 low-

pass filter to one that takes into account spatial dependence calculated by a semi-variogram 

(e.g 9x9 in the Wechsler and Knoll (2006) study). Filter methods can include neighbourhood 

autocorrelation, mean spatial dependence and weighted spatial dependence (Wechsler and 

Knoll, 2006). Examples of studies using this technique are Gatziolis and Fried (2004), 

Widayati et al. (2004), Raaflaub and Collins (2006), Wechsler and Knoll (2006) and 

Zandbergen (2010).  

A spatial autoregressive model was introduced by Hunter and Goodchild (1997). Spatial 

autocorrelation is introduced based on a spatially autoregressive process where; 

𝑒 = 𝑝𝑊𝑒 +𝑁(0,1) (20) 
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Where 𝑒 is a vector of values in the random field, 𝑝 a parameter of spatial autocorrelation, W 

a matrix of weights where 1=rook’s case and 0 is other and N a vector of independently and 

normally distributed values. With the rook’s case definition, the range of 𝑝 lies between 0 

and 0.25, with spatial autocorrelation distinct as values approach 0.25. Examples of studies 

using this technique are Hunter and Goodchild (1997) and Murillo and Hunter (1997). Like 

the previous two techniques, this is useful in the absence of explicit information on the 

spatial autocorrelation of the DEM. 

Sequential Gaussian simulation (SGS) generates random fields as follows: (1) A random path 

is defined so each pixel of the grid is visited once; (2) At each pixel,  simple kriging is used to 

determine the parameters (mean and variance) of the Gaussian local ccdf based on the 

normal score semi-variogram. Original data values and previously simulated values within 

the local neighbourhood are considered; (3) Draw a simulated value from the ccdf and insert 

into the dataset; (4) Repeat steps 2 & 3 until all pixels along random path are visited; (5) 

Repeat N times for the number of simulations; (6) Back-transform the simulated normal 

values into a simulated joint realisation of the original variables (Goovaerts, 1997, Holmes et 

al., 2000, Zhang and Goodchild, 2002). The computational load can be considerably reduced 

by keeping the same random path since the kriging weights only need to be calculated once 

(Pebesma, 2004, Oksanen, 2006, Deutsch and Journel, 1998). Yet this can lead to the 

simulations becoming too similar (Deutsch and Journel, 1998). This method has been used in 

studies by Kydriakidis et al. (1999), Holmes et al. (2000), Aerts et al. (2003), Oksanen and 

Sarjakoski (2005), Wilson and Atkinson (2005) and Hengl et al. (2010). This is the most 

favoured geostatistical simulation method and can utilise prior information on spatial 

autocorrelation. Consequently, the DEM simulation method proposed in this chapter is 

based upon this technique. 

Sequential indicator simulation is similar to SGS and is perhaps the most-widely used non-

Gaussian simulation technique (Goovaerts, 1997). It is a flexible approach where it is 

possible to define different semi-variogram models for different cut-off values (Zhang and 

Goodchild, 2002). This approach simulates more conservatively by preserving larger 

extreme values which can be critical in some Earth science applications where connectivity 
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of large values is important (Goovaerts, 1997). For a more comprehensive overview of the 

technique see Goovaerts (1997).  

The simulation can be either unconditional or conditional. An unconditional simulation will 

only honour the semi-variogram model, whereas a conditional model will also honour 

existing observations (Oksanen, 2006). Thus, for a conditional simulation a  reference data 

are needed (e.g. GPS measurements). Kydriakidis et al. (1999) classifies this sparsely 

available reference data as ‘hard’ data and the DEM elevations as ‘soft’ data. Conditional 

simulations are favoured over unconditional simulation as the simulations are conditioned 

by reference data and so conditional simulation makes full use of the statistical and spatial 

distribution of local error (Fisher, 1998). As a result, numerous studies have applied 

conditional simulation including Kydriakidis et al. (1999), Holmes et al. (2000), Aerts et al. 

(2003), Wilson and Atkinson (2005), Darnell et al. (2008), Hengl et al. (2010), Chen and Li 

(2012) and Leon et al. (2014). But, the usefulness of conditional simulation is restricted by 

only being able to simulate locations that have reference datasets available. Therefore, 

unconditional simulations can be fruitful in that a semi-variogram model can be 

characterised in locations where high accuracy data exists and then applied to similar 

locations. 

4.4.5 A Review of DEM Simulation Studies  

The following case studies demonstrate the DEM simulation approach in error propagation 

and uncertainty in DEMs and the impact it has on surface derivatives and hazard prediction, 

with an overview provided in Table 4-5.  

Since the work of Goodchild (1980), DEM simulation has been practiced by researchers 

across numerous applications. Pioneering work by Fisher (1991) utilised the pixel swapping 

technique with spatial autocorrelation added with Moran’s I to simulate 19 realizations of a 

200x200 pixel subset of the USGS DEM of Prentiss, North Carolina. The work concluded that 

the viewshed calculated in the original DEM was notably greater than that in the 

simulations. A year later, this principle was extended to extracting drainage networks in a 

100x100 pixel USGS DEM in Tennessee, with the authors concluding that the number of 

floodplain cells decreases when spatial autocorrelation decreases (Lee et al., 1992).  
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After a 5 year lull in published studies, numerous articles were published on the subject. 

Hunter and Goodchild (1997) assessed the influence of DEM error on slope and aspect by 

using a spatial autoregressive model and simulating 10 realizations of a DEM error for 40 

values of 𝑝 (spatial autocorrelation) where 𝑝 varied between 0 and 0.25. The results showed 

that without empirical knowledge of the spatial autocorrelation, 𝑝=0.2 could be used as a 

worst-case scenario and that errors in slope and aspect were dependent on spatial 

autocorrelation. Similarly, Veregin (1997) assessed the impact of DEM error on flow 

direction by simulating DEMs using eight combinations of RMSE, autocorrelation and cross-

correlation values, demonstrating that flow paths changed. Veregin (1997) concluded that 

500 simulations were adequate to avoid convergence, putting into question previous studies 

that used only 20-30 simulations. This conclusion was since echoed by Heuvelink (1998). 

Lastly, Veregin (1997) advised that extreme caution should be taken when deriving flow 

direction from DEMs with a high vertical error as results were only marginally better than 

when flow paths were assigned randomly.  

DEM simulation was applied to landslide risk across several studies in 1997. Murillo and 

Hunter (1997) initially simulated 180 DEMs in the Pacific Northwest using 10 values of  𝑝 

before simulating a further 50 realizations for the best 𝑝 value. Using the 50 simulated DEMs 

overestimated the landslide hazard, with the authors noting this could be suitable for a risk 

averse approach. For Louise Island in British Columbia, Davis and Keller (1997a), Davis and 

Keller (1997b) went one stage further and simulated 1500 DEMs using sequential simulation. 

They found slopes were safer and floodplains were at greater risk than when a single DEM 

were used. 

Reference Simulation 

Technique 

Location DEM(s) used Surface 

Derivatives 

Fisher (1991) Pixel Swapping North Carolina, USA USGS DEM Viewshed 

Table 4-5 DEM Simulation Studies 
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Reference Simulation 

Technique 

Location DEM(s) used Surface 

Derivatives 

Lee et al (1992) Pixel Swapping Tennessee, USA USGS DEM Drainage 

Networks 

Hunter & 

Goodchild 

(1997) 

Spatial 

Autoregressive 

Model 

Pennsylvania, USA USGS DEM Slope and Aspect 

Veregin (1997) Pixel Swapping Ohio, USA USGS DEM Flow Direction 

Murillo & 

Hunter (1997) 

Spatial 

Autoregressive 

Model 

Oregon, USA USGS DEM Landslide Hazard 

Davis & Keller 

(1997) 

Pixel Swapping British Columbia, 

Canada 

British Columbia 

TRIM 

Landslide Hazard 

Fisher (1998) Pixel Swapping Cairngorms, UK Ordnance Survey 

Panorama 

Viewshed 

Kydriakidis et 

al (1999) 

SGS California, USA USGS DEM Spot Heights 

Holmes et al 

(2000) 

SGS California, USA USGS DEM Slope, Aspect, 

Flow 

Accumulation, 

Slope Failure 

Endreny & 

Wood (2001) 

Pixel Swapping Oklahoma, USA USGS DEM Flow Direction 

Canters et al 

(2002) 

Pixel Swapping Flanders, Belgium Belgian DEM Landcover 

Classification 

Aerts et al 

(2003) 

SGS Alps, Austria Austrian DEM Slope (Ski slope 

planning) 
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Reference Simulation 

Technique 

Location DEM(s) used Surface 

Derivatives 

Cowell & Zeng 

(2003) 

Uncorrelated 

Random Fields 

Fingal Bay Beach, SE 

Australia 

Australian DEM Coastal 

Inundation 

Gatziolis & 

Fried (2004) 

Spatial Moving 

Averages 

Michigan, USA USGS DEM Drainage 

Networks 

van Niel et al 

(2004) 

Spatial 

Autoregressive 

Model 

NSW, Australia Australian DEM Net Radiation 

Widayati et al 

(2004) 

Spatial Moving 

Averages 

Indonesia Photogrammetry 

derived 

Slope 

Yilmaz et al 

(2004) 

Uncorrelated 

Random Fields 

Turkey Contour-derived 

DEM 

Flood Extent 

Wilson & 

Atkinson (2005) 

SGS Northamptonshire, UK Ordnance Survey 

Profile Contour 

Flood Extent 

Oksanen & 

Sarjakoski 

(2005) 

SGS Ruissalo, Finland Contour derived 

DEM 

Slope, Aspect, 

Drainage Basin 

Oksanen & 

Sarjakoski 

(2006) 

SGS Ruissalo, Finland National Land 

Survey of Finland 

DEM & LIDAR 

Comparison to 

LIDAR 

Lindsay (2006) Pixel Swapping South Pennines, UK LIDAR Channel Networks 

Raaflaub & 

Collins (2006) 

Spatial Moving 

Averages 

Alberta, Canada Photogrammetry 

derived 

Slope & Aspect 

Wechsler & 

Knoll (2006) 

Spatial Moving 

Averages 

North Carolina, USA USGS DEM Slope, Upslope 

Contributing Area, 

Topographic 

Index 
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Reference Simulation 

Technique 

Location DEM(s) used Surface 

Derivatives 

Darnell et al 

(2008) 

SGS Slovenia Slovenian DEM Landslide Hazard 

Hengl et al 

(2008) 

Regression Kriging Serbia SRTM & topo-DEM Comparison to 

control dataset 

Hengl et al. 

(2010) 

SGS Serbia topo-DEM Channel Networks 

Zandbergen 

(2010) 

Spatial Moving 

Averages 

North Carolina, USA LIDAR Depressions 

Chen & Li 

(2012) 

Adaptive Method 

(non-stationarity) 

Sichuan, China LIDAR Comparison to 

control dataset 

Leon et al 

(2014) 

SGS Brisbane, Australia LIDAR Coastal 

Inundation 

Fereshtehpour 

& Karamouz 

(2018) 

SGS Lower Manhattan, 

New York, USA 

NED & LIDAR Coastal 

Inundation 

West et al 

(2018) 

Uncorrelated 

Random Fields 

Devon, UK LIDAR Coastal 

Inundation 

 

Fisher (1998) further explored the impact on viewshed when introducing a refined pixel 

swapping technique for DEM simulation. Heuvelink (1998) simulated 5000 DEMs and 

concluded that slope accuracy compared to a truth DEM increased with spatial correlation.  

Another highly influential study came a year later when Kydriakidis et al. (1999) presented a 

method that conflated sparse high accuracy (‘hard’) data with a lower accuracy DEM (‘soft’ 

data) to produce equiprobable realisations of the unknown higher accuracy elevation 

surface which could then be subtracted from the original DEM to obtain a realisation of the 

DEM error. Simulations using SGS was carried out for Death Valley to generate 50 DEMs 



 

151 

 

with more terrain complexity being represented using this method compared to not using 

the ‘hard data’. Despite the detailed methodology, the complexity of the technique of 

Kydriakidis et al. (1999) has meant that simpler approaches have been favoured, although 

some do build upon their work. 

The most cited DEM simulation paper is that of Holmes et al. (2000) (305 Google Scholar 

citations as of May 2019). The coherent methodology of Holmes et al. (2000) presents a 

simplified version of the work of Kydriakidis et al. (1999) where 50 DEMs of Sedgewick 

Natural Reserve, California, were simulated based on fitting a semi-variogram model and 

simulating using SGS. This semi-variogram was estimated by calculating residuals from 

2652 GPS points that acted as a reference ‘truth’ dataset compared to the USGS 30m DEM. 

The fitted semi-variogram used an exponential model. The authors focussed on surface 

derivatives such as slope, aspect and flow accumulation and found error propagation was 

most glaring in valley bottoms and along streamlines. When applying the simulated DEMs 

to a slope failure model, Holmes et al. (2000) also concluded that the original DEM predicted 

a 25% smaller area that would suffer slope failure  compared to the simulated DEMs, with 

the probability map from the simulated DEMs closer to what occurred in the 1998 landslide 

of the area.  

Endreny and Wood (2001) generated 2000 DEM simulations by varying RMSE and spatial 

autocorrelation values to test terrain error sensitivities of 6 runoff flowpath algorithms for 

the dispersal of NPS pollutants, resulting in a runoff probability map that could be used for 

delineating optimal areas to intercept pollutant runoff. Canters et al. (2002) simulated 20 

DEMs for landscape classification concluding that transition zones were most sensitive to 

reclassification. Zhang and Goodchild (2002) compared analytical and simulation techniques 

in simulating 30 DEMs for a suburb of Edinburgh, UK and the impact on slope. In a novel 

study, Aerts et al. (2003) used 70 GCP points to fit a semi-variogram and SGS to simulate 500 

DEMs for ski route planning in Austria. Cowell and Zeng (2003) applied random error with 

no spatial autocorrelation in simulating DEMs to estimate coastal hazard in Fingal Bay 

Beach, SE Australia. By increasing spatial autocorrelation values, Gatziolis and Fried (2004) 

concluded that drainage network delineation improved. By using a Mersenne twister 

pseudo random number generator, Van Niel et al. (2004) added spatial autocorrelation to 
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simulated DEMs and concluded that net solar radiation was less sensitive to DEM error than 

slope and aspect. In Indonesia, Widayati et al. (2004) found slope error to be sensitive to 

spatial autocorrelation. For a case study in Turkey, Yilmaz et al. (2004) simulated DEMs 

using uncorrelated random fields based on RMSE to give a basic demonstration of the 

impact topographic uncertainty can have on flood inundation. In a more complex study, 

Wilson and Atkinson (2005) simulated DEMs for the River Nene in Northamptonshire, UK 

using SGS conditioned by GPS data. They found different flood depths, with higher 

variability in flood depths and timings downstream when using the simulated DEMs. This 

was the last study to use DEM simulation in fluvial flood inundation studies. 

In a comprehensive study in Finland, Oksanen and Sarjakoski (2005)  simulated 1000 x 32 

sets of error scenarios based on the exponential and Gaussian spatial error models and 

varying values of sill and range. They refuted the widely held view that uncorrelated 

random field models were the worst-case scenario as none of the DEM derivatives had 

maximum variation with these DEMs. In constrained terrain derivatives, such as slope and 

aspect, the maximum errors occurred when the range value was roughly the size of the 

derivatives calculation window. For unconstrained terrain derivatives, such as drainage 

basin delineation, variance increased as the spatial autocorrelation range increased. The 

shape of the error model was less important than the sill and range values, but did have 

more influence for constrained terrain derivatives. The same authors fitted semi-variograms 

using LIDAR as reference data and found different semi-variograms for different areas, with 

flat areas having a low sill value and large range (Oksanen and Sarjakoski, 2006). For the 

estimation of channel networks, Lindsay (2006) found larger errors when RMSE values was 

high and spatial correlation was low. In the Rocky Mountains, Raaflaub and Collins (2006) 

simulated 500 spatially uncorrelated and correlated DEMs, concluding that slope and aspect 

error was considerably lower in spatially correlated simulations. Wechsler and Knoll (2006) 

compared simulating DEMs using spatially uncorrelated RMSE values and spatially 

autocorrelated versions conditioned using 3 different filter methods. Slope error had a 

positive bias, and upslope contributing area and topographic index was unbiased, with a 

greater influence found on slope. 
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In 2008, Darnell et al presented a workflow using the R Statistical computing language for 

conditional simulation. For a case study in the Slovenian mountains they concluded that the 

main slope error is adjacent to the peak of mean elevation error, before using the simulated 

DEMs in estimating landslide susceptibility. The fact that the workflow depends on the 

availability of higher accuracy data for the conditioned simulation has possibly resulted in 

the approach not being especially popular. Hengl et al. (2008) introduced the use of auxiliary 

maps (distance to streams, terrain complexity, analytical hill shading and Normalized 

Difference Vegetation Index (NDVI)) using a regression kriging model to improve DEM 

simulations in Serbia. Later, Hengl et al. (2010) used conditional sequential Gaussian 

simulation to produce a stream error map, with the least precision in areas of low local 

relief. Using LIDAR data, Zandbergen (2010) applied the spatial moving averages technique 

to introduce spatial autocorrelation in order to simulate DEMs to aid in the identifications of 

false depressions. In a study to combat the problem of non-stationarity, Chen and Li (2012) 

proposed an adaptive method to identify areas of non-stationarity. Areas of non-stationarity 

were identified by calculating the standard deviation of mean error using Voronoi maps. If 

the error exceeding an indicator threshold set at 0.7m, the area was flagged as non-

stationary and divided into 4. When stationarity was achieved, conditional simulation was 

implemented. This was implemented for an area in Sichuan Province, China, simulating 100 

DEMs with a total of 16 mostly spherical semi-variograms. For a drainage basin delineation 

exercise, Eränen et al. (2014) implemented a DEM simulation scheme on a graphics 

processing unit (GPU) which was much faster than conventional approaches. For a coastal 

flood inundation exercise in Australia, Leon et al. (2014) simulated 1000 LIDAR DEMs using 

ordinary and regression kriging, concluding that the simulated DEMs gave a 11% increase in 

the 1% probability exceedance in inundation extent compared to using the deterministic 

bathtub approach. The most recent studies have also focussed on coastal inundation. West et 

al. (2018) simulated DEMs based on the confidence interval estimation estimated by the 

RMSE equation by Gesch (2009) and  assumed no spatial autocorrelation. This was applied 

to a bathtub model of coastal inundation across various coastal locations in southwest 

England with varying inundation extents because of DEM simulation. Lastly, Fereshtehpour 

and Karamouz (2018) simulated 1000 realizations of LIDAR DEMs based on 500 GPS control 

points in Lower Manhattan using the SGS technique. Using the so-called bathtub approach, 
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coastal inundation for a 100-year storm surge event is assessed, with a probabilistic 

approach (i.e using simulated DEMs) outperforming higher resolution DEMs. Accuracy-

efficiency analysis suggested a 15m resolution was a suitable resolution. Like the study of 

Leon et al. (2014) this study relied on the collection of ground control points which is not 

always possible and is expensive and time-consuming. 

Despite over 20 years of research, it is clear that the method of DEM simulation is 

underutilised with a limited number of studies. Of those studies, very few take advantage of 

the array of DEM products now available. The reason behind this could be that the variation 

of methods suggests that an agreement on the best approach has not been reached and that 

DEM users either do not consider or deem it too complicated/time-consuming (Wechsler, 

2007). Nevertheless, it seems a shame with the DEM products and computing resources now 

available that researchers do not build upon the work of the early-pioneers and make the 

DEM simulation approach more mainstream in any work that uses DEMs.  

4.4.6 DEMs and flood inundation models 

Topography is arguably the key factor in the estimation of inundation extent (Bates and De 

Roo, 2000, Horritt and Bates, 2002). Small errors in topography have the potential to alter 

inundation extent estimates significantly in low relief floodplain zones. With advancements 

in remote sensing and computing performance, high resolution DEMs can now be used to 

build more accurate inundation models (Bates, 2012). Using finer resolution DEMs has the 

advantage of representing topography more precisely and including micro-topography that 

can be crucial in the flooding process. This makes results more comparable to the real world 

and visualisation less abstract to the end user (i.e. landscape features are more recognisable). 

Moreover, using high resolution topography more correctly represents the wetting and 

drying of the domain as features that control these processes can be better represented (Neal 

et al., 2011, Bates, 2012). Despite this, using high-resolution DEMs is not always possible. 

LIDAR data is becoming increasingly available, but is still largely restricted to developed 

countries or local municipalities. A great deal of high-resolution terrain data is expensive to 

obtain or not available for public use. There are also limitations with data storage as LIDAR 

data sets can be prohibitively large. However, the Environment Agency in the UK have 
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made their LIDAR data free and publicly available. A selection of Canadian Provinces, 

Denamrk, Estonia, New Zealand and some states in the USA have followed suit (see the 

OpenTopography platform, http://www.opentopography.org/)). Unfortunately, whilst the 

OpenTopography initiative has been commendable in collating free LIDAR data, a great 

deal of data is missing, and one often needs to painstakingly research geospatial/mapping 

institutes of national and local governments to find relevant data. An optimistic estimate of 

current open-access LiDAR data coverage is just 0.005 of the earth’s land area based on data 

from OpenTopography and an extensive search of national mapping agencies.  Even if data 

do exist, computational costs may be too high with a halving of model resolution causing an 

order of magnitude increase in model runtime (Savage et al., 2016b). 

This aforementioned problem of the most suitable model resolution (and thus DEM 

resolution) has led researchers to coarsen model resolution and subsequently investigate the 

impact of resolution on model results. Horritt and Bates (2001a) varied flood inundation 

model resolutions from 1000 to 10 m in a rural catchment and found no improvement in 

flood predictions below resolutions of 100 m. In an urban catchment, Yu and Lane (2006) 

found that small changes in model resolution had appreciable effects on predicted 

inundation and timings, but this could be partially compensated by varying wetting and 

drying parameters. Also in an urban catchment, Fewtrell et al. (2008) found that resolutions 

of less than 10 m were needed to resolve buildings and that the resampling strategy used in 

coarsening DEMs can impact model performance. In a follow up study, Fewtrell et al. (2011) 

created a 10 cm DEM of Alcester in the UK and investigated model performance by varying 

resolution up to 5 m. They found that a step change in model performance occurred at 2 m 

as a result of the degradation in the representation of the road network, demonstrating the 

importance of kerbs and camber for pluvial flooding.  In Carlisle, UK, Neal et al. (2009b) 

concluded that a resolution of 2 m was required to represent smallest building separations 

(and thus flow between buildings) and using too coarse a resolution (25 m) resulted in 

topographic blockages. Similar conclusions were found in Tewkesbury, UK (Neal et al., 

2011). In a rural Australian catchment, Jarihani et al. (2015) found that results did not 

improve with resolutions below 120 m.  In an investigation in the Imera basin in Sicily, 

Savage et al. (2016b) resampled LIDAR data creating 12 DEMs between 10-500 m and found 

http://www.opentopography.org/
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that model performance deteriorated at resolutions more than 50 m and there was little gain 

for modelling at resolutions finer than 50 m. This was due to a poor representation of 

channels at coarser resolutions. Additionally, Savage et al. (2016b) warn that showing 

deterministic, high-resolution flood maps can lead to a spurious precision in delineated 

flood extent, and one that is misleading in that it does not represent the overall uncertainties 

involved in making flood inundation predictions. For the Oti river basin, Komi et al. (2017) 

varied model resolution between 30 m and 960 m using SRTM terrain data and found no 

discernible difference in water surface elevation. Flood extent estimations were more 

sensitive to model resolution, with better model performance at coarser resolutions, which 

was likely to have been a result of local scale noise in the SRTM DEM used which is 

smoothed when aggregating to coarser resolutions.  

Other researchers have concentrated on investigating the impact that different DEM 

products have on model performance. For a constrained valley setting, Casas et al. (2006) 

assessed three different types of DEM products across resolutions and found model results 

from contour based DEMs to be most sensitive to resolution changes and LIDAR DEMs the 

least. With the widespread availability of remotely sensed derived DEMs the creation of 

DEMs by GPS and contour maps are less important. Few studies have compared different 

global DEMs and their influence on model performance. For two case studies in the USA, 

Sanders (2007), concluded that LIDAR gave the most accurate flood extent followed by 

SRTM and DEMs based on the National Elevation Dataset (NED). In Kansas, Li and Wong 

(2010) found the LIDAR and the NED outperformed SRTM. Jarihani et al. (2015) concluded 

SRTM outperformed ASTER for a rural catchment in Australia. In unpublished work, 

Courty et al. (2017) assessed the performance of ASTER, SRTM, AW3D30 and LIDAR at 30 

m for flood models of two catchments in Mexico concluding that the AW3D30 global DEM 

outperformed the SRTM DEM in hilly areas and was similar in flatter areas. However, all 

the global DEMs were worse than the aggregated LIDAR and the AW3D30 DEM needed 

considerable processing as it is a DSM. In California, Bhuyian and Kalyanapu (2018) 

compared ASTER, SRTM, NED and LIDAR across a range of resolutions, concluding that 

the global DEMs (ASTER & SRTM) considerably over predicted inundation extent and the 

optimum resolution taking into account performance was 30 m. Yet with its greater 
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accuracy, wide spatial coverage and ease of access, the SRTM still remains the global DEM 

of choice in data-sparse regions (Yan et al., 2015a).  

Most of the studies presented here are comparing global DEMs to high resolution LIDAR 

DEMs or aggregated versions of the LIDAR DEM. But what happens if no high-resolution 

data exists within a study area? As there is a lack of global DEMs and even fewer studies to 

guide a modeller into choosing a DEM, one is tempted to default to using the SRTM DEM. 

The danger in this is that this results in a single DEM being used. It is clear that this DEM is 

wrong, but whilst studies are prepared to acknowledge that an error exists few do anything 

about it and instead focus on the uncertainty from other flood model parameters. This can 

lead to spurious precision in using a single deterministic model. This is the very reason why 

in weather prediction multiple scenarios are run in response to the phenomenon of chaos 

theory as described by Lorenz (1963). In this work Lorenz (1963) found a notably different 

weather prediction when he ran his model for the second time. This was a result of a 

significant figure error, thus giving birth to the idea that a small change in initial conditions 

can have a large impact on the result. 

What is needed is multiple plausible versions of a global DEM so a modeller can have the 

capacity to explore the impact that topographic uncertainty has on flood model 

performance. One could do this by resampling global DEMs to coarser resolutions, but this 

can result in important topographic details being lost. This work proposes that we simulate 

plausible versions of the DEM at the native resolution. Not only will this allow for more 

realisations of the DEM through resampling (if one wanted/needed to model at a coarser 

resolution), but also for a catalogue of DEMs to be created at the native resolution. 

4.4.7 Experimental Design 

In this chapter, the spatial error structure in the SRTM and MERIT DEMs for 20 lowland 

locations was quantified. Using the fitted error covariance function, plausible versions of the 

MERIT and SRTM DEMs were simulated, creating a catalogue of possible DEMs. The impact 

of using an ensemble of simulated DEMs on estimated flood extent was investiagted by 

applying the simulated DEMs to a flood model of the An Giang Province in the Vietnamese 

Mekong Delta and the Ba catchment in Fiji. 
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4.5  Study Sites 

As outlined in the previous section, we aim to calculate the spatial error structure for 

lowland locations, and for that task we need LIDAR data to act as our ground-truth 

information. Unfortunately, LIDAR data is often not freely available or readily accessible. 

Yet with recent initiatives such as the OpenTopography project 

(http://www.opentopography.org/) this is slowly changing. 

An extensive data trawl resulted in LIDAR data for 20 lowland locations being downloaded 

as shown in Figure 4-4. Details on how these data were processed are outlined in 4.6.1.  

 

4.6 Methodology 

According to Olea (2006), ‘modelling a semi-variogram remains to the uninitiated the most 

difficult and intriguing aspect in the application of geostatistics ’. Indeed as noted by 

Goovaerts (1997) and echoed by Olea (2006), there is no best way to carry out this task. This 

section will expand upon the six stage approach to semi-variogram modelling proposed by 

Figure 4-4 Study site locations and visualisation of surface error maps for An Giang Province in the 

Vietnamese Mekong Delta 

http://www.opentopography.org/
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Olea (2006), preceded by a description of the data used and proceeded by a description of 

the flood inundation model build and parameter choice. The aim of this section is provide a 

concise narrative to the workflow of this chapter so the reader can replicate the process. 

4.6.1 Data Collection 

LIDAR data for 20 lowland locations around the world was downloaded to act as our 

ground truth reference data, with details in Table 4-6.  According to Maune (2007), the 

reference dataset accuracy should be at least three times more accurate than the DEM being 

assessed. With reported vertical error less than 0.2 m across all sites, the use of LIDAR data 

as reference data is acceptable as this accuracy comfortably fulfils the accuracy requirement 

outlined by Maune (2007). Similarly, other geostatistical studies have used LIDAR data as 

the reference data (Oksanen and Sarjakoski, 2006, Zandbergen, 2008, Januchowski et al., 

2010). In total over 5100km2 of floodplains were used, or an area approximately the size of 

the US state of Delaware (Table 4-7). 

Location Resolution (m) Date Collected Vertical Error (+/-m) Data Source 

Amberley 1 2012 0.2 LINZ 

Ba 1 2012 Not Reported SOPAC 

Burdekin 5 2010 0.2 Geoscience Australia 

Ebro 5 2009-2010 Not Reported CNIG 

Eel 5 2009-2011 0.1 NOAA 

Fens 1 2014 0.05 Environment Agency 

Kaiapoi 1 2014 0.2 LINZ 

Kaikoura 1 2012 0.2 LINZ 

Kishima 5 2011 Not Reported GSI Japan 

Kushiro 5 2011 Not Reported GSI Japan 

Mekong 5 2008 Not Reported MONRE 

Mississippi 2 2011 0.07 USGS 

Nadi 1 2012 Not Reported SOPAC 

Notsuke 5 2011 Not Reported GSI Japan 

Otaki 1 2013 0.2 LINZ 

Po Delta 5 2006 Not Reported Regione Del Veneto 

Roanoke 5 2014 0.1 NOAA 

Savannah 5 2009 0.07 NOAA 

Temuka 1 2014 0.2 LINZ 

Wax Lake 1 2012-2013 0.086 USGS 

Table 4-6 Summary of LiDAR Metadata. Includes location, resolution, date collected, reported vertical 

error (if available) and the source of data.  
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Study Site x minimum x maximum y minimum y maximum Number of Pixels Area Km2 

Amberley 172.6954 172.7979 -43.2471 -43.1446 9888 80 

Ba 177.6388 177.7046 -17.5571 -17.4421 7102 58 

Burdekin 147.4388 147.6313 -19.7421 -19.4937 46430 376 

Ebro 0.684583 0.975417 40.66625 40.78458 23629 191 

Eel -124.353 -124.177 40.57125 40.70042 20172 163 

Fens 0.082083 0.147917 52.31458 52.33792 2191 18 

Kaiapoi 172.5854 172.7288 -43.4429 -43.2863 24222 196 

Kaikoura 173.6029 173.7279 -42.4371 -42.3579 6908 56 

Kishima 130.1271 130.2488 33.08542 33.21458 12262 99 

Kushiro 144.3288 144.4313 42.97208 43.16375 24092 195 

Mekong 105.2296 105.4196 10.29292 10.53958 65890 534 

Mississippi -89.3037 -89.1346 29.06292 29.27542 24082 195 

Nadi 177.3513 177.5054 -17.8546 -17.7271 15564 126 

Notsuke 145.0804 145.8171 43.21958 43.66375 71904 582 

Otaki 175.0746 175.1796 -40.8088 -40.7063 11255 91 

Po Delta 12.25625 12.49208 44.85292 44.99875 41806 339 

Roanoke -77.0738 -76.6663 35.80375 35.96875 89630 726 

Savannah -81.3079 -80.8504 31.73042 32.00208 104084 843 

Temuka 171.2454 171.4988 -44.2896 -44.1729 26956 218 

Wax Lake -91.4871 -91.3887 29.47542 29.54542 4827 39 
     

Total 5126 

 

Ideally, LIDAR data collected would be collected at the same time as the SRTM product for 

temporal consistency, but the available LIDAR was typically collected 6-14 years after SRTM 

acquisition. Using annual satellite imagery in Google Earth, land use change was checked 

between the SRTM and LIDAR collection period to determine if there had been any major 

land use changes that could influence the accuracy of the DEM. This check found no obvious 

significant differences over the land pixels for any of the study sites. A further complication 

with ensuring comparison of like-for-like terrain data is subsidence, which is a major 

challenge for many of the world’s deltas (Ericson et al., 2006, Syvitski et al., 2009, Schmidt, 

2015, Higgins, 2016). Subsidence rates pose a challenge as it changes the land elevation 

between SRTM and LIDAR collection dates. Relevant subsidence rates, be it measured or 

estimated, were not found for all locations and are subsequently outlined in Table 4-8. 

Table 4-7 Summary of Study Sites including extent, number of pixels and area. Longitude is referred 

to as x, and latitude by y. 
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Whilst these rates are non-zero they do fall well within the vertical error of SRTM and hence 

were not considered further In the analysis. 

Site Subsidence rate 

(mm/yr-1) 

Citation 

Burdekin 1.5 Ericson et al. (2006) 

Ebro 6 Ibáñez et al. (2010)  

Kishima 22.2 Don et al. (2006) 

Mekong (An Giang) 5 Minderhoud et al. (2017) 

Mississippi 6 Karegar et al. (2015)  

Mississippi 11.2 Jankowski et al. (2017) 

Po 6 Fabris et al. (2014) 

Savannah 3.5 Davis et al. (1976) 

Wax lake 10 Nienhuis et al. (2017) 

 

In addition to the LIDAR data, the relevant MERIT and SRTM data were downloaded from 

the developer’s website (http://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_DEM/) and USGS 

Earthexplorer platform (https://earthexplorer.usgs.gov/) respectively. The least manipulated 

SRTM product (3 arc second SRTM v1 non-void) for the analysis.  

4.6.2 Data Editing 

The first step in semi-variogram modelling outlined by Olea (2006) is data editing. This 

involves eliminating any possible reading, recording or process errors. In practise this meant 

ensuring all data were in the correct coordinate system and had the same vertical datum. 

This is no small task. The MERIT and SRTM data are in the WGS84 coordinate system and 

use the EGM96 vertical datum. Inconveniently, this was rarely the case with the LIDAR 

data, as often the projections and vertical datums were typically in the systems of that 

particular country or state. This highlighted the importance of metadata as some potential 

data did not have enough information and could thus not be used. Transformations were 

mostly undertaken using Vdatum version 3.8 (https://vdatum.noaa.gov/welcome.html) and 

the bespoke Concord software (https://www.linz.govt.nz/data/geodetic-services/download-

geodetic-software/snap-concord-downloads) for the New Zealand data. These 

Table 4-8 Subsidence rates 

http://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_DEM/
https://earthexplorer.usgs.gov/
https://vdatum.noaa.gov/welcome.html
https://www.linz.govt.nz/data/geodetic-services/download-geodetic-software/snap-concord-downloads
https://www.linz.govt.nz/data/geodetic-services/download-geodetic-software/snap-concord-downloads
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transformations were then loaded into GIS software and compared to background satellite 

imagery to check the transformations were sensible.  

All the DEM data acquired had undergone extensive processing. Details of these processes 

are often not well documented, so it is difficult to judge what decisions were made in the 

processing stage and what errors may have been introduced as a result. The quality checks 

strived to minimise these effects. 

4.6.3 Exploratory Data Analysis – Visualisation 

The next stage in the approach is exploratory data analysis. Here, a diversion from the work 

of Olea (2006) is taken as in the example given in that work the exploratory data analysis 

sought to determine whether the measurements are concentrated in clusters which is a 

danger of using data on a non-uniform grid. By using regularly gridded DEMs this is not a 

problem, but it is nevertheless useful to visualise the errors as a sanity check.  

To compare the MERIT and SRTM datasets to LIDAR the arithmetic mean of the LIDAR 

values that fall within each MERIT/SRTM pixel must be calculated. This allowed for an 

estimation of the vertical error of each pixel in the coarser DEM. Each MERIT/SRTM pixel is 

the integration of its interior topography so the arithmetic mean of LIDAR elevation values 

was used. This overcame the problem associated with using the elevation of grid cell centers 

to represent elevation as this often does not accurately represent the hydrography of 

floodplains (Moretti and Orlandini, 2018). Analysis was performed using the raster package 

of Hijmans et al. (2017) in the statistical computing environment R (R Core R Core Team, 

2018).  

As a result, surface error maps of MERIT – LIDAR and SRTM – LIDAR were produced, with 

an example from the Mekong Delta in Figure 4-4. Visualisation was carried out using the 

rasterVis package (Perpinan Lamigueiro and Hijmans, 2018). Further surface error maps can 

be found in Figure 4-5  - Figure 4-9. In these maps, red refers to underestimation of elevation 

by MERIT/SRTM and blue refers to the overestimation of elevation by MERIT/SRTM. Grey 

pixels indicate pixels where either the MERIT/SRTM or LIDAR pixels are missing or are 

water bodies. The water body mask is delineated using the Global Water Surface water 
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occurrence map of Pekel et al. (2016). A water occurrence threshold of 90% was selected 

based on trial and error, with such pixels not contributing to the estimation of the 

MERIT/SRTM - LIDAR spatial error structure. These maps are useful to visualise the spatial 

locations of the error and qualitatively compare them to satellite imagery and landcover 

maps to assess possible causes of errors. 
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Figure 4-5 Surface Error Maps for the Amberley, Ba, Burdekin and Ebro sites. Red = underestimation 

of elevation by MERIT/SRTM; Blue = Overestimation of elevation by MERIT/SRTM; Grey = Missing 

pixels or pixels over water bodies. 
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Figure 4-6 Surface Error Maps for the Eel, Fens, Kaiapoi and Kaikoura sites. Red = underestimation of 

elevation by MERIT/SRTM; Blue = Overestimation of elevation by MERIT/SRTM; Grey = Missing 

pixels or pixels over water bodies. 
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Figure 4-7 Surface Error Maps for the Kishima, Kushiro, Mekong and Mississippi sites. Red = 

underestimation of elevation by MERIT/SRTM; Blue = Overestimation of elevation by MERIT/SRTM; 

Grey = Missing pixels or pixels over water bodies. 
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Figure 4-8 Surface Error Maps for the Nadi, Notsuke, Otaki and Po sites. Red = underestimation of 

elevation by MERIT/SRTM; Blue = Overestimation of elevation by MERIT/SRTM; Grey = Missing 

pixels or pixels over water bodies. 
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Figure 4-9 Surface Error Maps for the Roanoke, Savannah, Temuku and Wax Lake sites Red = 

underestimation of elevation by MERIT/SRTM; Blue = Overestimation of elevation by MERIT/SRTM; 

Grey = Missing pixels or pixels over water bodies.. 
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4.6.4 Semi-variogram estimation 

For each study, semi-variograms are fitted to to the difference maps calculated in section 

4.6.3, excluding those pixels masked out in grey. A decision is taken to assume stationarity 

in the model. Stationarity allows pooling of data over an area that are deemed homogeneous 

and is a property of the Random Field model and not the data. As the terrain analysed in 

this chapter is flat or very nearly flat, the terrain parameters (e.g. slope) is near 

homogeneous and, thus, the condition of non-stationarity of DEM error found in more 

rugged terrain (i.e. mountainous areas with varying slope and aspect) can be relaxed 

(Gatziolis and Fried, 2004). Moreover, stationarity is needed for inference (Goovaerts, 1997). 

The model also assumes isotropy, with justification of this decision outlined in Section 4.6.5. 

Geostatistical analysis was carried out using the gstat package in R (Pebesma, 2004). 

If s and s’ are the vectors of spatial coordinates and X is the value of the difference between 

MERIT/SRTM and LIDAR (i.e. the vertical error), then the semi-variogram (γ(h)) is defined 

as; 

                                                       𝛾(𝐡) =
1

2𝑁(𝐡)
∑[{𝑋(𝑠) − 𝑋(𝑠′)}]2   

𝑁(𝐡)

𝑖=1

                              (21) 

where N(h) is the number of pairs, and h is the lag. For the purpose of simulating other 

places, these empirical semi-variograms must be fitted to form a continuous surface. There is 

no best semi-variogram model to fit semi-variograms, so one must be careful to choose a 

model that captures the main features but avoids overfitting (Goovaerts, 1997). As outlined 

in Figure 4-3 there are numerous models available to fit the empirical semi-variogram. A 

further strategy is to combine two or more semi-variogram models. For instance, a short-

range exponential model may be used with a long-range spherical model. Inspection of the 

empirical semi-variogram suggested a double-exponential shape would capture the main 

features. This is consistent with the work of Oksanen and Sarjakoski (2006) who used an 
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exponential model for their analysis. Therefore the chosen model to fit the semi-variograms 

has the parametric form; 

𝛾(ℎ) = 𝜎1
2 {1 − exp (

−ℎ

𝑎1
)} + 𝜎2

2 {1 − exp (
−ℎ

𝑎2
)} (22) 

where (α1, α2) represent the range, σ 21 the ‘near’ component and σ 22  the ‘far’ component. 

Both these parameters were thus fitted with a double exponential model. Note there is no 

nugget component in the chosen model. A nugget component was excluded as although it 

shows measurement error and sources of variation over distances shorter than the shortest 

sampling interval, it would add further error to the surface being added to the DEM to 

create the simulated DEM. As an unconditional simulation approach is being taken, this 

would result in an even noisier resultant DEM simulation. To fit this model, first an 

exponential semi-variogram using pixels within 0.005 decimal degrees (≈500 m) of each 

other was calculated, forming the ‘near’ component. This gives an estimate of the near range 

parameter α1. Then the sum of two exponential semi-variograms with specified ranges α1 

and α2 = 10 α1 to pixels within 0.01 decimal degrees (≈1000 m) of each other, forming the 

‘far’ component. As a result, the sill and range parameters could be estimated. The sill refers 

to the semi-variance at which the semi-variogram levels off and is the marginal standard 

deviation. The range is the distance at which the semi-variogram effectively reaches the sill 

value. For an exponential model, the semi-variogram reaches the sill asymptotically so the 

range is defined as the distance at which the model value is at 95% of the sill. Range values 

of the resultant semi-variograms are roughly similar values previously estimated by 

Rodriguez et al. (2006), Shortridge (2006), LaLonde et al. (2010) and Shortridge and Messina 

(2011) for SRTM.   

4.6.5 Directional Investigation 

In the modelling implemented in section 4.6.4, isotropy was assumed. In this section, this 

assumption is tested as occasionally the spatial dependence can be anisotropic (e.g. Liu and 

Jezek (1999)) . In other words, it is best practise to check whether the spatial error structures 

are similar in all directions, or whether the data is anisotropic. Anisotropy can be either 

‘zonal’ or ‘geomtric’. Zonal isotropy ivolves sill values varying with direction. Geometric 



 

171 

 

anisotropy involves semi-variograms having the same shape and sill but different range 

values.  

There are two methods to test anisotropy – directional semi-variograms and semi-variogram 

maps. Directional semi-variograms are calculated by plotting empirical semi-variograms at 

differing angles from North (0 in our analysis) with an angular tolerance of 15°. The number 

of directions to investigate depends on the application, with Goovaerts (1997) 

recommending that the four cardinal directions should be investigated as a bare minimum. 

A compromise must be reached as investigating too many directions can result in too few 

points to form a relationship. For Olea (2006), the more directions investigated the better. If 

these semi-variograms are similar, isotropy can assumed, so the resultant semi-variogram is 

omnidirectional. The second method is a semi-variogram map which is particularly suited to 

large gridded datasets (Goovaerts, 1997) such as many DEMs. If the contour lines in these 

maps are concentric, the semi-variance is similar in every direction so we can assume 

isotropy. On the other hand, if the contours are elliptical, the data would exhibit geometric 

anisotropy.  Here, both techniques are used (Figure 4-10 & Figure 4-11) for the Burdekin 

study site. Goovaerts (1997) recommends that if anisotropy is not clearly evident from the 

directional semi-variograms, semi-variogram maps or ancillary information, one should 

assume isotropy. With this mantra isotropy is assumed as no obvious anisotropy was 

evident. The directional semi-variograms of Figure 4-10 have very similar shapes, albeit with 

slightly different sill values. For the semi-variogram map (Figure 4-11), the shape is 

concentric except in the southeast and northwest directions where there is a slight stretch to 

a more ellipsoidal shape in the mid to far range. Strictly speaking anisotropy is present, but 

was ignored as it was deemed not strong enough following the recommendation of 

Goovaerts (1997). This analysis was carried out for all study sites, with no notable 

differences found, thus it can be concluded that the assumption of isotropy is a valid one. 
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Figure 4-10 Directional semi-variograms for Burdekin. The number in each panel refers to the degrees 

from north, when north=0 and east=90. There is better long-range spatial continuity (smaller semi-

variance values) in the North (0) and North-East directions 

Figure 4-11 Semi-variogram map for Burdekin. A semi-variogram map is a plot of semi-variograms 

plotted as a series of coordinates with the center (0,0) corresponding to the origin of the semi-

variogram. Any cross-section is a traditional 1D semi-variogram. Concentric contours = isotropy. 

Elliptical contours = anisotropy 
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4.6.6 DEM Simulation 

As outlined in section 4.4.4, a random field of error must be generated which when added to 

the DEM creates plausible versions of the terrain. For the purpose of this work, conditional 

simulation is inappropriate as the intended end users are unlikely to have access to high 

accuracy topographic data. In other words, the aim here is to simulate plausible versions of 

the MERIT and SRTM DEMs for floodplain locations assuming the user has no reference 

datasets. However, it should be made clear, that unconditional simulation (unlike 

conditional simulation) does not eliminate the implicit DEM error (by conditioning to 

reference data), while at the same time adds the Gaussian error field to the DEM being 

simulated. This means that the simulated DEM will have inflated values. Whilst this is not 

desirable, unconditional simulation does not need reference data and is therefore a flexible 

approach to DEM simulation. However, if reference data is available, a user should attempt 

condition simulation to obtain a more accurate and realistic simulation of the DEM. 

In this chapter, Spatial dependence of error has been characterised using semi-variograms 

for 20 floodplain locations. This is the sample statistic to characterise spatial dependence of 

error in floodplains. The assumption made in this thesis is that this estimated spatial 

dependence is representative of floodplains around the world. This assumption is based on 

the semi-variograms being broadly similar (Figure 4-13) for each floodplain and the fact the  

20 floodplain locations used are across a wide range of locations. 

Ideally, a statistical model covering both the DEM and reference observations on the DEM 

would be constructed. Typically, this model might be a multivariate Gaussian distribution, 

in which the reference observations might be a subset of the DEM plus noise, where the 

noise is probabilistically independent of the DEM.  The simulated DEM would then be 

conditioned on the reference observations using samples from the conditional (or 

`posterior') distribution of the DEM as candidates in a simulation-based approach to 

computing the inundation probabilities for each pixel of the hazard map. In other words, 

this is a conditional simulation approach. 
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Specifying the full covariance structure over both the DEM and the observational data is 

demanding.  Under some conditions, it also turns out to be unnecessary.  These conditions 

are described in Rougier and Zammit-Mangion (2016) (Theorem 3).  In essence, the prior 

variance matrix of the true elevations has to be far larger than the error variance matrix of 

the observational data.  In this case, if there is an observation for every pixel, then the 

posterior expectation of the true elevations is approximately equal to the observations, and 

the posterior variance matrix of the true elevations is approximately equal to the 

measurement error variance (i.e. it inherits the spatial structure of the error).  This `plug-in' 

approach is very intuitive, and quite widely used, so it is reassuring to know that it is 

approximately correct under an acceptable assumption about a large prior uncertainty.   

The plug-in approach is implemented by using either the LIDAR as the observations, and 

simulating candidate DEMs by adding the random fields generated from the representative 

semi-variograms to either the MERIT or SRTM DEMs. Random field realizations are 

generated by sequential Gaussian simulation using the gstat package (Pebesma, 2004) in R 

(R Core Team (2018). These are unconditional Gaussian simulations. A workflow related to 

this process and details of the code are given later in this chapter (Figure 4-21). 

4.6.7 Flood Model 

To test the impact of using an ensemble of simulated DEMs on flood inundation extent, two 

flood models were built using the sub-grid version of LISFLOOD-FP (Neal et al., 2012a). One 

model covered a section of An Giang Province in the Vietnamese Mekong Delta and the 

other a 15 km reach of the Ba catchment in Fiji. These locations were selected as both had 

LIDAR data, so a representative benchmark model could be built to compare to the 

simulated DEM results. Moreover, both reaches were small enough that model simulation 

times were practical for the study. 

The An Giang model uses hydrographs from Chau Doc and Vam Nao gauging stations as 

the upstream boundary condition, whilst the downstream boundary is set as the water level 

height from the Long Xuyen gauge, with all these records available from the Mekong River 

Commission (MRC). The year 2001 was selected for hydraulic simulation. This particular 

year was selected for several reasons. Firstly, the flood was severe with estimated damages 
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at over US$ 200 million and approximately 300,000 homes damaged in the Vietnamese 

Mekong Delta (Chinh et al., 2016). Whilst the return period of the 2001 flood is unknown, Le 

et al. (2007) estimated that the moderately larger flood in 2000 had a return period of 20 

years. Secondly, after the floods of 2000 and 2001, and with the shift from low dykes (0-2 m) 

to high dykes (>3.5 m) to facilitate triple rice cropping (Kontgis et al., 2015), extensive flood 

prevention structures have been built in An Giang. The expansion of paddies protected from 

high dykes in An Giang has risen from < 10,000 ha in 2000 to > 140,000 in 2011 (Duc Tran et 

al., 2018), with these structures being recognized as being important in protecting against 

damaging floods (Chapman et al., 2016). Considering SRTM was acquired in 2000, the flood 

prevention structures have changed the topography represented in SRTM, with flood 

studies analysing later periods needing to update dyke information (Dung et al., 2011, Triet 

et al., 2017, Duc Tran et al., 2018). Even though the 2011 flood was hydrologically similar to 

that of the 2000 flood, 71% of An Giang was flooded in 2000 compared to 30% in 2011 (Dang 

et al., 2016, MRC, 2011b), with flood prevention structures found to be the main cause of 

hydrological alterations (Dang et al., 2016). Thirdly, the availability of gauge data restricted 

the years which could be hydraulically simulated. Geometry data for the channels were 

gathered from the GWD-LR river width database (Yamazaki et al., 2014a) and bathymetry 

from a 2008 survey conducted by the MRC with cross sections approximately every 250 m. 

The channel was assumed to have a rectangular shape, with bathymetry values assigned by 

interpolating the cross-sections.  Manning's friction parameters (Chow, 1959) were set as 0.03 

for the channel and 0.05 for the floodplain, which are both realistic and performed well in a 

larger Mekong flood model built with LISFLOOD-FP. 

For the Ba model, the model setup as outlined in Archer et al. (2018) was used. They 

estimated a 50 year hydrograph using the regional flood frequency analysis (RFFA) 

approach of Smith et al. (2015), utilizing meteorological data from the Fiji Meteorological 

Office. The downstream water level boundary condition at the coast was set at 0 m ,even 

though this value is highly uncertain as heavy rainfall is likely to occur at the same time as a 

storm surge to compound flooding (Zscheischler et al., 2018, Wahl et al., 2015). As the 

domain size of the Ba reach model is comparatively small, the river width was estimated 

from Google Earth. The river depth was estimated such that the river conveyed the 1 in 2 
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year return period before going out of bank. Whilst this bankfull discharge value varies 

considerably around the world, a return period of 2 year is a generally accepted average 

value (Pickup and Warner, 1976, Williams, 1978) with a return period of 2 years being found 

in similar rivers in Fiji (Terry et al., 2002, Terry, 2007). Finally, Manning's friction parameters 

were set as 0.035 for the channel and 0.04 for the floodplain based on based on typical values 

for agricultural floodplains used by Archer et al. (2018). 

For each location, four models were built to act as our deterministic models – one at 90m 

resolution using the SRTM DEM, another at 90 m resolution using the MERIT DEM, a 

further 90 m version using resampled LIDAR and a final 30 m resolution model built using 

LIDAR data to act as a benchmark model. The 90m resolution was chosen as this is the 

native resolution of SRTM and MERIT. The 30 m LIDAR based model was selected as a 

benchmark model as it is based on the most accurate topographic data. In the absence of 

validation data, the benchmark model is used as observations. A 30 m resolution was chosen 

for the LIDAR model based on computational resources and was created by aggregating the 

LIDAR to the desired 30m resolution. Next, the 90m SRTM and MERIT models were 

replaced with the simulated DEMs, consequently forming the DEM ensembles as multiple 

simulated DEMs were used to construct each ensemble. Three sets of DEM ensemble models 

were built – one by simulating the MERIT DEM with the ‘average’ floodplain semi-

variogram of MERIT; another by simulating the MERIT DEM by MERIT landcover semi-

variograms; and a final one by simulating the SRTM DEM by SRTM landcover semi-

variograms (Introduced in more detail in Section 4.7.2). In this case, the ‘average’ semi-

variogram refers to the average of the semi-variogram parameters across all 20 locations, so 

this is taken to be representative of a floodplain semi-variogram. Simulation by landcover 

semi-variograms are detailed further in Figure 4-15 and Section 4.7.2. Thus, in total seven 

classes of model were created. 

For the An Giang model, each DEM ensemble contained 200 DEMs. For the Ba model, each 

ensemble contained 500 DEMs. The larger number for Ba was a result of the faster 

computation time of the model (≈1 minute) compared to the 19 minutes it took for the An 

Giang model. As the aim of the study was to test the impact of topographic uncertainty on 

the flood extent we kept all other model parameters consistent. To assess the results, 
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maximum inundation maps were extracted and converted to a binary wet/dry map. 

Subsequently, these maps are merged together to form an inundation probability map, 

whereby a percentage score is given based on the number of DEMs that a particular pixel 

floods within a given DEM ensemble. For the deterministic models, these inundation 

probabilities would either be 0% (dry) or 100% (wet), whilst for the DEM ensembles the 

probability can take any value between this ranges. Simulations were carried out on an Intel 

3.1GHz quad-core i7-3770S CPU. 

4.6.8 Workflow 

To summarise the methodology, a workflow is presented here. This has been further 

consolidated into a package in R called DEMsimulation which is detailed in section 4.8. 
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Figure 4-12 Workflow to fit semi-variograms. Orange signifies outputs. 
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4.7  Results & Discussion 

In this section, the results of the three components of our analysis: Semi-variograms, DEM 

Simulation and Flood Inundation presented and discussed. As each component builds on 

the previous, a discussion is incorporated in the results section. 

4.7.1  Semi-variograms 

First, the empirical and fitted semi-variograms for each study site are plotted (Figure 4-13). 

The fitting procedure is appropriate as the fitted semi-variograms align well with the 

empirical results. 
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Broadly speaking, all locations have similar semi-variograms for the MERIT DEM, with 

these often having considerably different semi-variogram parameter values than the SRTM 

equivalents (Figure 4-3). For example, the sill values for the MERIT DEM are markedly 

lower at the Mekong, Roanoke and Savannah sites. Across all study sites, the MERIT DEM 

has smaller sill values (0.7-2.2m) compared to SRTM (1.0-4.8m), and larger range values as 

well (308-4364m compared to 298-1931m). A detailed table of fitted semi-variogram 

parameter values can be found in Table 4-9. Smaller sill values mean that the DEM is more 

Figure 4-13 Semi-variograms for each study site for the difference between MERIT - LIDAR and 

SRTM - LIDAR. The resolution of the DEMs is 90m. The 'sill' is the marginal standard deviation, in 

metres, and the 'range' is the distance, in metres, at which the correlation between two points drops to 

0.05. Note that Roanoke and Savannah (bottom) have a different y axis as for these locations the 

SRTM semi-variograms have a markedly larger sill value. 
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accurate, and a larger range means that the error is more spatially dependent over a greater 

distance. 

MERIT 
     

SRTM 
    

Location 𝜎1
2 𝜎2

2 𝑎1 Sill, m Range, m 𝜎1
2 𝜎2

2 𝑎1 Sill, m Range, m 

Amberley 0 2.388 0.016 1.5 544 0.874 5.35 0.015 2.5 1698 

Ba 0.034 2.154 0.011 1.5 413 0.373 6.946 0.014 2.7 655 

Burdekin 0.552 1.078 0.02 1.3 4289 0 3.504 0.019 1.9 639 

Ebro 0 0.542 0.009 0.7 308 0 2.037 0.015 1.4 484 

Eel 0.09 1.635 0.012 1.3 527 0 5.091 0.015 2.3 506 

Fens DSM 0.022 0.287 0.013 0.6 716 0.049 0.926 0.01 1 439 

Fens DTM 0.026 0.282 0.013 0.6 846 0.059 0.936 0.01 1 478 

Kaiapoi 0 1.993 0.025 1.4 818 0.245 6.911 0.015 2.7 600 

Kaikoura 0.066 1.666 0.011 1.3 436 0.36 3.089 0.01 1.9 862 

Kishima 0.071 0.965 0.013 1 716 0 4.814 0.01 2.2 329 

Kushiro 0.391 0.727 0.014 1.1 2947 0 1.997 0.009 1.4 298 

Mekong 0.137 0.843 0.013 1 1460 0 10.096 0.009 3.2 298 

Mississippi 0.265 1.311 0.009 1.3 1234 0 2.67 0.009 1.6 298 

Nadi 0.348 2.3 0.009 1.6 965 0 3.417 0.011 1.8 376 

Notsuke 0.282 2.112 0.012 1.5 1179 0.031 3.099 0.012 1.8 422 

Otaki 0.403 2.487 0.011 1.7 1224 0.017 3.976 0.011 2 380 

Po Delta 0.572 0.816 0.014 1.2 3229 0.023 3.053 0.012 1.8 429 

Roanoke 0 3.975 0.023 2 783 2.252 13.786 0.017 4 1931 

Savannah 1.562 3.108 0.021 2.2 4364 0 21.026 0.025 4.6 846 

Temuka 0 1.114 0.021 1.1 704 0.289 2.797 0.01 1.8 731 

Wax Lake 0.13 0.87 0.01 1 1075 0 2.797 0.016 1.7 539 

 

 

Table 4-9 Estimated semi-variogram parameters for each location for both MERIT and SRTM. The 'sill' 

is the marginal standard deviation, in metres, and the 'range' is the distance, in metres, at which the 

correlation between two points drops to 0.05.  σ 21 the ‘near’ component and σ 22  the ‘far’ component 

of the double exponential model. 
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As all sites are floodplains with a similar topography, differences in semi-variogram 

parameters are likely to come from another source. As noted earlier, vegetation has a large 

influence on DEM error. Therefore, a further investigation was carried out to mask the 

vertical error pixels by landcover class and then produce semi-variograms. The purpose of 

this is to investigate whether landcover affects the DEM error and whether the semi-

variograms alter.  The landcover dataset used in this study was the CCI Landcover dataset 

(http://maps.elie.ucl.ac.be/CCI/viewer/). The CCI Landcover dataset has annual records from 

1992-2015, with this study analysis using records from 2000 as this was the year of SRTM 

acquisition. In total there are 38 landcover class and sub-classes. To calculate the semi-

variograms, the CCI Landcover dataset was resampled from its 300 m resolution to the 

resolution of the MERIT DEM (90m). Therefore, each MERIT pixel had an associated 

landcover class. For each site, landcover classes with over 600 pixels were selected to 

produce semi-variograms. This pixel threshold was chosen by trial and error to ensure well 

fitted semi-variograms were produced. Results for the Burdekin site are plotted (Figure 

Figure 4-14 Burdekin semi-variograms of vertical error masked by landcover type. The MERIT semi-

variograms are broadly similar, whilst there is more variation in the SRTM semi-variograms. 

http://maps.elie.ucl.ac.be/CCI/viewer/
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4-14). This analysis was also implemented for all study sites. This resulted in 94 semi-

variograms for different landcover classes (Table 4-10). When the semi-variograms have 

been averaged by landcover class, 20 landcover classes have representative semi-

variograms. Whilst this is just over half of the total landcover classes in the CCI dataset, this 

can be considered a good representation of landcover classes relevant for most floodplain 

locations as the range of study sites has meant that a wide range of landcover classes are 

included. Furthermore, those that are not covered (e.g. Permanent snow and ice cover) are 

not relevant for the vast majority of floodplain areas and thus end users. 

Location Land Cover Number 
of 
Pixels 

𝜎1
2 𝜎2

2 𝑎1 Sill, m Range, 
m 

Amberley Overall 9888 0 2.388 0.016 1.5 544 

Amberley Mosaic cropland (>50%) / natural veg 811 0 1.676 0.014 1.3 482 

Amberley Grassland 7008 0 1.966 0.013 1.4 444 

Ba Overall 7102 0.034 2.154 0.011 1.5 413 

Ba Mosaic cropland (>50%) / natural veg 2605 0 2.299 0.01 1.5 348 

Ba Mangroves 2608 0.064 1.024 0.009 1 440 

Burdekin Overall 46430 0.552 1.078 0.02 1.3 4289 

Burdekin Cropland Irrigated 20621 0.142 0.641 0.02 0.9 2912 

Burdekin Mosaic natural vegetation  888 0 0.521 0.011 0.7 377 

Burdekin Tree cover BL/Evg >15% 2274 0 1.183 0.012 1.1 413 

Burdekin Shrubland 2308 0.142 1.245 0.023 1.2 1900 

Burdekin Shrubland Deciduous 6307 0.575 0.658 0.013 1.1 3151 

Burdekin Mangroves 8742 1.256 1.574 0.018 1.7 4373 

Burdekin Shrub or herbaceous cover 2443 0 1.403 0.02 1.2 654 

Ebro Overall 23629 0 0.542 0.009 0.7 308 

Ebro Cropland Irrigated 19296 0.078 0.211 0.01 0.5 1953 

Ebro Bare areas 1378 0 4.584 0.014 2.1 472 

Eel Overall 20172 0.09 1.635 0.012 1.3 527 

Eel Mosaic natural vegetation  3124 0.113 0.48 0.014 0.8 2021 

Eel Tree cover BL/Dec >15% 1669 0.444 0.941 0.011 1.2 2183 

Eel Grassland 11487 0.178 1.341 0.01 1.2 935 

Eel Bare areas 797 0 3.745 0.015 1.9 495 

Fens DSM Overall 2191 0.022 0.287 0.013 0.6 716 

Fens DSM Cropland Herbaceous cover 2137 0.02 0.29 0.013 0.6 659 

Fens DTM Overall 2191 0.026 0.282 0.013 0.6 846 

Fens DTM Cropland Herbaceous cover 2137 0.023 0.286 0.013 0.6 744 

Table 4-10 MERIT semi-variogram by study site and landcover. The 'sill' is the marginal standard 

deviation, in metres, and the 'range' is the distance, in metres, at which the correlation between two 

points drops to 0.05.  σ 21 the ‘near’ component and σ 22  the ‘far’ component of the double exponential 

model. 
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Location Land Cover Number 
of 
Pixels 

𝜎1
2 𝜎2

2 𝑎1 Sill, m Range, 
m 

Kaiapoi Overall 24222 0 1.993 0.025 1.4 818 

Kaiapoi Cropland 678 0 1.126 0.019 1.1 632 

Kaiapoi Mosaic tree and shrub (>50%) / herbaceous cover (<50%) 811 1.674 5.535 0.032 2.7 5524 

Kaiapoi Mosaic herbaceous cover (>50%) / tree and shrub (<50%) 1062 0 7.348 0.024 2.7 789 

Kaiapoi Grassland 18127 0 1.152 0.022 1.1 724 

Kaiapoi Urban areas 1590 0.068 0.63 0.014 0.8 1024 

Kaikoura Overall 6908 0.066 1.666 0.011 1.3 436 

Kaikoura Grassland 5749 0.179 1.377 0.009 1.2 860 

Kishima Overall 12262 0.071 0.965 0.013 1 716 

Kishima Cropland Herbaceous cover 5011 0.197 0.629 0.009 0.9 1558 

Kishima Cropland Irrigated 6088 0.011 0.8 0.013 0.9 459 

Kushiro Overall 24092 0.391 0.727 0.014 1.1 2947 

Kushiro Cropland 9951 0.115 0.33 0.012 0.7 2164 

Kushiro Cropland Irrigated 2949 0.136 1.398 0.013 1.2 890 

Kushiro Shrub or herbaceous cover 5230 0 0.364 0.027 0.6 887 

Kushiro Urban areas 3545 0.21 0.975 0.012 1.1 1642 

Mekong Overall 65890 0.137 0.843 0.013 1 1460 

Mekong Cropland Irrigated 64120 0.154 0.711 0.013 0.9 1793 

Mississippi Overall 24082 0.265 1.311 0.009 1.3 1234 

Mississippi Tree cover NL/Dec >15% 661 0.218 1.188 0.009 1.2 1132 

Mississippi Shrub or herbaceous cover 11795 0 0.99 0.009 1 298 

Nadi Overall 15564 0.348 2.3 0.009 1.6 965 

Nadi Cropland 1341 2.33 3.202 0.011 2.4 2556 

Nadi Cropland Herbaceous cover 5056 0.137 2.559 0.009 1.6 406 

Nadi Mosaic cropland (>50%) / natural veg 5814 0 2.707 0.009 1.6 298 

Nadi Mangroves 1897 0.029 0.855 0.011 0.9 438 

Notsuke Overall 71904 0.282 2.112 0.012 1.5 1179 

Notsuke Cropland 18886 0.107 1.49 0.01 1.3 538 

Notsuke Cropland Herbaceous cover 1563 0 5.128 0.036 2.3 1213 

Notsuke Cropland Irrigated 2173 0 0.607 0.009 0.8 298 

Notsuke Mosaic cropland (>50%) / natural veg 6750 0 1.635 0.012 1.3 413 

Notsuke Mosaic natural vegetation  6354 0 1.89 0.013 1.4 429 

Notsuke Tree cover BL/Dec >15% 9087 0.22 1.934 0.01 1.5 772 

Notsuke Tree cover BL/Dec >40% (closed) 2171 0 1.459 0.01 1.2 319 

Notsuke Tree cover NL/Evg >15%  4122 0 6.715 0.022 2.6 742 

Notsuke Mosaic tree and shrub (>50%) / herbaceous cover (<50%) 784 0 11.282 0.048 3.4 1591 

Notsuke Grassland 13174 0 1.92 0.009 1.4 298 

Notsuke Urban areas 1302 0 1.938 0.009 1.4 298 

Otaki Overall 11255 0.403 2.487 0.011 1.7 1224 

Otaki Grassland 9033 0.264 2.294 0.01 1.6 841 

Otaki Urban areas 1412 0.467 1.102 0.009 1.3 1784 

Po Delta Overall 41806 0.572 0.816 0.014 1.2 3229 

Po Delta Cropland 6227 0.435 0.865 0.021 1.1 4340 

Po Delta Cropland Herbaceous cover 23946 0.155 0.304 0.013 0.7 2846 

Po Delta Cropland Irrigated 1474 0.519 0.553 0.014 1 3445 

Po Delta Mosaic cropland (>50%) / natural veg 894 0.427 1.63 0.013 1.4 2058 
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Location Land Cover Number 
of 
Pixels 

𝜎1
2 𝜎2

2 𝑎1 Sill, m Range, 
m 

Po Delta Shrub or herbaceous cover 2848 0.191 3.121 0.013 1.8 643 

Po Delta Bare areas 1006 0 1.292 0.01 1.1 320 

Roanoke Overall 89630 0 3.975 0.023 2 783 

Roanoke Cropland Herbaceous cover 15921 0.66 1.879 0.021 1.6 3805 

Roanoke Mosaic natural vegetation  11698 0.04 2.599 0.019 1.6 675 

Roanoke Tree cover NL/Evg >15%  15968 0 9.469 0.08 3.1 2652 

Roanoke Tree cover (flooded, fresh, brackish) 42541 0 3.808 0.019 2 630 

Roanoke Urban areas 1114 0 5.022 0.029 2.2 960 

Savannah Overall 104084 1.562 3.108 0.021 2.2 4364 

Savannah Tree cover NL/Evg >15%  30179 1.641 4.238 0.032 2.4 6211 

Savannah Mosaic tree and shrub (>50%) / herbaceous cover (<50%) 753 0.276 2.598 0.009 1.7 678 

Savannah Grassland 1193 0.96 6.887 0.036 2.8 3625 

Savannah Tree cover (flooded, fresh, brackish) 4502 1.03 1.403 0.022 1.6 5149 

Savannah Shrub or herbaceous cover 30338 0 1.944 0.009 1.4 298 

Savannah Urban areas 3999 0.807 2.028 0.013 1.7 2430 

Temuka Overall 26956 0 1.114 0.021 1.1 704 

Temuka Cropland Herbaceous cover 2015 0 0.77 0.018 0.9 614 

Temuka Grassland 23123 0 1.122 0.021 1.1 707 

Temuka Urban areas 829 0 1.182 0.026 1.1 878 

Wax Lake Overall 4827 0.13 0.87 0.01 1 1075 

Wax Lake Tree cover NL/Dec >15% 720 0 1.932 0.016 1.4 532 

Wax Lake Shrub or herbaceous cover 1826 0 0.555 0.009 0.7 298 

Wax Lake Bare areas 828 0.155 0.793 0.01 1 1343 

 

Land Cover Number of 
Semi-
variograms 

CCI 
Number 

𝜎1
2 𝜎2

2 𝑎1 Sill, m Range, 
m 

Overall 20 NA 0.236 1.555 0.014 1.3 1543 

Mosaic cropland (>50%) / natural veg 5 30 0.085 1.989 0.012 1.4 502 

Grassland 8 130 0.089 1.596 0.014 1.3 624 

Mangroves 3 170 0.45 1.151 0.013 1.3 2438 

Cropland Irrigated 7 20 0.149 0.703 0.013 0.9 1826 

Mosaic natural vegetation  4 40 0.038 1.373 0.014 1.2 545 

Tree cover BL/Evg >15% 1 50 0 1.183 0.012 1.1 413 

Shrubland 1 120 0.142 1.245 0.023 1.2 1900 

Shrubland Deciduous 1 122 0.575 0.658 0.013 1.1 3151 

Shrub or herbaceous cover 6 180 0.032 1.396 0.014 1.2 542 

Bare areas 3 200 0.052 1.943 0.012 1.4 440 

Tree cover BL/Dec >15% 2 60 0.332 1.437 0.01 1.3 1477 

Cropland Herbaceous cover 7 11 0.149 1.481 0.017 1.3 1173 

Cropland 5 10 0.164 0.953 0.015 1.1 1843 

Mosaic tree and shrub (>50%) / herbaceous cover (<50%) 1 100 0.276 2.598 0.009 1.7 678 

Table 4-11 MERIT semi-variogram parameters by CCI landcover class 
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Urban areas 6 190 0.259 1.309 0.014 1.3 1814 

Tree cover NL/Dec >15% 2 80 0.109 1.56 0.012 1.3 643 

Tree cover BL/Dec >40% (closed) 1 61 0 1.459 0.01 1.2 319 

Tree cover NL/Evg >15%  2 70 0.821 6.853 0.056 2.8 4795 

Tree cover (flooded, fresh, brackish) 1 160 1.03 1.403 0.022 1.6 5149 

 

When assessing the semi-variograms by landcover, landcovers with higher vegetation 

heights (e.g. trees) generally have larger sill value. From the example of Burdekin (Figure 

4-14), mangrove areas have the largest sill value, so this is the most erroneous landcover 

type. When averaging semi-variograms by landcover types, landcovers with trees in them 

have the largest sill values (1.1 m -2.8 m). Mosaicked landcovers also have a large sill value 

(1.2 m– 1.7 m). Yet some landcover types (e.g. Bare Areas and Grassland) that we would 

perhaps expect to have a low sill value based on the above hypotheses do in fact have a 

relatively large sill value of 1.6m, which interestingly is lower than mangroves. Therefore, a 

confident assertion that sill values are larger for higher landcover classes cannot be made. 

Despite the number of locations analysed, the number of semi-variograms to create an 

average of the semi-variogram parameters by landcover is comparatively low (four for bare 

areas and eight for Grassland), so they are vulnerable to extreme low or high values. For 

example, for the bare area landcover class, high sill values for the Ebro bias the results. The 

same is true for Grassland in Savannah. Additionally, there are five landcover classes that 

only have a single semi-variogram, and thus there is lower confidence about how 

representative these semi-variograms may be. As more LIDAR data becomes publicly 

available, more sites can be analysed, thus more representative semi-variograms can be 

estimated.  

4.7.2 DEM Simulation 

Based on the calculated semi-variograms, plausible ensembles of the MERIT and SRTM 

DEMs can be simulated. This allows modellers to move beyond using a single DEM to use a 

catalogue of DEMs (termed a DEM ensemble in this thesis). In this work, semi-variograms 

have been calculated for 20 locations to estimate an ’average’ floodplain semi-variogram for 

both the MERIT and SRTM DEMs. With the number of locations, semi-variograms by 

landcover type were also calculated, resulting in 20 out of the 38 CCI landcover classes 
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having estimated semi-variograms (Table 4-11). These landcover semi-variogram estimates 

allows for DEM simulation by landcover class with the workflow outlined in Figure 4-15. 

For one to simulate by landcover class they first need to extract DEM pixels by landcover 

class, then apply the associated landcover semi-variograms to those pixels and repeat for the 

number of landcover classes. When a landcover class does not have a semi-variogram, the 

’average’ semi-variogram is used. This approach makes this method more relatable to other 

locations, with these semi-variograms available for both MERIT and SRTM. By generalising 

these semi-variogram relationships, unconditional simulation is used, so a user does not 

have to have high-accuracy reference dataset for their given study site, making the approach 

presented here widely applicable.  

 

To quantitatively test the quality of the DEM ensemble, 2500 DEMs of Ba were simulated 

and assessed using rank histograms. Rank histograms (or ‘Talagrand’ diagrams) (Hamill 

Figure 4-15 Simulation by landcover. a) Landcover map of Ba, Fiji using the CCI data. b) 

Semivariograms by landcover for Ba, Fiji. C) DEM of Ba separated by landcover class. D) Workflow 

for DEM simulation by landcover.  
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and Colucci, 1997, Anderson, 1996, Talagrand et al., 1997) are a common tool used to 

evaluate ensemble forecasts in meteorology, and work by ranking the verification (in this 

case LiDAR data) relative to the corresponding value in the ensemble in ascending order. An 

ideal ranked histogram is flat, since the observation is indistinguishable from any ensemble 

member. Typically, a U-shaped rank histogram suggests under-variability in the ensemble, a 

dome shape over-variability, and excessive population of the extreme ranks as bias. Yet, 

ranked histograms are notoriously difficult to evaluate and can lead to misinterpretations if 

done uncritically (Hamill, 2001). Nevertheless, rank histograms are produced by taking the 

mean of LiDAR values which fall within each ensemble pixel for all pixels in the Ba 

catchment in Fiji, as well as pixels by landcover class (Figure 4-16). The rank histogram of all 

pixels suggests a positive bias in ensemble members as the ranks are clustered to the left. 

Despite the vegetation correction in MERIT, the rank histogram of mangrove covered pixels 

shows a large positive bias, whilst cropland has a more uniform shape.  

To compensate for errors in observations (LiDAR), random observational noise was added 

as suggested by Hamill (2001). This made little difference to the shape and are subsequently 

not presented here. Additionally, three goodness-of-fit measurements are computed (Table 

4-12): Pearson X2; Jolliffe-Primo (JP) slope and JP convexity, with the null hypothesis that the 

rank histogram is flat (Jolliffe and Primo, 2008). These statistics confirm the stronger bias in 

mangroves (JP Slope) and suggest possible under-sampling with the relatively high JP 

convexity values.  All these results are statistically significant with p values of virtually zero. 

Moreover, less than 3% of pixels within the single MERIT DEM were within the error of the 

LiDAR (~50mm), whilst this was 97% for the ensembles. Therefore, the reliability of the 

DEM simulation can be deemed satisfactory but can suffer from the error of the global DEM 

product being used. A higher-accuracy global DEM would therefore make this technique 

even more effective. 
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 Pearson chi JP Slope JP Convex 
All Pixels 24493 5440 3174 
Cropland 4000 122 220 
Cropland Herbaceous Cover 7728 620 474 
Mosaic Cropland/Natural Vegetation 7820 1380 752 
Mosaic Natural Vegetation 2626 62 48 
Tree cover, BL/Evg, closed to open (>15%) 5953 193 240 
Mangroves 11160 3291 1562 

 

4.7.3 Flood Inundation 

The simulated DEMs (both MERIT & SRTM, and simulated using the average semi-

variogram and landcover semi-variograms) were used subsequently in flood models for two 

locations - An Giang (Figure 4-17) & Ba (Figure 4-18). These two sites were used to 

demonstrate the impact of topographic uncertainty on flood predictions for two reasons. 

First, they represent end members of floodplains, as the Ba floodplain is small and 

constrained within a valley, whereas the An Giang floodplain is large and is not constrained 

Figure 4-16 Rank Histograms for an ensemble of 2500 DEMs of the Ba catchment in Fiji, simulated 

from the MERIT DEM using semi-variograms of spatial error structure by landcover class. All Pixels 

and the 2 landcover classes with the most pixels (Mosaic Cropland/Natural Vegetation and 

Mangroves) are shown. 

Table 4-12 Goodness-of-fit measures to assess DEM simulation 
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by valley sides. Furthermore, data availability at the time meant that flood models could 

only be constructed for these two locations relatively quickly. DEM ensembles are simulated 

for the MERIT and SRTM using the average floodplain semi-variograms and semi-

variograms disaggregated by landcover as discussed in 4.7.2. By using an ensemble of 

simulated DEMs flood inundation probability maps were produced, whereby the 

inundation probability refers to the number of ensemble members in which the pixel in 

question is flooded. For example, if a pixel was flooded in 300 DEMs in an ensemble of 500 

DEMs then the inundation probability would be 60%. 

First the flood models are evaluated by calculating four commonly used skill scores: Critical 

Success Index; Hit Rate, Miss Rate and False Alarm Rate (Horritt and Bates, 2001a, Stephens 

et al., 2014, Sampson et al., 2015) (Table 4-13). The Critical Success Index (CSI) measures the 

fraction of correctly predicted events, penalizing for both misses and false alarms. This is an 

adjustment of the Proportion Correct Score for the quantity being forecast (Wilks, 2011). CSI 

scores range from 0 indicating no skill to 1 which is a perfect score. The Hit Rate is the rate 

of correctly predicted inundated pixels. Conversely, the Miss Rate measures pixels that are 

not predicted in the model but are flooded in the observations (i.e. model under-prediction). 

The False Alarm Rate refers to incidences where the model predicts flooding, but the 

observed floodplain state is dry (i.e. model over-prediction). In this analysis, the LIDAR 

model at 30m was assumed to be the observation. To allow for direct comparison to the 90 m 

resolution that the other models were run at, the 30 m data was resampled using bilinear 

interpolation. The LIDAR model at 90 m had the best performance for both sites. However, 

the LIDAR model at 90 m for An Giang had only a marginally better CSI score than the 

MERIT and SRTM models, with this due primarily to a relatively high False Alarm Rate. Of 

the global DEMs, MERIT has better skill scores than SRTM. It is noticeable that there is a 

marked difference in performance of the two flood models, with An Giang model 

performing poorly (maximum CSI 0.36) and the Ba model performing very well (maximum 

CSI 0.9). This goes to highlight the difficulty in modelling small magnitude events in areas 

where the floodplain is not constrained (An Giang). 
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An Giang 
    

DEM CSI Hit Rate Miss Rate False Alarm 

LIDAR 90m 0.36 0.97 0.03 0.22 

MERIT 0.26 0.55 0.45 0.15 

SRTM 0.24 0.27 0.73 0.02 

MERIT Landcover 0.11-0.44 0.20-0.75 0.26-0.80 0.00-0.54 

MERIT Average  0.19-0.39 0.20-0.58 0.42-0.79 0.00-0.27 

SRTM Landcover 0.12-0.36 0.21-0.54 0.46-0.79 0.00-0.26 

 

Ba 
    

DEM CSI Hit Rate Miss Rate False Alarm 

LIDAR 90m 0.90 0.92 0.08 0.07 

MERIT 0.77 0.78 0.22 0.04 

SRTM 0.58 0.6 0.41 0.06 

MERIT Landcover 0.60-0.87 0.61-0.91 0.09-0.39 0.03-0.12 

MERIT Average  0.59-0.87 0.60-0.95 0.05-0.40 0.03-0.40 

SRTM Landcover 0.46-0.55 0.47-0.57 0.43-0.53 0.04-0.09 

 
 

In Table 4-13 the range of skill scores for each member of the DEM ensembles is given. Using 

an ensemble of simulated DEMs can give higher skill score values compared to using a 

single deterministic DEM. Skill scores can vary considerably. For example, the Critical 

Success Index (CSI) in Ba is 0.77 for the MERIT model, 0.58 for SRTM and ranges from 0.60-

0.87 for the DEM ensemble of MERIT simulated using landcover semi-variograms. The Hit 

Rate and Miss Rate have particularly large ranges for DEM ensembles using MERIT 

compared to the ensemble using SRTM simulated by landcover semi-variograms. This is 

likely to be a remnant of the DEM simulation process as the addition of the error field is 

adding bias. From the semi-variograms presented earlier Figure 4-13, SRTM is noisier than 

MERIT as indicated by the shorter range values. A noisier DEM indicates that the 

neighbouring pixels are more random, thus making flow, or connectivity, more unlikely. 

SRTM also has more bias as indicated by the larger sill values compared to MERIT. The 

noisiness in SRTM results in a lack of connectivity, and so flooding is underpredicted at both 

test sites (Figure 4-17 & Figure 4-18).  By simulating the MERIT DEM, bias and noise is 

Table 4-13 Flood model skill scores for both An Giang and Ba for 3 sets of deterministic DEMs 

(LIDAR 90m; MERIT, SRTM) and 3 sets of simulated DEMs (MERIT Landcover; MERIT Average). 

Skill scores assessed include Critical Success Index, Hit Rate, Miss rate and False Alarm ratio 
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added to the DEM, thus reducing connectivity and flooding. Conversely, the DEM 

simulation process can correct some of the key pixels that control connectivity, and thus the 

inundation extent. To further understand the flood inundation results, flood inundation 

maps are displayed in Figure 4-17 & Figure 4-18. The simulations using an ensemble of 

DEMs bracket the predicted extent of the benchmark LIDAR model and deterministic 

MERIT and SRTM models, with the MERIT simulation being closer to the benchmark for 

both case studies. Areas of higher inundation probability are generally closer to that of the 

benchmark LIDAR model. 
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Figure 4-17 Flood Inundation study for an area of An Giang Province, Vietnam. a) Study Site 

Location. b) A cross sectional profile through the study site showing elevation of the MERIT DEM 

(black line) and elevations of 10 randomly selected simulated DEMs (coloured lines). c) Maximum 

inundation extent when a single DEM Used (MERIT, SRTM and LIDAR at 30m and 90m). d) 

Maximum Inundation extent for DEM ensembles simulated by landcover (MERIT \& SRTM) and by 

an 'average' semi-variogram (MERIT). The orange squares in d) show residential areas. 



 

194 

 

 

For the An Giang case study, the ensemble of simulated DEMs activates floodplain flow 

pathways that are present in the higher resolution LIDAR data but are not in MERIT/SRTM. 

These flow pathways could be activated or deactivated by using an ensemble of DEMs, with 

inundation extent varying demonstrably. The large variation in inundation extent is also a 

result of the unconfined floodplain environment of the delta meaning it is difficult to limit 

the flood. In the MERIT Landcover DEM ensemble, the higher inundation probabilities 

Figure 4-18  Maximum flood extents for a 50 year return period event for Ba, Fiji. Red Lines show 

roads and the orange polygons residential areas, both extracted from the Open-StreetMap™ database. 

Areas of interest highlighted by white dashed boxes in the LIDAR model. Extent of LIDAR is marked 

in the LIDAR Extent Map. Grey background is where MERIT/SRTM is present. 
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(light blue) more closely align with the LIDAR benchmark model, even though there is still 

some over-prediction in the middle of the domain similar to the deterministic MERIT model 

(Figure 4-17). Nevertheless, the DEM ensemble models do capture the flooding in the top 

right of the domain which was not present in the deterministic MERIT model. For the Ba 

case study, the variation in inundation extent was more constrained with a larger area with 

higher inundation probability. This is due to the confined river valley setting meaning the 

large flood fills the valley floor. 

In Figure 4-18, inundation probability maps are presented for Ba, with exposed assets of 

roads and residential areas from the OpenStreetMap™ (https://planet.openstreetmap.org) 

database overlaid. Asset data was included to determine what the actual impacts might be. 

This adds a qualitative component to the more traditional skill score metrics. Research into 

the presentation of flood hazard maps is extensive and outside the scope of this thesis, so 

interested readers should consult the literature (Hagemeier-Klose and Wagner, 2009, Di 

Baldassarre et al., 2010, Meyer et al., 2012, Alfonso et al., 2016). Some assets are inundated 

(highlighted by white dashed boxes in Figure 4-18) in the LIDAR models but are not in the 

MERIT and SRTM models. In this study, a high-resolution benchmark model exists, but in 

most data-sparse areas a decision maker would be presented with either the deterministic 

MERIT or SRTM simulations, thereby missing some at-risk assets in this case. By using a 

DEM ensemble, these assets that have been ’missed’ have a relatively high inundation 

probability (50-70%). Thus, if these probabilistic maps were presented to a decision maker 

they would be at least aware that these assets may in fact be at risk and could allocate 

resources as they see fit. In other words, by using an ensemble of simulated DEMs, a range 

of flood predictions can be made, of which some are more similar than the true situation 

(with the assumption that the benchmark model is the true flood). In addition, using an 

ensemble of simulated DEMs avoids the spurious precision in flood estimates by using a 

single DEM and, thus, allowing risk assessors to identify pivotal locations where (often) 

limited resources can be used most effectively. 

As well as flood extent, it is important to predict flood depth correctly. Water Depth 

estimation can be used to estimate flood damage through flood depth damage curves (Merz 

et al., 2010). Therefore, the distribution of water depths from each DEM ensemble is plotted 
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for four randomly selected locations in Ba (Figure 4-19). In Figure 4-19 B) a flood inundation 

probability map is plotted for the DEM ensemble of MERIT simulated using Landcover 

semi-variograms. Further analysis of predicted flood depth (Figure 4-19, C-F) indicate the 

benefit of using ensembles of simulated DEMs in predicting correct water depths. For 

example, in Location 2, the MERIT DEM does not flood, whilst the flood depth in SRTM is 

large (>4.8m), but for the ensembles of DEMs the distribution of predicted flood depths are 

more closely aligned with the flood depths predicted in the LIDAR models. Additionally, in 

Location 3, all but the LIDAR 30m deterministic simulations do not flood. In the 

probabilistic simulations, flooding does occur in some of the simulated DEMs in location 3, 

thus avoiding the dangerous situation of a flood being missed that occurs in most of the 

deterministic simulations. 
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Figure 4-19 Maximum flood water depth at 4 locations in Ba, Fiji for a 50-year return period event. A) 

Overview of study area, with locations of 4 random locations to investigate differences in water 

depth. B) Inundation probability (% of DEMs in DEM ensemble that are flooded) for models run with 

simulated versions of the MERIT DEM simulated using semi-variograms per landcover class. C-F) 

Maximum water depth distribution of each DEM ensemble simulated by different sets of semi-

variograms for location 1-4. MERIT Avg refers to MERIT DEM simulated using an ‘average’ 

floodplain semi-variogram, MERIT LC refers to MERIT DEM simulated using semi-variograms by 

landcover class, SRTM LC refers to SRTM DEM simulated using semi-variograms by landcover class. 
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To determine which DEM simulation method is most effective at estimating inundation 

extent density plots for both An Giang and Ba are produced (Figure 4-20). This plot type was 

chosen over a more conventional histogram as it normalizes the difference in inundated area 

which is particularly apparent in the An Giang example. In this analysis the LIDAR 30m 

benchmark model is chosen as the true flood situation in the absence of any flood 

observation data. Pixels in the LIDAR model are compared to their counterparts in the DEM 

ensemble for each DEM simulation approach. Pixels are binned into 2 categories: 1) 

Correctly predicted (blue) when both pixels are inundated, 2) Incorrectly predicted (red) 

when either pixel in the LIDAR or DEM ensemble model is not inundated. The 

corresponding inundation probability for the pixel in question is then plotted against the 

density of observations. This meant that the distribution of inundation probability for 

correctly and incorrectly predicted pixels could be visualised. The dashed lines show the 

mean of this distribution. The DEM ensemble simulated using the MERIT DEM and using 

the fitted Landcover semi-variograms gave the inundation extent closest to that of the 

LIDAR (indicated by blue dashed line). This was less apparent for Ba as the mean 

inundation probability value was just 0.3% more than the DEM ensemble of MERIT using 

the ’average’ floodplain semi-variogram. The difference in the distributions in Figure 4-20 

not only highlights the challenge of flood inundation estimation in unconstrained 

floodplains such as for the An Giang case, but also indicates a probability threshold value 

cannot be specified to delineate pixels that we can be confident will flood. In other words, 

this distribution is location dependent. For a floodplain environment like the Ba case study, 

our DEM simulation approach is more effective as the variation in topography simulated in 

the DEM ensemble has less impact than in an environment like An Giang. Lastly, the MERIT 

DEM simulation consistently predicts inundation closer to the LIDAR model,  with the 

MERIT DEM simulated using landcover semi-variograms giving predictions closest to the 

LIDAR model.  
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Figure 4-20 Density Plots for the distribution of flooded pixels by inundation probability for each 

DEM Ensemble. Comparison is made between pixels that correctly predict (compared to LIDAR 

model) and those that are incorrectly flooded. The dashed line refers to the mean density. 
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4.7.4 Discussion 

In this analysis, only topography has been altered so the impact of topographic error on 

flood estimates can be assessed. Whilst it is beneficial to incorporate sophisticated 

approaches such as compound flooding (Zscheischler et al., 2018, Wahl et al., 2015, 

Moftakhari et al., 2017b) or event generation (Keef et al., 2013, Neal et al., 2013)  it would 

create an unworkable parameter space, thus making it challenging to draw robust 

conclusions. Yet, beyond this thesis it would be beneficial to utilise such approaches and for 

others to investigate the contribution of topography against other parameters in flood 

models. 

As effective computing power continues to grow, it is increasingly possible to run multiple 

flood models to test sensitivity to parameters. These have almost exclusively focused on 

hydraulic parameters, with topography largely ignored due to the lack of alternative 

datasets. This chapter has demonstrated that topography has a large impact on inundation 

extent and should therefore be included in any flood hazard estimation. These results 

suggest that simulating DEMs by landcover semi-variograms is most appropriate. 

In theory, one could take the semi-variograms produced in this study to simulate floodplain 

MERIT or SRTM DEMs for any location where the MERIT and SRTM datasets exist. Whilst 

possible and made available through the R Package accompanying this work (4.8), extreme 

caution should be taken when applying this work globally. By using an unconditional 

simulation approach, error is being added to the DEM, with this error characterised by the 

20 locations that have been analysed in this chapter. Yet in the absence of being able to 

quantify the spatial error structure for every floodplain location (which remember would 

need an accurate high-resolution DEM (LIDAR)) and the similarity of the semi-variograms 

produced here, the work in this chapter can be cautiously implemented if multiple DEMs 

are required, allowing a modeller to explore the impact of uncertain topography on flood 

predictions.   
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4.8 Code 

4.8.1 DEMsimulation 

The code to simulate DEMs has been made into an R package named DEMsimulation and 

is available on github (https://github.com/laurencehawker/DEMsimulation). Choosing to 

implement this work in R was based on the fact R is a GPL software so is thus freely 

accessible to anyone, and that tools already existed in the language to carry out the 

geostatistical work (gstat). A user does not require a deep understanding of geostatistics and 

DEM error to use the package, but some background in spatial statistics it recommended. 

Currently, there are four principle functions as detailed below: 

Function Detail 

download.CCI Download CCI landcover data for the extent of the DEM to simulate and 

resample to the resolution of that DEM. Required if a user wishes to simulate by 

landcover 

demsimulation Simulate N versions of either the MERIT or SRTM DEM using a selected semi-

variogram. Default is the average semi-variogram for floodplains. The output is a 

geotiff which can be analysed through the raster package in R (Hijmans et al., 

2017). 

demsimulation_LC Simulate N versions of either the MERIT or SRTM DEM using semi-variograms 

by landcover. Requires a landcover map which can be automatically downloaded 

and cropped using download.CCI. The output is a geotiff which can be analysed 

through the raster package in R (Hijmans et al., 2017) 

writeRasterDEM Writes the simulated DEMs into individual raster files.  

 

A user would need to have R installed, with the latest version recommended. To download 

the DEMSimulation package, the devtools package first needs to be installed and loaded 

into the R library, before using install_github to install DEMsimulation from github. Other 

Table 4-14 Functions in DEMSimulation 
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techniques to do this are available, but this is recommended procedure due to the 

comprehensive documentation available. 

A workflow to use DEMsimulation is provided in Figure 4-21. The user first needs to select 

a floodplain DEM of interest from either the MERIT or SRTM DEM. It must be stressed that 

the semi-variograms in this work have been produced for floodplain locations so it is 

unknown how results will be affected by simulating a non-floodplain location. Next, the 

user should mask any water pixels in their DEM, with the water occurrence mask of Pekel et 

al. (2016) recommended. If a user already has a channel mask from another source that can 

be used instead. Once this has been completed, the user has a choice of 3 DEM simulation 

technique: 1) Simulate by ‘Average’ floodplain semi-variogram; 2) Simulate by Landcover 

semi-variograms; 3) Simulate by other semi-variograms. It is recommended to simulate by 

landcover option unless the user has a compelling reason to use another technique. 

Depending on the simulation technique used, intermediary processes may be required using 

functions of DEMsimulation. The core function, DEMsimulation, will then be used to 

simulate N DEM simulations, with the outputs written to a raster of the desired format. 

Simulating DEMs can be computationally intensive, with the function providing a display of 

progress.  

 

 

4.9  Limitations 

The method presented here is intended to give flood modellers primarily working in data-

sparse areas a quick and efficient method to simulate plausible DEMs from the MERIT and 

SRTM global DEMs without needing to go into the field. Ultimately, these simulated DEMs 

Figure 4-21 Workflow of DEMsimulation 
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are not a better version of MERIT/SRTM but are simulations of these DEMs with an error 

field added to them. Therefore, the simulated DEMs have additional error compared to the 

DEMs they are originally simulated from. One should remember that the SRTM, and by 

default MERIT, still contain numerous errors and are becoming outdated as the raw data 

were collected almost two decades ago. When choosing to use MERIT or SRTM, a modeller 

should ask themselves whether these DEMs are good enough for the needs of their study. If 

the answer is a ‘yes’, this approach can allow modellers to explore the impact of topographic 

uncertainty on their model results. Even if the answer is a ‘no’, but higher quality data are 

unavailable or if the model resolution is prohibitive for available computing, the approach 

outlined in this chapter can be used to explore the effect of topographic uncertainty on flood 

predictions and avoid the spurious precision of just using a single DEM. If the aim of the 

study is to design a highly technical engineering project, MERIT and SRTM are extremely 

unlikely to be good enough for this purpose, so the modeller and/or their clients should 

make the effort to finance high-resolution topographic data. One should also consider that 

modelling at a higher resolution costs substantially more computing power, with Savage et 

al. (2016b) finding that halving the hydraulic model resolution leads to a 10x increase in 

compute costs. Thus, even if a higher resolution DEM is available it may be more 

worthwhile to model at a coarser resolution to explore the sensitivity of not only the DEM 

but other model parameters, similar to the approach advocated by Savage et al. (2016a). 

If a field visit is possible, one could take high-accuracy GPS measurements to either create a 

semi-variogram or condition the simulation in an approach similar to that of Kydriakidis et 

al. (1999). There is no golden rule of the number of points that would be needed, but one 

should aim for as many as possible throughout the domain and in different vegetation 

types. A disadvantage of this approach is that even if the GPS measurements were made 

today, they would be almost 20 years after the acquisition of SRTM. Even though the LIDAR 

data that is used as reference data by this study is newer than SRTM it is not as current as 

collecting GPS data today. However, with the recent release of TanDEM-X 90 (multi-scene 

DEM acquired 2011-2015), the impact of temporal inconsistency is lessened. One should also 

check other parameters in the field site if possible – for instance to check the gauging station 
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where the hydrograph is produced. This would also for a more detailed examination of 

uncertainty.  

Several of the landcover semi-variograms only have a single semi-variogram (Table 4-11) 

making the estimated spatial error structures highly uncertain. Once more LIDAR data 

becomes available, this work will be updated, allowing for more semi-variograms to be put 

into the database, contributing to a more certain estimation of the semi-variograms. 

Lastly, whilst the DEMsimulation package has been designed to be as accessible and easy 

to use as possible, it can suffer from performance issues. For the An Giang domain 

(>1500km2), it took just over 20 minutes to simulate 200 DEMs using a standard Intel Core i7 

machine. Conversely, it took just over a minute for 500 simulations of the Ba catchment. As 

domains get larger, performance slows. To overcome this, the domain could be sub-divided, 

but this could lead to inconsistency when simulating at the boundary edges. Parallelisation 

of the code is currently being explored and will be added once implemented. 

4.10 Conclusion 

In this chapter, a method to simulate plausible versions of the MERIT and SRTM DEMs in 

floodplains has been presented. The impacts of using an ensemble of simulated DEMs on 

predicted flood inundation for two contrasting case studies was further assessed. 

This work first involved calculating the spatial error structure for both the MERIT and 

SRTM global DEMs by assessing against a reference dataset (LIDAR) for 20 lowland 

locations distributed across the globe. This is the first time the spatial error structure of the 

MERIT DEM has been calculated, and the first time this has been compared to the spatial 

error structure of SRTM. Results from the fitted semi-variograms revealed that the MERIT 

DEM is consistently more accurate than SRTM (semi-variogram sill values of 0.7-2.2 m 

compared to 1.0-4.8 m), with the errors in MERIT being more spatially dependent as 

indicated by larger range values (308-4364 m) compared to SRTM (298-1931 m). Further 

semi-variograms were produced by landcover class. It was demonstrated that the spatial 

error structure differs by landcover class, with landcover classes with higher canopy heights 

generally having a larger sill value. However, this relationship is not clear and should be 
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investigated further with a larger sample. It was also difficult to separate whether the spatial 

error structure differences were driven by topography or landcover, although by using 

similar topography (i.e. floodplains) the effects of topography on the error in the DEM was 

reduced. In total, 94 semi-variograms covering 20 different landcover classes were 

produced. 

These fitted semi-variograms were then taken to simulate plausible versions of either the 

MERIT or SRTM using unconditional Gaussian simulation. This procedure has the 

advantage that it does not require high accuracy reference topographic data to be available 

(e.g. LIDAR or GPS observations) as conditional simulation requires. However, the 

unconditional simulation approach has the major disadvantage of not eliminating the error 

at reference data points, while at the same time add the error filed to create an inflated DEM 

with larger errors than the original DEM that it was simulated from. Nevertheless, the 

approach presented in this chapter allows simulation of multiple plausible DEMs for any 

floodplain location using the spatial error structure relationships that have been estimated 

for 20 floodplain sites, thus, allowing modellers to explore the impact of topographic 

uncertainty on their flood predictions by using an ensemble of simulated DEMs. By 

estimating semi-variograms by landcover, one can simulate DEMs either by using a 

landcover map, by an ‘average’ floodplain semi variogram or by one of the 94 semi-

variograms we have calculated. A tool to implement this has been created in the GPL 

software R in a package named DEMsimulation, which is freely available 

(https://github.com/laurencehawker/DEMsimulation). 

To test the impact on flood predictions by using an ensemble of simulated DEMs, two 

hydrodynamic models of contrasting locations (An Giang, Vietnam & Ba, Fiji) were run. 

These hydrodynamic models were made of four deterministic simulations using LIDAR, 

MERIT and SRTM DEMs and three sets of ensembles of simulated DEMs. Using an 

ensemble of simulated DEMs avoids the spurious precision in flood prediction given by 

deterministic models and allows for an assessment on how topographic uncertainty impacts 

flood predictions, resulting in probabilistic flood maps based on ensembles of simulated 

DEMs. Sometimes, by using ensembles of simulated DEMs, skill scores of flood predictions 

were higher than the deterministic model equivalent, with an upper range in Critical Success 
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Index of 0.44 (compared to 0.26 for the deterministic MERIT) for An Giang and 0.87 

(compared to 0.77 for the deterministic MERIT) for Ba. Conversely, the lower bounds of the 

skill score range for the ensembles of simulated DEMs also decreased for both sites which is 

unsurprising as additional error has been introduced to the DEM by the unconditional 

simulation process. Whilst the simulation approach in this chapter does not produce an 

ensemble of more accurate DEMs, it does provide a method to explore how topographic 

uncertainty impacts flood predictions and, thus, highlighting the importance of topography 

for the quality of flood predictions. The distribution of flood depth estimates by the 

ensemble of simulated DEMs were compared to the deterministic simulation demonstrating 

that using an ensemble of DEMs meant that the inundation depth could be more accurately 

estimated. Simulating the MERIT DEM by landcover class gave the highest skill score for the 

flood predictions, and is thus the favoured simulation method. The distribution of 

inundation probability can vary considerably between floodplain locations, so a probability 

threshold of what to consider to be a flooded pixel is inappropriate. Instead, an inundation 

probability map should be presented so a decision maker can decide for themselves what to 

consider at-risk from flooding. This will vary based how risk adverse the decision maker is. 

The method presented in this chapter makes it possible to use multiple DEMs even for data-

sparse areas. This represents a clear shift in modelling efforts where a lack of topographic 

data has restricted our attempt to understand the impact of DEM error on predicted 

inundation extent. Therefore, flood modellers can now explore the sensitivities of their 

models to uncertainties in topography in addition to the more traditional uncertainty 

associated with hydraulic parameters. Future work will include adding more semi-

variograms and assessing the sensitivity of topography compared to other parameters in 

flood models. The flexibility of this approach means this method can be used once new 

DEMs are released, as this technique needs only a DEM and a reference dataset.  

4.11 Postscript 

This chapter has clearly demonstrated the impact of topographic uncertainty on predicted 

inundation extent. By varying pixel height, flood pathways can be activated or deactivated. 

This river channel – floodplain connectivity is critical in controlling inundation extent, with 
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these connections typically more accurately represented in higher resolution DEMs such as 

LIDAR. The next chapter will review and expand upon metrics to quantify river channel-

floodplain connectivity. Quantification of this connectivity will be applied across varying 

scales and locations to determine the varying degrees of river channel-floodplain 

connectivity.  
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Chapter 5 Measuring Floodplain Connectivity of 

DEMs  

 

Paper in Preparation  

5.1  Preface 

This results chapter consists of a paper currently under preparation for Hydrological 

Processes. Simulations, analysis, writing and figures were completed by the lead author 

with advice and commenting from Paul Bates & Jeffrey Neal. The TanDEM-X DEM data and 

flood model of Ba, Fiji was kindly supplied by Leanne Archer. The MERIT DEM is the work 

of Dai Yamazaki and colleagues. 

5.2  Context 

In Chapter 4, the spatial error structure of the MERIT and SRTM DEMs for 20 floodplain 

locations around the world were calculated by comparing to high-resolution LIDAR data. 

The MERIT data were consistently more accurate than SRTM based on smaller semi-

variogram sill values and larger range values indicating that error is more spatially 

dependent. From the semi-variograms of spatial error structure, plausible versions of the 

MERIT and SRTM DEMs were simulated based on an average semi-variogram of all 20 

floodplain locations and semi-variograms based on landcover class. Simulated versions of 

the SRTM and MERIT DEMs were used in flood models of An Giang in the Vietnamese 

Mekong Delta and the Ba Catchment in Fiji. By using an ensemble of simulated DEMs, the 

skill of the flood predictions improved, with MERIT DEM simulated using semi-variograms 

disaggregated by landcover class giving the best predictions. This work in theory allows for 

plausible versions of MERIT/SRTM floodplains to be simulated so modellers can use an 

ensemble of DEMs and thus produce probabilistic flood maps based on the uncertainty in 

topography. 
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In the simulation process, pixels were altered which either opened or closed flood pathways 

onto the floodplain. The noisier SRTM DEM underpredicted flooding, with this noise 

preventing the connection of flood pathways. In turn, the smoother MERIT product 

performed more similar to the higher resolution LIDAR data, but it was difficult to decipher 

whether the correct flow pathways were being followed or whether the strong results 

(particularly for the Ba catchment) were a product of the smoother DEM. This leads to the 

question of how we can tell whether a DEM is suitable for a flood model and whether it is 

capturing the correct set of hydraulic processes. Therefore, this chapter sets out to measure 

floodplain connectivity across a range of DEM products and scales in a bid to determine the 

suitability of a DEM for capturing flow interactions between rivers and floodplains. 

5.3  Introduction 

Connectivity is an immensely popular concept in science. At the time of writing, a search on 

Web of Science of peer-reviewed work with the term connectivity in the title reveals there 

are almost 27,000 articles. The concept of connectivity traverses disciplines such as 

neuroscience (Wilkins et al., 2014), ecology (Belisle, 2005), geomorphology (Fryirs et al., 

2007) and hydrology (Bracken et al., 2013). Yet it’s popularity can also be its downfall, with 

Michaelides and Chappell (2009) noting that the term suffers from a degree of ambiguity as 

it is both an everyday word and a technical term. However there is a common theme in 

work on connectivity – the widespread acknowledgement that connectivity is important and 

not well understood (Michaelides and Chappell, 2009, Bracken et al., 2013). 

The focus of this chapter is river-floodplain connectivity for surface water, and particularly 

during floods. In this section, an overview of hydrological connectivity is provided before 

considering previous work on measuring surface river-floodplain connectivity. The section 

is concluded by providing a definition of surface river-floodplain connectivity and setting 

out the key questions this chapter aims to address. 

5.3.1 Hydrological Connectivity 

Hydrologic connectivity is the ‘water‐mediated transfer of matter, energy, or organisms 

within or between elements of the hydrologic cycle’ (Pringle, 2001) (p981). Yet, despite a 



 

210 

 

number of review articles, (Bracken and Croke, 2007, Bracken et al., 2013, Covino, 2017, 

Wohl, 2017, Ali and Roy, 2009, Michaelides and Chappell, 2009, Lexartza-Artza and 

Wainwright, 2009) there is a lack of consensus on how to define and measure hydrologic 

connectivity. Difficulties arise as ‘connectivity comes in multiple flavours’ (Ali and Roy, 

2010, Calabrese and Fagan, 2004), and thus can mean different things to different members 

of the hydrological community. At the most basic level, ‘water connects hillslopes to channel 

networks, streams to lakes, subsurface to surface, land to atmosphere, terrestrial to aquatic, 

and upstream to downstream’ (Covino, 2017) (p.133). So, depending on the aspect of 

hydrology that is being discussed, connectivity can have very different meanings. Whilst, 

there has been no one size fits all definition (which is hardly appropriate given the 

complexity of the subject), Ali and Roy (2009) identified that hydrologic connectivity can be 

defined within : 1) components of the water cycle; 2) landscape features; 3) spatial patterns 

of hydrological properties, and 4) flow processes. These definitions are also dependent on 

scale, with Ali and Roy (2009) further distinguishing between watershed and hillslope scale 

(Table 5-1). The synthesis of definitions of hydrological connectivity presented by Ali and 

Roy (2009) has seemed to have gained most traction amongst the community. However, 

recent reviews by Wohl (2017) and in particular Covino (2017) have changed the way in 

which definitions are categorized with Covino (2017) identifying five types of hydrologic 

connection (Hillslope; Hyporheic; Stream-groundwater; Riparian/floodplain and 

Longitudinal). It remains to be seen whether a general consensus of connectivity can be 

reached even within the different areas of hydrology with our opinion aligning with that of 

Bracken et al. (2013) that it is not possible to develop a single overarching definition of 

hydrologic connectivity. 

Hydrologic connectivity can be conceptualized by two main elements identified as 

static/structural and dynamic/functional connectivity (Bracken and Croke, 2007, Bracken et 

al., 2013, Turnbull et al., 2008). Structural connectivity refers to the physical adjacency of 

landscape elements which control material transfer by the medium of water (Bracken et al., 

2013, Passalacqua, 2017, Rinderer et al., 2018, Turnbull et al., 2008, Wainwright et al., 2011). 

So structural connectivity can refer to the spatial contact of channels and hillslopes (Bracken 

et al., 2013), with this being quantified through indices such as flow length. Functional 
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connectivity refers how the spatial adjacency interacts with temporally varying factors to 

control fluxes of water, sediments and solutes (Bracken et al., 2013, Turnbull et al., 2008, 

Rinderer et al., 2018, Larsen et al., 2012, Lexartza-Artza and Wainwright, 2009, Wainwright 

et al., 2011). Thus, the concepts of structural and functional connectivity are not isolated 

from one another as structural connectivity is a constraint on functional connectivity 

(Rinderer et al., 2018).  Bracken et al. (2013) note that functional connectivity should go 

beyond inferring what is happening between snap-shots and try to determine why they are 

happening. The added complexity of the functional aspects of hydrological connectivity has 

made it more difficult to measure and quantify (Larsen et al., 2012, Bracken et al., 2013). Fine 

temporal scales are needed to understand the functional connections, but this is often a 

nearly impossible task with snap-shots often too sparse to understand the actual processes 

that are at hand (Bracken et al., 2013, Rinderer et al., 2018). An additional issue with 

functional connectivity in hydrology is the wide use of the term functional having many 

connotations and interpretations across the discipline. This led to Bracken et al. (2013) 

proposing that functional connectivity in relation to hydrology should instead be referred to 

as process-based connectivity. This change of terminology has so far proved to be difficult to 

take up as the language of functional connectivity is still deeply ingrained when referring to 

connectivity in ecology and neuroscience. Understanding these two main elements is a key 

step in informing management practices and hydrologic predictions (Bracken et al., 2013, 

Passalacqua, 2017). 

 Definition Scale Reference 

Water Cycle An ecological context to refer to water-mediated transfer 

of matter, energy and/or organisms within or between 

elements of the hydrologic cycle. 

 

Watershed (Pringle, 

2003) 

Landscape 

Features 

Two fluxes ‘connected’ if they are in close spatial 

proximity along the river network ... and refer to 

‘connectivity’ as the state of two or more fluxes being 

connected. ‘Dynamic connectivity’ is how the connectivity 

of fluxes changes in time. 

Watershed (Czuba and 

Foufoula-

Georgiou, 

2015) 

Table 5-1 Definitions of hydrological connectivity updated from Ali and Roy (2009) 
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 Definition Scale Reference 

 Connectivity defined as the transfer of matter between two 

different landscape compartments 

Watershed (Wester et al., 

2014) 

 All the former and subsequent positions and times, 

associated with the movement of water or sediment 

passing through a point in the landscape. 

 

Watershed (Bracken and 

Croke, 2007) 

 Flows of matter and energy (water, nutrients, sediments, 

heat, etc.) between different landscape components 

 

Watershed (Tetzlaff et 

al., 2007) 

 The extent to which water and matter that move across the 

catchment can be stored within or exported out of the 

catchment 

 

Watershed (Lane et al., 

2004) 

 The physical linkage of sediment through the channel 

system, which is the transfer of sediment from one zone or 

location to another and the potential for a specific particle 

to move through the system.  

 

Hillslope (Hooke, 2003) 

 The physical coupling between discrete units of the 

landscape, notably, upland and riparian zones, and its 

implication for runoff generation and chemical transport 

 

Hillslope (Stieglitz et 

al., 2003) 

 The internal linkages between runoff and sediment 

generation in upper parts of catchments and the receiving 

waters [...] two types of connectivity: direct connectivity 

via new channels or gullies, and diffuse connectivity as 

surface runoff reaches the stream network via overland 

flow pathways. 

 

Hillslope (Croke et al., 

2005) 

Spatial Patterns Hydrologically relevant spatial patterns of properties (e.g. 

high permeability) or state variables (e.g. soil moisture) 

that facilitate flow and transport in a hydrologic 

system (e.g. an aquifer or watershed) 

 

Watershed 

Hillslope  

(Western et 

al., 2001) 

 Spatially connected features which concentrate flow and 

reduce travel times.  

Watershed 

Hillslope  

(Knudby and 

Carrera, 

2005) 

Flow Processes The condition by which disparate regions on a hillslope 

are linked via lateral subsurface water flow. 

Hillslope (Hornberger 

et al., 1994, 

Creed and 

Band, 1998) 
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 Definition Scale Reference 

 Connection, via the subsurface flow system, between the 

riparian (near stream) zone and the upland zone (also 

known as the hillslope) occurs when the water table at the 

upland-riparian zone interface is above the confining 

layer. 

 

Hillslope (Ocampo et 

al., 2006, 

Vidon and 

Hill, 2004) 

 

As noted, hydrologic connectivity is based on physical adjacency (structural connectivity) 

and time (functional connectivity). Therefore, connections occur via the surface or 

subsurface in 4 dimensions: the spatial dimensions of lateral, vertical and longitudinal, and 

the fourth dimension being time (Ward, 1989, Pringle, 2001, Covino, 2017, Amoros and 

Bornette, 2002). This is schematically represented in Figure 5-1. Scales of spatial connectivity 

can range from submeter to thousands of kilometers, and temporal scales can range from 

fractions of seconds to millennia (Ward, 1989, Covino, 2017). Connectivity along the lateral 

and vertical directions are bidirectional, whereas in the longitudinal direction they are 

typically unidirectional (with the exception of processes such as the backwater effect). 

Vertical connectivity occurs between channel-water and subsurface processes, and is very 

difficult to measure. Lateral connectivity occurs at the surface via overbank and overland 

flow and at the subsurface. 
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The increasing number of articles discussing hydrologic connectivity demonstrates that the 

field is very much active, with the importance of connectivity being widely recognized 

(Figure 5-2). Yet some issues remain. This is namely the lack of locations studied (with 

multi-site/inter-site research being rare), the lack of comparison across spatial and temporal 

scales and the difficulty in quantification (Michaelides and Chappell, 2009, Bracken et al., 

2013, Ali and Roy, 2010, Wohl, 2017). 

Figure 5-1 Conceptual diagram depicting the dimensionality of hydrologic connectivity. A) 3 spatial 

dimensions of connectivity with LAT referring to lateral, LONG to longitudinal and VERT to vertical. 

B) Vertical exchanges. C) Lateral exchanges. Figure from Covino (2017) 
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5.3.2 River-Floodplain Connectivity 

For the purpose of this chapter, river-floodplain connectivity is defined as the bidirectional 

interaction of a river and a floodplain along the lateral dimension. Here the lateral 

dimension refers to overbank and overland flow. This definition also includes interaction 

between floodplains that may become connected in flood scenarios. Whilst river and 

floodplains are also connected via the subsurface along the vertical dimension (Malard et al., 

2002, Mertes, 1997), this is less significant than lateral connectivity, and not to mention 

almost impossible to measure at scales larger than the field scale.  

Taking a step back, we define a river as a permanent large body of flowing water contained 

within a channel. Definitions of floodplains are numerous with an early example from 

Schmudde (1968) defining “The floodplain is defined as the relatively flat alluvial landform 

Figure 5-2 Scientific papers where the topic is either ‘hydrologic connectivity’ or 'hydrological 

connectivity' during the 2000-2017. Search was carried out on Web of Science. This is an update of a 

similar analysis in Ali and Roy (2009) 
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adjacent to the river channel and subject to periodic flooding.” Syvitski et al. (2012) later 

defined a floodplain as “as the relatively flat area surrounding the active river channel that 

floods during high discharge events.” Despite numerous definitions, Strick (2016) notes that 

floodplains can be essentially described in 3 ways: Hydrologically  - next to the river 

channel, Topographically – a relatively flat area of land that has undergone erosion and 

deposition by the river channel, and sedimentological  - with the presence of alluvial 

deposits. 

The processes of river-floodplain connectivity is more than the simple matter of overtopping 

river banks (Macklin and Lewin, 2015, Mertes, 1997, Trigg et al., 2012, Tockner et al., 1999, 

Lewin and Ashworth, 2014b). River-floodplain connectivity is highly complex and is 

controlled by a number of negative and positive relief forms. Negative relief forms act as 

mechanisms to connect the river to the floodplain, whilst positive relief forms (e.g. levees) 

disconnect rivers from their floodplains or can shape the pattern of connectivity. In the field 

of geomorphology, research on identifying and describing the processes behind these 

positive and negative relief forms is rich. Whilst the pioneering work of Nanson and Croke 

(1992) describes floodplain classification based on main channel interaction, the recent work 

of Lewin and Ashworth (2014b) provides a comprehensive overview of negative relief forms 

for large river floodplains (and to a lesser extent positive relief forms) based on their extra 

complexity (termed plurality by (Lewin and Ashworth, 2014b). An overview of the 11 

identified negative relief forms is summarized in Table 5-2 . It is out of the scope of this 

chapter to meander through the raft of geomorphic literature describing the processes and 

relief forms associated with river-floodplain connectivity, but we feel it is beneficial to (very) 

briefly acknowledge some of these processes. We would urge interested readers to consult 

the literature cited here to further their understanding. Note that only lateral river-

floodplain connectivity is being considered. 

Table 5-2 Negative relief forms at the meso- and macro-scale, which are defined as ranging from 

metres to kilometers by Lewin and Ashworth (2014b). By the scale definitions in this chapter these 

features traverse all scales. Figure adapted from  Lewin and Ashworth (2014b)  
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Genetic Zone Negative Relief Form 

Rheic Main Channels; Accessory through channels; Tributary channels 

Transitional Channel margin slackwater zones; bar-shelter backwaters; contiguous channel remnants; Tie 

Channels; Internal drainage channel networks 

Perirheic Cutoff paleochannel segments; accretionary swales and irregular unsedimented voids; large-

scale flood basins occluded by channel-belt aggradation 

 

Negative relief forms are created and/or maintained by active erosion, insufficient sediment 

supply for infilling and/or bounding by positive relief sediment bodies (Lewin and 

Ashworth, 2014a, Lewin and Ashworth, 2014b). Further active deposition  across 

floodplains, termed as spillage sedimentation, are associated with associated negative relief 

forms (Lewin et al., 2017). For large rivers, Lewin and Ashworth (2014b) split negative relief 

forms into 3 genetic zones: rheic, transitional, perirheic. As the river stage rises, a river first 

connects to the floodplain via negative relief forms in the rheic zone. These are in the form of 

main channels, accessory through channels and tributary channels. In this rheic zone, these 

channels are geomorphologically active and are dominated by flowing surface water. With 

further rising of river stage and initial river-connectivity via the negative relief in the rheic 

zone, negative relief forms in the transitional zone come into play. Negative relief forms in 

the transitional zone are geomorphically transitional but hydrologically connected and 

include features such as slackwater zones, bar-shelter backwaters and contiguous 

paleochannels. In extreme overbank flow, negative relief forms in the perirheic zone are 

activated. Normally, these negative relief forms in the perirheic zone are 

geomorphologically and hydrologically disconnected and include forms such as cutoff 

paleochannels, accretionary swales and cutoff flood basins. Patterns of river-floodplain 

connectivity also depend on antecedent conditions -  or whether the floodplain is dry or wet 

(Lewin and Ashworth (2014b), their Figure 4). In contrast, positive relief forms are formed 

by sedimentation, and also act as controls on river-floodplain connectivity. Examples of 

positive relief forms include side and point bars, levees, splays and channel plugs, overbank 

sedimentation, scrolls and alluvial terraces (see Lewin and Ashworth (2014b) their Table 2 
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for a more comprehensive overview). Perhaps the easiest positive relief form to 

conceptualise as acting as a control of floodplain are levees, especially due their prevalence 

as a manmade feature (Tockner and Stanford, 2002). Facilitated by the recent wider 

availability of DEM’s, remote sensing imagery and improved dating of sediments, a number 

of studies have identified the relief forms involved across a number of floodplains including 

(but by no means limited to) the Amazon (Trigg et al., 2012, Rudorff et al., 2014), Rio Parana 

(Lewin and Ashworth, 2014a) and the Mississippi (Strick et al., 2018). In another study, 

Scown et al. (2016) proposes an index to calculate floodplain landscape complexity, with an 

application to 8 floodplains. 

As the river recedes, water on the floodplain reduces due to return flow back to the main 

channel, evaporation and infiltration. Hence, the exchange of water between a river and 

floodplain is bidirectional and thus this is included in our definition of river-floodplain 

connectivity. The effects of floodplain topography is key in controlling the pattern of 

inundation, with Macklin and Lewin (2015) noting that only a large and long lasting flood 

can drown out the effects of floodplain topography. Therefore, river-floodplain connectivity 

varies with flow return period. 

The connectivity of river and floodplains is pivotal to the functioning of the floodplain 

system, with this connectivity having profound ecological importance. The flood pulse 

concept pioneered by Junk et al. (1989) and extended by Tockner et al. (2000) takes the view 

that rivers and their floodplains are integrated components of a single dynamic system, with 

habitat productivity a product of interacting water sources and different pathways. In the 

flood pulse concept, Junk et al. (1989) uses the analogy of the river as a highway with biota 

needing to periodically leave (i.e. leave the river for the floodplain) for sustenance. 

Floodplains also have a striking cultural and economic importance, with early civilizations 

learning to cultivate the fertile floodplains in order to prosper (Tockner and Stanford, 2002). 

For example, early civilizations along the Huang He, Indus, Nile, Tigris and Euphrates 

rivers were almost entirely dependent on river-floodplain interactions (see Macklin and 

Lewin (2015) for a comprehensive review).  Today, floodplains still serve as focal points for 

agriculture and urban development. Increasingly, and despite the recognized benefits of 

river-floodplain connectivity, connections between the river and floodplains are becoming 
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severed (Covino, 2017, Tockner and Stanford, 2002, Kondolf et al., 2006, Ward and Stanford, 

1995, Hupp et al., 2009). Flow regulation in the form of dams, reservoirs and diversions have 

made flows of a magnitude to connect to the floodplain increasingly unlikely. In addition, 

levees and channelization has constrained rivers in a bid to protect from flooding. Covino 

(2017) note that decreased flow variability and channelization create a positive feedback, 

with the likelihood of the river reconnecting to the floodplain becoming increasingly 

improbable. Reduced river-floodplain connectivity is prevalent across scales, with small 

rivers also being affected (i.e. channelization to create mills). 

Tockner & Stanford (2002) estimated that up to 90% of North American and European 

floodplains are ‘cultivated’ and thus functionally extinct. More recently, calls have been 

made to reconnect rivers to floodplains (Opperman et al., 2009, Friberg et al., 2016), with 

cited benefits including increased ecological services and resilience to climate change, as 

well as reduced flood risk. Additionally, research has promoted the idea of considering 

floodplains as human-water systems by considering the links between hydrological and 

social processes (Di Baldassarre et al., 2013, Zischg, 2018). These ideas have been translated 

into management practices such as natural flood management (Lane, 2017, SEPA, 2011), 

‘room for the river’ (Rijke et al., 2012, Zevenbergen et al., 2013) and eco-engineering decision 

scaling (Poff et al., 2016). However, a crucial prerequisite of the aforementioned 

management strategies is an understanding of river-floodplain connectivity. Currently there 

is no accepted way of quantifying this connectivity objectively, with previous attempts 

focusing on single scales and/or locations (see 5.3.3). 

5.3.3 Current state of measuring river-floodplain connectivity 

Despite the accepted importance of river-floodplain connectivity, there is a lack of studies 

that quantify this connectivity. Indeed, most studies rely on qualitative analysis. Wohl (2017) 

notes that many aspects of connectivity are ‘intuitively obvious once they have been 

identified’. We identify 3 categories of river-floodplain connectivity measurements based on 

1) Remote Sensing, 2) Hydrodynamic models and 3) Topography. 

Recent advances and the wider availability of remote sensing datasets has provided 

opportunities to assess river-floodplain connectivity. For the middle Amazon, Trigg et al. 
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(2012) used a mosaic of Landsat imagery supplemented with field data to delineate and 

quantify the spatial characteristics of river-floodplain connectivity and relate these to 

floodplain hydrologic units. They estimated that 96% of floodplain channels identified in 

their analyses were not well, if at all, represented in the 90m SRTM DEM upon which many 

geoscience models rely. Using a geostastical connectivity approach, surface water 

connectivity for the 2011 Bangkok floods was quantified using a time series of MODIS 

(Moderate Resolution Imaging Spectroradiometer) by Trigg et al. (2013). The authors 

developed and utilized a gap-filling approach to fill missing data, resulting in quantification 

of flooded area and connectivity function curves (results were presented along the two 

orthogonals (North-South and West-East) but the calculation was also possible along the 

two diagonals (NW-SE and NE-SW) as either D4 or D8 connectivity can be implemented). 

The accompanying Matlab code is available online. Ward et al. (2013a) used MODIS and 

Landsat to map floodplain extent and dynamics in an Australian savanna catchment. More 

recently, MODIS & PALSAR have been used to map river-floodplain connectivity in the 

lower Amazon (Park and Latrubesse, 2017). Whilst not actively marketed as a river-

floodplain connectivity product, the global water mask product (particularly occurrence, 

change, seasonality and recurrence) of Pekel et al. (2016) could in theory be used to map 

water on floodplains and potentially utilize techniques such as that of Trigg et al. (2013) to 

quantify connectivity. The remote sensing approach has the benefit of being able to include 

the temporal dimension but can suffer from missing and/or unobservable data. 

The second category of techniques concerns using hydrodynamic models. Hydrodynamic 

models have the advantage over more simple topography based techniques in that they also 

consider other factors such as slope, vegetation and surface roughness in addition to relative 

elevation, thus making representations more realistic. However, this comes at a cost of 

setting up the model which can be time-consuming and computationally expensive. 

Furthermore, results are heavily dependent on the calibration of multiple parameters 

creating uncertainty in the results. Lastly, hydrodynamic models do not explicitly quantify 

the connectivity but instead provide a spatial representation (Zhao et al., 2017). Wetland 

connectivity for fish movement was estimated for the Tully-Murray floodplain in Australia 

using the 2D MIKE21 hydrodynamic model and a 30 m DEM supplemented with high-
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resolution LIDAR data (Karim et al., 2012). Connectivity between the river and wetlands 

was assessed by applying a water threshold, with connectivity adjudged to be when a 

wetland received overbank flow and became disconnected when water receded below the 

bank level. From this, the duration of connectivity could be calculated which has important 

implications for fish ecology. The same authors later included climate change 

implementations as well as MODIS data to calibrate the model to assess river-wetland 

connectivity (Karim et al., 2016). Using TUFLOW, Croke et al. (2013) assessed the hydrologic 

and sediment connectivity during a large flood event, with their analysis restricted to the 

identification of nine reaches that demonstrate channel-floodplain connectivity without any 

further quantification (except sediment budgets). The biggest advancement in using 

hydrodynamic models for floodplain connectivity is the work of Zhao et al. (2017). They 

apply and compare three connectivity algorithms (classic nearest neighbor search (NNS), 

progressive nearest neighbor search (PNNS) and progressive iterative nearest neighbor 

search (PiNNS)) to flood extents of the Flinders and Norman rivers in Australia simulated 

using the MIKE21 hydrodynamic model. The PNNS and PiNNS algorithms successfully 

captured the spatial heterogeneity and continuity of connectivity and were successfully used 

to trace the connected path from a critical river section to the inundated floodplain cell. This 

work is useful as it identifies not only where the floodwater originates from but how it flows 

to selected parts of the floodplain, with the PiNNS algorithm demonstrating the most 

promising results. The authors note that when applying this data-driven method it is 

important to first validate the hydrodynamic model and simulation data to give sensible 

results, and that such a data-driven method cannot explain the processes that generate the 

data. The algorithms proposed by Zhao et al. (2017) have the potential to be used with 

remote sensing as they rely on binary wet/dry maps, but to date this has not been carried 

out. 

The third category of river-floodplain connectivity quantification is topography based using 

DEMs. Current work on using DEMs for river-floodplain interaction has not engaged in the 

connectivity discourse but has instead focused on detecting flood-prone areas. Nevertheless, 

the processes go hand in hand, with these topography based methods having potential to 

analyse river-floodplain connectivity. Notwithstanding, the current methods capture more 
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the spatial extent of river-floodplain interaction as opposed to any quantification per se. 

Manfreda et al. (2011) proposed a modified version of the topographic index developed by 

Beven and Kirkby (1979) derived from a DEM to delineate flood prone areas. They 

compared various DEM products at different resolutions and found results similar to flood 

inundation maps obtained by hydraulic simulations. In Manfreda et al. (2014), the modified 

topographic index method of Manfreda et al. (2011) was compared to the linear binary 

classifier method of Degiorgis et al. (2012) (also requires flood hazard maps), and the 

hydrogeomorphic method of Nardi et al. (2006) (requires design peak flood at outlet basin). 

Samela et al. (2015) applied the linear classifier method to several ungauged catchments in 

Africa. Most recently, Samela et al. (2017), Samela et al. (2018) proposed the Geomorphic 

Flood Index which requires a DEM and a detailed flood map that should cover at least 2% of 

the domain. Therefore, only the method of Manfreda et al. (2011) is based solely on a DEM 

and does little to quantify river-floodplain connectivity.  

Category  Method Description Reference 

Remote 

Sensing 

Landsat Imagery and field data used for river-floodplain 

connectivity of the middle Amazon 

Trigg et al. (2012) 

 Geostatistical connectivity method applied to MODIS imagery 

of 2011 Bangkok Floods 

Trigg et al. (2013) 

 Landsat & MODIS in an Australian Savanna catchment Ward et al. (2013a) 

 Surface water detection at 30m for last 32 years. Not directly 

related to river-floodplain connectivity 

Pekel et al. (2016) 

 MODIS and PALSAR for lower Amazon Park and Latrubesse 

(2017) 

Hydrodynamic 

model 

2D MIKE hydrodynamic model of Tully Murray basin to 

estimate river-wetland connectivity 

Karim et al. (2012) 

Table 5-3 Methods to measure river-floodplain connectivity split into 3 categories 
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Category  Method Description Reference 

 TUFLOW hydrodynamic model of Lockyer Creek identifying 

inundation and connected reaches 

Croke et al. (2013) 

 2D MIKE hydrodynamic model calibrated with MODIS data 

with climate change scenarios to assess river wetland 

connectivity 

Karim et al. (2016) 

 Three connectivity algorithms applied to flood extent maps from 

a 2D MIKE 21 model in Australia. Shows origin and connectivity 

of inundated floodplain cell 

Zhao et al. (2017) 

Topography Modified Topographic Index Manfreda et al. (2011) 

 Linear classification scheme Also needs a flood hazard map 

layer 

Degiorgis et al. (2012) 

 Geomorphic Flood Index. Also needs a flood hazard map layer Samela et al. (2017) 

 

5.3.3.1 Limitations of current river-floodplain connectivity methods 

The aforementioned methods (Table 5-3) have a number of limitations. Most (with the 

exception of Trigg et al. (2013) and Zhao et al. (2017)) do not quantify the connectivity 

between the river and the floodplain. Instead, most methods delineate the river-floodplain 

connectivity and infer the origins and pathways of connections. Remotely sensed based 

techniques have the benefit of being relatively easy to set up and implement compared to 

building a hydrodynamic model, but can suffer from missing data (unobservable water) and 

gaps in the temporal record. Methods based on hydrodynamic models can be potentially 

temporally rich, but they do rely on the time consuming calibration, potentially long 

computation times and the need for validation. Topography based methods have not been 

readily considered to measure river-floodplain connectivity, perhaps partially because they 

cannot measure the temporal dimension. Yet such topography based methods have the 

potential to be used to assess the quality of a DEM in relation to being able to represent 

river-floodplain connectivity. As noted in the previous chapter, the quality of the DEM is of 
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key importance to the quality of flood model predictions (Horritt and Bates, 2001a, 

Yamazaki et al., 2012) with the SRTM DEM that is typically favoured for global flood models 

and flood models in data-sparse areas being unable to represent floodplain channels that are 

crucial for river-floodplain connectivity (Trigg et al., 2012). Currently there is no method to 

quantify river-floodplain connectivity using just a DEM. Thus far all topography-based 

methods have focused solely on delineating flood prone areas. Furthermore, the methods in 

Table 5-3 only consider a single location at a time, and except for Manfreda et al. (2011) do 

not consider different scales. Whilst not focused on river-floodplain connectivity, several 

studies have found that DEM resolution is important for hydraulic connectivity (Habtezion 

et al., 2016, López-Vicente and Álvarez, 2018), thus the effect of DEM resolution on 

connectivity should be investigated within the context of river-floodplain connectivity. This 

deficiency of not investigating multiple locations or scales aligns with the observations of 

Michaelides and Chappell (2009). 

5.3.4 Research Questions 

In light of the identified research gaps discussed throughout this section, the following 

research questions are pursued: 

• How does floodplain connectivity differ across scales and DEM products? 

• Is the accurate representation of floodplain connectivity more important for smaller 

floods than larger floods?  

• What is more important in selecting a DEM for a flood model - RMSE or floodplain 

connectivity? 

• Can a river-floodplain connectivity metric be created to describe DEM products, and 

can this be used as a guide in assessing the suitability of a DEM to accurately represent 

flooding? 

 

To answer the above research questions, a novel method based on connected component 

labelling and landscape patch statistics to quantify river-floodplain connectivity across a 

range of scales and DEM products is developed. The method is applied to a case study of the 
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Ba catchment in Fiji using 15 DEM products as well as DEM’s simulated using the procedure 

documented in Chapter 4. 

5.4  Study Site & Data 

The study site was selected based on data availability. As the research questions aim to 

quantify river-floodplain connectivity across a range of scales and DEM products, the Ba 

catchment in Fiji was chosen, primarily as the new Tan-DEM-X DEM product (Rizzoli et al., 

2017) was available for this site. Analysis of the Tan-DEM-X product is in its infancy, thus it 

is interesting to include it in the analysis. Needless to say, the method proposed here can be 

used for any location to assess river-floodplain connectivity. 

5.4.1 Study Site - Ba Catchment, Fiji 

The Ba catchment is located on the island of Viti Levu which is the main island of the upper-

middle income small island developing state of Fiji in the South pacific. The catchment 

experiences a tropical maritime climate driven by trade winds, the South Pacific 

Convergence Zone and the El Niño Southern Oscillation, with 70% of annual rainfall falling 

between November and April during the cyclone season (Mataki et al., 2006). A number of 

recent flooding events (January 2009; 2012; March 2012; April 2018) have caused widespread 

damage, with cyclone Winston (the strongest cyclone ever recorded in the South Pacific) 

affecting 62% of the population of Fiji with damages equivalent to 20% of Fiji’s GDP. The Ba 

catchment was chosen for this study because it was one of the worst affected during the 

aforementioned flood events. In particular, the main floodplain area of the Ba catchment 

area was chosen which contains a river reach of 22 km. The main urban centre in the Ba 

floodplain is Ba Town, which in 2007 had a population of 18,526 (Fiji Bureau of Fiji Bureau of 

Statistics, 2018). The floodplain is dominated by cropland (63.85%:Fiji Bureau of Fiji Bureau 

of Statistics (2010)). Using records from Rarawai Sugar Mill, Yeo (2015) described 32 floods 

that occurred in the Ba floodplain between 1892 to 2014. Thus flooding occurred on average 

every 3.8 years. This frequent flooding suggests a relatively strong river-floodplain 

connectivity and therefore make the study site of interest. 
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5.4.2 Data 

5.4.2.1 DEM Data 

For the Ba catchment a total of 5 DEM products were used  - Advanced Land Observing 

Satellite (ALOS) AW3D30 (Tadono et al., 2014, Takaku and Tadono, 2017); Light Detection & 

Ranging (LIDAR); Multi Error Removed Improved Terrain (MERIT) (Yamazaki et al., 2017); 

Shuttle Radar Topography Mission CGIAR-CSI Version 4 (Jarvis et al., 2008); TanDEM-X 

(Rizzoli et al., 2017, Krieger et al., 2007). Other DEMs are available but were not selected 

based on 1) having worse reported vertical accuracy and resolution and thus being no 

Figure 5-3 Map of the Study Site a) Map of Fiji b)Map of Ba catchment on positioned on the main 

island of Viti Levu c) DEM extent positioned within the Ba catchment d) DEM extent of Ba catchment 

floodplain in more detail. Adapted from (Archer et al., 2018) 
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longer favoured (e.g. Advanced Spaceborne Thermal Emission and Reflection Radiometer 

(ASTER) (Abrams, 2000) and ACE GDEM (Berry et al., 2000)), 2) being expensive to obtain 

(e.g. Nextmap World10™, World30™ and Airbus WorldDEM™), 3) not being readily 

accessible despite being free for research purposes (e.g CoastalDEM (Kulp and Strauss, 2018) 

or a vegetation error removed version of SRTM (Zhao et al., 2018)). Two of the DEM 

products are Digital Surface Models (DSM) (ALOS AW3D30 & TanDEM-X). A digital terrain 

version (DTM) of TanDEM-X was processed using a combination of image classification of 

the Amplitude Map and Progressive Morphological Filtering (AMP/PMF) as described in 

Archer et al. (2018). This particular image processing method was chosen based on creating 

the most accurate DEM, with the method and results presented in Archer et al. (2018). 

Additional coarser DEMs of LIDAR, TanDEM-X, ALOS AD3D30 and MERIT were created 

by taking an average of the aggregated pixels. Finally, 2500 versions of the MERIT DEM 

were simulated using semi-variograms by landcover class as per the method set out in the 

previous chapter. 

DEM Resolutions Acquisition Reported vertical accuracy 

LIDAR 5m; 10m; 30m; 

45m; 90m 

2012 73.6mm (Thomas, 2012) 

TanDEM-X DSM 12m; 90m 2010-2015 <2m for low slope areas (<20%) (Wessel et al., 

2018) 

TanDEM-X DTM 12m; 90m 2010-2015 Unknown 

AW3D30 DSM 30m; 90m 2006-2011 2.6m in ‘plains’ (Hu et al., 2017) 

MERIT 90m; 180m; 270m 2000 58% <2m (Yamazaki et al., 2017) 

SRTM CGIAR 

Version 4.1 

90m 2000 6.2m for islands (Farr et al., 2007); 5-10m 

Solomon Islands (Albert et al., 2013) 

Table 5-4 Summary of DEMs used in this study 
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DEM Resolutions Acquisition Reported vertical accuracy 

MERIT DEM 

simulated by semi-

variograms by 

landcover class 

90m 2000 Semi-variogram dependent 

 

5.5 Methodology 

In this section, the justification of the selection of the connected component labelling method 

is provided as well as some background on the method. After that the workflow of the 

method developed in this chapter is presented as well as information on landscape statistics. 

5.5.1 Generic Properties of Required Method 

To quantify river-floodplain connectivity, a method is needed that recognizes connectivity of 

adjoining pixels and groups adjoining pixels into patches. In turn, these patches then need to 

be quantified using landscape statistics. The method should be computationally efficient to 

allow for a range of water height scenarios (i.e. different return flows). Moreover, the 

method should be simple enough to not have to rely on outputs from other models; such as 

the hydrodynamic models (Karim et al., 2016; Zhao et al 2018) or flood maps (Samela et al., 

2017) or processing remotely sensed data (Trigg et al., 2013). No current method that 

assesses river-floodplain connectivity adheres to these requirements. As a result, the field of 

image classification is explored, with the connected component labeling algorithm 

subsequently chosen as it meets all the aforementioned requirements. 

5.5.2 Connected Component Labelling 

Connected component labelling is a processing procedure for assigning a unique label to 

each object (set of connected pixels) in a binary image (He et al., 2017, Wu et al., 2009). 

Labelling is required when a computer needs to recognize objects and is required in almost 

all image based applications such as fingerprint identification, character recognition, 

automated inspection, target recognition, face recognition, medical image analysis and 

computer aided diagnosis (He et al., 2009). However, to the best of the authors’ knowledge 
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connected component labelling in the geosciences is rare, with the only example being the 

detection of atmospheric rivers (Byna et al., 2011). 

Since the inception of the idea in the 1960s (Rosenfield and Pfaltz, 1966), various algorithms 

have been proposed, with their use dependent on computer architecture and data structure. 

A timeline of connected component labelling algorithms split into 5 classes (multi-scan, two-

scan, contour-tracing, parallel and light speed) is provided in Figure 5-4. For the most recent 

comprehensive review of the state-of-the-art in connected component labelling algorithms 

we refer the reader to He et al. (2017). For this study a connected component labeling 

algorithm that works on normal computers and for 2D images is all that is required.  

To implement connected component labelling a binary image is first needed. A binary image 

is thus first created by thresholding each pixel based on a threshold value. This results in a 

binary image, with foreground pixels (called object pixels in the connected component 

labelling literature and denoted by grey pixel shading in the subsequent diagrams) and 

background pixels (denoted as white pixels in subsequent diagrams). Object pixels have a 

value of 1, and background pixels have a value of 0. Object pixels in a 2D image can be 

connected to 4 neighbours (D4 connectivity) or 8 neighbours (D8 connectivity) (see Figure 

5-5 for reference). Once object and background pixels have been identified (Figure 5-6, a) 

and the connectivity neighbourhood defined, the connected component labeling problem 

assigns each object pixel a label, with each connected object pixel assigned the same label 

(Figure 5-6, b&c). Each unique label is termed an object. Then each object is extracted by its 

label and landscape statistics such as area, perimeter, shape index etc. subsequently 

calculated. 

 



 

230 

 

 

 

Figure 5-4 Timeline showing the evolution of connected component labelling algorithms divided into 

multi-scan, two-scan, contour tracing, parallel and light speed. Only first author name shown. 

Updated and reimagined from Grana et al. (2010) 
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Figure 5-5 Types of connectivity. D4 refers to 4 neighbours. D8 refers to 8 neighbours 

Figure 5-6 8 Connected component labelling for 4 pixel neighbourhood (D4) and 8 pixel 

neighbourhood (D8). a) Binary image. b) Labelling of Connected component considering a 4 pixel 

neighbourhood (D4) c) Labelling of Connected component considering a 8 pixel neighbourhood (D8) 
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For our analysis, the connectedComponents function from the Open Source Computer 

Vision Library (OpenCV) version 3.4.1 was used. Originally written in C++, with interfaces 

now in Python, Java and MATLAB, the library has over 2500 optimized algorithms. The 

connectedComponents function currently has the functionality of 2 connected component 

algorithms – Scan plus Array-based Union-Find (SAUF) (Wu et al., 2009) and Block-Based 

Decision Tree Table (BBDT) (Grana et al., 2010). Both of these algorithms are known as Two-

scan algorithms and are parallelized, with the default settings using SAUF for D4 

connectivity and BBDT for 8 way connectivity. These algorithms were chosen as the most 

efficient by the authors of OpenCV. Studies have assessed the performance of various 

connected component labeling algorithms, such as the Yet Another Connected Components 

Labelling Benchmark (YACCLAB) (Grana et al 2016), but found little performance difference 

for 2D images of the complexity of a DEM. Therefore, it was not deemed worthwhile to code 

additional algorithms for performance testing, especially as the development of OpenCV is 

so mature.  

 Two-scan algorithms work as the name suggests by scanning the image twice. Two scan 

algorithms consist of 4 phases: 1) Provisional label assigning; 2) equivalent label recording; 

3) label-equivalence resolving and finally 4) label replacing (He et al., 2017). For the SAUF 

algorithm a forward scan mask is applied with e being the current pixel (Figure 5-7, a), with 

optimizisation coming through the use of decision trees (Figure 5-7, b,c) to reduce the 

number of pixels assessed. An efficient union-find-tree strategy, which is 4x quicker than 

other union-find algorithms, replaces labels on the second scan (Wu et al., 2009). The BBDT 

algorithm (Grana et al., 2010) is a block based two scan algorithm. A block is a set of 2x2 

pixels. A block is considered an object block if it contains 1 or more object pixels. Otherwise, 

if the block contains only background pixels it is considered a background block. Object 

pixels in the same object block must belong to the same object and are thus assigned the 

same label in the first scan. The mask used for the BBDT algorithm considers 20 pixels – or 5 

blocks of 4 (Figure 5-8, a). Note that the shape of the mask is the same as the forward scan 

mask in (Figure 5-7, a). Object block labels are then used for final label assignment in the 

second scan. An improved block based algorithm was proposed by Chang et al. (2015) but 

has not yet been coded in OpenCV. Yet the performance gains of some of the more recent 
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algorithms are negligible for images of the complexity of DEMs, so it was deemed not 

worthwhile to code these in an adapted version of OpenCV. 

 

 

The reticulate package is used to import the Python modules of OpenCV into R. The 

connectedComponent function was tested against various connected component labelling 

functions including the clump function of the raster package in R (Hijmans et al., 2017), 

floodfill from OpenCV, ConnectedComponents with Stats from OpenCV, and the 

label function from scipy (Figure 5-9). Performance was assessed for a 79x139 pixel image, 

with the connectedComponents function of OpenCV being the fastest, with performance 

an order of magnitude quicker than the clump function in raster. Performance advantages 

increased with image size. 

Figure 5-7 SAUF algorithm decision trees used for D8 connectivity. a) Forward Scan mask b) Decision 

Tree 1 c) Decision Tree 2. Figure from Wu et al. (2009) 

Figure 5-8 Mask for Block Based Decision-Tree Table (BBDT). An area of 2x2 pixels are called a block. 

a) Identifiers of each pixel considered in the mask (a,f,l and q are not used). B) Block identifiers with X 

the block under consideration. Figure from Grana et al. (2010) 
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Next, how a connected component labelling algorithm can be applied to river-floodplain 

connectivity is explained. Considering our definition of river-floodplain connectivity 

outlined in 5.3.2, only lateral connectivity is examined. Therefore, for the river and 

floodplain to become connected the elevation of the water surface height of the river must be 

greater than the adjacent river bank pixel. When this is the case, the bank pixel is ‘breached’ 

and thus the barrier prohibiting river-floodplain connectivity is overcome. Accordingly, the 

river and bank pixels must be identified (Figure 5-10, a). In this work, water extent mask of 

the global surface water dataset of Pekel et al. (2016) is used to identify river pixels. This 

water extent dataset is based on Landsat imagery and thus has a resolution of 30m. To align 

with DEM resolution, the water mask is resampled using bilinear interpolation to the 

Figure 5-9 Speed Benchmark of Connected Component Functions in R for a 79x138 pixel image. 

Raster_clump refers to the clump function in the raster package (Hijmans et al., 2017);  

opencv_floodfill is the floodfill function in OpenCV; opencv_ConnComp_Stats is the 

connectedComponents function in OpenCV with very basic statistics; opencv_ConnComp is the 

connectedComponents function in OpenCV; scipy is the label function from scipy 
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resolution of the DEM. Next, bank pixels are identified using the boundaries function in the 

raster package in R (Hijmans et al., 2017). Heights of the bank pixels are also extracted. 

The next important step is identifying which bank pixels are breached at a selected water 

level. As a consequence, an estimate of the water surface elevation of each river pixel is 

needed. First the river was delineated using the water extent layer from the global surface 

water dataset of Pekel et al. (2016). As no gauges are available for the chosen site, river water 

surface elevation is estimated by first selecting the most downstream bank pixel and the 

most upstream bank pixel and delineating a profile along all bank pixels between these two 

points. Then a gradient was calculated along this profile of bank elevations by fitting a 

simple linear model. This gradient was then applied as a water surface height with the 

assumption, following Archer et al. (2018), that the most downstream pixel where the river 

discharges to the ocean has a water elevation of 0 m. By using a smooth gradient as 

estimated by the linear model, the water surface height also had a smooth, realistic gradient. 

Whilst an approximation, this assumption is reasonable as a first order solution as sea-level 

is approximately equal to 0 m in a DEM. When available, ICESat measured water surface 

heights from the dataset of O'Loughlin et al. (2016a) could be used to interpolate the river 

water surface, but one should be careful when using this dataset as measurements are taken 

across different times of year. The ICESat-derived inland water surface spot height database 

has over 585,000 unique locations measured from 2003 to 2009 with a reported RMSE value 

of 0.259 m. However, spot heights are measured for rivers greater than 3 arc seconds (~90 

m), thus smaller rivers, such as the channel main stem in the Ba catchment, are not covered. 

Nevertheless, the database provides a useful resource in estimating water surface heights in 

rivers, especially when there is a lack of gauge data that can be used as a reference for the 

estimates. In the end, whatever method is used, each river pixel must have a water surface 

height elevation. The water surface elevation estimate for Ba is taken as a baseline, or 

average. Elevations are then added based on a water surface height scenario. In this case, 

incremented height increases of 0.25m up to a maximum of 4m are used. Therefore, 16 water 

surface height scenarios are analysed, with the maximum water surface height of the river 

being 4m above our baseline scenario. If a flood frequency analysis were available these 

water surface height scenarios could be aligned to flood return periods. Now that the water 
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surface height has been estimated for the river, breached bank pixels can be identified by 

comparing the elevation of the bank pixel to the adjacent river water surface height. When 

the river water surface height is greater than the bank pixel elevation it can be considered to 

be breached. To minimize the number of breached bank pixels to be analysed, an extra 

condition is added in that to be considered a breached bank pixel a neighboring pixel must 

be of the same height or less than the river water pixel height. In this way, breached bank 

pixels that are not connected to any other floodplain pixel are excluded.  
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As a result, a list of breached bank pixels is produced. To produce the binary image required 

for connected component labelling, the DEM is thresholded based on the river water surface 

height. All Pixels below the river water surface elevation under consideration are given a 

Figure 5-10 Connected pixels to bank pixels for D4 and D8 connectivity. a) River and bank pixels b) 

D4 connectivity of bank pixel selected c) D8 connectivity of bank pixel selected d) River-floodplain 

connection for D4 and D8 connectivity 
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value of 1 (and are thus object pixels) and all those pixels over the river surface water height 

are not considered to be connected so are given a value of 0 (background pixel). Take the 

following scenario. For a scenario when the river is 1m above normal, there is a list of 

breached bank pixels. So, a breached bank pixel may have an elevation of 2m, but the water 

height of the river pixel adjacent to the breached bank pixel in question is 2.5m. In this case, 

the DEM is converted to a binary image by classifying object pixels as all those at 2.5m or 

below, and all those above are background pixels. For efficiency, a list of pre-processed 

binary images are produced and subsequently selected so the thresholding does not need to 

be carried out each time. Then the connected component labelling algorithm is applied 

either for D4 (SAUF algorithm) or D8 (BBDT algorithm). From this a labelled image is 

produced either for D4 connectivity (Figure 5-10, b), or D8 connectivity (Figure 5-10, c). As 

we are only interested in the river-floodplain connectivity for the breached bank pixel under 

consideration, the label value at the coordinates of the breached bank pixel under 

consideration is taken and all other label values are set to 0, or background pixels. This 

subsequently leaves a single object of connected pixels, which is then assigned a label value 

of 1 and added to a stack of images for the water level scenario under consideration (in this 

case 1m above normal river height). For the remainder of this chapter, these object images 

will be referred to as patches to align to the language of landscape statistics. 

For each water height scenario, the stack of patch images are combined to calculate the 

number of connections each floodplain cell has to a river cell (Figure 5-11). As each patch is 

given a label of 1, simple raster addition is used. Furthermore, for each patch landscape 

statistics are calculated using the FRAGSTATS program (McGarigal et al., 2002) found 

within the SDMTools package in R. Output statistics include number of cells in a patch, 

perimeter area, area, core area, shape index and fractal dimension index.  
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Figure 5-11 Total number of connections for a scenario where 3 bank pixels are breached. The top 

three panels are the floodplain pixels connected to the breached bank pixel. The bottom image is the 

number of breached bank pixels that it is connected too which is calculated by summing the top three 

images 
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5.6  Results 

Here results are presented for 16 water height scenarios for 15 DEMs for the Ba floodplain 

catchment. Connectivity is analysed for both D4 and D8 neighbourhoods. Additionally, 

boxplots of simulated DEMs are included to determine how the DEM simulation process 

effects river-floodplain connectivity. Maps of river-floodplain connectivity can be found in 

section 5.6.5. 

Figure 5-12 River-Floodplain Connectivity Workflow Diagram 
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5.6.1 Landscape Statistics for all DEMs 

First, landscape statistics are presented for all DEMs. For some statistics (e.g. Number of 

Patches) normalization is needed as a higher resolution DEM has more breached bank pixels 

and thus more patches. All figures are presented from the highest resolution in the top left 

and the coarsest resolution in the bottom right, with resolution becoming progressively 

more coarse as you read from left to right. Where there are noticeable differences in river-

floodplain connectivity between D4 and D8 neighbourhoods, figures are presented for both. 

Otherwise, figures are only presented for D8 connectivity as this represents the more 

complex connectivity pattern. 

For all DEMs, landscape statistics are presented for Total Patch Area and Maximum 

Connectivity (number of connections) normalized by number of patches. For Total Patch 

Area, as water height increases, the total patch area increases. Another way to think of total 

patch area is the area of floodplain pixels that are connected to the river. Alternatively, it 

could be considered to be a ‘flood’ but as the hydrodynamics are not explicitly considered in 

the connected component labelling method it is felt that this language is inappropriate. 

Instead, total patch area should be thought of as the area of floodplain pixels connected to 

the river. In both D4 and D8 connectivity, the MERIT DEM has the largest total patch area. 

However, the total patch area varies between D4 and D8 connectivity, with maximum 

values for the MERIT DEM of 36km2 and 41.8km2 for D4 and D8 connectivity respectively. In 

addition, the MERIT DEM at 180m has a maximum total patch area of 41.8km2 for D8 

connectivity but just 7.7km2 for D4 connectivity. Indeed, both the MERIT at 90m and MERIT 

at 180m have considerably different Total Patch Areas between D4 and D8 connectivity 

(Figure 5-15) with these differences coming at different water heights. The differences in the 

other DEMs between Total patch Area at D4 and D8 connectivity are considerably less but 

are non-negligible. DEMs that are considered noisy (DSM’s and SRTM) have very low total 

patch area values.  

Maximum connectivity (number of connections to a patch) normalized by number of 

patches is also presented. The number of patches refers to the number of independent 

patches in a DEM at a given water height scenario. Using this metric, LIDAR at 45m and 
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MERIT at 270m have the highest values, even though their distributions are very different 

with MERIT at 270m having no connections at lower water heights. The highest resolution 

DEMs (LIDAR at 5m and 10m) have an almost linear increase in maximum connectivity 

normalized by number of patches, whilst all other DEMs have a more variable pattern.  



 

243 

 

 

Figure 5-13 Total Patch Area for all DEMs for D4 and D8 connectivity 
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Figure 5-14 Maximum Connectivity (number of connections) normalized by number of patches for all 

DEMs for D4 and D8 connectivity. Maximum connectivity refers to the maximum number of times a 

floodplain cell is connected to breached bank pixels. See Figure 5-11 for a schematic of Maximum 

connectivity.   
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5.6.2 Landscape Statistics for 90 m DEMs 

To negate the effects of resolution, landscape statistics for DEMs at 90m were selected. This 

results in 6 DEMs being analysed (AW3D30, LIDAR, MERIT, TanDEM-X DSM, Tan-DEM-X 

DTM and SRTM). Moreover, landscape statistics that are not scale dependent (Number of 

Patches) could be fairly compared. Additionally, figures were also included depicting shape 

complexity using the shape index metric. The shape index is calculated by dividing the sum 

of patch perimeter by the square root of patch area, with a value of 1 referring to a square 

shape and increasing above 1 for more irregular shapes, with this value scale independent 

(McGarigal et al., 2002). The rationale to exploring shape complexity indices is that they may 

be able to indicate the types of mechanism for river-floodplain connectivity (i.e. a channel 

Figure 5-15 Total Patch Area Difference between D8 and D4 connectivity 
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may have a long shape, whilst a flooded depression may have a simpler more block-like 

shape). 

Total Patch Area for only 90 m DEMs are shown in Figure 5-16. DSMs and SRTM have very 

low Total Patch Areas indicating poor river-floodplain connectivity. LIDAR at 90 m is more 

connected at lower water heights than both TanDEM-X DTM and MERIT, but at larger 

water heights the difference is less. Number of Patches indicate the number of separate 

patches that are connected to the river. For three DEMs (LIDAR, MERIT, TanDEM-X DTM) 

the number of patches increases, before decreasing at the highest water levels suggesting 

that the patches merge at the highest water height, and thus there is intra-floodplain 

connectivity at the highest water heights. Patches merge at the highest water heights as sheet 

flow over the floodplain becomes more dominant than the negative relief forms (see Table 

5-2 for a reminder of negative relief forms) that are more prominent at lower water heights. 

For SRTM and the DSMs, the number of patches increase as the river-floodplain gradually 

becomes more connected with increased water height. No reduction in the number of 

patches at the highest water heights for SRTM and DSMs, suggests a lack of intra-floodplain 

connectivity as patches are not merging. There is minimal difference between D4 and D8 

connectivity, with the number of patches greater for D4 as the smaller connectivity 

neighbourhood means connectivity between patches is more difficult. 

Maximum connectivity (maximum number of river pixels connected to a patch) does not 

need to be normalized for resolution so a direct comparison can be made (Figure 5-18). For 

all DEMs the maximum connectivity increases with water height. This is not surprising as 

more bank pixels are breached so there are more river-floodplain connection points. 

Moreover, patches tend to merge at higher water heights (as indicated by the number of 

patches), so each larger patch will have more points connected to the river.  

Shape Index was also plotted (Figure 5-19). A discernable trend was difficult to identify. 

Values close to 1 indicate a square shape, whilst larger values indicate a more irregular 

shape. Thus, in general the average shape of the patches became more irregular as water 

height increased. The fractal dimension index which also measures shape complexity was 

also calculated but is not plotted as it was similarly inconclusive. 
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Figure 5-16 Total Patch Area for all 90 m DEMs for D4 and D8 connectivity 
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Figure 5-17 Number of Patches for all 90 m DEMs for D4 and D8 connectivity 
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Figure 5-18 Maximum Connectivity (Number of Connections) for all 90 m DEMs for D4 and D8 

connectivity 
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5.6.3 Breach Points by Water Height 

To determine where breach points (river-floodplain connection points) are and whether they 

are distributed differently between DEMs, breach point locations at the water height at 

which they are first breached for MERIT and LIDAR at 90 m (Figure 5-20) and LIDAR at 5m 

Figure 5-19 Shape Index for all 90 m DEMs for D4 and D8 connectivity 
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and 30m (Figure 5-21) are visualized. Therefore, the smaller the circles, the lower the water 

height at which a breach point is first breached, or in other words becomes connected. For 

brevity, only results for D4 connectivity are presented here. Intuitively, the higher the 

resolution the more breach points, with this creating a somewhat messy picture of 

connectivity for higher resolution DEMs (Figure 5-21). By comparing DEMs at the same 

resolution, the effects of resolution could be controlled for. It is interesting to see the 

differing spatial distribution of breach points, with these connections becoming activated at 

different water heights as indicated by the size of the dots on the maps (Figure 5-20). For 

instance, for the LIDAR DEM at 90m, river-floodplain connectivity occurred at lower water 

heights than MERIT in the north of the domain, with the black triangle on the LIDAR 90m 

map highlighting the breach point that is causing the extra connectivity for that part of the 

floodplain. 

 

Figure 5-20 Breach Points by Water Height for MERIT at 90m and LIDAR at 90m 
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5.6.4 Comparison to Simulated DEMs 

To determine how river-floodplain connectivity alters in simulated DEMs, 2500 DEMs were 

simulated at 90m based on the MERIT DEM. Simulations of the MERIT DEM was chosen 

based on the better accuracy (lower RMSE) of MERIT over SRTM and the fact the semi-

variograms to simulate were available from work outlined in the previous results chapter. 

The DEMs were simulated using semi-variograms by landcover class as this was found to 

give the best results as outlined in the previous chapter. Landscape statistics for the 

simulated DEMs are plotted as boxplots against the other DEMs. 

Simulated DEMs had consistently lower Total Patch Area compared to MERIT and the 

LIDAR DEMs. By adding a random field, the river-floodplain connectivity decreased for 

both D4 and D8 connectivity as the simulated DEMs are noisier than the original MERIT 

DEMs. Thus, there are fewer floodplain pixels below the threshold elevation (i.e. the water 

Figure 5-21 Breach Points by Water Height for LIDAR at 5m and 30m 
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surface height) so there are less floodplain pixels that are connected to the breached bank 

pixles. Total Patch Area also differed between D4 and D8 connectivity, with more variability 

in D4 connectivity, especially for water heights scenarios of 3.25m and 3.5m. It is important 

to note that the Total Patch Area does not give information on the spatial distribution of the 

river-floodplain connectivity. Work in the previous chapter suggests that using a stochastic 

approach gives less spurious flood predictions compared to using a single DEM and gives 

results closer to a higher quality DEM (in that case LIDAR). Thus a similar approach could 

be used here - but instead creating probability maps of river-floodplain connectivity. 
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Figure 5-22 Total Patch Area for 2500 simulated DEMs for D4 and D8 connectivity together with 

boxplots of Total Patch Area for MERIT DEMs simulated by semi-variograms by landcover class. 
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Simulated DEMs had a wide variation in the number of patches, with the greatest variability 

for D4 connectivity at 2.75m with the number of patches ranging from 2 to 11 (Figure 5-23).  

5.6.5 Connectivity Maps  

Maps showing the Maximum connectivity (maximum number of connections per patch) for 

each water height scenario are presented for each DEM here (Figure 5-24-Figure 5-30). By 

displaying the maximum connectivity on a map, the spatial extent of connectivity is also 

delineated. For the LIDAR based DEMs, significant connectivity starts to occur at water 

height scenarios of 1m, whilst for MERIT significant connectivity does not occur until water 

heights reach 2.25m. At the highest water height scenarios, the spatial extent of the 

connectivity is largely similar between MERIT and LIDAR, but the maximum connectivity 

values change. A selection of maps of simulated DEMs can also be found in Figure 5-31 to 

Figure 5-33.  

 

Figure 5-23 Number of Patches for 2500simulated DEMs for D4 and D8 connectivity together with 

boxplots of Total Patch Area for MERIT DEMs simulated by semi-variograms by landcover class. 
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Figure 5-24 Maximum Connectivity (Number of river-floodplain connections per patch) for D8 

connectivity for LIDAR at 5m and 10m resolution 
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Figure 5-25 Maximum Connectivity (Number of river-floodplain connections per patch) for D8 

connectivity for LIDAR at 30m and 45m resolution 
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Figure 5-26 Maximum Connectivity (Number of river-floodplain connections per patch) for D8 

connectivity for TanDEM-X 12m DTM and DSM 
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Figure 5-27 Maximum Connectivity (Number of river-floodplain connections per patch) for D8 

connectivity for TanDEM-X 90m DTM and DSM 
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Figure 5-28 Maximum Connectivity (Number of river-floodplain connections per patch) for D8 

connectivity for LIDAR at 90m and MERIT at 90m 
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Figure 5-29 Maximum Connectivity (Number of river-floodplain connections per patch) for D8 

connectivity for SRTM v4.1 at 90m and MERIT at 180m 



 

262 

 

 

Figure 5-30 Maximum Connectivity (Number of river-floodplain connections per patch) for D8 

connectivity for MERIT at 270m 
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Figure 5-31 Maximum Connectivity (Number of river-floodplain connections per patch) for D8 

connectivity for 3 Simulated MERIT DEMs (Sample 1) 
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Figure 5-32 Maximum Connectivity (Number of river-floodplain connections per patch) for D8 

connectivity for 3 Simulated MERIT DEMs (Sample 2) 
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Figure 5-33 Maximum Connectivity (Number of river-floodplain connections per patch) for D8 

connectivity for 3 Simulated MERIT DEMs (Sample 3) 
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5.7  Discussion 

The discussion section is formatted based on addressing the research questions outlined in 

section 5.3.4. 

5.7.1 How does floodplain connectivity differ across resolution and 

DEM products? 

It is clear that river-floodplain connectivity varies widely across DEMs and resolution when 

comparing all DEMs (5.6.1) and when only considering 90m DEMs (5.6.2). Airborne DEMs 

(LIDAR) show a more consistent progression of river-floodplain connectivity compared to 

Spaceborne DEMs, with connectivity beginning at lower water heights.  In Spaceborne 

DEMs, there is a ‘jump’ in connectivity at higher water heights, where the DEMs have little 

connectivity at lower water heights to a high amount of connectivity at high water heights. 

This suggests that spaceborne DEMs have too few breaching points, and instead only 

inundate when banks are overtopped and the floodplains are connected by sheet flow. 

Various field observations in the UK (Nicholas and Mitchell, 2003, Bates et al., 2006), Canada 

(Smith et al., 2009), Papua New Guinea (Day et al., 2008) and the Amazon (Trigg et al., 2012) 

find that river floodplain connectivity is far more complex with minor channels and 

negative relief forms pivotal for inundation and dewatering. Indeed when describing the Fly 

River, Day et al. (2008) describes the complex network of minor channels and negative relief 

forms as creating a ‘depositional web’. The airborne DEMs can represent more of these 

features, so airborne DEMs can more accurately represent the correct river-floodplain 

connectivity processes compared to spaceborne DEMs. Furthermore, as resolution is 

coarsened, river-floodplain connectivity as measured by Total Patch Area is found to 

increase for LIDAR, decrease for MERIT and slightly increase for TanDEM-X and AW3D30. 

Therefore, by coarsening noisier DEMs (TanDEM-X and AW3D30), the effective resolution 

of the DEM becomes more similar to that of the LIDAR at 5m, as measured by the Total 

Patch Area. However, for the already smooth MERIT DEM the coarsening of the DEM acts 

to reduce the river-floodplain connectivity as the number of breach points decreases 

markedly. For instance, at the 2m water height scenario, MERIT at 90m has 12 breach points 

(or river-floodplain connectivity points), MERIT at 180m has only 3 points, and there are just 
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one for MERIT at 270m. Therefore, by coarsening MERIT, river-floodplain connections are 

lost. For all other DEMs, coarsening DEMs enhances river-floodplain connectivity (in terms 

of Total Patch Area), but this increase may not be correct. It is assumed that the most 

realistic connectivity is for the LIDAR at 5m as LIDAR has the best vertical accuracy and is 

the highest resolution. The Total Patch Area does not increase demonstrably across 

resolutions for LIDAR suggesting that the quality of DEM is more important than the 

resolution. Additionally, noisier DEMs (DSMs and SRTM) have poor river-floodplain 

connectivity, as indicated by a low Total Patch Area and an increasing number of patches by 

water height (Figure 5-17). The number of patches increases with water height in SRTM and 

DSMs but decreases in other DEMs. This increasing number of patches indicates that intra-

floodplain connectivity is not represented in noisier DEMs as patches do not join. Instead 

smaller patches of the floodplain are connected to the river as water height increases but 

these patches do not join. Therefore, vegetation removal/smoothing of DEM is needed to 

improve the connectivity. Interestingly, the type of neighbourhood connectivity can give 

surprisingly different results for some DEMs. For example, the Total Patch Area for MERIT 

and 90m and 180m is considerably more for D8 connectivity than it is for D4 connectivity 

(Figure 5-15). This could have implications for models that depict river-floodplain 

connectivity (i.e hydrodynamic models) as if the model uses D8 connectivity, more river-

floodplain connectivity will be represented as across all DEMs there is more river-floodplain 

connectivity when considering D8 connectivity. Simulated DEMs were also included in the 

analysis with results suggesting that the simulated DEMs have worse connectivity than the 

DEM they were simulated from (MERIT) as the Total Patch Area is less (Figure 5-22). 

Moreover, there is a greater range in the number of patches (Figure 5-23) indicating that the 

river-floodplain connectivity is more isolated which is similar to the pattern observed for 

DSM’s and SRTM. However, these statistics do not indicate the spatial pattern. By taking a 

stochastic approach using multiple DEMs improved flood model predictions in the previous 

results chapter, so it is expected that if the river-floodplain connectivity maps were 

combined they could have a more accurate picture of river-floodplain connectivity. Taken 

individually the river-floodplain connectivity of the simulated DEMs are similar to that of 

SRTM and DSMs.  
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5.7.2 Is the accurate representation of floodplain connectivity more 

important for smaller floods than larger floods?  

Yes. In the LIDAR DEMs significant river-floodplain connectivity occurs at heights of 1m, 

but for other DEMs significant connectivity does not occur until at least water heights of 

2.75m for MERIT and 3m for TanDEM-X. When significant connectivity does start to occur 

in spaceborne DEMs, there is a large jump in Total Patch Area, whilst for airborne DEMs 

this progression is much smoother. With the assumption that the LIDAR DEM are most 

accurate, and thus most correctly represents river-floodplain connectivity, it is concluded 

that other DEMs do not contain the features that enable river-floodplain connectivity at 

lower water heights. Therefore, spaceborne DEMs do not contain as many features such as 

tributary channels, contiguous channel remnants and internal drainage networks that 

airborne DEMs do, and thus do not have river-floodplain connectivity at lower water 

heights. This finding agrees with analysis of missing features in the SRTM for the middle 

reach of the Amazon by Trigg et al. (2012). As water height increases sheet flow becomes 

more dominant. Only these sheet flows can flow over noise in the DEM and thus do not 

always follow flow pathways. For this reason, the predicted flood inundation in global flood 

models tend to perform well even if the extent is reached by incorrect flow pathways. 

Conversely, when small features are a key control in flooding (e.g. in urban areas), DEMs 

that capture river-floodplain connectivity correctly are essential. In spaceborne DEMs, urban 

areas  (Neal et al., 2011) (and indeed areas with tall vegetation) typically have a positive bias 

and are noisy, so only the highest water heights will cause any river-floodplain connectivity. 

There is a degree of equifinality about the good performance of MERIT and other 

spaceborne DEMs at higher water heights. Is connectivity good because flow pathways are 

being represented, or does the over-smoothed nature of MERIT allow this connectivity? We 

suspect the former as indicated by the difference in river-floodplain connectivity locations 

(breach points) as these differ between LIDAR and MERIT and become connected at 

different water heights. Therefore, to successfully represent smaller flood events which are 

crucial for ecology and agriculture (e.g. paddies in the Vietnamese Mekong Delta, see first 

results chapter), DEMs need be able to represent river-floodplain connections by including 

features (e.g. contiguous channel remnants) that are important for initial connectivity. For 

higher water heights (i.e. larger floods), accurately depicting river-floodplain connectivity is 
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less important as the predicted flooded area (Total Patch Area) is similar between DEMs. So 

for applications where river-floodplain connectivity at lower water heights (i.e. smaller 

floods) are the main focus, DEMs that accurately depict features that enable river-floodplain 

connectivity (e.g. contiguous channel remnants) are crucial. Either a high-quality airborne 

DEM should be used or a spaceborne DEM should be edited to depict such features.   

5.7.3 What is more important in selecting a DEM for a flood model - 

RMSE or floodplain connectivity? 

RMSE should not be the only metric used in choosing a DEM for a flood model, or indeed 

any application where river-floodplain connectivity is important for the processes being 

represented. It is true that a large RMSE is indicative of a worse quality DEM, but this metric 

cannot describe river-floodplain connectivity. For instance, the TanDEM-X DTM at 12m has 

a better RMSE than MERIT but the metrics produced here (Total Patch Area) suggests that it 

does not have such good river-floodplain connectivity. Whilst there may be some degree of 

equifinality with this result as MERIT may or may not actually depict the river-flow 

connections correctly, it is clear that users should look beyond RMSE as a metric in choosing 

a DEM and consider more subtle, more difficult to measure metrics such as spatial 

dependence (previous results chapter) and river-floodplain connectivity.   

5.7.4 Can a river-floodplain connectivity metric be created to describe 

DEM products, and can this be used as a guide in assessing the 

suitability of a DEM to accurately represent flooding? 

Yes and Yes. In this chapter, numerous metrics to quantify river-floodplain connectivity 

have been presented. These metrics include Total Patch Area, Number of Patches, Maximum 

Connectivity, Maximum Connectivity normalized by Number of Patches, Shape Index, as 

well as maps showing river-floodplain connections points (bank breach points) and 

maximum connectivity. Whilst these metrics do not give a single river-floodplain 

connectivity value, they do quantify and visualise river-floodplain connectivity. A single 

value to describe river-floodplain connectivity is difficult due to the non-linearity of 

connectivity for different river water heights and the different resolutions involved. Some of 
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the metrics presented (Total patch Area and Maximum Connectivity normalized by Number 

of Patches) can be used across DEM resolutions, whilst others (Number of Patches) are 

dependent on scale for a valid comparison. Shape Index as a metric was found not to be an 

effective metric to measure river-floodplain connectivity as it could not distinguish the 

features that enable river-floodplain connectivity. 

The five metrics presented in this chapter (Total Patch Area, Number of Patches, Maximum 

Connectivity, Maximum Connectivity normalized by Number of Patches, Shape Index) are 

ranked in Table 5-5 based on their ability to quantify river-floodplain connectivity. Metrics 

that are scale independent and can be mapped are favoured so multiple DEMs across 

resolutions can be analyzed and visualized. 

Ranking Metric Scale Independent? Can the metric be mapped? 

1 Total Patch Area Yes No 

2 Maximum Connectivity normalized by Number of 

Patches  

Yes Yes 

3 Number of Patches No No 

4 Maximum Connectivity No Yes 

5 Shape Index No No 

  

Total Patch Area is ranked as the most useful river-floodplain connectivity as it allows for an 

easy to understand comparison of DEMs across multiple resolutions. Effectively, the Total 

Patch Area is the total flooded area, so this metric allows for comparisons on how the DEM 

is expected to flood (i.e. river-floodplain connectivity) at various water levels. One could use 

this metric to determine whether different DEM products and resolutions give substantially 

different results which could influence the selection of a DEM. The Maximum Connectivity 

Table 5-5 Ranking of River-Floodplain Connectivity Metrics 
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normalized by number of Patches is also scale independent but can also be mapped. This 

metric tells us how many breached bank pixels are connected to a floodplain pixel and is 

useful in determining whether the river-floodplain connectivity is dominated by a small 

number of breached bank pixels or by a larger number. This metric has not been ranked as 

high as the Total Patch Area as although it can be mapped, it is more difficult to 

conceptualise. Third and fourth in the rankings are the Number of Patches and Maximum 

connectivity as these metrics are scale dependent, making them less useful when 

investigating river-floodplain connectivity across resolutions. Lastly, the Shape Index metric 

was ranked fifth (and last) as it did not show any discernible trends. Although this may be 

the case for this investigation, it would be worth to continue to consider it in future analysis 

to determine whether the metric is in fact useful.   

Although not a metric, the river-floodplain connection points (bank breach points) were 

found to be useful.  By identifying the river-floodplain connection points associated with 

each patch, the source of the connection between the floodplain and river can be 

determined, as well as the water height at which the connection occurs (see examples in 

Figure 5-20 and Figure 5-21). This information is useful in identifying critical bank pixels 

that enable river-floodplain connectivity and can be used as a guide to check whether the 

elevation of these critical bank pixels are realistic or erroneous. Whilst the flood pathways 

were not estimated as in the method outlined by Zhao et al. (2017), the origin of river-

floodplain connectivity is determined in the method presented here. Moreover, the method 

presented in this chapter can also be applied to surface water extents from hydrodynamic 

models or remote sensing imagery as all the connected component algorithms need is a 

binary image of water extent. For a hydrodynamic model, the modeled water surface 

elevation of the river could also be used as opposed to our interpolation technique. Whilst 

applying the method presented in this chapter to hydrodynamic model and remote sensing 

outputs could give more realistic floodplain water extents as other controlling processes 

(slope, friction etc.) are parameterized, it does not tell us anything about the ability of a DEM 

to represent river-floodplain connectivity. Overall, the method presented in this chapter 

should be thought of as a simple guide to potential river-floodplain connectivity in DEMs 

which users can utilize to guide decisions on the suitability of the DEM for their application. 
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5.8  Limitations 

The connected component labelling based method presented in this chapter has a number of 

assumptions. Firstly, the method does not consider water surface slope or friction which 

ultimately effects how water spreads across the floodplain. To consider these factors a 

hydrodynamic model is needed, but that comes with the caveat that it can take considerable 

time and resources to build and is difficult to calibrate and validate. The method presented 

here could instead be thought of as a measure of the maximum potential river-floodplain 

connectivity as in reality water will not reach as far into the floodplains as predicted as it is 

controlled by other factors (e.g. friction, the volume of water entering the floodplain over the 

course of the hydrograph). Therefore, the spatial extent of floodplain inundation is likely to 

be overestimated. Even remote sensing of water extent can suffer from misclassification of 

water pixels and/or the limitations of the observation technique to measure water under 

canopies, so no method comes without its flaws.  

Secondly, the water surface height of the river is a key control in the method presented here. 

It has been rather roughly estimated for the Ba floodplain and there is no easy way of 

knowing whether it is indeed realistic. Where data are available, these estimations will be 

more accurate. Interpolating ICESat derived water surface heights could be a useful method 

to estimate river surface water heights especially in data sparse areas. In addition, a constant 

water surface gradient is assumed, but for larger rivers especially this is not the case 

(O'Loughlin et al., 2013, Altenau et al., 2017). Accurately interpolating the water surface 

elevation of the river is a key challenge. Yet with the upcoming SWOT mission, we are set to 

greatly enhance our knowledge and measurement of freshwater on land (Srinivasen et al., 

2014). However, the estimation approach taken in this chapter is still valid as a range of 

water surface elevations are used so the sensitivity to elevations are estimated.   

Thirdly, the metrics presented here only represents lateral river-floodplain connectivity of 

surface water as per our definition. River-floodplain connectivity by groundwater is not 

represented owing to the fact that it is extremely difficult to measure over a large area. 
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Finally, the method presented in this chapter has failed to provide a single metric to describe 

river-floodplain connectivity. Whilst the metrics presented in this chapter do quantify river-

floodplain connectivity for given water surface elevations in the river as well as represent 

this spatially, a single number for any given water height has not been produced. Simply, 

river-floodplain connectivity is highly non-linearly and is impossible to quantify across all 

water heights. 

5.9  Conclusions 

This chapter has quantified river-floodplain connectivity for a range of different DEM 

products across multiple scales using a novel method based on connected component 

labelling. The method was applied to the Ba floodplain in Fiji, with outputs of Total Patch 

Area, Number of Patches, Maximum Connectivity, Maximum Connectivity normalized by 

Number of Patches, Shape Index, as well as maps showing river-floodplain connections 

points (bank breach points) and maximum connectivity are calculated. Four main 

conclusions were reached. First, river-floodplain connectivity varies substantially across 

DEM products and to a lesser degree resolution. Second, airborne DEMs (LIDAR) can 

represent river-floodplain connectivity at lower river water elevation scenarios, whilst 

spaceborne DEMs can give similar values of river-floodplain connectivity only for large 

floods. This suggests that although spaceborne DEMs can give good flood predictions in 

global flood models, they may not be giving the correct result for the right reason as the 

flood is unlikely to follow the correct flow pathway. Third, river-floodplain connectivity 

should be also be considered when selecting a DEM for a flood model as other DEM quality 

statistics (e.g. RMSE and Mean Error) do not indicate whether river-floodplain connectivity 

is depicted. Lastly, whilst a single one size fits all metric to describe river-floodplain 

connectivity could not be produced, a set of metrics are presented that can be used to 

diagnose the suitability of a DEM for applications where river-floodplain connectivity is 

important. The metrics have been ranked with Total Patch Area and Maximum Connectivity 

normalized by Number of Patches ranked as the most useful metrics in measuring river-

floodplain connectivity as these metrics are independent of scale. Furthermore, identifying 

the river-floodplain connection points (bank breach points) and their associated water 

heights is useful to map so the critical bank pixel elevations can be checked for their quality. 
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This chapter has answered criticisms of previous hydrological connectivity studies that 

consider only a single scale, with this study being novel in considering a wide range of DEM 

products including simulated DEMs. Yet, the chapter has not responded to the challenge of 

comparing metrics across locations, so further work should go on to apply these methods in 

other locations. Currently work is ongoing to apply the method presented here over a much 

large region in the Congo Basin. There is also potential for the presented method to be used 

with hydrodynamic model outputs or remote sensing imagery as well as a further 

exploration of the landscape statistics on offer.  
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Chapter 6 Conclusions 

 

6.1 Main Findings 

Intermediate scale hydrodynamic models that can effectively utilise limited data and have 

an appropriate computation time that allows for Monte Carlo simulations are needed to 

improve our understanding of the flood hazard in data-sparse areas, which are often the 

most at-risk areas. Large river deltas are understudied in this area but have a high amount 

of exposure to flooding. However, due to the incredibly flat topography of a delta, 

topography is very likely to be a key source of uncertainty in making flood predictions. To 

this end, this thesis aims to assess the skill of a hydrodynamic model built at the 

intermediate scale for a large river delta, before investigating the impact of uncertain 

topography on flood predictions and how river-floodplain connectivity relates to this and 

whether this can be quantified. As a result, this thesis had 3 mains objectives which were 1) 

Determine whether an intermediate hydrodynamic model at a regional scale can accurately 

represent flooding in a data-sparse delta 2) Assess the implications of simulating global 

DEMs for flood inundation studies and 3) Identify and quantify river-floodplain 

connectivity of DEMs across resolutions. The following section will summarise the 

conclusions from each results chapter that addresses each objective in turn. 

6.1.1 An intermediate Scale Hydrodynamic Model of the Mekong 

Delta built using freely available data 

 

Objective 1: Determine whether an intermediate hydrodynamic model at a regional scale 

can accurately represent flooding in a data-sparse delta   

To further our understanding of how uncertain topographic information impacts flood 

predictions in data-sparse environments, a pre-requisite was to build a hydrodynamic 

model at an intermediate scale. The Mekong Delta is used as an initial case study as 
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intermediate scale models of large river deltas have not been developed despite the high 

flood risk in these areas. To this end, a hydrodynamic model at 540m resolution was built 

using LISFLOOD-FP to test whether an intermediate scale model had any skill in making 

flood predictions. The model was built using freely available data and included estimation 

of the downstream tidal boundary condition using harmonic analysis. The most detailed 

model that included some bathymetric data and smaller channels demonstrated a good level 

of skill with an average RMSE value of 0.608m across the 5 gauges assessed, an average NSE 

value of 0.627 and a CSI score of 0.62. The model performed better in wetter periods which is 

of most importance for predicting flooding. A sensitivity analysis was carried out by varying 

friction parameters and by varying the detail of bathymetry data and the number of 

channels. The model was found to be more sensitive to channel friction than floodplain 

friction, with optimum values of 0.0225 and 0.050 respectively. Moreover, this chapter found 

that estimating bathymetry using bankfull discharge gave only marginally worse 

predictions than if bathymetry was known, suggesting that bathymetric data may not 

necessarily essential to make skilful predictions. Additionally, including smaller channels 

resulted in less total flooded area suggesting that maximum inundation is dominated by 

sheet flow and thus including the smaller channels that are important for river-floodplain 

connectivity is not important for the largest floods. However, the inclusion of smaller 

channels are important for smaller floods and the dewatering of the floodplain. The model 

developed in this chapter had a similar skill to other models of the Mekong Delta that relied 

on some non-freely available data.  This chapter also found that the MERIT DEM had a 

better performance than SRTM. Later, LiDAR data became available for a single province in 

the Vietnamese part of the Mekong delta and allowed for a more comprehensive 

comparison between model resolution and DEM products. Coupled with a ground-truthing 

campaign, we found considerable discrepancies between elevations in the DEMs and 

predicted flood extents. Therefore, a more comprehensive analysis on the impact of 

uncertain topography on flood extent predictions was needed as the typical deterministic 

treatment of topography (i.e. using a single DEM) can lead to spuriously precise (and 

incorrect) predictions. 
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6.1.2 Implications of Simulating Global Digital Elevation Models for 

Flood Inundation Studies. 

 

Objective 2: Assess the implications of simulating global DEMs for flood inundation 

studies  

Modellers tend to use only a single DEM in their hydrodynamic model owing to a perceived 

lack of available global DEM products. In this chapter, a geostatistical method was 

implemented to simulate plausible versions of the freely available MERIT and SRTM global 

DEMs in floodplains and to assess the impact of using an ensemble of DEMs has on flood 

extent. First, the spatial error structure was calculated for both the MERIT and SRTM DEMs 

for 20 lowland locations around the world by comparing these DEMs to a reference hyper 

resolution LiDAR DEM for each site. This was the first time the spatial error structure was 

calculated for MERIT and also builds on the limited research of the spatial error structure of 

SRTM. Semi-variograms were produced and revealed that the MERIT DEM is consistently 

more accurate than SRTM (semi-variogram sill values of 0.7-2.2m compared to 1.0-4.8m), 

with the errors in MERIT being more spatially dependent as indicated by larger range 

values (308-4364m) compared to SRTM (298-1931m). In addition, semi-variograms were also 

produced by landcover class. It was found that the spatial error structure differed by 

landcover class with higher canopy heights generally having a larger sill value, although the 

relationship was not clear. The fitted semi-variogram parameters were then taken to 

simulate plausible versions of MERIT or SRTM based on unconditional Gaussian simulation. 

This procedure does not require hyper/high resolution data to be available and is thus 

suitable to simulate DEMs in any lowland location. However, by using unconditional 

simulation, the DEM error at observation points are not eliminated and a Gaussian error 

field is being added to the simulated DEM, thereby creating a more errorneous DEM. DEMs 

were simulated either using an ‘average’ of the semi-variograms produced or by semi-

variograms characterised by landcover class. To test the impact of using ensembles of 

simulated DEMs on flood extent predictions, two flood models of contrasting locations (An 

Giang, Vietnam and Ba, Fiji) were built. These hydrodynamic models were made of four 
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deterministic simulations using LIDAR, MERIT and SRTM DEMs and three sets of DEM 

ensembles. Results indicated that using an ensemble of simulated DEMs avoids the spurious 

precision in prediction given by models that use a single deterministic DEM and allows the 

user to explore the impact of topographic uncertainty on flood predictions. Using an 

ensemble of simulated DEMs can produce higher flood prediction skill score values (e.g. CSI 

score), despite the simulated DEM being having a larger error than the original DEM. This is 

likely to be due to the DEM simulation process perturbing the DEM in such a way that river-

floodplain connectivity is more conducive, despite the addition of error to the DEM. Flood 

depth estimates were also explored, with simulated DEMs demonstrating skill in predicting 

flood depths, potentially avoiding the over-estimation or missing estimates of flood depth. 

Simulating the MERIT DEM by landcover class consistently gave inundation estimates 

closest to that of the most detail model which was assumed to be closest to the true situation 

owing to a lack of validation data.  This chapter demonstrated that uncertain topography 

has a large impact on flood predictions and presented a method where it is now possible to 

use multiple DEMs even in data-sparse areas. The work has been disseminated through a 

freely available R package called DEMsimulation. 

6.1.3 Measuring Floodplain Connectivity of DEMs 

 

Objective 3: Identify and quantify river-floodplain connectivity of DEMs across 

resolutions  

Connectivity is an immensely popular concept in science, with the situation being no 

different in hydrology. However, there has been a lack of consensus on what exactly is 

meant by connectivity, how to quantify it and a lack of studies investigating across scales 

and locations. In this chapter, river-floodplain connectivity was quantified across multiple 

scales using different DEM products by a novel technique based on connected component 

labelling and landscape statistics. River-floodplain connectivity was found to vary 

substantially between DEM products and to a lesser degree across scales. Airborne DEMs 

(LiDAR) can represent river-floodplain connectivity at lower water elevation scenarios, 

whilst spaceborne DEMs can only demonstrate similar connectivity at higher river levels. 



 

279 

 

This suggests that spaceborne DEMs can give good flood predictions in global flood models 

for large floods but are unable to represent the river-floodplain connectivity that are crucial 

for smaller floods. However, even though spaceborne DEMs may give the correct result, this 

may not be for the correct reason as the flood is unlikely to follow the correct pathway given 

the lack of river-floodplain connectivity representation. This work also suggests that when 

selecting a DEM to use in a hydrodynamic model that the river-floodplain connectivity 

should be considered in addition to more traditional accuracy metrics such as RMSE. Whilst 

a single metric to quantify river-floodplain connectivity could not be produced, this chapter 

did present 5 metrics as well as maps of river-floodplain connection points, with Total Patch 

Area and Maximum Connectivity normalized by Number of Patches identified as the most 

useful to measure river-floodplain connectivity. The method developed in this chapter does 

not require calibration of a hydrodynamic model and has the potential to be used on 

hydrodynamic model outputs or remote sensing imagery.  

6.2 Synthesis 

Accurate flood prediction using hydrodynamic models are crucial for making decisions to 

reduce flood risk. Large river deltas are some of the most at risk areas from flooding but 

have not been modelled extensively. Uncertain information on topography has been shown 

to be highly influential on flood predictions, with this effect even more pronounced in large 

river deltas due to the extremely flat topography. This thesis has applied hydrodynamic 

models, geostatistics and image classification techniques to assess the impact of uncertain 

topographic information on flood predictions. The major scientific findings from this thesis 

are: 1) An intermediate scale hydrodynamic model of the Mekong Delta built using freely 

available data shows a good level of skill in flood predictions with topography a major 

control on predicted extent; 2) Plausible versions of MERIT and SRTM global DEMs can be 

simulated using spatial error structure characteristics without the need of a reference DEM; 

3) Using an ensemble of simulated DEMs avoids the spurious precision in flood predictions 

when using a single deterministic DEM; 4) Probabilistic flood maps derived from using an 

ensemble of simulated DEMs gave a range of flood predictions; 5) Airborne DEMs have a 

more realistic representation of river-floodplain connectivity; 6) Spaceborne DEMs often 

cannot represent river-floodplain connectivity but still give accurate flood predictions at 
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high flood levels as sheet flow becomes the dominant process. However, whilst giving 

reasonable flood predictions at high flood levels, spaceborne DEMs cannot represent the 

correct river-connectivity processes and thus are getting the right result for the wrong 

reason; and 7) 5 metrics to quantify river-floodplain connectivity have been proposed.  

This thesis has demonstrated that the reductionist view that higher resolution is better for 

hydrodynamic models is not always appropriate. Uncertain topography has a striking 

impact on flood predictions, and using a single deterministic DEM leads to spuriously 

precise estimates. Indeed, a spuriously precise flood inundation map can lull practitioners 

and decision makers into a fall sense of over-confidence in their results. Therefore, using 

multiple DEMs are essential to understand how topographic uncertainty impacts on flood 

predictions. Using multiple DEM products can do this, which is now increasingly possible 

with the release of TanDEM-X 90. Even better, is the combination of multiple DEMs and 

simulating DEMs to create an ensemble of DEMs. Thus, there is no reason why any future 

flood study that uses a global DEM should be using just a single DEM.  

The quality of a DEM is important in making accurate flood predictions but traditional 

accuracy assessment metrics such as RMSE are not necessarily the best metric to use when 

choosing a DEM to use in a hydrodynamic model. Indeed, the ability of a DEM to represent 

realistic river-floodplain pathways is crucial as ultimately these connections enable flooding 

to occur. It is usually the case that a handful of pixels in the DEM control river-floodplain 

connectivity and correctly assessing the elevations of these pixels is more important than 

having a more accurate DEM overall. Airborne DEMs (LiDAR) have been found to represent 

river-floodplain connectivity more realistically but often LiDAR is not available for most 

locations (only approximately 0.005% of Earth’s land area). Spaceborne DEMs have been 

found to have a poor river-floodplain connectivity at low water levels, and a reasonable 

river-floodplain connectivity at higher water levels, thus for larger floods the ability of a 

DEM to represent river-floodplain connectivity is less important. Yet the DEM simulation 

approach allows us to alter these crucial river-floodplain connectivity points, helping 

modellers explore the bounds of uncertainty within a DEM.  
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Despite offering five metrics of quantification of river-floodplain connectivity, it was 

difficult to devise a single metric. Nevertheless, the easy to implement method presented in 

this thesis allows for a quick analysis of the ability of a DEM to represent river-floodplain 

connectivity and can be used in helping to decide the most appropriate DEM to use in the 

hydrodynamic model. As discussed, modellers should forget about choosing just a single 

DEM and instead turn their attention to use multiple DEMs to help understand the impact 

of uncertain topography on their flood estimates. Of course, this depends on the 

computational resources available. The reason of not having multiple DEMs available is no 

longer valid owing to the multiple freely accessible global DEM products now available and 

the DEM simulation approach discussed in this thesis. 

The findings in this thesis can help scientists across a range of disciplines and scales. We 

now know that a hydrodynamic model at an intermediate scale can make skillful 

predictions of flood extents in large deltas, even if no locally available data is incorporated. 

This means a worldwide delta flood hazard analysis is possible. We also know that 

uncertain topography has a significant impact on flood predictions. Previously, different 

scales have been focused upon, but we now know that there is large variations between 

DEM products even at the same scale. Using multiple DEMs is essential in helping to 

determine the impact of topography on flood predictions. DEM simulation has been proved 

in this thesis to be an invaluable technique to make this possible. Work from this thesis has 

made world of geostatistical simulation more accessible through the R package 

DEMsimulation, so even if a hydraulic modeller has little or no knowledge of geostatistics, 

they can take advantageous of the power of geostatistics. Whilst this thesis has focused on 

the intermediate scale and has used a single hydrodynamic model, the findings from this 

work can be utilised across scales and models. Topography is hugely important for any 

terrestrial model but our imperfect representation of it means that the uncertainty involved 

in it must be explored in order to avoid making spuriously precise predictions. As Davis and 

Keller (1997b) noted “Landscapes are not uncertain, but knowledge about them is”. 
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6.3 Recommendations for Future Research 

We are in an exciting time for DEM research. Recently, the TanDEM-X mission has released 

a 3 arc-second DEM product (although predominantly a DSM) that covers the whole world. 

An initial accuracy assessment by myself suggests that TanDEM-X 90 has a better vertical 

accuracy than SRTM, and only marginally worse than MERIT. When considering landcover 

types, TanDEM-X 90 has a better vertical accuracy than MERIT for all landcovers except 

tree-covered areas. Therefore, if vegetation bias can be removed from TanDEM-X 90 it is 

very possible that it could become the benchmark in global DEMs. TanDEM-X has the 

additional advantage of having a number of auxiliary files that can be utilised for error 

removal. In addition, new technologies could make the hyper-resolution global DEM a 

reality. For instance, ArcticDEM at 2 m resolution may well become available for the entire 

world. Alternatively, the proliferation of cubesat constellations (in particular Planet Labs) 

provides an opportunity to create DEMs from photogrammetry as recently demonstrated by 

Ghuffar (2018) with resolutions at 5 m. PlanetScope imagery has the additional benefit that 

images are collected at hyper resolution (3.7 m) and daily, so DEMs can be updated and 

dynamic processes tracked. So it would appear that the days of SRTM are nearly over. The 

SRTM has well and truly served its purpose and has provided an invaluable dataset for 

scores of scientific application. Now we are moving from the era of SRTM to a new era of 

global DEMs. 

This thesis has shown that DEM simulation is an important strategy in exploring the impact 

of uncertain topography on flood predictions. However, this work is only the beginning in 

reinvigorating the practice of DEM simulation. Additional research is urgently needed to 

characterise the spatial error structure of more DEM products (e.g. TanDEM-X 90) and to 

analyse additional locations to we can have more confidence in the spatial error structure 

relationships found in this thesis. To do this, more reference topographic data is needed. 

Luckily, LiDAR is becoming increasingly freely available, especially through initiatives such 

as OpenTopography. Whilst having more LiDAR data is invaluable, better metadata is often 

required as for a valid investigation into the spatial error structure, we must be confident 
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about the quality (and most importantly the datum) of the reference data. As more locations 

are analysed, we can have more confidence in the relationships found in this thesis.  

Sticking to the theme of DEM simulation, additional research is needed into fusing 

simulated DEMs together. When DEMs are simulated by landcover semi-variograms, how 

can we ensure that the overall DEM are not too noisy as often the areas which are mosaicked 

together to make the overall DEM are small. For instance, should a smoothing filter be 

applied over the resultant simulated DEM? And if so, what would be an appropriate filter? 

Indeed, an aggressive filter may over-smooth the resultant DEM, negating the noisifying 

effect of simulating DEMs. 

A further recommendation for research is to improve the performance of the 

DEMsimulation package. In this thesis, DEM simulation was only performed on relatively 

small areas. The DEMsimulation package has been used to simulate DEMs over a 

300x200km area in the Congo Basin with this taking over a day on the hydrology servers at 

the University of Bristol. Whilst not an excessive amount of time, most of the intended users 

will not have access to such facilities. For the Congo basin case, memory issues were an issue 

when trying to run on a Desktop computer. Therefore, optimisation of the code is needed to 

overcome the memory limitations and to parallelise, with the later potentially leading to 

considerable performance gains if the simulation by landcover type approach is followed. 

Whilst probabilistic hazard maps are useful in conveying the uncertainty in flood prediction, 

they can be difficult to understand for the non-expert. Therefore, further research is needed 

to build on the existing literature (Hagemeier-Klose and Wagner, 2009, Di Baldassarre et al., 

2010, Meyer et al., 2012, Alfonso et al., 2016, Macchione et al., 2018, Kuser Olsen et al., 2018) 

into the presentation of probabilistic flood hazard maps. There also needs to be more flood 

hazard map co-production so the maps show the most useful information for the end user 

(Luke et al., 2018, Lane et al., 2011). 
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A final recommendation is to further develop the river-floodplain connectivity 

methodology. Whilst work in this thesis has quantified river-floodplain connectivity of 

DEMs across scales, it has not explored it over multiple locations. An additional challenge 

will be normalizing the quantification of river-floodplain connectivity so different locations 

at different scales can be compared. Ideally this would be a single value that would be 

prescribed to each DEM. The question remains whether this is even possible given the 

complexity of river-floodplain connectivity, but this thesis has demonstrated the image 

classification and landscape statistics has potential to quantify river-floodplain connectivity 

without using hydrodynamic models.  

This thesis has proved the significant impact that uncertain topography has on flood 

predictions. The sensitivity of hydrodynamic models to different DEMs at different 

resolutions is a highly complex and location dependent problem. We therefore urge 

modellers to not focus so much on the sensitivity of hydrodynamic models to hydraulic 

parameters, but to further consider the impact of topographic uncertainty in their 

predictions by either using multiple DEM products and/or simulated DEMs. 
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