100 research outputs found

    Estimating gas turbine compressor discharge temperature using Bayesian neuro-fuzzy modelling

    Get PDF
    The objective of this paper is to estimate the compressor discharge temperature measurements on an industrial gas turbine that is undergoing commissioning at site, using a data-driven model which is built using the test bed measurements of the engine. This paper proposes a Bayesian neuro-fuzzy modelling (BNFM) approach, which combines the adaptive neuro-fuzzy inference system (ANFIS) and variational Bayesian Gaussian mixture model (VBGMM) techniques. A data-driven compressor model is built using ANFIS, and VBGMM is applied in the set-up stage to automatically select the number of input membership functions in the fuzzy system. The efficacy of the proposed BFNM approach is established through experimental trials of a sub-15MW gas turbine, and the results, from the model that is built using test bed data, are shown to be promising for estimating the compressor discharge temperatures on the gas turbine during commissioning

    Multi-region System Modelling by using Genetic Programming to Extract Rule Consequent Functions in a TSK Fuzzy System

    Full text link
    [EN] This paper aims to build a fuzzy system by means of genetic programming, which is used to extract the relevant function for each rule consequent through symbolic regression. The employed TSK fuzzy system is complemented with a variational Bayesian Gaussian mixture clustering method, which identifies the domain partition, simultaneously specifying the number of rules as well as the parameters in the fuzzy sets. The genetic programming approach is accompanied with an orthogonal least square algorithm, to extract robust rule consequent functions for the fuzzy system. The proposed model is validated with a synthetic surface, and then with real data from a gas turbine compressor map case, which is compared with an adaptive neuro-fuzzy inference system model. The results have demonstrated the efficacy of the proposed approach for modelling system with small data or bifurcating dynamics, where the analytical equations are not available, such as those in a typical industrial setting.Research supported by EPSRC Grant EVES (EP/R029741/1).Zhang, Y.; MartĂ­nez-GarcĂ­a, M.; Serrano, J.; Latimer, A. (2019). Multi-region System Modelling by using Genetic Programming to Extract Rule Consequent Functions in a TSK Fuzzy System. IEEE. 987-992. https://doi.org/10.1109/ICARM.2019.8834163S98799

    Performance-based health monitoring, diagnostics and prognostics for condition-based maintenance of gas turbines: A review

    Get PDF
    With the privatization and intense competition that characterize the volatile energy sector, the gas turbine industry currently faces new challenges of increasing operational flexibility, reducing operating costs, improving reliability and availability while mitigating the environmental impact. In this complex, changing sector, the gas turbine community could address a set of these challenges by further development of high fidelity, more accurate and computationally efficient engine health assessment, diagnostic and prognostic systems. Recent studies have shown that engine gas-path performance monitoring still remains the cornerstone for making informed decisions in operation and maintenance of gas turbines. This paper offers a systematic review of recently developed engine performance monitoring, diagnostic and prognostic techniques. The inception of performance monitoring and its evolution over time, techniques used to establish a high-quality dataset using engine model performance adaptation, and effects of computationally intelligent techniques on promoting the implementation of engine fault diagnosis are reviewed. Moreover, recent developments in prognostics techniques designed to enhance the maintenance decision-making scheme and main causes of gas turbine performance deterioration are discussed to facilitate the fault identification module. The article aims to organize, evaluate and identify patterns and trends in the literature as well as recognize research gaps and recommend new research areas in the field of gas turbine performance-based monitoring. The presented insightful concepts provide experts, students or novice researchers and decision-makers working in the area of gas turbine engines with the state of the art for performance-based condition monitoring

    Prognosis of a Wind Turbine Gearbox Bearing Using Supervised Machine Learning

    Get PDF
    Deployment of large-scale wind turbines requires sophisticated operation and maintenance strategies to ensure the devices are safe, profitable and cost-effective. Prognostics aims to predict the remaining useful life (RUL) of physical systems based on condition measurements. Analyzing condition monitoring data, implementing diagnostic techniques and using machinery prognostic algorithms will bring about accurate estimation of the remaining life and possible failures that may occur. This paper proposes to combine two supervised machine learning techniques, namely, regression model and multilayer artificial neural network model, to predict the RUL of an operational wind turbine gearbox using vibration measurements. Root Mean Square (RMS), Kurtosis (KU) and Energy Index (EI) were analysed to define the bearing failure stages. The proposed methodology was evaluated through a case study involving vibration measurements of a high-speed shaft bearing used in a wind turbine gearbox

    Optimal Strategy in Predicting Equipment Sensor Failure Using Genetic Programming and Histogram of Residual

    Get PDF
    Detecting sensor abnormality is challenging because the data are normally acquired using IoT approach and stored offline in a dedicated server (data logs). The objectives of this research are to device an approach to detect sensor abnormality and perform this in a ”white box” approach. In the proposed approach, the compressor sensor output is modelled as a function of other sensors using static approach, comparing regression results of Genetic Programming (GP) with Multiple Linear Regression (MLR) and Neural Network Regression (ANN). Subsequently, the model output is used for detecting abnormality by observing the residuals

    A Review: Prognostics and Health Management in Automotive and Aerospace

    Get PDF
    Prognostics and Health Management (PHM) attracts increasing interest of many researchers due to its potentially important applications in diverse disciplines and industries. In general, PHM systems use real-time and historical state information of subsystems and components of the operating systems to provide actionable information, enabling intelligent decision-making for improved performance, safety, reliability, and maintainability. Every year, a substantial number of papers in this area including theory and practical applications, appear in academic journals, conference proceedings and technical reports. This paper aims to summarize and review researches, developments and recent contributions in PHM for automotive- and aerospace industries. It can also be considered as the starting point for researchers and practitioners in general to assist them through PHM implementation and help them to accomplish their work more easily.Algorithms and the Foundations of Software technolog

    Jet engine prognosis using dynamic neural networks

    Get PDF
    Jet engine related costs and the need for high performance reliability have resulted in considerable interest in advanced health and condition-based maintenance techniques. This thesis attempts to design fault prognosis schemes for aircraft jet engine using intelligent-based methodologies to ensure flight safety and performance. Two different artificial neural networks namely, non-linear autoregressive neural network with exogenous input (NARX) and the Elman neural network are introduced for this purpose. The NARX neural network is constructed by using a tapped-delay line from the inputs and delayed connections from the output layer to the input layer to achieve a dynamic input-output map. Consequently, the current output becomes dependent on the delayed inputs and outputs. On the other hand, the Elman neural network uses the previous values of the hidden layer neurons to build memory in the system. Various degradations may occur in the engine resulting in changes in its components performance. Two main degradations, namely compressor fouling and turbine erosion are modelled under various degradation conditions. The proposed dynamic neural networks are developed and applied to capture the dynamics of these degradations in the jet engine. The health condition of the engine is then predicted subject to occurrence of these deteriorations. In both proposed approaches, various scenarios are considered and extensive simulations are conducted. For each of the scenarios, several neural networks are trained and their performances in predicting multi-flights ahead turbine output temperature are evaluated. The difference between each network output and the measured jet engine output are compared and the best neural network architecture is obtained. The most suitable neural network for prediction is selected by using normalized Bayesian information criterion model selection. Simulation results presented, demonstrate and illustrate the effective performance of the proposed neural network-based prediction and prognosis strategies

    The 1st International Conference on Computational Engineering and Intelligent Systems

    Get PDF
    Computational engineering, artificial intelligence and smart systems constitute a hot multidisciplinary topic contrasting computer science, engineering and applied mathematics that created a variety of fascinating intelligent systems. Computational engineering encloses fundamental engineering and science blended with the advanced knowledge of mathematics, algorithms and computer languages. It is concerned with the modeling and simulation of complex systems and data processing methods. Computing and artificial intelligence lead to smart systems that are advanced machines designed to fulfill certain specifications. This proceedings book is a collection of papers presented at the first International Conference on Computational Engineering and Intelligent Systems (ICCEIS2021), held online in the period December 10-12, 2021. The collection offers a wide scope of engineering topics, including smart grids, intelligent control, artificial intelligence, optimization, microelectronics and telecommunication systems. The contributions included in this book are of high quality, present details concerning the topics in a succinct way, and can be used as excellent reference and support for readers regarding the field of computational engineering, artificial intelligence and smart system

    Establishment of a novel predictive reliability assessment strategy for ship machinery

    Get PDF
    There is no doubt that recent years, maritime industry is moving forward to novel and sophisticated inspection and maintenance practices. Nowadays maintenance is encountered as an operational method, which can be employed both as a profit generating process and a cost reduction budget centre through an enhanced Operation and Maintenance (O&M) strategy. In the first place, a flexible framework to be applicable on complex system level of machinery can be introduced towards ship maintenance scheduling of systems, subsystems and components.;This holistic inspection and maintenance notion should be implemented by integrating different strategies, methodologies, technologies and tools, suitably selected by fulfilling the requirements of the selected ship systems. In this thesis, an innovative maintenance strategy for ship machinery is proposed, namely the Probabilistic Machinery Reliability Assessment (PMRA) strategy focusing towards the reliability and safety enhancement of main systems, subsystems and maintainable units and components.;In this respect, the combination of a data mining method (k-means), the manufacturer safety aspects, the dynamic state modelling (Markov Chains), the probabilistic predictive reliability assessment (Bayesian Belief Networks) and the qualitative decision making (Failure Modes and Effects Analysis) is employed encompassing the benefits of qualitative and quantitative reliability assessment. PMRA has been clearly demonstrated in two case studies applied on offshore platform oil and gas and selected ship machinery.;The results are used to identify the most unreliability systems, subsystems and components, while advising suitable practical inspection and maintenance activities. The proposed PMRA strategy is also tested in a flexible sensitivity analysis scheme.There is no doubt that recent years, maritime industry is moving forward to novel and sophisticated inspection and maintenance practices. Nowadays maintenance is encountered as an operational method, which can be employed both as a profit generating process and a cost reduction budget centre through an enhanced Operation and Maintenance (O&M) strategy. In the first place, a flexible framework to be applicable on complex system level of machinery can be introduced towards ship maintenance scheduling of systems, subsystems and components.;This holistic inspection and maintenance notion should be implemented by integrating different strategies, methodologies, technologies and tools, suitably selected by fulfilling the requirements of the selected ship systems. In this thesis, an innovative maintenance strategy for ship machinery is proposed, namely the Probabilistic Machinery Reliability Assessment (PMRA) strategy focusing towards the reliability and safety enhancement of main systems, subsystems and maintainable units and components.;In this respect, the combination of a data mining method (k-means), the manufacturer safety aspects, the dynamic state modelling (Markov Chains), the probabilistic predictive reliability assessment (Bayesian Belief Networks) and the qualitative decision making (Failure Modes and Effects Analysis) is employed encompassing the benefits of qualitative and quantitative reliability assessment. PMRA has been clearly demonstrated in two case studies applied on offshore platform oil and gas and selected ship machinery.;The results are used to identify the most unreliability systems, subsystems and components, while advising suitable practical inspection and maintenance activities. The proposed PMRA strategy is also tested in a flexible sensitivity analysis scheme
    • …
    corecore