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Abstract

Jet Engine Prognosis Using Dynamic Neural Networks

Saba Kiakojoori

Jet engine related costs and the need for high performance reliability have resulted

in considerable interest in advanced health and condition-based maintenance tech-

niques. This thesis attempts to design fault prognosis schemes for aircraft jet engine

using intelligent-based methodologies to ensure flight safety and performance. Two

different artificial neural networks namely, non-linear autoregressive neural network

with exogenous input (NARX) and the Elman neural network are introduced for this

purpose. The NARX neural network is constructed by using a tapped-delay line from

the inputs and delayed connections from the output layer to the input layer to achieve

a dynamic input-output map. Consequently, the current output becomes dependent

on the delayed inputs and outputs. On the other hand, the Elman neural network

uses the previous values of the hidden layer neurons to build memory in the system.

Various degradations may occur in the engine resulting in changes in its compo-

nents performance. Two main degradations, namely compressor fouling and turbine

erosion are modelled under various degradation conditions. The proposed dynamic

neural networks are developed and applied to capture the dynamics of these degrada-

tions in the jet engine. The health condition of the engine is then predicted subject

to occurrence of these deteriorations.
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In both proposed approaches, various scenarios are considered and extensive sim-

ulations are conducted. For each of the scenarios, several neural networks are trained

and their performances in predicting multi-flights ahead turbine output temperature

are evaluated. The difference between each network output and the measured jet en-

gine output are compared and the best neural network architecture is obtained. The

most suitable neural network for prediction is selected by using normalized Bayesian

information criterion model selection. Simulation results presented, demonstrate and

illustrate the effective performance of the proposed neural network-based prediction

and prognosis strategies.
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Chapter 1

Introduction

Safety, economy and performance of the aircraft operation is highly dependent on its

engines [1]. Jet engines diagnosis and prognosis have been a matter of interest in the

recent years due to the increasing demand on reliable operations of these systems. In

general, fault detection and diagnosis is a technique to understand whether or not

any faults are present in the engine, and determine their locations and severity in its

components. Fault prognosis is the ability to predict the future health of the compo-

nent of the system in a fixed time horizon or its time to failure [2]. Fault diagnosis

and prognosis results in performing important condition-based maintenance decisions

to reduce maintenance costs due to unnecessary replacements of components or shut

downs. In an aerospace industry, jet engine related costs involve a large portion of

the operating cost of an aircraft, so fault diagnosis and prognosis allows one to avoid

high costs of a failure or overhaul of the system. The overall goal of prognosis is to

improve reliability, safety and availability.

Fault prognosis is primarily divided into two main categories namely, model-based
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and data-based approaches. Model-based approaches rely on mathematical and phys-

ical model of the system while data-based approaches are achieved mostly from his-

torical or real time data from the system measurements to predict the future health of

the component. Since there is generally no accurate access to the mathematical equa-

tions of an engine, developing model-based approaches would be a challenging task.

Data driven methods use real data to approximate the degradation of the components

and predict the future behaviour of the system. Moreover, the inherent non-linearity

of the jet engine performance makes the need for the application of an alternative

computational technique instead of model-based approaches. During the past few

years, Artificial neural networks (ANN) which relies on the real-time data from the

system components is mostly used as a tool for prognosis [3]. The interest towards

neural networks in fault prognosis is due to their ability in modelling non-linearities

and complexities. The jet engine is a highly non-linear dynamical system, so in order

to model time delays associated with the dynamics of the system; a dynamic neural

network is required to learn the dynamics of the aircraft engine.

1.1 Literature Review

1.1.1 Health Monitoring

Modern systems require high precision and reliable performance due to the critical-

ity and complexity. Systems are operating under certain stress or load in the real

environment, so no matter how good the product design is, they deteriorate over

time which reduces the reliability of the system during its useful life. System health

monitoring is an efficient way to assure high reliability of the system. It is a set of

activities to maintain the system in its operable condition which may be limited to
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the current state of the component or prediction of future operating states [4].

Health monitoring consists of one or more maintenance strategies applied for the

purpose of reducing operating costs while at the same time assuring system optimi-

sation, safety, and achieving the highest possible production rate [5]. It is important

to balance between reliability and cost. If there is little maintenance, the cost of the

system failures will increase. On the other hand, if the maintenance is done too often,

the reliability may improve but the cost of maintenance will increase too [6].

Traditionally, maintenance is achieved only at breakdowns. Thus, no analysis or

planning is required, which in turn results to unscheduled downtime [7]. Unplanned

or run to failure maintenance is practical in small industries with limited maintenance

resources [8]. However, in applications such as aircraft engines, reactive maintenance

causes critical problems; failure of a component may occur at an inconvenient time

or place or it can cause damage to other parts of the system [9].

Another maintenance technique is time-based preventive maintenance, which sets

a periodic interval to perform maintenance without considering the health status

of the system [5]. This strategy can provide relatively higher system performance.

However, this method is quite inefficient for instantaneous failures. Moreover, in

pre-defined maintenance activities, the system may be overhauled when they are still

in a good health condition. This is money and time consuming process due to the

frequent replacements of the expensive components before the end of their lives since

engineering components do not fail at periodic intervals. It is also important to de-

termine the maintenance interval to reduce the frequency of undesirable results of

system interruptions. Age-related, operating usage or failure distribution is used as
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ways to calculate these time intervals. However, Luo et al. [10] have stated that the

critical system failures are not only based on the time of the system operation. As

a result, in the past ten years, many utilities replace their time-based maintenance

activities with other efficient programs based on the need of the system to fullfill their

needs for the availability and safety of their systems [6].

In order to reduce both maintenance and repair costs and probability of failure,

condition-based maintenance (CBM) has been introduced as an efficient way to in-

crease production cycle for modern aircraft which is based on the current health,

operating and maintenance history. Variables such as vibration, temperature and

acoustic can be used to collect information about the performance of the system [11].

This maintenance method consists of three key steps as shown in Figure 1.1.

Figure 1.1: Three steps in a CBM program [12].

Data acquisition is the first step where data is collected from the system in different

time steps and then they are processed using various methods. In the final step based

on the results available one can decide whether it is the time for maintenance actions

or not.

This method can significantly reduce maintenance cost and time by reducing un-

necessary periodic maintenance operations based on the information collected for

health monitoring. A classification for different maintenance approaches is shown

in Figure 1.2. Two important aspects in CBM contain diagnosis and prognosis [7].
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Reliable diagnostics and prognostics are critical in CBM.

There are different methods for gas turbine condition monitoring including per-

formance analysis, oil analysis, visual inspection, borescope inspection, X-ray checks,

vibration monitornig, noise monitoring, turbine exit spread monitoring, etc. [13].

One of the most powerful methods is performance analysis where the information of

the degradation severity is obtained based on the gas path parameters [14].

Figure 1.2: Summary of maintenance approaches [6].

1.1.2 Gas Path Analysis (GPA)

Gas turbine performance degrades during operation due to the deterioration of the

gas path components [14]. Compressor fouling, foreign object damage (FOD), blade
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erosion and corrosion, worn seals and blade tip clearance increase due to wearing are

common causes of degradation that may happen in an engine. These degradations

can then result in the change in the thermodynamic performance of the engine. The

condition of the components can be represented by a set of independent performance

parameters. Component efficiencies and flow capacities are mostly used as perfor-

mance parameters in the literature. These variables are not directly measurable, and

they are thermodynamically correlated with engine parameters such as engine rota-

tional speeds, temperatures, pressures, fuel flows, etc. [15]. With the knowledge of

these observable measurements, one can determine how an engine performance differs

from its healthy state. The most popular diagnostic method known as the gas path

analysis (GPA) utilizes this characteristic which was introduced by Urban in 1970s

[16] and which is then followed by different derivatives such as optimal estimation

based methods.

Linear gas path analysis (LGPA) is based on the linearization of the following

equation with respect to X

Y = F (P,X)

where P is an input vector such as ambinet pressure or temperature or other

environmental measurements and power setting parameter, and X is the component

independent variable such as efficiencies and mass flow rates.

Figure 1.3 shows the concept of this method which shows a link between faults,

performance parameters and the measured variables [15]. The non-linearity in an en-

gine model is analyzed by other researchers using this method [17, 18]. This method

is used to detect only faults which affect measurable variables. In other words, degra-

dations such as blade cracks or sudden failures such as fracture can not be detected

by using GPA because they do not have a direct effect on measurable variables.
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Figure 1.3: Conceptual framework of GPA [15].

1.1.3 Diagnostics

Fault detection and diagnosis (FDD) is a technique to detect faults based on the de-

viations between component parameters and their nominal values, and to determine

their locations and significance in a system being monitored [19]. Faults are generally

regarded as any kind of malfunction in a system which leads to system instability or

unacceptable performance degradation. Faults can occur in different parts of the en-

gine namely; actuators, sensors or system components. FDD contains fault detection,

isolation and fault identification [19]. Fault detection is a decision whether something

is going wrong in the system or not. It alerts the occurrence of the fault, while isola-

tion locates the component which is faulty and its type, and finally identification is

the task to determine the nature and the magnitude of the fault which is detected.

In the literature, fault isolation and identification are usually referred to as diagnosis.

Diagnosis is the art or act of identifying a condition from its signs or symptoms [5].

The overall goals of diagnosis are to correctly isolate and identify physical faults that
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consist of variety of problems or combinations of anomalies. A schematic view of the

gas turbine fault diagnosis is shown in Figure 1.4.

Figure 1.4: Gas turbine fault diagnosis approaches [16].

Traditionally, extra hardware, known as hardware redundancy, was used to achieve

fault diagnosis. However, this method is not practical because an increase in the

number of sensors contributes to an increase in cost, weight and complexity [20].

Consequently, analytical redundancy which eliminates the need for extra hardware

was introduced in early 1970s by Beard [21]. The first step in an analytical redundancy

FDD is to generate residual which is the difference between healthy model output and

the actual output. This residual would be used to decide whether or not faults have

occured by methods such as a threshold test on the value or other complex statistical

methods such as likelihood ratio testing [22]. The residual can then be processed using

signal processing methods or frequency analysis for fault isolation and identification

steps. A comparison between hardware and analytical redundancy is shown in Figure
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1.5.

Figure 1.5: Analytical versus Hardware redundancy based FDD [23].

Fault detection of jet engines has been reported in the literature using methods

such as model-based, data-driven, and expert system-based approaches, or a hybrid

methods. A review of these methods was performed by Marinai et al. [24]. Denny has

first used neural networks in gas turbine diagnosis applications in 1965 [25]. These

data-based methods were used extensively since 1989. Expert systems were first

introduced to gas turbine applications in the early 1980’s. These methods are still

under development. One of the major developments is the use of rule-based fuzzy

expert systems in the diagnosis of gas turbine engines.

Model-based fault diagnosis of jet engine based on a bank of linear Kalman filters

was proposed in [26]. Yedavalli et al. [27] present a non-linear dynamical model of

a two-spool turbofan engine in MATLAB/Simulink and diagnose sensor faults us-

ing Kalman filter. Recently, dynamic neural networks have been proposed for fault

diagnosis of non-linear systems. Valdes et al. [28] have developed a multilayer per-

ceptron network embedded with dynamic neurons for fault detection and isolation

of thrusters in the formation flight of satellites and fault detection had been done
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using dynamic neural networks by [29] for gas turbine engines. The authors in [30]

implement artificial neural networks for a high bypass ratio military turbofan engine,

and faults are detected in an aircraft engine with noisy sensor measurements with the

use of data-driven approaches [31]. Statistical analysis is also used to estimate faults

in an aircraft jet engine. This algorithm is then validated with the NASA C-MAPSS

model of commercial aircraft engine [32]. A regression-based approach was used for

detecting anomalies in aircraft performance during cruise flight [33]. Finally, Nan et

al. [34] have used the advantage of expert-based systems as a diagnose tool for two

different case studies; simulated data of a micro steam power unit and data performed

in a real process environment.

Fault isolation has been done in the literature using different methods. Multiple

model approach was implemented for the fault isolation of sugar evaporation pro-

cess in [35]. Al-Zyoud et al. [36] isolated faults using a self-organizing map network

followed by a linear vector quantization network and fault isolation of a satellites

actuator is accomplished by using recurrent neural network by Li et al. [37].

1.1.4 Prognostics

Machines usually go through degradation processes before they fail completely [38].

Prognosis is the process of predicting the future state of the system based on the

current state of the component and past operation profile, which is one of the ma-

jor challenges for control engineers [39]. The current measures of a variable along

with its past observations is used to develop the model to describe the relationship

between variables. This model is then used to extrapolate the variable into future.

The accuracy of all prognosis approaches is highly dependent on the accuracy of the
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measurements. Sensor noise, disturbance, instrument degradation and human errors

are among reasons which cause uncertainty in measurement values [18].

Traditionally, prognosis of machine components were calculated off-line based on

the statistical models of the mechanical properties of the material, operating con-

ditions and major disruptions such as an emergency shut-down of the component

from its full load. Nevertheless, with the progress in the area of prognosis, on-line

degradation rate will assist one in making decisions about the health and safety of

the component [40].

Prognosis is the ability to predict the time to failure or remaining useful life of

a subsystem which requires precise models to predict future machine health states.

However, for critical systems such as aircraft, it is used to warn before the machine

reaches a predetermined threshold, and therefore avoid the catastrophic failures or

aerial casualties. Generally speaking, prognosis is used in order to provide enough

time for maintenance planning and consequently, reduce unnecessary maintenance

actions [41].

In order to reach the safety goal through prognosis, current state of the compo-

nent and degradation progression should be described accurately [42]. ”prognosis is

the most difficult of maintenance tasks; one must be able to diagnose faults before

one can perform prognostics” [43]. Therefore, the progress which had been made in

fault detection and diagnosis is more extensive than prognosis. Different condition

parameters can be used in prognosis, namely vibration signature, oil analysis, acous-

tic data, temperature, pressure, moisture, etc. [7, 38].

Prognosis can generally be applied in three different approaches based on the

way the knowledge about the system is utilized. The hierarchy of different prognosis
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approaches based on their applicability and accuracy is shown in Figure 1.6.

Figure 1.6: Three prognosis methods [44].

The first one is the mathematical model-based framework where a priori knowl-

edge of the system is represented by the system mathematical model derived by using

physical fundamentals. Thus, it requires a specific mechanistic knowledge of the

equipment [7]. Orchard and Vachtsevanos [45] used a particle filter-based approach

to analyse the growth in a crack on a turbine engine blade. They reported that parti-

cle filtering is useful in dealing with complex dynamic systems and/or non-Gaussian

problems such as engines. Ray and Tangirala [40] used a non-linear stochastic model

of fatigue crack dynamics in mechanical structures and Abbas et al. [46] estimated

the remaining useful life of electrical power generation and storage (EPGS) such as
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battery and electrical loads using a mechanistic model. Hidden semi-Markov model

(HSMM) algorithm was developed and validated on a real-world helicopter rotor track

to predict the time to the next required rotor track maintenance [47]. Watson et al.

[48] predicted the remaining useful life of highly dynamic clutch systems using phys-

ical model of the system. Chelidze tracked battery degradation of a vibrating beam

system to estimate the remaining useful life for battery discharge process [49].

The performance of model-based prognosis mainly relies on the ability of the

dynamic model to follow the trend of the studying process [50]. The main advantage

of this approach is that it can incorporate physical understanding of the system under

study [51].

While model-based approaches provide acceptable results in terms of precision

and accuracy, it is usually quite challenging to find an exact mathematical model of

the system due to the existence of uncertainties, noise and disturbances to mimic the

real life of the system. Moreover, increasing the system non-linear complexities and

model due to the limitations of the analytical model-based technique, decrease their

reliability for health monitoring.

The second framework is the data-based or computational intelligence-based frame-

work which is based on the nominal and degraded data collected using statistical or

artificial intelligence techniques. Thus, these methods are suitable when there are

enough data to specify the dynamics of system under monitor. These approaches can

be divided into two categories: Artificial intelligence (AI) techniques and statistical

ones [51]. Among the AI techniques one can list the following:

• Neural networks (multi-layer perceptron, probabilistic neural networks, learning

vector quantization, self-organizing maps, etc.) [51],
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• Fuzzy rule-based systems and neuro-fuzzy systems [52],

• Decision trees [53],

• Graphical models (Bayesian networks, hidden Markov models) [54],

and among the statistical techniques we can list:

• Multivariate statistical methods (static and dynamic principle components (PCA))

[51],

• Linear and quadratic discriminant [51],

• Partial least squares [51],

• Canonical variants analysis [51],

• Signal analysis (Auto-Regressive model, etc.) [55],

Data-driven approaches based on the large amount of data that are available on-

line, such as artificial neural networks (ANN), neuro-fuzzy systems (NFs), and sup-

port vector regression (SVR) have become the primary prediction tools of complex

systems [56]. These methods are preferred when operational aircraft data is available

using sophisticated sensors and database software where data represent the systems

behaviour being monitored. Various works emphasize on using these methods for

prediction problems [57, 58].

Combination of a predetermined level of failure probability and auto regressive

moving average (ARMA) model is used to estimate the remaining useful life by Yan

et al. [59] . Hidden Markov model and proportional intensity model are considered

as powerful tools for prediction estimation in [54, 60], and Garga et al. [55] used a

signal analysis method for industrial gearbox prediction. Stochastic autoregressive
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moving average (ARIMA) models were also used in a prognostic system [61].

Among the intelligent-based approaches, artificial neural networks have received

a lot of attention due to their promising capabilities in learning the dynamics and

input-output relations of a system. There is no need to specify an exact model form

with using ANNs. Thissen et al. [111] applied three methods, namely, ARMA models,

support vector machines (SVM) and Elman networks for prediction of three different

data sets. ARMA models are easy and fast to use. However, they have a critical dis-

advantage which is their linear behaviour that makes it difficult to model non-linear

relations. SVMs training are much longer, but they yield a global solution in contrast

to other networks where the solution is based on the training.

Different neural network methods have been used in the area of prognosis be-

cause of their flexibility in generating suitable models. Vachtsevanos and Wang [58]

introduce a prognostics framework based upon concepts of dynamic wavelet neural

networks and its practicality is checked via a bearing example. Polynomial neural

networks were used as an estimation scheme for the analysis of normal and defective

vibration signatures in helicopter transmissions [63]. Huang et al. [64] predict the life

of ball bearings based on self-organizing map and back propagation neural network

methods.

Finally, the third framework includes the expert system-based or fuzzy rule-based

approaches, which use an expert knowledge of the system operation and its modes to

obtain a qualitative model of the system. In this approach, rules are used to represent

the situation under studying. The main advantage of expert systems is that it does

not need real data. However, a knowledgeable expert is needed to fix the rules to
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follow the structure of the component [2]. Frelicot [65] designed a prognostic adaptive

system based on fuzzy pattern recognition and Bonissone [66] used fuzzy logic as a

tool for prognosis. This approach in prognosis is not commonly used because of the

non-existence of numerical condition of data [41].

There are various researchers who combine one or more of these methods to take

advantage of each of them. Zhang [67] combines model-based and computational-

intelligent-based methods to increase the precision of the prediction. Remaining useful

life of a degraded gear is also predicted using both gear physical model and real-time

condition monitoring data [68]. Gao and Joo [104] compare three different time series

prediction using neural network and neuro-fuzzy systems and demonstrate that the

combination of these two methods outperform previous approaches. In [70] a fuzzy

back propagation network is presented to estimate the remaining useful time in in-

duction motors. Brotherton et al. [2] combined dynamically linked ellipsoidal basis

function (DL-EBF) neural network with rule extractors to the vibration data in gas

turbine engine prognostics. Fault detection, diagnosis and prognosis of an aircraft are

accomplished in [71] by using both model-based and data-driven approaches. These

combinations possibly offer more reliable prognostic results [43].

1.1.5 Artificial Neural Networks

Artificial neural network (ANN) is currently the most commonly used data-driven

approach in the prognostics literature. They consist of a layer of input nodes, one

or more layers of hidden nodes, a layer of output nodes which are interconnected via

weighted links [3]. The number of layers and the way the neurons and layers are

connected are dependent on the type of network. An example of a simple neural
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network is shown in Figure 1.7 [72]. Artificial neural networks which are based on

data-driven approaches do not require a detailed mathematical model of the system.

These methods are based on the real-time or historical data which are collected from

sensors to track, approximate and forecast the system degradation behaviour [88].

Figure 1.7: Simple example of a neural network [72].

Different studies have shown the merits of ANN such as performing faster than

system identification techniques in multivariate prognosis [74] and capturing com-

plex phenomenon without a priori knowledge. With the technology of sophisticated

sensors and database software, neural networks as a popular fault prognosis method

have been extensively studied and discussed in the literature. Recurrent neural net-

works (RNN) are used in [75] and [76] to trend condition monitoring indices and

forecast the next time step. Jianzhong et al. [77] demonstrate the concept of multi-

ple layer perceptron (MLP) neural networks to model the remaining useful life of a

NASA turbofan engine degradation simulation data set. Artificial neural network is

also used for modelling and prediction of complicated time series [78]. In [79], Ge-

braeel and Lawley develop a modular neural network-based degradation model that

utilizes degradation signals to compute residual life of a degraded rolling bearing.

Dragomir et al. [80] utilized adaptive neuro-fuzzy inference for stabilizing the error
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of the prognosis. Recurrent radial basis neural networks have been used by Zemouri

for prognosis of non-linear gas ovens [81]. The time to failure of a bearing system

using self-organizing neural network is developed in [82].

The strength of these methods is their capability to transform high-dimensional

noisy data into lower dimensional information which can be used for prognostic deci-

sions [51]. However, they are highly dependent on the system operational data. Neu-

ral networks have been successfully applied to fault prognosis problems due to their

capabilities to cope with non-linearity, complexity, uncertainty, noisy or corrupted

data. Neural networks are very good modelling tools in learning transformations that

map a set of inputs to a set of outputs.

1.1.6 Dynamic Neural Networks

Static neural networks suffer from some drawback; the information flow is in one

direction, from input to output, and there is no feedback in the system. Moreover,

there is no modelled time delays associated with the dynamics of the system. Con-

sequently, this kind of neural network is not applicable for use in a highly non-linear

dynamic system such as gas turbine engine. Dynamic neural networks solve the above

mentioned problem. Recently, dynamic neural networks have been developed due to

their high capabilities in modelling complicated non-linear dynamical systems. There

is an internal or external feedback in the DNN which provide us with the memory

of the system and can generate dynamic input-output behaviour. Most of the static

neural networks are used for off-line and steady state engine fault prognosis. In con-

trast, dynamic neural networks have the capability in modelling non-linear dynamic

systems [83].
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There are mainly two different architectures for DNN feedback; global feedback

and local one. The first can be achieved when the network output fed back to the

input layer as shown in Figure 1.8 while local feedback is a feedback from hidden

layers to the other layers as depicted in Figure 1.9.

Figure 1.8: Global recurrent network structure [84].

Yazdizadeh et al. [85] presented a form of dynamic neural networks where the filter

is placed after the activation function of the neuron. A dynamic wavelet neural net-

work is proposed by Vachtsevanos and Wang [58] to predict the failure using vibration

data from cracked bearings in industrial chillers. Vibration data from degradations
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Figure 1.9: Local neural network architecture [84].
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in helicopter gear boxes is trained using polynomial neural networks for prognostic

considerations [63], and Lee et al. [38] employed an Elman neural network for health

condition prediction. Wang et al. [52] compared the results of the prediction of fault

damage trend using two methods of recurrent neural networks and neuro-fuzzy in-

ference systems. They also proved the robustness of ANN approaches in their work

[86]. Jordan networks and Buffer networks with sigmoidal output and hidden units

are developed in [87] as a tool for time series prediction.

NARX networks which is a kind of dynamic neural networks have been used as a

tool for system identification and time series prediction in many applications. NARX

neural network is also used to model non-linear systems [88, 89]. Catalytic reforming

systems in a petroleum refinery are predicted using NARX [90] and non-linearity in

heat exchangers is modelled via this network [91]. A multi-step ahead NARX response

time predictor for MySQL database server has been proposed by Amani et al. [92].

It is concluded that this architecture is simple, non-linear, and measurements can be

obtained without any requirements on changing operating systems. Diaconescu [93]

tested the performance of NARX networks in prediction for different time series. On-

line multi-step ahead forecasting using NARX was implemented in [94]. NARX neural

network and Elman network are used to predict storm time in [167]. They concluded

that the NARX network shows much better capability than Elman network.

Elman neural network is used as a prognosis method in different areas to study the

behaviour of processes in time. Thissen et al. [111] compared three different methods;

namely support vector machines (SVM), Elman neural network and autoregressive

moving average (ARMA) models in time series prediction. Application of the radial

basis function (RBF) neural network and Elman network in CBM is presented in

[117]. They concluded that if the maintenance strategy considers more attention on

the continuously running process to avoid unnecessary shut-downs, Elman network
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outperforms RBF. Elman network is used by Yang et al. [112] to predict burning zone

temperature in the cement rotary kiln calcining process which is a kind of functional

equipment for fuel combustion, heat exchange, and chemical reaction.

1.2 Thesis Contributions

Solutions to the problem of jet engine prognosis when degradations occur in the engine

are developed for performing condition-based maintenance actions. The contributions

of this thesis are detailed as follows:

• Compressor fouling and turbine erosion are modelled in the single spool jet

engine by considering the effects of these deteriorations on the thermodynamic

parameters of the engine. Concurrent degradations consisting of compressor

fouling and turbine erosion are also modelled for different degradation rates.

• Compressor fouling, turbine erosion, and concurrent degradations of these de-

teriorations are modelled in the GSP software. The generated data are then

compared to the data generated from our Simulink model to evaluate the va-

lidity and accuracy of the data which are used in this work.

• Different NARX neural network architectures are developed to predict multi-

flights ahead turbine temperature. These networks are trained and evaluated

by various amount of data points. The statistical error measures such as mean,

standard deviation, and RMSE for each network are calculated and the optimal

networks are determined for performing temperature predictions.

• Elman network structures are applied to the jet engine degraded data. The

networks are trained by various number of training and testing data points and

22



their performance in multi-flights ahead prediction are compared collectively to

determine the best network for engine temperature prediction.

• Normalized Bayesian information criterion is used as a method to compare

the results of the prediction for the NARX networks and the Elman neural

networks. It has been observed that the Elman neural network has better

prediction capabilities in comparison to the NARX neural network.

1.3 Thesis Outline

The remainder of this thesis is organized as follows. In Chapter 2, the background in-

formation on the architecture of the two proposed neural networks, namely the NARX

and the Elman neural networks as well as their learning rules are briefly reviewed.

The non-linear mathematical model of a single spool jet engine and its equations are

presented. Degradations in the jet engine are also considered. Compressor fouling

and turbine erosion are modelled in our Simulink model. The generated data are then

validated and evaluated with the data generated from the GSP software discussed in

Chapter 2. The proposed multi-flights ahead turbine temperature prediction by using

the NAXR neural network as well as the simulation results for different scenarios and

cases are presented in Chapter 3. The results of applying the Elman neural network

for the jet engine prediction are presented in Chapter 4. In Chapter 5, our proposed

methods are compared together. The concluding remarks followed by the future work

are also presented in this chapter.
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Chapter 2

Background Information

In this chapter, we present an overview of the background material related to our

work. In this thesis we have studied degradation prediction of aircraft jet engines

using neural network methodologies. We first describe and introduce non-linear au-

toregressive neural network with exogenous input (NARX) as an efficient tool to

predict non-linear dynamic systems. Next, we describe the Elman neural network

which will later be used for engine temperature prediction. The non-linear mathe-

matical model of a single spool jet engine that is used to develop a Simulink model of

the system for data generation is briefly described. Common degradations in the jet

engine are explained, and 2 important ones, namely compressor fouling and turbine

erosion are modelled in our Simulink model. These degradations are also modelled in

the gas turbine simulation program (GSP). Finally, the generated data are validated

and evaluated with the data generated from the GSP software.
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2.1 Non-linear Autoregressive Neural Networks with

Exogenous Input (NARX)

Among data-driven methods, artificial neural networks (ANN) use data to capture

functional relationships between input and output measurements. They imitate the

functional behavoiur of neural systems in the nature. They are dependent on both

weights and input-output functions (activation functions) that are specified for the

neurons. Common activity functions are the sigmoidal or the tangent hyperbolic

functions [95].

One of the most convenient model forms for prediction purposes is the non-linear

autoregressive model with exogenous input (NARX) where the current output value

is dependent on the lagged inputs and outputs that map through the network non-

linear functions [96]. This non-linear function can be described as a feed-forward neu-

ral network, polynomial expansion, radial basis functions, wavelets, support vector

machines, etc. [98]. This network is an important model of discrete-time non-linear

systems which uses global feedback from its output layer [97].

Although recurrent architectures have feedback from hidden neurons, NARX net-

work feedback comes only from the output neurons [102]. Gradient-descent learning

in NARX networks is more effective than in other recurrent networks due to the

embedded memory of these networks which reduces the sensitivity to long-term de-

pendencies [103]. It was also stated that convergence in these networks is much faster

than other networks [104, 105]. Choosing a suitable network and memory for predic-

tion are important issues in NARX networks where the variance of models predictions

increases as the number of regressors increase [106].
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2.1.1 NARX Structure

NARX networks use a tapped delay line from the input and delayed connections from

the output of the last layer to the input layer. There are two different structures for

the NARX network [107], as described below:

• Parallel (P ) mode in which the estimated output (the network’s output repre-

sented as ŷ(k)) is fed back to the input of the feed-forward neural network as

part of the standard NARX structure as shown in Figure 2.1, to yield

ŷ(k + 1) = f [yP (k); u(k)] = f [ŷ(k), . . . , ŷ(k − dy + 1);u(k), . . . , u(k − du + 1)],

(2.1.1)

where du and dy are input delays and output delays, respectively, and f is the

non-linear mapping function.

Equation (2.1.1) implies that the network receives the past and the present

values of the input as well as the past and the present estimated values of the

output as inputs and the next value of the output as the target in the training

phase. The trained network is then used to estimate the value of the next step

for the unseen data in the testing phase.

NARX neural network can be trained to predict multi-steps ahead based on

equation (2.1.2) where the present and the past observations u(k),. . .,u(k−du+

2),u(k− du + 1) and the present and the past estimated outputs ŷ(k),. . .,ŷ(k−

dy + 2),ŷ(k − dy + 1) are used as input variables, and the output in the n-step

ahead as the target value in the training phase, that is

ŷ(k+n) = g(u(k−du+1), u(k−du+2), . . . , u(k), ŷ(k−dy+1), . . . , ŷ(k)) (2.1.2)

where du and dy are input delays and output delays, respectively, and g is the
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non-linear mapping function.

As an example, to train the network to predict n=5 steps ahead output, the

network is trained using the present and the du past values of the input based

on the number of input delays and the estimated present and the past dy values

of the output based on the number of output delays as the input variables. The

value of the output in the 5 steps ahead is treated as the target in the training

phase. When the network is trained, the available data up to the present instant

are given to the network to predict the 5-step ahead output value.

• Series-parallel (SP ) structure in which the actual output is used instead of

feeding back the estimated output as shown in Figure 2.2, to yield

ŷ(k + 1) = f [ySP (k); u(k)] = f [y(k), . . . , y(k− dy + 1);u(k), . . . , u(k− du + 1)],

(2.1.3)

where du and dy are input delays and output delays, respectively, and f is the

non-linear mapping function.

Based on equation (2.1.4), the present and the past du values of the input

variables and the actual present and the past dy values of the output variables

are given as the inputs to the network, while the n-step ahead value of the

output is treated as the target of the system in the training phase. When the

network is trained, the available data up to the present instant are given to the

network to predict the n-step ahead output variable.

ŷ(k+n) = g(u(k−du+1), u(k−du+2), . . . , u(k), y(k−dy+1), . . . , y(k)) (2.1.4)
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Figure 2.1: Parallel architecture for the NARX network [108].
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Figure 2.2: Series-parallel architecture for the NARX network [108].

29



The difference between the NARX network and other recurrent networks is that

the feedback comes only from the output layer and not the hidden layers. When the

output memory order of the NARX network is zero, a NARX network becomes a

time delay neural network (TDNN) which has only a tapped delay line of the input

nodes [110].

2.1.2 NARX Network Learning Algorithm

Neural network learning can be seen as a function optimization problem to determine

the best network parameters to minimize the network error. Two different approaches

are available based on the type of network used.

• Supervised learning, where both input and output pairs are presented to the

network during the training process so that the network can adapt its weights

in the way to obtain desired output from the input.

• Unsupervised learning, where the neural network is only provided with the input

values, and the network adjusts the weights based solely on the input values

and the current network output. The training algorithm modifies net weights so

that it produces outputs that are consistent, that is, application of two similar

inputs produces the same pattern of outputs.

Basic back propagation is one of the most popular learning methods for perform-

ing the supervised learning task. Its goal is to adjust the parameters of the network

based on a given set of input-output pairs in order that it generalizes well for patterns

from outside the training set. The idea of the standard back propagation is widely

applied in static contexts and has extensions to dynamical systems. Dynamic net-

works can be trained using standard optimization methods. However, the gradient

and the Jacobians that are required for these methods cannot be computed by using
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standard back propagation algorithm [100]. Dynamic back propagation algorithm is

required to compute the gradient for dynamical networks which is used in this thesis.

The weight and bias updates use the Levenberg-Marquardt optimization [93] which

minimizes a combination of squared error of estimated and actual values of output

and weights, and then determines the correct combination to minimize a non-linear

function. This algorithm has the fastest convergence in networks that contain up to

a few hundred weights and it has a stable convergence [93]. It uses both the stability

of the steepest descent method and the speed of the Gauss-Newton algorithm in its

convergence.

The proper synaptic weights of the network can be obtained by using the batch

mode of the backpropagation learning algorithm to find the minimum errors during

the training step where the error reaches a stable condition. The cost function or

the performance index is minimized by the steepest descent method. The trained

network as well as its weights stay fixed to be used in the testing step [94].

The cost function or the performance index (F ) which is to be minimized is defined

as

F = 1/2[
K∑
k=1

(dk − yk)2] (2.1.5)

where dk is the desired value of the kth output, yk is the network value of the kth

output, and K is the number of the neuron outputs.

Equation (2.1.5) can be written as

F = ETE (2.1.6)
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where E is the error vector defined as,

E = [e1 . . . eK ]T (2.1.7)

where

ek = dk − yk, k = 1, . . . , K (2.1.8)

In the training process, the value of the weights in each iteration can be calculated

as

w(t+ 1) = w(t) + ∆w(t) (2.1.9)

where

∆w(t) = (J(t)TJ(t) + µ(t)I)−1J(t)TE(t) (2.1.10)

and where µ is the learning rate, I is an identity matrix, and J is the Jacobian matrix

which is defined as [162]:

J =



∂e1
∂w1

∂e1
∂w2

. . . ∂e1
∂wN

∂e2
∂w1

∂e2
∂w2

. . . ∂e2
∂wN

...
...

...
...

∂eK
∂w1

∂eK
∂w2

. . . ∂eK
∂wN


(2.1.11)

where N is the total number of parameters (weights+biases). For µ = 0, the above

equation becomes the Gauss-Newton method. The µ parameter is automatically

adjusted at each iteration to secure convergence.

The Levenberg-Marquardt algorithm can be shown according to the following

steps:

1. Initialize the weights and the learning parameters to small numbers for the first

iteration (t = 1).
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2. Compute the sum of the squared errors over all training patterns as in equation

(2.1.5).

3. Use equation (2.1.10) to obtain the increment of the weights ∆w.

4. Use equation (2.1.9) to obtain the new weights.

5. Recompute the cost function (equation (2.1.5)) with the new weights.

6. If the current total error has increased, then increment the step to (t+1) (such

as reset the weight vector to the previous value) and increase the learning parameter

µ, and perform the update again.

7. If the current total error is decreased, then accept the step and decrease the

learning parameter µ.

8. Go to step 5 with the new weights until the current total error is smaller than

the required value.

Calculation of the Jacobian Matrix (J)

The Jacobian matrix in equation (2.1.11) calculates the first-order partial deriva-

tives of the error with respect to the weights. Forward calculation from the input

layer to the hidden layer, and from the hidden layer to the output layer can be now

described below.

Consider the weight wi,j of the input layer i to the hidden layer j, wj,k of the

hidden layer j to the output layer k. Also, let outj denote the output of the hidden

layer. The hidden layer activation function is selected as a sigmoidal function and

denoted by f(.). The NARX network input at time t is the total of the present and

the past values of the input and the present and the past values of the estimated

output. Therefore, the input to the network is Ii(t), i = 1, 2, 3, ...,M where M is

the total input and output delays, and the output at time t is denoted by yk(t),

k = 1, 2, 3, ..., K. Assume that the NARX network iterations are denoted by t, so

that one calculates [173]:
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netj(t) =
M∑
i=1

wi,jIi(t) (2.1.12)

outj(t) = f(netj(t)) (2.1.13)

netk(t) =
H∑
j=1

wj,koutj(t) (2.1.14)

where H denotes the number of hidden layer neurons. To minimize the cost function

F , one needs to compute:

∆w ∝ − ∂e
∂w

(2.1.15)

At iteration t for the output layer with a particular weight calculated from the

forward computation we have

∆wk,j(t) ∝ −
∂ek(t)

∂wk,j(t)
(2.1.16)

However, the error is not directly a function of the weight. Therefore, by using

the chain rule and expanding equation (2.1.16), we have:

∆wk,j(t) = −∂ek(t)
∂yk(t)

∂yk(t)

∂netk(t)

∂netk(t)

∂wk,j(t)
(2.1.17)

∂ek(t)

∂yk(t)
=
∂1/2(dk(t)− yk(t))2

∂yk(t)
= −(dk(t)− yk(t)) (2.1.18)

∂yk(t)

∂netk(t)
=
∂(1 + exp−netk(t))−1

∂netk
=

exp−netk(t)

(1 + exp−netk(t))2
= yk(t)(1− yk(t)) (2.1.19)
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∂netk(t)

∂wk,j(t)
=
∂(wk,j(t)outj(t))

∂wk,j(t)
= outj(t) (2.1.20)

The weight update rule for a hidden to the output weight:

Based on the above derivation the weights are now adjusted according to the

following,

∆wk,j(t) = (dk(t)− yk(t))yk(t)(1− yk(t))outj (2.1.21)

Equation (2.1.21) can be simplified as shown in equation (2.1.22), where the δ term

represents the product of the error with the derivative of the activation function as

∆wk,j(t) = δk(t)outj(t) (2.1.22)

with

δk(t) = (dk(t)− yk(t))yk(t)(1− yk(t)) (2.1.23)

The weight update rule for an input to the hidden weight:

Similarly, the weights are adjusted as follows,

∆wj,i(t) = −[
∑
k

∂ek(t)

∂yk(t)

∂yk(t)

∂netk(t)

∂netk(t)

∂outj(t)
]
∂outj(t)

∂netj(t)

∂netj(t)

∂wi,j(t)
=

[
∑
t

δkwk,j(t)]outj(t)(1− outj(t))ui = δjIi

(2.1.24)

Based on the information given about the NARX structure, the neural network’s

input includes feedback from the network output. Therefore, this network has the

capability to capture the dynamics of a non-linear dynamical system and it can rep-

resent the system dynamic features. This network has a simple architecture. The

connections between neurons are indicated with the weights. These weights are up-

dated and the errors are calculated. Iterations are preformed until the desired error
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for the network is obtained. The proposed approach will be evaluated in Chapter 3 for

multi-steps ahead prediction. The jet engine turbine temperature will be predicted

using different simulations in this thesis.

2.2 Elman Network

An Elman network [163] is in principle a regular feed-forward network with local

feedback which is used to build memory in the system. It consists of three layers of

input, hidden and output layers. In contrast to the NARX network, the output is

not fed back to the input layer. Otherwise, special units called context units save

previous output values of the hidden layer neurons. These units are hidden in the

sense that they interact exclusively with other nodes internal to the network, and not

the outside world. These values are then fed back to the input layer as an additional

input to the system [111].

At time (t), the input units receive the first input in the sequence which might be

a single scalar value or a vector depending on the nature of the problem. Both the

input units and context units activate the neurons in the hidden layer. The hidden

neurons then activate the output neurons. They are also fed back to activate context

units. The output is compared with the actual ones and back propagation of error is

used to adjust the weights. At the next time step (t + 1), this sequence is repeated.

At this time, the context units contain units which are exactly the hidden neuron

values at time (t). These context units thus provide the network with memory [163].

Elman network with three layers is shown in Figure 2.3.

In this network, the neurons of the input layer, hidden layer and output layer are

fully connected by weight matrices. Context units which save the previous values of

the hidden neurons are also connected to the hidden layer through connection weights.

Based on this methodology, the network output is related to the current input data
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Figure 2.3: Elman network architecture [112].
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as well as historical input data due to the context neurons. This implies that the

output is a function of both previous activation stated and current data [117].

2.2.1 Elman Network Learning Algorithm

As mentioned in Section 2.2, current inputs of the hidden layer consist of input signals

which go to the hidden layer through connection weights w and previous time steps of

the hidden layer fed back to the input layer. After the signal is processed in the hidden

layer, it is sent to the output layer where a decision is made as to whether the output

is expected or not. If the output differs from the expected one, the error returns along

the original connection path. This iteration is performed until the desired error for

the network is achieved. Elman network error at any time (t) is evaluated according

to the following error squared function [112]:

e(t) = 1/2
K∑
k=1

(dk(t)− yk(t))2 (2.2.1)

where dk(t) is the desired value of the kth output neuron and yk(t) is the output

of the Elman network at time t, and K is the number of the output layer neurons.

Consider the weight wi,j of the input layer i to the hidden layer j, wj,k of the

hidden layer j to the output layer k, and weight wl,j of context unit l to the hidden

layer j. The context layer neuron input defines as netCl. Also, outj is the output

of the hidden layer. Hidden layer activation function f(.) is a sigmoidal function.

Elman network input and output are recorded as ui(t), i = 1, 2, 3, ..., N and yk(t),

k = 1, 2, 3, ..., K respectively, where ui(t) and yk(t) are sequential input and output

data. Assume the Elman network iterations are denoted by t, t = 1, 2, 3, ..., T so that

one calculates:
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netj(t) =
N∑
i=1

wi,jui(t) +
L∑
l=1

wl,jnetCl(t) (2.2.2)

where L is the number of context layer nodes which is equal to the hidden layer nodes.

outj(t) = f(netj(t)) (2.2.3)

netk(t) =
L∑
j=1

wj,koutj(t) (2.2.4)

where the tth context layer neuron input netCl(t) is the same as the (t − 1)th

neuron output of the hidden layer of outj(t− 1), that is

netCl(t) = outj(t− 1) (2.2.5)

This network still uses the back propagation principle of the gradient decent error

feedback, where the difference is the indicator function that is defined as the overall

approximation error within a time interval [0, T ], as follows

e = 1/2
T∑
t=1

K∑
k=1

(dk(t)− yk(t))2 (2.2.6)

where dk(t) is the desired output of the network at time t and yk(t) is the network

output at time t. To minimize the function e, one needs to compute:

∆w ∝ − ∂e
∂w

(2.2.7)

At time t for the output layer with a particular weight calculated from the forward

computation there is
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∆wk,j(t) ∝ −
∂e

∂wk,j(t)
(2.2.8)

However, the error is not directly a function of the weight. Therefore, by using

the chain rule and expanding equation (2.2.8), we have:

∆wk,j(t) = − ∂e(t)

∂yk(t)

∂yk(t)

∂netk(t)

∂netk(t)

∂wk,j(t)
(2.2.9)

∂e(t)

∂yk(t)
=
∂1/2(dk(t)− yk(t))2

∂yk(t)
= −(dk(t)− yk(t)) (2.2.10)

∂yk(t)

∂netk(t)
=
∂(1 + exp−netk(t))−1

∂netk
=

exp−netk(t)

(1 + exp−netk(t))2
= yk(t)(1− yk(t)) (2.2.11)

∂netk(t)

∂wk,j(t)
=
∂(wk,j(t)outj(t))

∂wk,j(t)
= outj(t) (2.2.12)

The weight update rule for a hidden to the output weight:

Based on the above discussion the weights are now adjusted according the follow-

ing,

∆wk,j(t) = (dk(t)− yk(t))yk(t)(1− yk(t))outj(t) (2.2.13)

Equation (2.2.13) can be simplified as shown in equation (2.2.14), where the δ term

represents the product of the error with the derivative of the activation function as

∆wk,j(t) = δk(t)outj(t) (2.2.14)

with

δk(t) = (dk(t)− yk(t))yk(t)(1− yk(t)) (2.2.15)
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The weight update rule for an input to the hidden weight:

Similarly, the weights are adjusted as follows,

∆wj,i(t) = −[
∑
k

∂e(t)

∂yk(t)

∂yk(t)

∂netk(t)

∂netk(t)

∂outj(t)
]
∂outj(t)

∂netj(t)

∂netj(t)

∂wi,j(t)
=

[
∑
t

δkwk,j(t)]outj(t)(1− outj(t))ui = δj(t)ui(t)

(2.2.16)

The weight update rule for the context unit to the hidden weight:

Similarly, the weights are adjusted as follows,

∆wj,i(t) = −[
∑
k

∂e(t)

∂yk(t)

∂yk(t)

∂netk(t)

∂netk(t)

∂outj(t)
]
∂outj(t)

∂netj(t)

∂netj(t)

∂wi,j(t)
=

[
∑
k

δk(t)wk,j(t)]outj(t)(1− outj(t))netCl(t) = δj(t)netCl(t)

(2.2.17)

Based on the information given about the Elman neural network architecture, the

neurons in the context layer hold a copy of the output of the hidden neurons. The

value of these neurons are used as an extra input for all the hidden neurons in time

steps later. Therefore, this feedback is used to construct memory in the network. For

this reason, this network is suitable for learning the dynamics of non-linear systems.

It is trained with gradient descent backpropagation. The weight values are optimized

during the stage of training until the difference between the actual output and the

network’s output becomes lower than the desired one. The performance of this net-

work will be tested in jet engine’s turbine temperature prediction by using several

scenarios in Chapter 4.
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2.3 Performance Evaluation

There are many ways to evaluate the performance of a model representation. Mean

squared error (MSE) is one of the ways to quantify the difference between values esti-

mated and actual values of the quantity being estimated. This measure of the average

of the squared of errors used in [104] and [87]. Zhang et al. [114] used normalized

mean squared error (NMSE) to calculate the prediction error of the neuro-fuzzy sys-

tem. MSE is used in [115] along with the mean absolute error (MAE) and mean

absolute percentage error (MAPE). MSE and mean absolute deviation (MAD) are

selected to evaluate the forecasting method by Zhang [67]. Root mean squared error

(RME) is another way of evaluating the representation performance which is used

extensively in the literature [116, 117, 107] . Shen et al. [94] evaluated the perfor-

mance of a multi-step prediction with NARX network using RMSE [94]. RMSE is

also employed to evaluate forecasting capability in [118].

In this thesis, standard deviation of error, mean of the error and RMSE are used

to evaluate the performance of the network. In order to calculate the RSME, the

difference between estimated and actual values are each squared and then averaged

over the sample period and then rooted. The mathematical formula is shown below:

RMSE =

√√√√√ K∑
k=1

(yk − ŷk)2

K
, (2.3.1)

where K represents the number of data points to be predicted, yk is the actual

value and ŷk is the predicted value. The RSME can range from 0 to ∞. It should

be noted that lower values show better performance in prediction.
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2.4 Uncertainty Management and Prediction In-

tervals

In gas turbine performance analysis, gas path measurements such as turbine and

compressor temperature or pressure are used to recognize that the engine goes through

degradations or faults. This fact necessitate the importance of measurements for

reliable prognosis. To overcome uncertainty in measurements prediction bounds are

introduced [119].

In statistical measures, prediction bounds are the estimate of the upper and the

lower bounds which the future observations will fall within these bounds as an ideal

way of quantifying the degree of uncertainty around a specific parameter [120].

Lower and upper bounds (denoted by l and u) for a future observation X in a

normal distribution with known mean µ and standard deviation σ can be calculated

as [121]:

γ = P (l < X < u) = P (
l − µ
σ

<
X − µ
σ

<
u− µ
σ

) = P (
l − µ
σ

< Z <
u− µ
σ

) (2.4.1)

where Z = x−µ
σ

. Hence,

l − µ
σ

= −z, u− µ
σ

= z (2.4.2)

or

l = µ− zσ, u = µ+ zσ (2.4.3)

where z is defined as:
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γ = P (−z < Z < z) (2.4.4)

or equivalently,

P (Z > z) = 1/2(1− γ) (2.4.5)

Therefore, the prediction interval can be written as [µ− zσ, µ+ zσ].

There are different values associated with z for different probabilities. These values

are shown in Table 2.1.

Table 2.1: z value for different probabilities [122].

Probability Percentage z

50% 0.67
90% 1.64
95% 1.96
99% 2.58

2.5 Jet Engine Mathematical Model

Gas turbine engines are used in many industrial and aerospace applications. One

kind of gas turbine called jet engine is a reaction engine used to generate high-speed

thrust by jet propulsion in accordance with Newton′s laws of motion.

Based on the work of Naderi et al. [123] on the modelling of an aircraft jet engine,

a MATLAB/Simulink model for a single spool jet engine is developed. The simu-

lation model was developed by using mechanical, aerodynamic and thermodynamic

relationships between the components of the system. The information flow among

different parts of a single spool jet engine is shown in Figure 2.4.
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Figure 2.4: Schematic view of a single-spool jet engine [124].

Different components of a single spool jet engine can be described as:

• Air intake (Diffuser)

In the jet engine, a proportion of the incoming air goes through the air intake

and diffuser to decelerate the air relative to the engine where a temperature

and pressure rise known as a ram effect is associated with this deceleration. By

assuming adiabatic process (process where there is no heat exchange between

the system and the environment) the temperature and pressure relative to the

environment can be computed as:

Pd
Pamb

= [1 + ηd
γ − 1

2
M2]

γ
γ−1 , (2.5.1)
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Td
Tamb

= 1 +
γ − 1

2
M2, (2.5.2)

where Pd denotes diffuser pressure, Pamb is the ambient pressure, ηd denotes the

diffuser efficiency, γ denotes the heat capacity ratio, M is the Mach number, Td

diffuser temperature, and Tamb denotes the ambient temperature.

• Compressor

The air goes through the compressor to provide high pressure air for the combus-

tion chamber. Given the pressure ratio (πc) and the corrected rotational speed

( N√
θ
), one can obtain the corrected mass flow rate ( ṁC

√
θ

δ
) and efficiency (ηC)

from the performance map by using a proper interpolation technique, where

(θ = Ti
To

) and (δ = Pi
Po

), i.e. ( ṁC
√
θ

δ
= fṁC( N√

θ
, πC)) and (ηC = fηC( N√

θ
, πC)).

When these parameters are obtained, the compressor temperature rise and the

mechanical power are calculated as follows [125]:

To
Ti

= [1 +
1

ηC
(πC

γ−1
γ − 1)], (2.5.3)

where To is the compressor output temperature and Ti is the compressor input

temperature.

WC = ṁCCp(To − Ti), (2.5.4)

It should be noted that the power consumed by the compressor (WC) is related

to the speed of the shaft wC =
J N·2π

60

2

2
where J is the momentum of inertia of

the shaft and N is the speed of the shaft. Cp is the specific heat at constant

pressure, and ṁC is the compressor mass flow rate.
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• Combustion Chamber

The combustion chamber represents both the energy accumulation and volume

dynamics between compressor and turbine. Fuel and high pressure air is burned

and the temperature is increased. Combustion chamber dynamics can be rep-

resented as

ṖCC =
PCC
TCC

ṪCC +
γRTCC
VCC

(ṁC + ṁf − ṁT ), (2.5.5)

ṪCC =
1

cνmCC

[(cpTCṁC + ηCCHuṁf − cpTCCṁT )− cνTCC(ṁC + ṁf − ṁT )],

(2.5.6)

where PCC is the combustion chamber pressure, TCC denotes the temperature

in the combustion chamber, and VCC the volume of the combustion chamber.

R denotes the Reynold′s number, ṁC compressor mass flow rate, ṁf fuel mass

flow rate, ṁT turbine mass flow rate, cν specific heat at constant volume, ηCC

the combustion chamber efficiency, and Hu is the fuel specific heat.

• Turbine

Kinetic energy and high temperature released in the combustion chamber due

to the air and fuel burning is now used to drive the compressor and accessories

which cause a drop in the temperature. However, it should be noted that

a high portion of produced power is used internally to drive the compressor.

Saravanamuttoo et al. [126] concluded that around 75% of the power is required

to drive the compressor. Based on [125], having pressure ratio (πT ) and the

corrected rotational speed ( N√
θ
), the corrected mass flow rate ( ṁT

√
θ

δ
) and the

efficiency (ηT ) are calculated from the performance maps (these maps are from
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the software package (GSP) [164]), i.e. ( ṁT
√
θ

δ
= fṁT ( N√

θ
, πT )).

The temperature drop and the mechanical power are

To
Ti

= [1− ηT (1− πT )
γ−1
γ ], (2.5.7)

WT = ṁTCp(Ti − To), (2.5.8)

where To is the turbine output temperature, Ti denotes the temperature in the

turbine inlet, and WT is the power generated by turbine.

• Nozzle

The gas leaves the turbine at a pressure greater than atmosphere. Thus, it goes

through a nozzle to decrease its pressure. It also expands to higher velocity

before being discharged to the environment to produce thrust. The nozzle exit

temperature Tn0 is given by

Tni − Tno = ηnTno[1− (
1
Pni
Pamb

)
γ−1
γ ], (2.5.9)

where Tni denotes the nozzle inlet temperature, and Tno denotes the nozzle

output temperature, ηn is the nozzle efficiency, Pni denotes the nozzle inlet

pressure, and Pamb is the pressure of the ambient.

Rotor and volume dynamics are considered to obtain the non-linear dynamics of

the system. The engine components are considered to model an imbalance mass

flow rate for developing volume dynamics of the system. Heat transfer dynamics

is caused by considerable differences between the air stream temperature and

components temperature due to a large power excursion, e.g., during start up
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or rapid maneuvers of an aircraft [127]. This effect is not considered since this

model is concerned with commercial single spool jet engine at normal operating

conditions. A schematic depicting the main modules and the overall information

flows are shown in Figure 2.5.

Figure 2.5: The aircraft jet engine modules and information flow chart [123].

• Rotor Dynamics

Energy balance between the shaft and the compressor contributes to the follow-

ing equation where E is the energy of the turbine, ηmech denotes the mechanical

efficiency, and power of the turbine and the compressor represented by WT and

WC respectively.

dE

dt
= ηmechWT −WC (2.5.10)
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• Volume Dynamics

The unbalance mass flow rates between different components are considered by

the volume dynamics. Assuming that the gas has zero speed and homogeneous

properties over volumes, it can be defined by the following equation:

Ṗ V = RT (
∑

ṁin −
∑

ṁout), (2.5.11)

where V is the volume, P is the pressure, R denotes the Reynold′s number, T

temperature, ṁin denotes the inlet mass flow rate, and ṁout denotes the outlet

mass flow rate.

Now, the temperature, the pressure, and the rotational speed can be obtained from

the above non-linear equations for each component. The set of non-linear equations

corresponding to a single spool jet engine is obtained by [123] which show that our

system is a non-linear system of 4th order given by

ṪCC =
1

cνmCC

[(cPTCṁC+ηCCHuṁf−cPTCCṁT )−cνTCC(ṁC+ṁf−ṁT )], (2.5.12)

Ṅ =
ηmechṁT cP (TCC − TT )− ṁCcP (TC − Td)

JN( π
30

2)
, (2.5.13)

ṖT =
RTMi

VMi

(ṁT +
β

1 + β
ṁC − ṁn), (2.5.14)

ṖCC =
PCC
TCC

ṪCC +
γRTCC
VCC

(ṁC + ṁf − ṁT ), (2.5.15)

where TCC is the temperature in the combustion chamber, N defines the rotor speed,

mCC is the mass flow in the combustion chamber, cν is the specific heat at constant

volume, cp denotes the specific heat at constant pressure, TC denotes the compres-

sor temperature, ṁC denotes the compressor mass flow rate, ηCC is the combustion

chamber efficiency, Hu denotes fuel specific heat, ṁf denotes the fuel flow mass flow
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rate, ηmech denotes the mechanical efficiency, Td denotes the diffuser temperature,

ṁn denotes the mass flow rate in the nozzle, β is the bypass ratio, TMi is the mixer

temperature, and VMi is the volume of the mixer, and PCC denotes the combustion

chamber pressure.

The input of the single spool engine is the power level angle (PLA) which is related

to the mass flow rate through a variable gain. Dynamics for the fuel mass flow rate

is shown as

τ
dṁf

dt
+ ṁf = Gufd, (2.5.16)

where τ denotes the time constant, G is the gain associated with fuel valve, and ufd

denotes the fuel demand which is computed by using a feedback from the rotational

speed [165].

The engine model in this thesis has seven (7) measurements namely compres-

sor temperature, compressor pressure, combustion chamber temperature, combustion

chamber pressure, rotor speed, turbine pressure, and finally turbine temperature.

However, practically and being as close as possible to a realistic engine, it is hard

to measure the temperature of combustion chamber due to high temperature and

chemical activities inside the combustion chamber [128], so the engine measurable

parameters decrease to six (6).

The engine goes through different operating regimes in each flight, namely starting

thrust, take-off, acceleration, climbing, cruise, deceleration, shutdown, etc. A simple

aircraft mission profile is depicted in Figure 2.6.

2.5.1 Engine Data Generation

The data used in this thesis are generated by using the MATLAB/Simulink model

based on the equations described in the previous section as well as those in [123]. The
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Figure 2.6: Aircraft mission profile [1].

engine model is operating in its take-off mode when the fuel usage is in its maximum

value and maximum thrust is provided. The Mach number changes from 0−0.2 in 20

seconds of engine simulation time. The fuel changes in order to maintain the thrust

generated by the engine constant. The thrust is measured based on the egines pressure

ratio (EPR) which is the ratio between exhaust pressure and pressure entering the

compressor [1]. The initial ambient parameters are set corresponding to the take-

off mode. This leads to the ambient condition of Tamb = 288K and Pamb = 1.0133

atmosphere. In order for the model to be as close as possible to the practical engine

operating measurement, noise was added to the system based on Table 2.2.

Table 2.2: Noise standard deviations [107].

CT CP TT TP N Ẇf

0.23 0.164 0.097 0.164 0.051 0.51
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where CT denotes the compressor temperature, CP denotes the compressor pres-

sure, TT denotes the turbine temperature, TP denotes the turbine pressure, N is the

speed of the rotor, and Ẇf is the fuel flow rate.

2.6 Degradation Modelling

2.6.1 Overview

The function of a gas turbine is the result of the cooperation of different components

which effects from tear and wears over time that can affect the operation of the system

adversely [131]. Each type of aero-engine deterioration has an adverse effect on the

performance of the aircraft resulting in reduced thrust and increased costs [1]. It

should be mentioned that due to the variety of operational and design factors for

engine component, it is usually difficult to control the speed of degradation [131].

Degradations are usually divided into two main categories; recoverable in which

the degradation mechanism can be recovered. These losses can be reversed by oper-

ational processes such as keeping the inlet and outlet pressures low, or the losses due

to fouling that can be regained by compressor washing. Non-recoverable degradations

are the result of mechanical problems which in turn cause damages to the aerofoils.

Corrosion, erosion, loss of surface finish on blades, and increased tip clearance are ex-

amples of these kinds of deterioration [132]. After these losses occur, the component

has to be replaced.

The common degradations in gas turbines can be divided into the following cate-

gories

• Fouling

It is caused by the adherence of particles in the range of 2 − 10µm or less to

aerofoils and surfaces which will in turn contribute to the surface roughness,
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changes in aerofoils shape, and it narrows the aerofoil throat aperture [133].

Fouling occurs in both compressor and turbine components of the gas turbine.

However, in works such as [134] compressor fouling is considered as the main

reason for gas turbine degradation. This degradation will be discussed in more

details in Section 2.6.2.

• Corrosion and hot-corrosion

Corrosion is also another engine component deterioration which is caused by

chemical reactions happening among components and contaminants that enter

the turbine with the inlet air, fuel injection, water or stream such as salts or

reactive gases. This degradation has an adverse effect on the performance of

the engine. Corrosion is specially a dominant problem in industrial gas turbines

because a lot of industrial gas turbines are located near the sea and sea salt can

react with engine components [131]. Corrosion damage of rotating blades is

depicted in Figure 2.7.

Figure 2.7: Corrosion damage in rotating blades [135].

• High-temperature oxidation
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This degradation occurs when metal atoms of components react chemically with

oxygen from the environment.

• Erosion

Erosion is due to the removal of material in the gas flow path causes by particles

more than 10µm in size which leads to changes in aerofoil profiles and throat

openings. It can also increase clearances in blades and seals.

• Foreign object damage

Damage caused by foreign objects is usually because of striking the relatively

large objects to the components in the gas path. These objects enter the turbine

with the inlet air or gas stream which can contain gravels, bolts, even the birds

in aero-engines. On the other hand, pieces of ice produced in the compressor

inlet, if are pulled into the path of the gas can cause this problem. This damage

could be due to the result of broken off pieces of engine itself [136]. These objects

can degrade the engine differently. However, it usually reduces the isentropic

efficiency and varies the mass flow rate. It is stated in [137] that the efficiency

can reduce to 5% of its real value. This degradation can be recoverable or non-

recoverable which necessitate the engine complete shut-down. Figure 2.8 shows

an example of the impact of the foreign object to the gas turbine blades.

• Abrasion, rubbing and wearing

Abrasion is due to the rubbing between rotating and stationary surfaces. This

rubbing will increase seal or tip gaps [138].

• Thermal distortion
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Figure 2.8: The effect of foreign object damage on gas turbine blades [119].

Hot sections of a gas turbine such as the exit combustion chamber and inlet tur-

bine blades work under high temperature and high-stress fluctuating environ-

ment, thus they can distort. These distortions can be seen as twisting, bowing,

and welding together of the turbine vanes [138]. High turbine inlet temperature

causes damage and distortion in downstream components such as nozzle vanes

which in turn increase leakage or creep damage [139]. These distortions can

result in permanent failure and increased life-cycle costs [140]. Thermal distor-

tion of blades decreases the isentropic efficiency of the turbine, and variations

in the mass flow rate. However, MacLeod et al. [139] stated that changes in

efficiency are more significant in comparison to mass flow rate.

• Tip clearance

This deterioration affects both engine’s efficiency and flow capacity. It is com-

puted that 0.8% reduction in tip clearance in an engine’s compressor reduces

the flow capacity by 3% and its efficiency by 2% [141].

56



Gas turbine efficiency based on the degradation in different parts is depicted in Figure

2.9.

Figure 2.9: Gas turbine efficiency based on component degradations [142].

Degradation occurring in the engine causes a change in the component perfor-

mance. The degradations introduced by efficiencies and flow capacities in turn can be

detected in changes in measurable parameters such as temperature, pressure, speed,

etc. With these changes present in the measurements, the problem would be in pre-

dicting the future health of the system.

2.6.2 Compressor Fouling

Compressors consume up to 60% of the power produced by turbines, therefore main-

taining compressor at its optimum performance during operation is of clear impor-

tance. Compressor fouling is one of the main causes of degradation of the performance
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of the jet engine that accounts for 70− 85% of the total engine performance loss dur-

ing operations [143]. This degradation can primarily reduce mass flow capacity and

compressor’s delivery pressure which is then followed by the power reduction and an

increase in the heat rate [134]. Mustafa [144] has demonstrated that fouling can re-

duce mass flow rate by 5% and output power by 13% and an increase in the heat rate

by 5.5%. This fact shows the importance of predicting the effects of compressor foul-

ing on the performance of the engine. Fouling is caused by the adherence of particles

such as impurities in the air, engine oil leakages or fuel impurities to the compressor

blades and consequently, it increases the surface roughness, reduces the flow passage

and in some cases changes the shape of the aerofoil [145]. Fouled compressor is shown

in Figure 2.10.

Figure 2.10: Fouled compressor [136].

It is shown by Kurz et al. [131] that fouling decreases the clearance between the

blade and the casing. This reduction causes secondary flows in the section. Com-

pressor fouling can also reduce surge margin which in turn can result in compressor

surge [146]. Gulen et al. [147] reported that fouling decreases output power by 5%

because of mass flow reduction.
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All compressors are susceptible to fouling and different factors such as compressor

design, aerofoil design and shape, and ambient conditions can affect the rate of fouling

[131]. The majority of fouling is caused by particles smaller than 2−10µm. In multi-

stage compressors, the effect of fouling is higher in the first stages. According to

Wilkinson et al. [148] , 70% of fouling in the compressor occurs in its first stages

in comparison to rear ones. Bouris et al. [149] use numerical study to demonstrate

that large particles adhere to the leading edges. The place where the particle adheres

differs too. Levine et al. [150] reported that fine particles adhere on the rotating

blades under high centrifugal forces.

In some cases, fouling is not high enough to damage the gas flow path. In such

circumstances, loss can be compensated by on-line/off-line washing and cleaning the

surface. Monitoring the fouling deterioration and determining the appropriate time

and program for compressor washing will increase safety. It is recommended in [133]

that the compressor is washed when the mass flow rate reduces by 2.5%. This solu-

tion enables users to use condition-based maintenance instead of periodic strategy to

enhance safety factor and decrease costs. However, sometimes fouling has a long-term

influence on the performance of the engine, and cannot be removed by only washing

[151].

The effects of the compressor fouling are a drop in airflow, pressure ratio, and

compressor efficiency which can decrease the power output and thermal efficiency

[152]. Fouling decreases the compressor efficiency and mass flow rate. Compressor

fouling contributes to a change in the compressor map [151]. A map of a fouled

compressor is shown in Figure 2.11.

Various studies predict the influence of compressor fouling on gas turbines perfor-

mance deterioration. Won Song et al. [151] predicted the performance degradation

of industrial gas turbine in the presence of compressor fouling. They found that the
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Figure 2.11: Compressor maps in presence of fouling [136].

60



amount of generated power is strongly sensitive to the fouled conditions of the com-

pressor. Aker et al. [134] and Seddigh et al. [153] predicted the engine performance

by using a linear regression fouling model. Modeling a compressor fouling with expo-

nential behavior was suggested by Tarabrin et al. [146]. They modelled the fouling

such that it increases exponentially over the time until the thickness of particle depo-

sition stabilizes. Millsaps et al. [154] proposed a model to specify the magnitude and

location of degradation due to fouling, and the model is checked using a three-stage

compressor.

In this thesis, based on the work of Naeem [142], the fouling index (FI) is intro-

duced as a hypothetical parameter to calculate the effects of compressor fouling on

its efficiency and mass flow rate. A linear relationship is considered on the health

parameters of the system such that 1% fouling in the compressor decreases the effi-

ciency by 1% and causes a reduction of 0.5% in the flow capacity. Rate of change

in the compressor mass flow rate (∆ṁC), and rate of change in the efficiency of the

compressor (∆ηC) for each cycle due to fouling can be calculated as:

∆ṁC = 1− (0.5 ∗ FI/(100 ∗N)) ∗ i (2.6.1)

∆ηC = 1− (FI/(100 ∗N)) ∗ i (2.6.2)

where i denotes the cycle number and N is the total number of cycles that the

compressor fouling will be completed in the specific FI.

Using equations (2.6.1) and (2.6.2) fouling index of 1%, 2% and 3% can be calcu-

lated based on Table 2.3 for the total number of fouling cycles equal to 200.

Data is generated from our Simulink model described in Section 2.5 in different

fouling indices, namely 1%, 2%, and 3%. The total number of cycles in which the com-

pressor fouling occurs is set to 200. Percentage changes in the engine measurements
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Table 2.3: Linear relationship among FI, efficiency and mass flow rate

Fouling Index ∆ηC reduction ∆ṁC reduction

1% 1% 0.5%
2% 2% 1%
3% 3% 1.5%

are shown in Table 2.4 for different fouling indices.

Table 2.4: Percent change in each measurement for different fouling indices

Fouling Index ∆%TT ∆%TP ∆%CT ∆%Wf ∆%N

1 % 0.94 0.003 0.5848 0.7182 -0.0142
2 % 1.888 0.003 1.177 1.418 -0.0213
3 % 2.864 0.003 1.784 2.15 -0.0355

where TT denotes the turbine temperature, TP denotes the turbine pressure, CT is

the compressor temperature, Wf denotes the fuel flow rate, and N denotes the speed

of the shaft.

The results of the compressor fouling effect on measurements are compared to-

gether in Figures 2.12-2.15 for FI = 1%, FI = 2%, and FI = 3%. It can be seen that

turbine and compressor output temperature increase due to compressor fouling, while

rotor speed decreases its value. Fuel flow rate is increased to maintain the output

thrust in the constant value. These measurements are more sensitive in higher fouling

indices. There is no sudden fracture or failure in the presence of fouling. However,

the component may degrade to such an extent that it requires replacement. This

fact necessitates the problem of prediction of compressor health measures for health

monitoring of jet engines.
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Figure 2.12: Compressor temperature change under different fouling scenarios for the
model.

Figure 2.13: Turbine temperature change under different fouling scenarios for the
model.
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Figure 2.14: Rotor speed change under different fouling scenarios for the model.

Figure 2.15: Fuel flow rate change under different fouling scenarios for the model.
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2.6.3 Combustion Chamber Degradation

Combustion chamber has a low level of degradation in comparison to other sections

of a gas turbine. However, if the combustion process varies, it can change the tur-

bine entry temperature which can then affect compressor performance due to high

temperature in this section [155]. Variations in the combustor lead to differences in

the radial temperature distribution at the entry to the turbine. This can result in

localized elevated temperatures, flow-area decreases, greater leakages, increased clear-

ances and distortions. These will reduce efficiency and remaining life of the turbine

[140]. It should be noted that variations in combustion chamber temperature does

not affect the turbine performance directly. In other words, combustion efficiency

does not change with time [136].

2.6.4 Turbine Erosion

Erosion is the loss of material from the flow path by hard particles typically larger

than 10µm which is one of the main causes of deterioration in the turbine section of

aero engine applications since aircraft engines are typically exposed to the ingestion

of sand or runway materials [138]. Figure 2.16 shows the effect of erosion on turbine

blades of a gas turbine engine [136]. Erosion decreases the turbine efficiency and

increases the mass flow rate. Erosion is more important in aero engine applications,

since the particles larger than 10µm in diameter is generally eliminated in industrial

engines using filtration system [131].

Hamed et al. [156] stated that blade erosion has more effect on the compressor

adiabatic efficiency in comparison to the pressure ratio [156]. The rate of erosion is

highly dependent on the turbine geometry, blade surface material, and particle charac-

teristics [157]. Water drop erosion on turbine blades is modelled numerically in [158].

Metwally et al. [159] studied and predicted blade erosion and surface deterioration
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Figure 2.16: The effect of erosion on turbine blades [136].

of the turbine in an automotive gas turbine engine.

A typical turbine map in presence of erosion is shown in Figure 2.17. Based on

the work of Naeem [142], it is assumed in this thesis that linear relationship exists

between erosion index (EI), turbine efficiency and mass flow rate in which 1% erosion

in the turbine decreases the efficiency by 1% and causes an increase of 0.5% in flow

capacity. Rate of change in the turbine mass flow rate (∆ṁT ), and rate of change in

the efficiency of the turbine (∆ηT ) for each cycle due to erosion can be calculated as:

∆ṁT = 1 + (0.5 ∗ EI/(100 ∗N)) ∗ i (2.6.3)

∆ηT = 1− (EI/(100 ∗N)) ∗ i (2.6.4)

where i denotes the cycle number and N is the total number of cycles that the turbine

erosion will be completed in the specific EI. Using the linear relationship erosion index

(EI) of 2% and 3% can be calculated based on Table 2.5.

Data is generated from our Simulink model described in Section 2.5 in different
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Figure 2.17: Turbine map in presence of erosion [136].
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Table 2.5: Linear relationship among EI, efficiency and mass flow rate

Erosion Index ∆ηT reduction ∆ṁT increase

1% 1% 0.5%
2% 2% 1%
3% 3% 1.5%

erosion scenarios for 200 flight cycles. It is also possible for the user to change the

erosion cycles for the turbine. Percentage change in each jet engine output measure-

ment for different erosion indices is presented in Table 2.6. ∆TT denotes the change

in the turbine temperature, ∆TP denotes the change in the turbine pressure, ∆CT

denotes the change in the compressor temperature, ∆Wf denotes the change in the

fuel flow, and ∆N denotes the change in the spool speed. The results related to the

turbine erosion modelling is depicted in Figures 2.18-2.21. It can be seen that turbine

temperature and turbine pressure increase while the compressor output temperature

decreases. The value of fuel injected is increased to maintain constant take-off thrust.

The spool speed has a decreasing pattern gain. The increases in the erosion index

have more effects on the variations of the engine parameters.

Table 2.6: Percent change in each measurement for different erosion indices
Erosion Index ∆%TT ∆%TP ∆%CT ∆%CP ∆%Wf ∆%N

1% 0.5415 -0.0015 -0.5627 -0.7119 0.4091 -0.7593
2% 1.09 0.0001 -1.1109 -1.4089 0.8273 -1.5115
3% 1.6386 0.003 -1.6466 -2.09 1.236 -2.2497

2.6.5 Concurrent Degradations

It is also possible that both compressor fouling and turbine erosion occur in the gas

turbine engine at the same time. This degradation is also modelled in our gas turbine

model described in Section 2.5 for different scenarios (FI = 1% and EI = 1%,
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Figure 2.18: Changes in compressor temperature under presence of different EI for
the model.

Figure 2.19: Changes in turbine temperature under presence of different EI for the
model.
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Figure 2.20: Changes in rotor speed under presence of different EI for the model.

Figure 2.21: Changes in fuel flow rate under presence of different EI for the model.
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FI = 1% and EI = 2%, FI = 1% and EI = 3%, FI = 2% and EI = 1%, FI = 2%

and EI = 2%, FI = 2% and EI = 3%, FI = 3% and EI = 1%, FI = 3% and

EI = 2% and FI = 3% and EI = 3%).

Based on the work of Naeem [142], a linear relationship is considered on the

health parameters of the system such that 1% fouling in the compressor decreases the

efficiency by 1% and causes a reduction of 0.5% in the compressor flow capacity while

at the same time 1% erosion in the turbine decreases the efficiency by 1% and causes

an increase of 0.5% in the turbine flow capacity. Using equations (2.6.1)-(2.6.4),

fouling and erosion indices denotes by (FEI) can be calculated based on Table 2.7 for

the total number of cycles to be 200.

Table 2.7: Linear relationship among FI, EI, ηC , ηT , ṁC and ṁT

Fouling Index Erosion Index ηC reduction ηT reduction ∆ṁC reduction ∆ṁT increase

1% 1% 1% 1% 0.5% 0.5%
1% 2% 1% 2% 0.5% 1%
1% 3% 1% 3% 0.5% 1.5%
2% 1% 2% 1% 1% 0.5%
2% 2% 2% 2% 1% 1%
2% 3% 2% 3% 1% 1.5%
3% 1% 3% 1% 1.5% 0.5%
3% 2% 3% 2% 1.5% 1%
3% 3% 3% 3% 0.5% 0.5%

Percentage change in each jet engine measurement for different fouling and erosion

indices is shown in Table 2.8. Measurement changes are also shown in Figures 2.22-

2.25.
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Figure 2.22: Changes in compressor temperature under presence of different fouling
and erosion indices for the model.
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Figure 2.23: Changes in turbine temperature under presence of different fouling and
erosion indices for the model.
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Figure 2.24: Changes in rotor speed under presence of different fouling and erosion
indices for the model.
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Figure 2.25: Changes in fuel flow rate under presence of different fouling and erosion
indices for the model.
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Table 2.8: Percent change in each measurement under presence of compressor fouling
and turbine erosion at the same time

Fouling Index Erosion Index ∆%TT ∆%TP ∆%CT ∆%CP ∆%Wf ∆%N

1% 1% 1.49 0.003 0.017 -0.706 1.127 -0.7663

1% 2% 2.016 -0.0165 -0.5471 -1.423 1.5 -1.525

1% 3% 3.64 0.6199 -0.7714 -1.5041 3.4 -2.001

2% 1% 2.365 -0.0465 0.5798 -0.7525 1.727 -0.8019

2% 2% 3.006 0.0045 -0.0461 -1.401 2.264 -1.5258

2% 3% 3.519 -0.015 -0.512 -2.1077 2.627 -2.278

3% 1% 3.391 -0.0165 1.1948 -0.7224 2.5182 -0.8019

3% 2% 3.961 -0.009 0.6333 -1.4125 2.9545 -1.547

3% 3% 4.5448 0.0075 0.088 -2.0849 3.41 -2.2851

2.7 Gas Turbine Simulation Program (GSP)

2.7.1 Overview

Gas turbine simulation program (GSP) [166] is a component based modelling envi-

ronment which allows steady-state and transient simulation of any gas turbine config-

uration and was developed by National Aerospace Laboratory (NLR). This software

has been used for various applications such as performance analysis, control system

design and diagnosis [164]. It is also used for sensitivity analysis of some variables

such as ambient conditions and component degradations. Moreover, flight conditions,

degradation and malfunctions of control can be analysed. New engines based on the

need of the user can be developed by just dragging and dropping the components and

defining their measurements. A model of the engine component is shown in Figure

2.26 [166].

Simulation with GSP is based on modelling processes in different components of

the gas turbine with aerodynamic and thermodynamic relations and component maps.

It configures different predefined components such as inlet, compressor, combustion

chamber, turbine and exhaust nozzles corresponding to the specified gas turbine type

which is needed for simulation. Parameters such as air or gas properties, rotor speeds
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and efficiencies determine the component operating point. The condition of the gas

in a component exit forms the inlet condition for the next component [166]. A set of

user specified design data points is defined and non-linear differential equations are

determined by the mass balance, heat balance, equation of conservation of momentum

and the power balance for all components. In this thesis, GSP is used to validate the

Figure 2.26: A model of engine component in the GSP software [166].

degraded data generated with our jet engine model. A simple turbojet engine model

configuration representing an engine similar to the General Electric J85 is used for

data validation which is deteriorated with the same degree as a single spool jet engine

model that was described earlier in Section 2.5.

2.7.2 Data Generation using the GSP Software

As mentioned earlier, General Electric J85 is used to validate the data for fouling

and erosion degradations, and in the case when both fouling and erosion occur at

the same time. The results based on the percentage changes in turbine temperature,
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compressor temperature, spool speed and fuel flow rate are shown in Tables 2.9-2.11

for different fouling indices, erosion indices, and both fouling and erosion indices.

Table 2.9: Percentage changes in measurements in presence of compressor fouling
using GSP

Fouling Index ∆%TT ∆%CT ∆%N ∆%Wf

1% 1.253 0.4717 -0.3887 1.447
2% 2.304 0.8291 -0.6378 2.368
3% 3.594 1.223 -0.8747 3.684

Table 2.10: Percentage changes in measurements in presence of turbine erosion using
GSP

Erosion Index ∆%TT ∆%CT ∆%N ∆%Wf

1% 1.797 -0.33 -1.221 1.974
2% 3.847 -0.6467 -2.017 3.947
3% 5.911 -0.8641 -2.679 6.053

2.7.3 Data Validation using the GSP Software

GSP is used to validate deteriorated data obtained from a single spool jet engine

model given by equations (2.6.1)-(2.6.4). The percentage of changes in the turbine

temperature, rotor speed, and fuel flow rate under presence of different compressor

fouling indices in our model and the GSP software are compared together in Table

2.12, where it follows that the changes in the measurements follow the same pattern for

the model and the GSP software. The turbine temperature increases in both of them

while the rotor speed decreases its value due to the fouling indices. The differences

between the GSP results and the developed model are due to the differences in the

engine parameters. The fuel flow levels are not the same, and the compressor and

turbine maps are different.
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Table 2.11: Percentage changes in measurements in presence of both compressor
fouling and turbine erosion using GSP

Fouling Index Erosion Index ∆%TT ∆%CT ∆%N ∆%Wf

1% 1% 3.054 0.0571 -1.415 3.158
1% 2% 5.095 -0.201 -2.089 5.263
1% 3% 7.168 -0.4219 -2.745 7.368
2% 1% 4.369 0.5066 -1.488 4.605
2% 2% 5.744 -0.035 -2.558 5
2% 3% 7.918 -0.208 -3.122 7.368
3% 1% 5.553 0.9231 -1.622 5.71
3% 2% 7.555 0.6725 -2.289 7.684
3% 3% 9.652 0.4459 -2.939 9.789

Table 2.12: Comparing the percentage changes in measurements in presence of com-
pressor fouling for the model and GSP software

FI ∆%TT (model) ∆%TT (GSP ) ∆%N(model) ∆%N(GSP ) ∆%Wf (model) ∆%Wf (GSP )

1% 0.94 1.253 -0.0142 -0.3887 0.7182 1.447
2% 1.888 2.304 -0.0213 -0.6378 1.418 2.368
3% 2.864 3.594 -0.0355 -0.8747 2.15 3.684

Table 2.13 compares the changes in the turbine temperature, rotor speed, and

fuel flow rate occurs in the model due to different erosion indices with the same

measurements in the GSP software. It is verified from Table 2.13 that the erosion

phenomena has the same effect on our model and the model in the GSP software. The

comparison between the generated data in the model and data generated from the

GSP software when the engine has both fouling in the compressor and erosion in the

turbine at the same time with different rates are presented in Table 2.14. Although

there are discrepancies between the results of the GSP and the developed model due

to different fuel flow levels and compressor and turbine maps, the results from both

models show the same trend.
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Table 2.13: Comparing the percentage changes in measurements in presence of turbine
erosion for the model and GSP software

EI ∆%TT (model) ∆%TT (GSP ) ∆%N(model) ∆%N(GSP ) ∆%Wf (model) ∆%Wf (GSP )

1% 0.5415 1.797 -0.7593 -1.221 0.4091 1.974
2% 1.09 3.847 -1.5115 -2.017 0.8273 3.947
3% 1.6386 5.911 -2.2497 -2.679 1.236 6.053

Table 2.14: Comparing the percentage changes in measurements in presence of both
compressor fouling and turbine erosion for the model and GSP software

FI EI ∆%TT (model) ∆%TT (GSP ) ∆%N(model) ∆%N(GSP ) ∆%Wf (model) ∆%Wf (GSP )

1% 1% 1.49 3.054 -0.7663 -1.415 1.127 3.158
1% 2% 2.016 5.095 -1.525 -2.089 1.5 5.263
1% 3% 3.64 7.168 -2.001 -2.745 3.4 7.368
2% 1% 2.365 4.369 -0.8019 -1.488 1.727 4.605
2% 2% 3.006 5.744 -1.5258 -2.558 2.264 5
2% 3% 3.519 7.918 -2.278 -3.122 2.627 7.368
3% 1% 3.391 5.553 -0.8019 -1.622 2.5182 5.71
3% 2% 3.961 7.555 -1.547 -2.289 2.9545 7.684
3% 3% 4.5448 9.652 -2.2851 -2.939 3.41 9.789
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2.8 Conclusion

In this chapter, an overview of the NARX and Elman neural network structures

along with their learning algorithms were addressed. Different performance evalua-

tion methods of an estimator were presented. To overcome the problem of uncertainty

in measurable variables, prediction intervals were introduced. The aircraft jet engine

mathematical model and its equations were introduced as a basis for our data genera-

tion. Different gas turbine deteriorations are discussed. Two important ones, namely

compressor fouling and turbine erosion are modelled in our jet engine Simulink model

and deteriorated data are validated by using the GSP software. It is also considered

that both compressor fouling and turbine erosion occur with different rates at the

same time. These data are also validated by using the GSP software.
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Chapter 3

Jet Engine Prediction using NARX

Neural Networks

The goal of this chapter is to predict turbine temperature for some flights ahead

for engine’s maintenance actions. Using the predicted output from the NARX neural

network, one is able to decide whether the temperature exceeds a threshold at specific

flight or the next flights will be safe. The objective of the NARX neural network is

to predict dynamics of the degradation in the engine. Various simulations are carried

out in this chapter to demonstrate the performance of the NARX neural network in

terms of prediction horizons.

Data generated from our model which was described in Section 2.6 in presence of

compressor fouling, turbine erosion and in the case when both of these degradations

occur are used to train and test the neural networks. As described in Section 2.1.1, the

NARX neural network composes of three layers of input, hidden and output layers.

Fuel flow rate is used as an input data and the turbine output temperature is the

output of the NARX neural network. Turbine temperature increases in presence of

fouling or erosion degradations. However, it should be noted that fouling and erosion

occur in multiple flights and they do not change the engine measurements severely in
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only one flight. Therefore, samples which are used to train the network are obtained

from multiple flights. These samples represent the maximum values of fuel flow rate

and turbine temperature in each flight.

The NARX neural network uses the training data to represent the non-linear

model of the engine. The input (fuel flow rate) is given to the NARX neural network.

The neural network then processes the input and compares the network output against

the actual outputs. Errors (the difference between the network output and actual

output) are then propagated back through the system, causing the system to adjust

the weights. This process occurs over and over as the weights are continually adjusted.

During the training step of the neural network the same set of data is processed

many times as the connection weights are refined. The process stops if a pre-specified

criterion is fulfilled, e.g. if all the absolute partial derivatives of the error function

with respect to weights (∂E
∂w

) are smaller than a given threshold. Architecture for the

NARX neural network during the training step is shown in Figure 3.1. Simulated

data in Figure 3.1 were obtained in Section 2.6. The number of input and output

delays are shown as du and dy.

The best NARX neural network found in the training step is now evaluated using

the testing data sets. These data sets differ from the training data sets and they are

given as an unseen data to the neural network. Fuel flow rate is fed to the NARX

neural network as an input and the turbine temperature is predicted as the output

of the network. The schematic of the NARX neural network approach during testing

phase can be seen in Figure 3.2 where du is the number of input delays and dy is the

number of output delays.
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Figure 3.1: Architecture for the NARX neural network during the training phase.

Figure 3.2: Architecture of the NARX neural network during the testing phase.
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3.1 Simulation Results

There are different measures which affect the performance of the NARX neural net-

work namely; the number of hidden neurons, the size of training data set, the number

of input delays and the number of output delays. Small networks with small number

of hidden neurons cannot learn the dynamics of the system accurately while large

networks tend to over fit the training data [161]. Optimal NARX neural network

structure is achieved by using different number of training data sets to predict 2

flights ahead turbine output temperature. We will also use 5 steps, 8 steps, and 12

steps ahead turbine temperature to evaluate the applicability of the NARX neural

network in long term prediction.

3.1.1 Compressor Fouling

As mentioned in Section 2.6.2, compressor fouling consumes up to 80% of the total

engine performance loss during operation. This deterioration decreases the compres-

sor mass flow rate and efficiency which causes power reduction and an increase in the

heat rate. Losses due to fouling can be compensated by compressor washing or surface

cleaning. This fact necessitate the importance of knowing the appropriate time for

compressor washing. The objective of this section is to predict the influence of com-

pressor fouling on gas turbine performance for maintenance actions. Different NARX

neural network structures are trained by using different number of training data.

These networks are then used to predict turbine output temperature for multi flights

ahead. Turbine output temperature is predicted in presence of different amounts

of compressor fouling. The predicted value is then used for maintenance actions to

decide whether the next flights will be safe or not.
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3.1.1.1 FI = 1%

The number of neurons in the hidden layer plays an important role in the performance

of the network. In the present section, the optimum number of hidden neurons is

achieved through trial and error procedure. The delayed version of fuel flow rate and

turbine temperature are given as inputs to train the network. The parameters du and

dy are both set to 3 and the 2 flights ahead turbine temperature is predicted using

networks with different number of hidden neurons. The entire data set equals to 200

points which implies that the compressor fouled in 200 simultaneous flights by the

amount of 1%. A total of 80 data points are used for training and 120 for the neural

network evaluation. The statistical error measures such as standard deviation, mean

and RMSE for prediction are presented in Table 3.1 for different network structures.

Table 3.1: A 2 flights ahead turbine temperature prediction error for different number
of hidden neurons trained with 40% of the available data for FI = 1% using NARX
neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

5 2.5776 4.0479 4.7847
6 2.6167 2.3338 3.4998
7 1.0639 3.3499 3.5014
8 3.8568 2.1575 4.4148
9 3.1553 2.4520 3.9897
10 3.1845 2.8004 4.2330
11 2.1527 3.3640 3.9820
12 3.7566 2.5407 4.5291
13 3.4892 3.8537 5.1867
14 3.8795 4.5680 5.9786
15 5.2047 4.1398 6.6396

Based on Table 3.1, the best NARX network performance based on the RMSE

is achieved when the network has 6 hidden neurons. Turbine temperature data used

for training the network structure of 7 inputs (current and 3 previous values of the
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fuel flow rate as well as 3 previous values of the turbine temperature), 6 hidden neu-

rons and 1 output (current turbine temperature) as well as the actual and predicted

values are depicted in Figure 3.3. The prediction errors which are the absolute differ-

ence between the actual and predicted values are shown in Figure 3.4. Based on the

information given in Section 2.4 about uncertainty in measurements and prediction

bounds, actual and predicted data with their prediction bounds based on 95% prob-

ability are shown in Figure 3.5. It can be seen that only 58.33% data are within the

prediction horizons.

Figure 3.3: Turbine temperature variations subject to FI = 1% using NARX 7-6-1
during training and testing phases.

Next the number of the training data are increased to 60% of the entire data set

which implies that 120 data points are used in the training phase and 80 are used

in the testing phase. The number of the hidden neurons increases from 5 to 15 and

turbine output temperatures are predicted for the 2 flights ahead. The results are

shown in Table 3.2 where the network with the structure of 7-5-1 has the lowest error.

Figure 3.6 shows that 68.75% of the predicted data are within the prediction intervals.
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Figure 3.4: Prediction errors for the 2 step ahead turbine temperature when FI = 1%
using NARX 7-6-1 trained with 40% of the available data.

Figure 3.5: The 2 step ahead predicted/actual turbine temperature along with predic-
tion intervals using NARX 7-6-1 trained with 40% of the available data for FI = 1%.
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Table 3.2: A 2 flight ahead turbine temperature prediction error for different number
of hidden neurons trained with 60% of the available data for FI = 1% using NARX
neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

5 1.9805 1.8456 2.6993
6 2.8032 1.6829 3.2641
7 3.5124 1.9249 3.9995
8 2.6224 1.8953 3.2286
9 3.8344 1.9537 4.2979
10 3.9653 1.9776 4.4256
11 2.8956 3.1396 4.2566
12 3.5776 2.8405 4.5571
13 3.8389 2.1842 4.4100
14 4.2684 2.0062 4.7110
15 4.8514 2.2619 5.3468

In order to investigate the effect of the training data sets on the performance

of the NARX neural network prediction, the training data is increased to 80% of

the available data points. Hence 160 data are used in the training phase and 40

ones are used to predict the turbine temperature in the testing phase. The optimal

network structure in this case is the network with 6 hidden neurons as shown in

Table 3.3. The actual and predicted values are shown pointwise in Figure 3.7 where

100% of the predicted data are within the uncertainty bounds. Based on Tables 3.1-

3.3, prediction error decreases 51.66% as the number of the training data increase

because the network can learn the dynamics of the degradation better in presence of

more data. However, it is not always possible to have much data available.

In the next scenario, the turbine temperature is predicted for 5 flights ahead where

40% of the entire data points are used in the training phase and the rest (120 data

points) are used to evaluate the performance of the network. The optimal NARX

neural network structure based on Table 3.4 is 7-7-1. The actual and predicted

values are shown in Figure 3.8 where 60.83% of the predicted data points are within
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Figure 3.6: The 2 step ahead predicted/actual turbine temperature along with predic-
tion intervals using NARX 7-5-1 trained with 60% of the available data for FI = 1%.

Figure 3.7: The 2 step ahead predicted/actual turbine temperature along with pre-
diction intervals using NARX 7-6-1 with 80% training data for FI = 1%.
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Table 3.3: A 2 flight ahead turbine temperature prediction error for different number
of hidden neurons trained with 80% of the available data for FI = 1% using NARX
neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

5 1.8102 1.7120 2.4768
6 0.0766 1.7117 1.6919
7 1.7986 1.8276 2.5478
8 1.9416 1.7004 2.5669
9 1.9871 1.8543 2.7021
10 2.4426 1.8386 3.0434
11 1.4774 1.6930 3.5505
12 1.4774 3.7634 3.9990
13 1.7884 3.6690 4.0403
14 3.6927 1.8780 4.1321
15 4.5816 1.9018 4.9515

the upper and the lower prediction bounds.

When the NARX neural network is trained with 60% of the entire data points

available (the total number of data points are 200), the neural network with 8 hidden

neurons has the lowest RMSE as presented in Table 3.5. Actual and predicted turbine

temperatures are depicted in Figure 3.9 where 70% of the predicted data points are

within the prediction intervals.

Different NARX neural network structures are trained using 160 data points in the

training phase and 40 data points in the testing phase to appreciate the importance

of the number of training data in the neural network performance. The results of the

prediction error are compared together in Table 3.6. The NARX neural network with

the structure 7-6-1 has the lowest RMSE. The prediction mean, standard deviation

and RMSE are 1.5425K, 1.8375K, and 2.3814K, respectively. The network prediction

temperatures along with their actual values are shown in Figure 3.10 where 77.5% of

the predicted data points are within the prediction bounds.

The applicability of the NARX neural network to predict turbine temperature in
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Figure 3.8: The 5 step ahead predicted/actual turbine temperature along with predic-
tion intervals using NARX 7-7-1 trained with 40% of the available data for FI = 1%.

Figure 3.9: The 5 step ahead predicted/actual turbine temperature along with predic-
tion intervals using NARX 7-8-1 trained with 60% of the available data for FI = 1%.

92



Table 3.4: A 5 flight ahead turbine temperature prediction error for different number
of hidden neurons trained with 40% of the available data for FI = 1% using NARX
neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

5 3.6253 2.6311 4.4730
6 3.8449 2.6745 4.6772
7 2.5449 2.8564 3.8167
8 1.9008 3.3641 3.8518
9 2.2717 3.2920 3.9885
10 3.0889 3.0349 4.3215
11 3.8741 2.4695 4.5887
12 3.1836 3.5238 4.7380
13 0.3031 4.9366 4.9253
14 0.3100 5.1798 5.1675
15 4.1248 3.1686 5.1933

8 flights ahead under presence of 1% fouling is investigated next. The training data

points are increased from 40% of the entire data points to 80%. The number of hidden

neurons are changed from 5 to 15, and the optimal structure is found. The results

of the RMSE for different neural network structures when 80 data points are used in

the training phase and 120 data points are used in the testing phase are presented in

Table 3.7. The NARX neural network with 8 hidden neurons has the lowest RMSE.

Based on Figure 3.11, 62.5% of the predicted data points are between the upper and

the lower prediction bounds.

Training data is increased to 120 data points which is equal to 60% of the entire

data points. The RMSE is in its lowest value when the number of hidden neurons is

8 as shown in Table 3.8. To overcome the problem of uncertainty in measurements,

the upper and the lower prediction bounds as well as the actual and predicted values

are depicted in Figure 3.12 where 70% of the predicted data points are between these

bounds.

Next 80% of the total data available are used to train different NARX neural
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Figure 3.10: The 5 step ahead predicted/actual turbine temperature along with pre-
diction intervals for FI = 1% using NARX 7-6-1 trained with 80% of the available
data.

Figure 3.11: The 8 step ahead predicted/actual turbine temperature along with
prediction intervals using NARX 7-8-1 trained with 40% of the available data for
FI = 1% .
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Table 3.5: A 5 flight ahead turbine temperature prediction error for different number
of hidden neurons trained with 60% of the available data for FI = 1% using NARX
neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

5 2.2785 3.0153 3.7643
6 3.3338 2.2221 3.9987
7 2.7428 1.9469 3.3564
8 2.3537 2.1743 3.1950
9 2.6239 2.8880 3.8885
10 3.2110 2.2843 3.9323
11 3.7704 2.0467 4.2840
12 3.7552 2.0049 4.2510
13 3.8709 2.2521 4.4713
14 3.4111 3.4917 4.8657
15 3.0963 3.8656 4.9339

network structures. These networks are then evaluated to predict turbine output

temperatures in 8 flights ahead. The number of hidden neurons are increased from 5

to 15. The results of prediction error based on standard deviation, mean and RMSE

are tabulated in Table 3.9. The training and testing data as well as predicted values

are shown in Figure 3.13. Prediction bounds are depicted in Figure 3.14 which shows

that only 17.5% of the predicted data are outside the bounds. Comparing Tables 3.7

and 3.9, the RMSE decreases by 34.4% when the training data increase from 80 to

160.

Next, various NARX neural networks are trained with different numbers of the

training data sets to predict turbine output temperatures in 12 flights ahead. The

number of hidden neurons are changed from 5 to 15 and the optimal neural network

structure is found. The results of the prediction error for different structures trained

with 40% of the available data are shown in Table 3.10. Table 3.11 presented these

error values when the networks are trained by 60% of the available data points, and

finally the NARX neural networks which are trained by 80% of the entire data points
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Figure 3.12: The 8 step ahead predicted/actual turbine temperature along with
prediction intervals using NARX 7-8-1 trained with 60% of the available data for
FI = 1%.

Figure 3.13: Turbine temperature variations subject to FI = 1% using NARX 7-6-1
trained with 80% of the available data.
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Table 3.6: A 5 flight ahead turbine temperature prediction error for different number
of hidden neurons trained with 80% of the available data for FI = 1% using NARX
neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

5 2.0346 2.0921 2.8994
6 1.5425 1.8375 2.3814
7 2.2388 1.9809 2.9730
8 1.6294 2.2107 2.7240
9 1.4532 2.7018 3.0380
10 1.9683 2.3320 3.0293
11 2.4535 2.2731 3.3253
12 2.0097 2.7552 3.3823
13 2.6984 2.0637 3.3814
14 2.8519 2.5030 3.7738
15 2.4999 3.0320 3.9003

are tabulated in Table 3.12.

Actual turbine temperatures and predicted values along with their prediction

bounds for these three scenarios are depicted in Figures 3.15-3.17 where 57.5% of the

predicted data points are within the prediction bounds when the network is trained

with 80 data points, while this value increases to 61.1% for the network trained by

using 120 data points and for the neural network trained with 160 data points, 88.89%

of the predicted turbine temperatures are between the prediction intervals.
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Figure 3.14: The 8 step ahead predicted/actual turbine temperature along with
prediction intervals using NARX 7-6-1 trained with 80% of the available data for
FI = 1%.

Figure 3.15: The 12 step ahead predicted/actual turbine temperature along with
prediction intervals using NARX 7-9-1 trained with 40% of the available data for
FI = 1%.
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Figure 3.16: The 12 step ahead predicted/actual turbine temperature along with
prediction intervals using NARX 7-8-1 trained with 60% of the available data for
FI = 1%.

Figure 3.17: The 12 step ahead predicted/actual turbine temperature along with
prediction intervals using NARX 7-7-1 trained with 80% of the available data for
FI = 1%.
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Table 3.7: An 8 flight ahead turbine temperature prediction error for different number
of hidden neurons trained with 40% of the available data for FI = 1% using NARX
neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

5 4.1382 2.9569 5.0789
6 1.7743 4.2614 4.5996
7 3.7401 2.5197 4.5039
8 3.1322 2.8074 4.1984
9 2.9408 3.2020 4.3377
10 4.1616 3.1239 5.1959
11 4.1617 3.4311 5.3846
12 2.6271 3.6853 4.5133
13 3.8226 3.8841 5.4381
14 4.4415 3.6370 5.7310
15 5.2705 3.6038 6.3764

Table 3.8: An 8 flight ahead turbine temperature prediction error for different number
of hidden neurons trained with 60% of the available data for FI = 1% using NARX
neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

5 3.2571 2.0085 3.8200
6 3.3481 2.1793 3.9874
7 2.7839 2.5344 3.7540
8 2.5998 2.1558 3.3688
9 2.4317 2.4739 3.4579
10 2.5380 2.4221 3.4978
11 3.1943 2.1783 3.8587
12 3.1258 2.5280 4.0102
13 3.4249 2.2985 4.1167
14 4.1286 2.7753 4.9651
15 2.8730 2.8712 4.0491
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Table 3.9: An 8 flight ahead turbine temperature prediction error for different number
of hidden neurons trained with 80% of the available data for FI = 1% using NARX
neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

5 2.4977 1.9023 3.1252
6 1.2881 2.4668 2.7554
7 2.3751 2.0078 3.0938
8 2.8172 2.0319 3.4586
9 1.5381 2.9969 3.3351
10 3.2764 2.0119 3.8316
11 2.7606 2.2603 3.5500
12 3.1816 2.9062 4.2846
13 3.5454 2.3107 4.2161
14 4.3036 2.1944 4.8183
15 3.4992 2.6587 4.3745

Table 3.10: A 12 flight ahead turbine temperature prediction error for different num-
ber of hidden neurons trained with 40% of the available data for FI = 1% using
NARX neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

5 4.2919 3.3382 5.4288
6 4.0675 3.4194 5.3046
7 4.7767 2.8910 5.5772
8 5.2378 3.3058 6.1864
9 1.6955 5.0388 5.2964
10 4.3920 3.0701 5.3513
11 5.3481 3.2862 6.2698
12 4.9234 3.8479 6.2388
13 5.9948 3.4370 6.9031
14 5.5541 3.4922 6.5530
15 2.1726 5.8325 6.2012
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Table 3.11: A 12 flight ahead turbine temperature prediction error for different num-
ber of hidden neurons trained with 60% of the available data for FI = 1% using
NARX neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

5 4.2480 2.3616 4.8523
6 4.3784 1.8617 4.7527
7 3.6987 1.8718 4.1395
8 3.3699 1.9627 3.8929
9 3.5993 1.9915 4.1069
10 4.1184 2.1639 4.6453
11 3.4507 2.2633 4.1181
12 3.7096 2.6581 4.5528
13 4.1402 2.4493 4.8018
14 4.5844 2.0549 5.0181
15 4.6346 2.5029 5.2590

Table 3.12: A 12 flight ahead turbine temperature prediction error for different num-
ber of hidden neurons trained with 80% of the available data for FI = 1% using
NARX neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

5 3.5353 1.6491 3.8913
6 3.3528 1.6699 3.7353
7 2.7459 1.6224 3.1779
8 2.8034 2.0116 3.4341
9 3.0484 2.0274 3.6454
10 3.5175 2.4122 4.2462
11 2.5928 3.3978 4.2363
12 4.1541 1.7233 4.4882
13 3.7071 2.6592 4.5406
14 3.4059 3.5026 4.8505
15 4.3935 2.5493 5.0617
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3.1.1.2 FI = 3%

In this section, the applicability of the NARX neural network in turbine temperature

prediction in presence of 3% compressor fouling is investigated. As mentioned in

Section 2.6.2, compressor on-line/off-line washing and cleaning the surface is needed

to remove particles when the compressor fouled by the amount of 3%. Data are

generated in our Simulink model which was described in Section 2.5 when it goes

through 3% compressor fouling in 200 simultaneous flights using equations (2.6.1)

and (2.6.2).

As done previously in Section 3.1.1.1, 40% of the entire data sets are used to

train different NARX neural network structures to find the optimal numebr of hidden

neurons where du and dy are both set to 3 and the 2 flights ahead turbine temperatures

are predicted. The results of the prediction error for various NARX neural network

structures are tabulated in Table 3.13.

Table 3.13: A 2 flight ahead turbine temperature prediction error for different number
of hidden neurons trained with 40% of the available data for FI = 3% using NARX
neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

5 2.0688 5.1788 5.5567
6 0.6657 4.8422 4.8677
7 1.0134 6.0869 6.1456
8 0.8400 4.3568 4.4192
9 0.4268 4.4224 4.4246
10 1.0309 5.6584 5.7283
11 2.8234 5.8226 6.4492
12 2.5164 4.7866 5.3901
13 3.1873 3.3098 4.5850
14 1.0166 6.7152 6.7640
15 6.0783 4.1862 7.3704

Based on Table 3.13, the NARX neural network with 8 hidden neurons has the
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lowest RMSE equal to 4.4192K. The actual and predicted values along with predic-

tion intervals for the network 7-8-1 are shown in Figure 3.18 where 65.83% of the data

used in the testing phase are within the upper and the lower bounds. Errors which

are the absolute difference between the actual and the predicted data are shown in

Figure 3.19.

Figure 3.18: The 2 step ahead predicted/actual turbine temperature along with
prediction intervals using NARX 7-8-1 trained with 40% of the available data for
FI = 3%.

The training data are increased from 80 to 120 data points and the optimal neu-

ral network structure is found by changing the number of hidden neurons from 5 to

15. The networks are tested with 80 points and their prediction errors and standard

deviations are presented in Table 3.14. The network with 9 hidden neurons has the

best performance in the evaluation phase. The mean, standard deviation and RMSE

of the NARX neural network 7-9-1 are 0.4547K, 3.1614K, and 3.1743K, respectively.

Figure 3.20 shows that 73.75% of the predicted data are within the prediction inter-

vals.
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Figure 3.19: Prediction errors for the 2 step ahead turbine temperature when FI =
3% using NARX 7-8-1 trained with 40% of the available data.

Figure 3.20: The 2 step ahead predicted/actual turbine temperature along with
prediction intervals using NARX 7-9-1 trained with 60% of the available data for
FI = 3%.
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Table 3.14: A 2 flight ahead turbine temperature prediction error for different number
of hidden neurons trained with 60% of the available data for FI = 3% using NARX
neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

5 3.1705 2.6127 4.0979
6 4.3240 3.3497 5.4568
7 4.4128 2.7910 5.2120
8 2.5080 2.4461 3.4927
9 0.4547 3.1614 3.1743
10 2.0396 2.6107 3.3001
11 2.5544 3.1661 4.0527
12 3.1128 3.1794 4.4353
13 4.4353 3.6198 5.2581
14 4.3715 3.0387 5.3130
15 4.2163 4.1316 5.8851

By increasing the number of training data to 160 (80% of the entire data), the

optimum NARX neural structure is 7-8-1. The RMSE decreases 52.3% in comparison

to the first simulation when the number of training data was 80 points. The results

for various NARX neural network structures are presented in Table 3.15, and the

actual and predicted values are depicted in Figure 3.21 where 95% of the data in the

testing phase are within the prediction bounds.

In the following step of this section, the optimal NARX neural network structures

to predict 5 flights ahead are investigated using different number of training and

testing data. Table 3.16 summarizes the prediction error when different network

structures are trained with 80 data points and tested with 120 points. Figure 3.22

shows the actual versus predicted values for the network with the structure of 7-9-1

where 53.33% of the predicted turbine temperatures are between the upper and the

lower prediction bounds.

Next 120 data points are used to train the networks with different number of

hidden neurons. The hidden neurons are increased from 5 to 15. These networks
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Figure 3.21: The 2 step ahead predicted/actual turbine temperature along with
prediction intervals using NARX 7-8-1 trained with 80% of the available data for
FI = 3%.

Figure 3.22: The 5 step ahead predicted/actual turbine temperature along with
prediction intervals using NARX 7-9-1 trained with 40% of the available data for
FI = 3%.
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Table 3.15: A 2 flight ahead turbine temperature prediction error for different number
of hidden neurons trained with 80% of the available data for FI = 3% using NARX
neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

5 2.4159 1.7286 2.9581
6 1.5032 1.9125 2.4137
7 1.4603 1.7820 2.2866
8 0.5347 2.0649 2.1079
9 2.1451 1.9295 2.8690
10 2.2574 1.8583 2.9090
11 2.3295 2.5747 3.4482
12 2.5831 2.5786 3.6270
13 2.1115 3.1610 3.7683
14 2.0911 3.1281 3.7300
15 2.3277 3.2158 3.9371

are then evaluated by using 80 data points. The results of error in the testing phase

are shown in Table 3.17 where the RMSE for the turbine temperature prediction

using the network 7-6-1 is 3.4816K. Actual and predicted data points are depicted in

Figure 3.23 where 61.25% of the data used during evaluation are within the prediction

intervals. Figure 3.24 shows the errors between the predicted and the actual values.

In order to investigate the effect of the training data points, 160 data are used to

train the network. The remaining 40 data points are used in the testing process. The

results are summarized in Table 3.18. Based on Figure 3.25, 85% of the predicted

data are within the prediction bounds.

The turbine output temperature in 8 flights ahead is predicted using the NARX

neural networks. The entire data points are 200 which implies that the compressor

degrades by the fouling index of 3% in 200 simultaneous flights. In the first step,

the networks are trained by using 40% of the entire data points and the remaining

data points which are 120 are used to evaluate the performance of the network in

prediction. Then, the training data points are increased to 60% and 80%, respectively.
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Figure 3.23: The 5 step ahead predicted/actual turbine temperature along with
prediction intervals using NARX 7-6-1 trained with 60% of the available data for
FI = 3%.

Figure 3.24: The prediction errors for the 2 step ahead turbine temperature when
FI = 1% using NARX 7-6-1 trained with 60% of the available data.
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Table 3.16: A 5 flight ahead turbine temperature prediction error for different number
of hidden neurons trained with 40% of the available data for FI = 3% using NARX
neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

5 4.1209 5.6042 6.9374
6 4.6288 4.8678 6.7025
7 1.4835 5.5276 5.7009
8 4.3872 4.7035 6.4177
9 1.4089 5.3722 5.5322
10 4.5696 3.8165 5.9436
11 1.7605 6.2375 6.4562
12 2.8514 5.2357 5.9426
13 1.3867 6.5712 6.6891
14 4.8805 5.0801 7.0293
15 1.7506 6.9985 7.1858

The results of the error in the testing phase are shown in Tables 3.19-3.21. The RMSE

decreases 40.5% when the training data increase from 40% to 60% and 49.9% when

the training data increased to 80%.

The results of the network which was trained with 40% of the available data points

versus the actual values are shown in Figure 3.26 where only 46.66% of the predicted

data are within the prediction bounds. This value increases to 72.5% and 77.5%

when the networks were trained by using 60% and 80% of the available data points,

respectively.

Next the 12 steps ahead turbine temperatures are predicted with available data

points in presence of 3% compressor fouling where 80 data sets which is equal to

40% of the entire data are used to train the NARX neural network. The optimal

network structure is found by increasing the number of hidden neurons from 5 to

15. Based on Table 3.22, the best performance is achieved with the NARX neural

network structure of 7-9-1. Figure 3.29 shows the actual and predicted values. Only

35% of the predicted data are between the upper and the lower prediction bounds.
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Figure 3.25: The 5 step ahead predicted/actual turbine temperature along with
prediction intervals using NARX 7-9-1 trained with 80% of the available data for
FI = 3%.

Figure 3.26: The 8 step ahead predicted/actual turbine temperature along with
prediction intervals using NARX 7-10-1 trained with 40% of the available data for
FI = 3%.
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Figure 3.27: The 8 step ahead predicted/actual turbine temperature along with
prediction intervals using NARX 7-7-1 trained with 60% of the available data for
FI = 3%.

Figure 3.28: The 8 step ahead predicted/actual turbine temperature along with
prediction intervals using NARX 7-7-1 trained with 80% of the available data for
FI = 3%.
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Table 3.17: A 5 flight ahead turbine temperature prediction error for different number
of hidden neurons trained with 60% of the available data for FI = 3% using NARX
neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

5 2.5392 3.0461 3.9510
6 2.8069 3.0728 3.4816
7 2.6826 2.8079 3.8707
8 2.1891 3.8489 4.4069
9 3.1645 2.5378 4.0465
10 3.2975 2.9875 4.4370
11 2.8421 3.3518 4.3786
12 2.0212 4.2897 4.7177
13 3.3940 3.4620 4.8327
14 2.3092 3.8981 4.5097
15 0.9744 5.3360 5.3914

Training data are increased to 120 data points. The lowest RMSE in the testing

phase is achieved when the number of hidden neurons is 10. The prediction error

for different NARX neural network structures are summarized in Table 3.23 where

52.77% of the predicted data points are within the prediction intervals using the

network 7-10-1 as shown in Figure 3.30.

Next, 80% of the available data points which is equal to 160 data are used in the

training phase and the remaining data points evaluated the network after training.

The errors in the evaluation phase are shown in Table 3.24. The mean, standard de-

viation and RMSE for the network with the structure of 7-7-1 are 3.3750K, 2.3645K,

and 4.1020K, respectively. Figure 3.31 shows that 72.22% of the predicted data are

within the upper and the lower prediction bounds.
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Figure 3.29: The 12 step ahead predicted/actual turbine temperature along with
prediction intervals using NARX 7-9-1 trained with 40% of the available data for
FI = 3%.

Figure 3.30: The 12 step ahead predicted/actual turbine temperature along with
prediction intervals using NARX 7-10-1 trained with 60% of the available data for
FI = 3%.
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Table 3.18: A 5 flight ahead turbine temperature prediction error for different number
of hidden neurons trained with 80% of the available data for FI = 3% using NARX
neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

5 3.1949 2.1157 3.8173
6 3.1452 2.0993 3.7668
7 3.0326 2.1551 3.7047
8 2.0988 2.4922 3.2343
9 2.0149 1.8150 2.6966
10 0.6169 3.2538 3.2716
11 1.9793 2.8099 3.4081
12 1.9473 3.0805 3.6117
13 3.2368 2.4540 4.0433
14 2.9768 3.3896 4.4792
15 3.5833 2.5772 4.3950

Table 3.19: An 8 flight ahead turbine temperature prediction error for different num-
ber of hidden neurons trained with 40% of the available data for FI = 3% using
NARX neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

5 1.4806 7.6220 7.7332
6 2.1402 7.0301 7.3206
7 2.3948 9.2868 9.5531
8 4.6770 7.9002 9.1524
9 2.3995 7.2184 7.5782

10 0.6090 6.8571 6.8556
11 6.9338 6.6054 9.5575
12 6.4648 8.3889 10.5631
13 7.3220 6.9926 10.1045
14 5.0073 8.0699 9.4685
15 3.4756 9.2582 9.8529
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Table 3.20: An 8 flight ahead turbine temperature prediction error for different num-
ber of hidden neurons trained with 60% of the available data for FI = 3% using
NARX neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

5 4.0422 3.1343 5.1030
6 3.5117 3.3120 4.8129
7 2.2591 3.9137 4.0757
8 1.9393 3.8168 4.2599
9 3.7013 3.5748 5.1302
10 3.7432 4.0243 5.4776
11 4.0673 4.0325 5.7098
12 1.7628 5.7050 5.9369
13 3.7274 4.1198 5.5367
14 5.4302 4.0585 6.7640
15 3.8895 6.0622 7.1707

Table 3.21: An 8 flight ahead turbine temperature prediction error for different num-
ber of hidden neurons trained with 80% of the available data for FI = 3% using
NARX neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

5 2.7888 2.5575 3.7623
6 2.7340 2.4544 3.6535
7 0.0146 3.4756 3.4319
8 2.8330 2.5477 3.7888
9 2.9779 2.4867 3.8597
10 1.4539 3.2448 3.5184
11 3.0820 2.7975 4.1387
12 3.2743 2.5403 4.1247
13 3.7790 2.9228 4.7550
14 4.0073 3.5722 5.3386
15 4.7750 2.7100 5.4737
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Table 3.22: A 12 flight ahead turbine temperature prediction error for different num-
ber of hidden neurons trained with 40% of the available data for FI = 3% using
NARX neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

5 8.5701 6.6895 10.8546
6 7.8279 7.2783 10.6681
7 4.4410 7.2831 8.5043
8 6.2032 5.6106 8.3485
9 4.0102 7.1050 8.1328
10 4.8240 6.9982 8.4757
11 5.4959 6.9851 8.8651
12 7.4776 6.7458 10.0519
13 7.0705 7.8316 10.5268
14 8.3011 9.2814 12.4231
15 4.9906 11.4128 12.4126

Table 3.23: A 12 flight ahead turbine temperature prediction error for different num-
ber of hidden neurons trained with 60% of the available data for FI = 3% using
NARX neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

5 9.5485 4.7101 10.6325
6 8.1959 5.0735 9.6206
7 7.6685 4.9290 9.0975
8 7.7850 4.3816 8.9184
9 6.5033 4.6286 7.9636

10 4.7436 4.2686 6.3616
11 7.5783 4.6664 8.8828
12 7.9640 5.3405 9.5682
13 8.6210 5.1511 10.0243
14 8.0544 6.6133 10.3924
15 9.7400 5.2012 11.0247
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Table 3.24: A 12 flight ahead turbine temperature prediction error for different num-
ber of hidden neurons trained with 80% of the available data for FI = 3% using
NARX neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

5 4.7732 2.1194 5.2106
6 3.8800 2.6337 4.6688
7 3.3750 2.3645 4.1020
8 5.2017 2.2642 5.6605
9 4.6815 2.7763 5.4231
10 5.4242 2.1562 5.8260
11 6.0142 2.2808 6.4209
12 5.4897 5.1054 7.4483
13 7.0827 2.7543 7.5856
14 7.4773 2.2253 7.7926
15 7.5507 3.7648 8.4139

Figure 3.31: The 12 step ahead predicted/actual turbine temperature along with
prediction intervals using NARX 7-7-1 trained with 80% of the available data for
FI = 3%.
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3.1.1.3 Summary of the Results

Table 3.25 is the summary of the RMSE for the optimal NARX neural networks found

by trial and error in Section 3.1.1.1 in presence of 1% fouling in the compressor for

different scenarios, where Ntrain is the number of data used in the training phase and

Ntest is the number of data which were used to test the trained network. Finally, NF

is the number of flights ahead which the networks are used to predict their turbine

temperature. From Table 3.25, it can be seen that as the training data increases,

the prediction error decreases. The RMSE decreases 37.6% when the training data

increases from 80 to 160 data points for 5 flights ahead. Also, there are 60.83% of the

predicted data within the upper and the lower prediction bounds when the network

is trained by using 80 data points. However, this value increases to 77.5% when the

network is trained with 160 data points. The prediction errors also increase when the

turbine temperatures are predicted for more flights ahead. The RMSE increases by

46.76% when the network predicts 12 flights ahead in comparison to the prediction

of 2 flights ahead turbine temperatures.

Table 3.25: Summary of the prediction errors for each scenario in presence of FI = 1%
using NARX neural network.

Ntrain Ntest NF Network structure RMSE (K)

80 120 2 7-6-1 3.4998
120 80 2 7-5-1 2.6993
160 40 2 7-6-1 1.6919
80 120 5 7-7-1 3.8167
120 80 5 7-8-1 3.1950
160 40 5 7-6-1 2.3814
80 120 8 7-8-1 4.1984
120 80 8 7-8-1 3.3688
160 40 8 7-6-1 2.7554
80 120 12 7-9-1 5.2964
120 80 12 7-8-1 3.8929
160 40 12 7-7-1 3.1779
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The summary of the prediction error results for the optimal networks which are

found for each scenario in presence of 3% compressor fouling is also presented in Ta-

ble 3.26 where the prediction error increases by 51.38% when the network predicts

12 flights ahead turbine temperature in comparison to 2 flights ahead. The RMSE

decreases when the network is trained by using more data points. The RMSE de-

creases 49.5% when the NARX neural network is trained by using 160 data points

rather than 80 data points in the 12 flights ahead prediction.

Table 3.26: Summary of the prediction errors for each scenario in presence of FI = 3%
using NARX neural network.

Ntrain Ntest NF Network structure RMSE (K)

80 120 2 7-8-1 4.4192
120 80 2 7-9-1 3.1743
160 40 2 7-8-1 2.1079
80 120 5 7-9-1 5.5322
120 80 5 7-6-1 3.4816
160 40 5 7-9-1 2.6966
80 120 8 7-10-1 6.8556
120 80 8 7-7-1 4.0757
160 40 8 7-7-1 3.4319
80 120 12 7-9-1 8.1328
120 80 12 7-10-1 6.3616
160 40 12 7-7-1 4.1020
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3.1.2 Turbine Erosion

As mentioned in Section 2.6.4, turbine erosion is one of the main causes of degradation

in turbine section in aero engine applications. Erosion decreases the turbine efficiency

and increases its mass flow rate due to the loss of materials in the flow path. In

this section, it is assumed that the turbine of the jet engine goes under 2 different

percentages of erosion, namely 1% and 3% during 200 flights. These degradations

are simulated using equations (2.6.3) and (2.6.4) in our jet engine model described in

Section 2.5. These degraded data are collected and used to train the NARX networks

under different structures. The trained networks are fixed to be used in the evaluation

process to check the reliability of these networks in predicting the turbine temperature

in presence of turbine erosion.

3.1.2.1 EI = 1%

The engine goes through 1% erosion in 200 flights which implies that the efficiency

decreases by 1% and the turbine mass flow rate increases by 0.5% where 80 data

points are used to train different NARX neural network structures to predict 2 flights

ahead turbine temperature. These networks are then tested using 120 data points.

The prediction error for these networks are tabulated in Table 3.27. The prediction

and actual values as well as prediction bounds for the network with the structure

of 7-6-1 are shown in Figure 3.32 where 73.33% of the predicted data are within

the prediction bounds. The errors which are the absolute values of the differences

between the actual and predicted data points are depicted in Figure 3.33.

Training data are increased to 120 data points and different NARX neural network

structures are trained. The trained networks are then tested with 60 unseen data

points. The results of errors in the testing phase are summarized in Table 3.28. The

network with 8 hidden neurons has the lowest RMSE. 97.5% of predicted data are
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Figure 3.32: The 2 step ahead predicted/actual turbine temperature along with
prediction intervals using NARX 7-6-1 trained with 40% of the available data for
EI = 1%.

Figure 3.33: The prediction errors for the 2 step ahead turbine temperature when
EI = 1% using NARX 7-6-1 trained with 40% of the available data.
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Table 3.27: A 2 flight ahead turbine temperature prediction error for different number
of hidden neurons trained with 40% of the available data for EI = 1% using NARX
neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

5 2.8623 1.9413 3.4540
6 2.2700 2.1630 3.1293
7 2.8107 1.7435 3.3037
8 3.1144 2.5174 3.9980
9 3.0551 1.9717 3.6316
10 3.3536 2.0735 3.9383
11 3.9016 1.8903 4.3320
12 4.2378 1.9584 4.6650
13 3.5411 3.3325 4.8531
14 3.9263 2.7340 4.7779
15 4.2506 3.0413 5.2192

within the prediction intervals in this case as shown in Figure 3.34.

In the case when the training data are increased from 120 to 160 data points,

the RMSE is 1.5919K when the NARX neural network structure is 7-6-1. Comparing

Tables 3.27 and 3.29, the RMSE decreases 50.8% by increasing the training data from

80 to 160 data points. Actual and predicted values along with the prediction bounds

are depicted in Figure 3.35 where 100% of the predicted data in the testing phase are

within the prediction bounds.

Next the 5 flights ahead turbine temperature is now predicted using different

numbers of the training data for various NARX neural network architectures. The

results of the prediction error, standard deviation and RMSE are tabulated in Tables

3.30-3.32 for the networks trained by using 40%, 60%, and 80% of the entire available

data. In the case when the network is trained by using 40% data points, 64.1% of

the predicted data are within the prediction bounds as shown in Figure 3.36. This

value increases to 93.75% for the case when the network is trained by using 60% of

the available data points, and finally 95% for the network trained by using 80% of
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Figure 3.34: The 2 step ahead predicted/actual turbine temperature along with
prediction intervals using NARX 7-8-1 trained with 60% of the available data for
EI = 1%.

Figure 3.35: The 2 step ahead predicted/actual turbine temperature along with
prediction intervals using NARX 7-6-1 trained with 80% of the available data for
EI = 1%.
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Table 3.28: A 2 flight ahead turbine temperature prediction error for different number
of hidden neurons trained with 60% of the available data for EI = 1% using NARX
neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

5 0.5030 2.5982 2.6304
6 1.6985 1.8051 2.4704
7 1.3883 1.8247 2.2837
8 1.3862 1.6132 2.1193
9 1.8911 1.6051 2.4740
10 1.7355 1.6814 2.4091
11 1.8775 1.8359 2.6180
12 2.0234 2.0686 2.8844
13 2.8733 1.9560 3.4690
14 0.6462 3.3333 3.3748
15 3.3266 2.1205 3.9378

the available data points as depicted in Figure 3.38.

Next the 8 flight ahead turbine temperature is also predicted in presence of 1%

turbine erosion for maintenance actions. Various NARX neural networks are trained

with 80 data points and each of them is evaluated with 120 data points. The prediction

errors are tabulated in Table 3.33. It can be seen that the network with 8 hidden

neurons has the lowest RMSE. The data used in the testing phase as well as predicted

values are depicted in Figure 3.39 where 57.5% of the predicted data points are

between the prediction bounds.

The training data increased from 40% of the available data points to 60%. Table

3.34 summarizes the prediction errors when different neural network structures are

trained. The number of hidden neurons increases from 5 to 15. The difference between

the actual and predicted values for each testing data points for the NARX neural

network structure of 7-5-1 are depicted in Figure 3.40 where 13.75% of the predicted

data points are outside the prediction bounds as shown in Figure 3.41.

When the NARX neural networks are trained by using 80% of the entire data, the
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Figure 3.36: The 5 step ahead predicted/actual turbine temperature along with
prediction intervals using NARX 7-9-1 trained with 40% of the available data for
EI = 1%.

Figure 3.37: The 5 step ahead predicted/actual turbine temperature along with
prediction intervals using NARX 7-8-1 trained with 60% of the available data for
EI = 1%.
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Figure 3.38: The 5 step ahead predicted/actual turbine temperature along with
prediction intervals using NARX 7-6-1 trained with 80% of the available data for
EI = 1%.

Figure 3.39: The 8 step ahead predicted/actual turbine temperature along with
prediction intervals using NARX 7-8-1 trained with 40% of the available data for
EI = 1%.
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Figure 3.40: The prediction error for the 2 step ahead turbine temperature when
EI = 1% using NARX 7-5-1 trained with 60% of the available data.

Figure 3.41: The 8 step ahead predicted/actual turbine temperature along with
prediction intervals using NARX 7-5-1 trained with 60% of the available data for
EI = 1%.
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Table 3.29: A 2 flight ahead turbine temperature prediction error for different number
of hidden neurons trained with 80% of the available data for EI = 1% using NARX
neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

5 1.3475 1.9249 2.3299
6 0.5570 1.5102 1.5919
7 1.4735 1.5154 2.1001
8 1.0584 1.6019 1.9032
9 1.8197 1.4606 2.3219
10 1.2731 2.2806 2.5869
11 2.0304 1.6468 2.6012
12 2.3349 1.8327 2.9541
13 2.1228 2.0314 2.9206
14 1.1273 2.9998 3.1693
15 2.9755 1.8015 3.4667

prediction error, standard deviation and RMSE for the network with the structure

of 7-7-1 are 1.8553K, 1.8776K, and 2.6229K, respectively as shown in Table 3.35.

Figure 3.42 shows that 92.5% of the data points predicted by this network are between

the prediction bounds.

The applicability of the NARX neural network to predict 12 flights ahead turbine

temperature in presence of 1% erosion is investigated. Tables 3.36-3.38 summarize

the results of prediction errors when different network structures are trained by using

40%, 60%, and 80% of the entire data sets. Actual versus predicted values as well

as prediction bounds are depicted in Figures 3.43-3.45, respectively where 48.33%

of the predicted values are within the prediction bounds when 80 data used for the

training phase. This value increases to 77.7% for the network trained by using 60%

of the available data in the training phase, and finally 83.33% of the predicted data

are within the upper and the lower bounds when 80% of the entire data used in the

training step.
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Figure 3.42: The 8 step ahead predicted/actual turbine temperature along with
prediction intervals using NARX 7-7-1 trained with 80% of the available data for
EI = 1%.

Figure 3.43: The 12 step ahead predicted/actual turbine temperature along with
prediction intervals using NARX 7-10-1 trained with 40% of the available data for
EI = 1%.
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Figure 3.44: The 12 step ahead predicted/actual turbine temperature along with
prediction intervals using NARX 7-8-1 trained with 60% of the available data for
EI = 1%.

Figure 3.45: The 12 step ahead predicted/actual turbine temperature along with
prediction intervals using NARX 7-7-1 trained with 80% of the available data for
EI = 1%.
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Table 3.30: A 5 flight ahead turbine temperature prediction error for different number
of hidden neurons trained with 40% of the available data for EI = 1% using NARX
neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

5 4.5988 2.6025 5.2788
6 4.3960 2.3230 4.9675
7 3.8219 2.0373 4.3270
8 3.3500 2.5087 4.1790
9 2.8606 2.2435 3.6296
10 3.7378 2.0293 4.2491
11 3.4051 2.3471 4.1301
12 3.4195 2.5700 4.2711
13 3.5572 2.6709 4.4416
14 4.1008 2.2961 4.6952
15 3.7128 3.0967 4.8264

Table 3.31: A 5 flight ahead turbine temperature prediction error for different number
of hidden neurons trained with 60% of the available data for EI = 1% using NARX
neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

5 2.7324 1.8346 3.2848
6 2.1921 1.8207 2.8424
7 2.3129 1.7455 2.8911
8 1.4614 1.7887 2.3012
9 2.0728 1.9379 2.8293
10 0.5133 3.1026 3.1256
11 3.0783 1.8863 3.6041
12 3.3039 2.0712 3.8926
13 1.9220 3.6856 4.1362
14 3.4871 2.4862 4.2736
15 3.0048 3.0236 4.2493

132



Table 3.32: A 5 flight ahead turbine temperature prediction error for different number
of hidden neurons trained with 80% of the available data for EI = 1% using NARX
neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

5 1.9924 1.5999 2.5427
6 1.3610 1.5532 2.0505
7 1.0403 1.8869 2.1339
8 1.5454 1.6056 2.2140
9 1.8519 1.6287 2.4528
10 1.6609 1.8300 2.4543
11 1.9521 1.7254 2.5910
12 2.2251 2.0162 2.9858
13 2.2500 2.0848 3.0496
14 1.2672 2.9349 3.1629
15 2.8312 2.0684 3.4911

Table 3.33: An 8 flight ahead turbine temperature prediction error for different num-
ber of hidden neurons trained with 40% of the available data for EI = 1% using
NARX neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

5 4.6912 2.0861 5.1306
6 4.1602 2.2064 4.7048
7 3.4450 1.9966 3.9775
8 2.4470 3.0824 3.9255
9 2.5230 3.0212 3.9265
10 3.8299 2.6837 4.6702
11 3.7724 2.8155 4.7002
12 3.9295 2.7277 4.7769
13 4.5168 1.9612 4.9209
14 4.3267 2.5882 5.0362
15 4.6410 3.5574 5.8385
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Table 3.34: An 8 flight ahead turbine temperature prediction error for different num-
ber of hidden neurons trained with 60% of the available data for EI = 1% using
NARX neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

5 1.6487 2.2204 2.7544
6 2.3507 1.8535 2.9863
7 2.8059 2.1036 3.4990
8 3.0556 1.7725 3.5269
9 3.4438 1.8377 3.8981
10 2.7760 2.9345 4.0262
11 2.4178 3.7004 4.4009
12 1.7547 4.2697 4.5915
13 4.3013 2.3044 4.8729
14 0.5725 5.2885 5.2864
15 1.0745 5.3360 5.4103

Table 3.35: An 8 flight ahead turbine temperature prediction error for different num-
ber of hidden neurons trained with 80% of the available data for EI = 1% using
NARX neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

5 2.9267 1.5197 3.2890
6 2.1836 2.3608 3.1941
7 1.8553 1.8776 2.6229
8 1.4631 2.6298 2.9806
9 2.2617 1.9330 2.9594
10 2.7368 1.7742 3.2495
11 3.0637 1.4892 3.3983
12 3.3935 1.6826 3.7784
13 3.5519 1.5845 3.8812
14 3.9267 2.0163 4.4026
15 3.9536 2.4690 4.6449
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Table 3.36: A 12 flight ahead turbine temperature prediction error for different num-
ber of hidden neurons trained with 40% of the available data for EI = 1% using
NARX neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

5 5.3057 3.5868 6.3960
6 4.2327 3.9129 5.7531
7 4.7890 2.3851 5.3456
8 4.2782 2.6544 5.0289
9 4.4607 2.4686 5.0932

10 4.1774 2.1854 4.7103
11 4.3861 2.3107 4.9531
12 3.0718 4.1297 5.1331
13 4.7999 2.7709 5.5365
14 5.2038 2.6367 5.8287
15 2.7625 5.7629 6.3691

Table 3.37: A 12 flight ahead turbine temperature prediction error for different num-
ber of hidden neurons trained with 60% of the available data for EI = 1% using
NARX neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

5 3.7320 2.0376 4.2453
6 3.4639 1.9900 3.9880
7 2.8529 1.6928 3.3113
8 2.1995 2.3179 3.1837
9 2.5916 2.7420 3.7591
10 2.0664 3.1369 3.7381
11 2.4978 3.2655 4.0932
12 3.4248 2.7661 4.3902
13 3.9087 2.6898 4.7342
14 4.1744 4.1809 5.8875
15 5.4344 2.8158 6.1115
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Table 3.38: A 12 flight ahead turbine temperature prediction error for different num-
ber of hidden neurons trained with 80% of the available data for EI = 1% using
NARX neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

5 2.7933 2.0983 3.4761
6 2.3628 2.1129 3.1500
7 2.2907 1.7558 2.8713
8 0.0855 3.1904 3.1470
9 3.1614 1.9377 3.6939
10 3.4053 1.6877 3.7901
11 3.3826 2.5650 4.2236
12 4.0232 1.8432 4.4146
13 2.4607 3.8335 4.5103
14 4.0813 1.9710 4.5204
15 3.9465 2.7737 4.8015
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3.1.2.2 EI = 3%

In this case the engine goes through 3% erosion in 200 flights which implies that the

efficiency decreases by 3% and the turbine mass flow rate increases by 1.5%. Data are

generated from our Simulink model which was described in Section 2.6.4 and based on

equations (2.6.3) and (2.6.4). As was done in the previous sections, 80 data points are

used to train different NARX neural network structures. The weights and biases in

these networks remain fixed and 120 unseen data points are given to the networks to

predict 2 flights ahead turbine temperature. The prediction error, standard deviation

and RMSE are presented in Table 3.39 when the number of hidden neurons changes

from 5 to 15, where du and dy both set to 3. Based on Table 3.39, the network with

11 hidden neuron has the smallest RMSE equal to 3.8966K. Figure 3.46 shows the

actual and predicted values pointwise which shows that 56.66% of the predicted data

are within the prediction intervals.

Table 3.39: A 2 flight ahead turbine temperature prediction error for different number
of hidden neurons trained with 40% of the available data for EI = 3% using NARX
neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

5 5.5079 3.4763 6.5055
6 4.6412 3.1878 5.6230
7 4.0556 3.5088 5.3532
8 2.8480 3.6282 4.6006
9 3.4491 3.1332 4.6510
10 2.9257 2.8709 4.0906
11 1.2225 3.7154 3.8966
12 3.0691 3.2702 4.4749
13 1.8226 4.3508 4.7003
14 0.1346 5.1627 5.1429
15 4.2339 3.5664 5.5262

When more data are used in the training phase, the RMSE decreases as shown in

Table 3.40 where 60% of the entire data are used to train the networks and 40% to
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Figure 3.46: The 2 step ahead predicted/actual turbine temperature along with
prediction intervals using NARX 7-11-1 trained with 40% of the available data for
EI = 3%.

evaluate the networks in turbine temperature prediction. The actual and predicted

values for the NAXR neural network structure of 7-8-1 are depicted in Figure 3.47

where 86.66% of the data are between the upper and the lower prediction bounds.

Figure 3.48 shows the absolute difference between the actual and predicted value for

each data point.

If the training data increase from 120 data points to 160 data points, the RMSE

of the optimal NARX neural network is 2.4922K for 2 flights ahead prediction. The

results of the prediction error for different structures are tabulated in Table 3.41.

From Figure 3.49, it is clear that only 7.5% of the prediction data are outside the

prediction intervals.

Various NARX neural networks are trained and tested to predict 5 flights ahead

turbine temperature. As done for the previous cases, different number of training

and testing data are used to find the optimal NARX neural network structure. The
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Figure 3.47: The 2 step ahead predicted/actual turbine temperature along with
prediction intervals using NARX 7-8-1 trained with 60% of the available data for
EI = 3%.

Figure 3.48: The prediction error for the 2 step ahead turbine temperature when
EI = 3% using NARX 7-8-1 trained with 60% of the available data.
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Table 3.40: A 2 flight ahead turbine temperature prediction error for different number
of hidden neurons trained with 60% of the available data for EI = 3% using NARX
neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

5 4.4051 2.3483 4.9850
6 0.6855 4.2737 4.3019
7 3.7471 1.9493 4.2182
8 0.7661 3.1798 3.2514
9 3.5696 2.1840 4.1776
10 3.7060 3.2697 4.9287
11 4.5460 2.3660 5.1180
12 4.6960 2.1244 5.1487
13 4.6764 2.4078 5.2530
14 4.6573 3.4525 5.7845
15 4.9690 3.0656 5.8285

results of prediction error when 80 data points are used in the training phase and

120 points are used in the testing phase are shown in Table 3.42. The predicted data

using the network 7-9-1 versus the actual values along with their prediction intervals

are depicted in Figure 3.50 where only 59.1% of the predicted data points are within

the upper and the lower bounds. When the number of training data increases to 120

points, the NARX neural network with 6 hidden neurons has the lowest RMSE as

presented in Table 3.43 where 66.25% of the predicted data are within the prediction

intervals for this network as depicted in Figure 3.51. The RMSE decreases to 2.7411K

in presence of 80% training data as shown in Table 3.44. The 40 predicted data are

shown pointwise in Figure 3.52. It can be seen that only 20% of the data points

are outside the prediction bounds. The absolute difference between the actual and

predicted data points are shown in Figure 3.53.

Next the 8 flights ahead turbine output temperature is now predicted using dif-

ferent NARX neural network structures with various numbers of training and testing

data. In the first case the NARX neural networks are trained by using 40% of the
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Figure 3.49: The 2 step ahead predicted/actual turbine temperature along with
prediction intervals using NARX 7-8-1 trained with 80% of the available data for
EI = 3%.

Figure 3.50: The 5 step ahead predicted/actual turbine temperature along with
prediction intervals using NARX 7-9-1 trained with 40% of the available data for
EI = 3%.
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Figure 3.51: The 5 step ahead predicted/actual turbine temperature along with
prediction intervals using NARX 7-6-1 trained with 60% of the available data for
EI = 3%.

Figure 3.52: The 5 step ahead predicted/actual turbine temperature along with
prediction intervals using NARX 7-7-1 trained with 80% of the available data for
EI = 3%.
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Table 3.41: A 2 flight ahead turbine temperature prediction error for different number
of hidden neurons trained with 80% of the available data for EI = 3% using NARX
neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

5 3.8643 2.0853 4.3787
6 2.0448 3.5923 4.0943
7 1.7942 1.8558 2.5645
8 1.5597 1.9685 2.4922
9 2.1645 1.9895 2.9231
10 2.8994 1.9287 3.4689
11 2.6922 2.3187 3.5341
12 1.1806 3.4754 3.6291
13 3.0490 2.0765 3.6743
14 3.4783 2.0686 4.0337
15 3.5430 2.0709 4.0908

total available data points (equal to 80), and 120 remaining data points are used in

the evaluation process. The results of the prediction error for these networks are

summarized in Table 3.45. As depicted pointwise in Figure 3.54, only 38.33% of the

predicted points are within the prediction bounds.

The results of the prediction error in the case when the neural networks are trained

by using 120 points are shown in Table 3.46. The lowest RMSE is achieved when the

network has 7 inputs, 8 hidden neurons and 1 output where 45.2% of the predicted

data points are between the lower and the upper prediction intervals as depicted in

Figure 3.55.

When the training data increase to 160 data points, the RMSE is 4.3814K with the

network with 7 hidden neurons as presented in Table 3.47. The actual and predicted

data points are depicted pointwise in Figure 3.56 where 87.5% of the predicted points

are within the prediction bounds.
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Figure 3.53: The prediction error for the 2 step ahead turbine temperature when
EI = 3% using NARX 7-7-1 trained with 80% of the available data.

Figure 3.54: The 8 step ahead predicted/actual turbine temperature along with
prediction intervals using NARX 7-10-1 trained with 40% of the available data for
EI = 3%.
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Figure 3.55: The 8 step ahead predicted/actual turbine temperature along with
prediction intervals using NARX 7-7-1 trained with 60% of the available data for
EI = 3%.

Figure 3.56: The 8 step ahead predicted/actual turbine temperature along with
prediction intervals using NARX 7-7-1 trained with 80% of the available data for
EI = 3%.
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Table 3.42: A 5 flight ahead turbine temperature prediction error for different number
of hidden neurons trained with 40% of the available data for EI = 3% using NARX
neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

5 4.6393 4.1490 6.2124
6 5.0700 3.7797 6.3144
7 4.9200 3.6521 6.1182
8 3.8595 3.4692 5.1798
9 3.1685 3.3852 4.6264
10 4.9004 3.3789 5.9444
11 4.9753 4.4286 6.6485
12 5.5353 4.0317 6.8380
13 2.1620 7.1622 7.4528
14 6.9197 3.8536 7.9125
15 5.7768 5.5969 8.0272

Table 3.43: A 5 flight ahead turbine temperature prediction error for different number
of hidden neurons trained with 60% of the available data for EI = 3% using NARX
neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

5 4.6517 2.7593 5.3997
6 2.7987 3.4564 3.7137
7 2.5396 2.7658 3.7421
8 2.7939 2.6335 3.8281
9 2.2628 3.7053 4.3218
10 4.1963 2.2525 4.7560
11 4.7191 2.5128 5.3391
12 5.2444 2.8377 5.9545
13 5.6038 2.6784 6.2038
14 5.3212 4.4639 6.9277
15 7.0162 3.3228 7.7544
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Table 3.44: A 5 flight ahead turbine temperature prediction error for different number
of hidden neurons trained with 80% of the available data for EI = 3% using NARX
neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

5 2.3539 2.1542 3.1726
6 2.0199 2.0381 2.8513
7 2.0044 1.8936 2.7411
8 2.1379 1.8844 2.8342
9 2.4710 2.0218 3.1767
10 2.5934 2.2455 3.4121
11 2.9812 2.5353 3.8929
12 3.2062 2.4969 4.0445
13 3.8146 2.3065 4.4428
14 3.9130 2.6768 4.7221
15 4.3169 2.3404 4.8965

Table 3.45: An 8 flight ahead turbine temperature prediction error for different num-
ber of hidden neurons trained with 40% of the available data for EI = 3% using
NARX neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

5 8.4934 4.1325 9.4378
6 8.2054 3.7542 9.0170
7 7.5029 4.4063 8.6917
8 7.1344 4.4559 8.4018
9 6.2279 3.7142 7.2434

10 5.2000 3.8503 6.4607
11 6.6509 4.1424 7.8263
12 5.9541 6.0553 8.4742
13 8.3803 5.0252 9.7608
14 8.5948 5.3559 10.1152
15 8.9073 5.1604 10.2833
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Table 3.46: An 8 flight ahead turbine temperature prediction error for different num-
ber of hidden neurons trained with 60% of the available data for EI = 3% using
NARX neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

5 5.7430 2.6444 6.3156
6 5.1091 2.6671 5.7556
7 4.3238 3.2193 5.3786
8 5.3898 2.9766 6.1481
9 5.8761 2.6279 6.4302
10 5.9924 2.7578 6.5893
11 6.0463 3.0360 6.7572
12 6.4100 3.3204 7.2094
13 6.4213 3.2955 7.2081
14 6.5856 3.1116 7.2753
15 6.5101 3.5443 7.4018

Table 3.47: An 8 flight ahead turbine temperature prediction error for different num-
ber of hidden neurons trained with 80% of the available data for EI = 3% using
NARX neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

5 4.6737 2.4102 5.2447
6 3.2405 2.9587 4.3630
7 3.3743 2.8303 4.3814
8 3.6696 2.3619 4.3480
9 4.0057 2.3861 4.6472
10 4.8206 2.5577 5.4421
11 4.8994 2.5980 5.5303
12 3.6908 4.3411 5.6565
13 4.3453 3.4211 5.5038
14 3.3675 5.2238 6.1600
15 5.1067 3.3798 6.1005
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3.1.2.3 Summary of the Results

Tables 3.48 and 3.49 show the summary of the RMSE for the optimal NARX neural

networks found by trial and error in Sections 3.1.2.1 and 3.1.2.2 in presence of 1%

and 3% turbine erosion for different scenarios, where Ntrain is the number of data

used in the training phase and Ntest is the number of data which were used to test

the trained network, and NF is the number of flights ahead which the networks are

used to predict the turbine temperature.

Table 3.48: Summary of the prediction errors for each scenario in presence of EI = 1%
using NARX neural network.

Ntrain Ntest NF Network structure RMSE (K)

80 120 2 7-6-1 3.1293
120 80 2 7-8-1 2.1193
160 40 2 7-6-1 1.5919
80 120 5 7-9-1 3.6296
120 80 5 7-8-1 2.3012
160 40 5 7-6-1 2.0505
80 120 8 7-8-1 3.9255
120 80 8 7-5-1 2.7544
160 40 8 7-7-1 2.6229
80 120 12 7-10-1 4.7103
120 80 12 7-8-1 3.1837
160 40 12 7-7-1 2.8713

Based on Tables 3.48 and 3.49, the networks learn the dynamics of the degrada-

tions better when they are trained by using more data points. The RMSE decreases

by 33.18% in 5 flights ahead prediction using 160 data in comparison to 80 data points.

It should be noted that the RMSE increases in higher erosion indices. The RMSE

increases 25.19% when the network predicted 5 flights ahead turbine temperature in

EI = 1% rather than EI = 3%.
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Table 3.49: Summary of the prediction errors for each scenario in presence of EI = 3%
using NARX neural network.

Ntrain Ntest NF Network structure RMSE (K)

80 120 2 7-11-1 3.8966
120 80 2 7-8-1 3.2514
160 40 2 7-8-1 2.4929
80 120 5 7-9-1 4.6264
120 80 5 7-6-1 3.7137
160 40 5 7-7-1 2.7411
80 120 8 7-10-1 6.4607
120 80 8 7-7-1 5.3786
160 40 8 7-7-1 4.3814

3.1.3 Concurrent Degradations

As mentioned in Section 2.6.5, it is also possible that both fouling in the compressor

and erosion in the turbine occur at the same time in the gas turbine engine. These

degradations were modelled in our Simulink model in Section 2.6.5 based on the work

of Naeem [142] and equations (2.6.1)-(2.6.4). These data are used to train different

NARX neural network structures. The trained networks are then fixed to be used in

the testing phase to predict multi-flight ahead turbine temperature. The predictions

are used for maintenance actions to decide whether the next flights will be safe or

not.

3.1.3.1 FI=1% and EI = 1%

Turbine output temperatures are predicted in presence of 1% compressor fouling and

1% turbine erosion. Compressor fouling or turbine erosion do not occur in only one

flight, but they occur over multiple flights. In this case the efficiency of the compressor

reduces by 1% and the compressor mass flow rate reduces by 0.5% in over 200 flights

while at the same time the efficiency of the turbine degrades by 1% and its mass

flow rate increases by 0.5% due to the removal of materials from turbine part of the
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gas turbine engine. Here 80 data points are used to train different NARX neural

network structures to predict 2 flights ahead turbine temperature. The predictability

of these networks were then validated by applying them to 120 data points. The error

of prediction, standard deviation and RMSE for these networks are summarized in

Table 3.50. The network with 9 hidden neurons has the lowest RMSE (5.8402K).

Figure 3.57 shows the actual turbine temperatures versus predicted values. It can be

seen that 60.83% of the turbine temperature data are within the prediction bounds.

Table 3.50: A 2 flight ahead turbine temperature prediction error for different number
of hidden neurons trained with 40% of the available data for FI = 1% and EI = 1%
using NARX neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

5 8.3017 3.9626 9.1918
6 7.7436 3.8228 8.6288
7 7.2098 3.7926 8.1391
8 6.1020 3.2729 6.9179
9 3.3303 4.8177 5.8402
10 5.8379 4.4998 7.3594
11 6.7557 3.7664 7.7271
12 6.4514 4.9517 8.1200
13 7.2042 4.2314 8.3461
14 4.3068 7.4609 8.5878
15 6.2519 6.2823 8.8445

In order to investigate the effect of training data on the performance of the net-

work, 120 of the 200 available data points are now used in the training phase and the

remaining 80 data points are used in the testing phase to predict the turbine temper-

ature in 2 flights ahead. Table 3.51 shows that the lowest RMSE is 4.8784K which is

16.47% lower than in the case when the network was trained by using 80 data points.

Figure 3.58 shows the predicted data and actual ones as well as the upper and the

lower prediction bounds where 63.75% of the predicted data points are within these

prediction bounds.
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Figure 3.57: The 2 step ahead predicted/actual turbine temperature along with
prediction intervals using NARX 7-9-1 trained with 40% of the available data for
FI = 1% and EI = 1%.

Figure 3.58: The 2 step ahead predicted/actual turbine temperature along with
prediction intervals using NARX 7-9-1 trained with 60% of the available data for
FI = 1% and EI = 1%.
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Table 3.51: A 2 flight ahead turbine temperature prediction error for different number
of hidden neurons trained with 60% of the available data for FI = 1% and EI = 1%
using NARX neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

5 0.8823 7.6185 7.6220
6 6.6688 3.1138 7.3517
7 5.1691 4.0643 6.5599
8 5.2708 2.6336 5.8848
9 4.1951 2.5057 4.8784
10 4.5059 3.5062 5.6958
11 5.1631 2.7298 5.8323
12 5.3930 2.4173 5.9038
13 5.9038 3.2157 6.7937
14 6.1801 3.2562 6.9760
15 6.1183 3.9740 7.2821

Next, 80% of the entire data sets are used to train the networks. The trained

networks are then used to predict 40 unseen data. Different NARX neural network

structures are used and tested. The error results are presented in Table 3.52. When

the network has 8 hidden neurons the RMSE is 2.3584K. The predicted data and

actual ones are depicted pointwise in Figure 3.59 for the network 7-8-1 where only

10% of the predicted data are outside the prediction intervals. The absolute difference

between the actual and predicted data points are shown in Figure 3.60.

Next the 5 flights ahead turbine temperatures are predicted by using different

NARX neural network structures. Different number of training and testing data are

used in each case. Table 3.53 shows the results of the prediction when the neural

networks are trained by using 80 data points. The RMSE of the prediction error

decrease to 5.0015K when the network used 120 data points in the training phase as

shown in Table 3.54. The lowest RMSE is achieved when 160 data points are used

to train the network based on Table 3.55 for the network with 6 hidden neurons.

Figure 3.61 shows the actual and predicted data points using 40% of the entire data
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Figure 3.59: The 2 step ahead predicted/actual turbine temperature along with
prediction intervals using NARX 7-8-1 trained with 80% of the available data for
FI = 1% and EI = 1%.

Figure 3.60: The prediction errors for 2 step ahead turbine temperature prediction
using NARX 7-8-1 trained with 80% of the available data for FI = 1% and EI = 1%.
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Table 3.52: A 2 flight ahead turbine temperature prediction error for different number
of hidden neurons trained with 80% of the available data for FI = 1% and EI = 1%
using NARX neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

5 3.8129 2.0808 4.3313
6 2.9650 2.3024 3.7363
7 2.8115 2.0855 3.4850
8 1.4211 1.9062 2.3584
9 0.0816 2.7113 2.6785
10 2.9834 1.7731 3.4592
11 3.0683 2.0233 3.6614
12 2.5788 2.8366 3.8073
13 3.3585 2.0628 3.9279
14 3.5833 1.9401 4.0632
15 3.4893 2.5879 4.3250

sets in the training phase for the network 7-11-1 where 44.17% of the predicted data

are within the prediction intervals. This value increases to 55% when 60% of the

data are used in the training phase in the network 7-8-1 as depicted in Figure 3.62,

and finally for the network 7-6-1 which is trained by using 80% of the available data

points, 72.5% of the predicted data are between the upper and the lower prediction

bounds as shown in Figure 3.63.

The NARX neural networks are trained with the available data sets and 8 flights

ahead turbine output temperature is predicted for maintenance actions. Three differ-

ent cases are assumed for this scenario. First, the number of hidden neurons in the

NARX neural network structure is changed from 5 to 15. The networks are trained

with 80 data points. The weights and biases remain fixed and the networks are used

to predict 8 flights ahead turbine temperature. The results for prediction errors are

tabulated in Table 3.56 where the network with 10 hidden neurons has the lowest

RMSE. The actual and predicted data are shown in Figure 3.64. It can be seen that

only 46.67% of the predicted data are within the prediction bounds.
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Figure 3.61: The 5 step ahead predicted/actual turbine temperature along with
prediction intervals using NARX 7-11-1 trained with 40% of the available data for
FI = 1% and EI = 1%.

Figure 3.62: The 5 step ahead predicted/actual turbine temperature along with
prediction intervals using NARX 7-8-1 trained with 60% of the available data for
FI = 1% and EI = 1%.
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Figure 3.63: The 5 step ahead predicted/actual turbine temperature along with
prediction intervals using NARX 7-6-1 trained with 80% of the available data for
FI = 1% and EI = 1%.

Figure 3.64: The 8 step ahead predicted/actual turbine temperature along with
prediction intervals using NARX 7-10-1 trained with 40% of the available data for
FI = 1% and EI = 1%.
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Table 3.53: A 5 flight ahead turbine temperature prediction error for different number
of hidden neurons trained with 40% of the available data for FI = 1% and EI = 1%
using NARX neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

5 9.7739 4.8059 10.8827
6 8.3756 4.8678 9.6772
7 8.0872 5.1000 9.5497
8 7.7264 3.9586 8.6740
9 7.3201 3.7759 8.2294
10 6.8178 3.2949 7.5663
11 5.0980 3.5872 6.2250
12 5.9816 5.5637 8.1533
13 7.9605 3.8178 8.8217
14 8.2773 4.0087 9.1896
15 10.1040 5.7402 11.6089

When the training data increases to 120 data points, the RMSE decreases to

5.9867K for the network with 9 hidden neurons where 60% of the predicted data

from this network are within the upper and the lower bounds as depicted in Figure

3.65. Table 3.57 summarizes the prediction error when the number of hidden neurons

change from 5 to 15 using 120 data points during training phase and 80 data points

during testing phase.

Data used in the training phase increases to 160 data points. Different NARX

neural network structures are trained and their performance in 8 flight ahead turbine

temperature prediction are evaluated by using 40 unseen data. The prediction error

for these networks are shown in Table 3.58 where the network with 7 hidden neurons

has the lowest RMSE. The actual and predicted data for the network 7-7-1 are shown

pointwise in Figure 3.66 where 75% of the predicted data points are within the upper

and the lower prediction intervals.

The applicability of the NARX neural network to predict 12 flights ahead turbine

temperature in presence of 1% compressor fouling and 1% turbine erosion is also

158



Figure 3.65: The 8 step ahead predicted/actual turbine temperature along with
prediction intervals using NARX 7-9-1 trained with 60% of the available data for
FI = 1% and EI = 1%.

Figure 3.66: The 8 step ahead predicted/actual turbine temperature along with
prediction intervals using NARX 7-7-1 trained with 80% of the available data for
FI = 1% and EI = 1%.
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Table 3.54: A 5 flight ahead turbine temperature prediction error for different number
of hidden neurons trained with 60% of the available data for FI = 1% and EI = 1%
using NARX neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

5 6.3820 3.0836 7.0795
6 5.7182 2.8829 6.3957
7 5.3805 2.4939 5.9238
8 3.6317 3.4605 5.0015
9 3.9005 3.2556 5.0676
10 4.9719 2.6836 5.6419
11 5.3756 2.8481 6.0752
12 5.9564 3.5605 6.9280
13 6.6438 3.3468 7.4297
14 6.3698 4.1517 7.5891
15 6.9829 3.6181 7.8541

investigated through three different cases. In the first case, the neural networks are

trained by using 40% of 200 available data points and 120 data points are given as

unseen inputs to the network to predict 12 flights ahead turbine temperature. The

results of the prediction error, standard deviation and RMSE are tabulated in Table

3.59. Figure 3.67 shows the actual and predicted values for the 120 data points for

the NARX network 7-11-1. It can be seen that only 43.33% of the predicted data

points are within the prediction bounds.

In the second case, the trained data sets increase to 60% of the entire data sets

which is equal to 120 data points. The remaining 80 data points are used in the

evaluation section. Various NARX neural network structures are trained and tested.

The results of the error are summarized in Table 3.60 where 61.25% of the prediction

values for the network with 9 hidden neurons are within the upper and the lower

prediction bounds as shown in Figure 3.68.

Finally, in the third case, 80% of the available data points are used in the training

phase. The trained networks are then evaluated with 40 data points. Twelve flights
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Figure 3.67: The 12 step ahead predicted/actual turbine temperature along with
prediction intervals using NARX 7-11-1 trained with 40% of the available data for
FI = 1% and EI = 1%.

Figure 3.68: The 12 step ahead predicted/actual turbine temperature along with
prediction intervals using NARX 7-9-1 trained with 60% of the available data for
FI = 1% and EI = 1%.
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Table 3.55: A 5 flight ahead turbine temperature prediction error for different number
of hidden neurons trained with 80% of the available data for FI = 1% and EI = 1%
using NARX neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

5 4.4139 2.4771 5.0463
6 2.6101 2.0276 3.2896
7 2.8509 1.9898 3.4623
8 3.2284 2.1775 3.8788
9 3.2171 2.6000 4.1159
10 3.5481 2.5050 4.3252
11 3.9460 2.5038 4.6566
12 4.1416 2.6496 4.8987
13 4.3552 2.7607 5.1380
14 4.7136 2.6410 5.3869
15 5.8907 2.4556 6.3702

ahead turbine temperatures are predicted and the errors which are the differences

between the actual values and predicted ones are presented in Table 3.61. To consider

the uncertainty in measurements, prediction bounds are depicted in Figure 3.69 for

the network structure 7-9-1 where 87.5% of the predicted data points are within the

prediction intervals.
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Table 3.56: An 8 flight ahead turbine temperature prediction error for different num-
ber of hidden neurons trained with 40% of the available data for FI = 1% and
EI = 1% using NARX neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

5 9.6906 3.9835 10.4711
6 7.7002 5.7434 9.5919
7 8.2901 6.2710 9.3175
8 6.2717 4.5585 7.7422
9 5.3383 4.4261 6.9228

10 5.4807 3.4768 6.4827
11 6.4709 6.5035 7.3515
12 7.4099 6.8401 8.3384
13 7.4855 4.2185 8.5837
14 6.1546 7.6630 9.8036
15 7.7428 8.2630 11.2986

Table 3.57: An 8 flight ahead turbine temperature prediction error for different num-
ber of hidden neurons trained with 60% of the available data for FI = 1% and
EI = 1% using NARX neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

5 8.6967 7.0608 9.2132
6 8.5340 3.7060 8.9476
7 8.0572 7.9498 8.5739
8 7.3802 3.1176 8.0041
9 4.5406 3.9263 5.9867
10 5.4802 3.0096 6.2432
11 5.9711 3.0085 6.6778
12 6.3626 5.7908 6.9407
13 6.7704 2.7720 7.3093
14 7.0009 6.1994 8.1503
15 6.2315 6.8481 9.2272
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Table 3.58: An 8 flight ahead turbine temperature prediction error for different num-
ber of hidden neurons trained with 80% of the available data for FI = 1% and
EI = 1% using NARX neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

5 4.5891 3.4564 5.7191
6 4.4224 2.0615 4.8684
7 2.3273 2.7251 3.5577
8 3.5367 2.1896 4.1452
9 3.4855 3.4350 4.2344
10 4.2906 2.3949 4.8991
11 4.4789 3.5385 5.1326
12 2.4464 4.6657 5.2162
13 5.0567 2.1031 5.4665
14 5.0104 3.8606 5.7517
15 5.1761 3.4382 5.7086

Table 3.59: A 12 flight ahead turbine temperature prediction error for different num-
ber of hidden neurons trained with 40% of the available data for FI = 1% and
EI = 1% using NARX neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

5 10.8399 4.2902 11.6514
6 10.2835 4.8854 11.3762
7 9.3991 5.2037 10.7329
8 8.5830 4.4981 9.6815
9 8.6199 5.9633 9.4805
10 7.6801 3.9676 8.6369
11 6.8235 5.0442 7.9234
12 8.5621 5.8179 9.3683
13 8.5976 6.1109 9.5224
14 8.1590 6.3225 9.2248
15 6.6419 6.8566 9.5256
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Table 3.60: A 12 flight ahead turbine temperature prediction error for different num-
ber of hidden neurons trained with 60% of the available data for FI = 1% and
EI = 1% using NARX neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

5 8.9698 7.7913 9.3883
6 8.6562 6.6796 9.0560
7 7.6308 6.3876 8.3394
8 7.0147 2.5152 7.4461
9 6.0475 4.5066 6.9783
10 6.7871 6.5145 7.2318
11 6.3269 4.8851 7.9727
12 5.6465 5.7733 8.0468
13 7.8228 5.8339 8.3136
14 5.6144 7.5066 9.3321
15 8.8204 5.1000 9.7147

Table 3.61: A 12 flight ahead turbine temperature prediction error for different num-
ber of hidden neurons trained with 80% of the available data for FI = 1% and
EI = 1% using NARX neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

5 5.7213 5.4567 6.2130
6 0.3881 5.8408 5.7722
7 4.8530 4.7592 5.5636
8 3.6288 3.0608 4.7198
9 3.5002 3.2657 4.1524
10 4.1451 3.5034 4.8244
11 4.4796 3.4286 5.0794
12 3.1645 4.0515 5.0964
13 4.8074 4.5508 5.4256
14 3.0103 5.0557 5.8233
15 5.8217 5.7911 6.4394
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Figure 3.69: The 12 step ahead predicted/actual turbine temperature along with
prediction intervals using NARX 7-9-1 trained with 80% of the available data for
FI = 1% and EI = 1%.
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3.1.3.2 FI=3% and EI = 2%

It is assumed for this scenario that both compressor fouling and turbine erosion occur

at the same time in the gas turbine engine with different percentages. The compressor

degrades by 3% and the turbine degrades by 2% in 200 flights. The compressor

efficiency decreases 3% and its mass flow rate decreases by the amount of 1.5% due

to fouling. Turbine efficiency decreases 2% and its mass flow rate increases 1%. The

data are obtained by using the engine model which is simulated as mentioned in

Section 2.5 and equations (2.6.1)-(2.6.4). These data are used to train various NARX

neural networks. The trained networks are then used to predict multi-flights ahead

turbine temperature and the prediction errors are compared together through various

simulations.

In the first case, different NARX neural network structures are trained by using 80

data points to predict 2 flights ahead turbine temperature. These networks are then

used to predict the remaining 120 data points. The actual values and predicted ones

are compared together and the errors are summarized in Table 3.62. The network

structure 7-10-1 has the lowest RMSE (7.9045K). To overcome the uncertainty in

measurements, the prediction intervals are depicted as shown in Figure 3.70 where

49.16% of the predicted data are within the prediction bounds using the network

7-10-1.

Next, different NARX neural network structures are trained by using 120 data

points. The number of hidden neurons increases from 5 to 15. The performance of

these networks are evaluated to predict 2 flights ahead turbine temperature. The

results are presented in Table 3.63. The actual turbine temperatures and predicted

values for the network 7-9-1 are shown pointwise in Figure 3.71. From Figure 3.71,

56.25% of the predicted data are within the upper and the lower prediction bounds.

By increasing the number of the training data points to 80% of the entire available
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Figure 3.70: The 2 step ahead predicted/actual turbine temperature along with
prediction intervals using NARX 7-10-1 trained with 40% of the available data for
FI = 3% and EI = 2%.

Figure 3.71: The 2 step ahead predicted/actual turbine temperature along with
prediction intervals using NARX 7-9-1 trained with 60% of the available data for
FI = 3% and EI = 2%.
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Table 3.62: A 2 flight ahead turbine temperature prediction error for different number
of hidden neurons trained with 40% of the available data for FI = 3% and EI = 2%
using NARX neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

5 8.7832 8.3773 12.1136
6 9.4761 8.6660 12.8168
7 2.4850 10.4216 10.6714
8 4.2685 9.0239 9.9484
9 1.8230 8.8295 8.9796

10 6.7517 6.1276 7.9045
11 4.4103 7.9123 9.0296
12 4.0022 8.2370 9.1269
13 9.4333 5.1369 10.7311
14 10.5269 5.7626 11.9894
15 12.3957 4.9337 13.3339

data, the lowest RMSE is achieved when the network has the structure of 7-9-1 as

shown in Table 3.64. The mean, standard deviation and RMSE of the prediction are

1.8772K, 1.7692K, and 2.5643K, respectively. Actual and predicted values are shown

pointwise in Figure 3.72 where 85% of the predicted data are within the prediction

intervals.

Next the 5 flights ahead turbine temperatures are now predicted by using the

NARX neural networks under different cases. First, 80 data points are used to train

the network, and 120 data points are given to the network as the input and 5 flights

ahead turbine temperatures are predicted. The results of the error in the prediction

are tabulated in Table 3.65. Next, training data increased to 120 data points and 80

data are predicted as shown in Table 3.66, and finally 160 data points are used in the

training phase and 40 data points in the testing phase. Comparing Tables 3.65 and

3.67 the RMSE decreases 67.88% when the training data increases 50%.

The actual and predicted values along with prediction intervals are depicted in

Figure 3.73 for the network structure 7-9-1 when this network is trained by using
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Table 3.63: A 2 flight ahead turbine temperature prediction error for different number
of hidden neurons trained with 60% of the available data for FI = 3% and EI = 2%
using NARX neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

5 8.6341 4.8626 9.8943
6 8.1353 4.4920 9.2795
7 7.1066 3.3641 7.8537
8 3.7544 6.3696 7.3594
9 3.3791 4.6264 5.7057
10 0.8893 7.3926 7.3999
11 7.0577 4.6374 8.4290
12 8.4140 4.7490 9.6471
13 9.7202 6.3285 11.0689
14 10.4583 8.3641 11.7383
15 11.7438 7.4376 12.9273

40% of the entire data sets. Only 45% of the predicted data are within the prediction

bounds. This value increases to 62.5% in Figure 3.74 which shows the predicted values

for the network structure 7-10-1 which was trained by using 60% of the available data

points, and finally as shown in Figure 3.75, 85% of the predicted data are inside the

prediction intervals when the network 7-9-1 is trained by using 80% of the total data

points.

The applicability of the NARX neural networks in 8 flights ahead turbine tem-

peratures prediction is also investigated. Total data available to use in the training

and the testing phases are 200 points. First, 80 data points are used to train neural

networks. The number of hidden neurons is increased from 5 to 15, and different

NARX neural networks are trained. These networks are then evaluated using 120

data points. The predicted outputs are compared to the actual ones, and the errors

are presented in Table 3.68. The network with 10 hidden neurons has the lowest

RMSE equal to 14.4070K. The actual and predicted data for this network in the

testing phase are shown pointwise in Figure 3.76 where only 35.83% of the predicted
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Figure 3.72: The 2 step ahead predicted/actual turbine temperature along with
prediction intervals using NARX 7-9-1 trained with 80% of the available data for
FI = 3% and EI = 2%.

Figure 3.73: The 5 step ahead predicted/actual turbine temperature along with
prediction intervals using NARX 7-9-1 trained with 40% of the available data for
FI = 3% and EI = 2%.
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Figure 3.74: The 5 step ahead predicted/actual turbine temperature along with
prediction intervals using NARX 7-10-1 trained with 60% of the available data for
FI = 3% and EI = 2%.

Figure 3.75: The 5 step ahead predicted/actual turbine temperature along with
prediction intervals using NARX 7-9-1 trained with 80% of the available data for
FI = 3% and EI = 2%.
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Table 3.64: A 2 flight ahead turbine temperature prediction error for different number
of hidden neurons trained with 80% of the available data for FI = 3% and EI = 2%
using NARX neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

5 4.4775 2.4095 5.0704
6 3.0607 2.6317 4.0150
7 2.6263 2.6601 3.7144
8 2.1130 2.7633 3.4511
9 1.8772 1.7692 2.5643
10 1.9209 2.3088 2.9811
11 2.5773 2.0748 3.2924
12 1.3583 3.2259 3.4628
13 2.3422 2.7009 3.5494
14 3.4391 2.4994 4.2330
15 3.8659 2.6478 4.6670

values are within the prediction bounds.

Training data increases to 120 data points as done previously where different

NARX neural networks are trained and tested by the remaining 80 data points to

find the optimal structure. Summary of the prediction error for these neural networks

can be seen in Table 3.69. The actual and predicted data turbine temperature for

the NARX neural network 7-11-1 are depicted in Figure 3.77 where 56.25% of the

predicted data are within the upper and the lower prediction intervals.

When the training data increases to 160 data points, the RMSE decreases to

4.1737K as presented in Table 3.70 for the network with the structure of 7-8-1. The

actual and predicted values for this network are shown in Figure 3.78 where 85% of

the predicted data points are within the upper and the lower prediction intervals.
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Figure 3.76: The 8 step ahead predicted/actual turbine temperature along with
prediction intervals using NARX 7-10-1 trained with 40% of the available data for
FI = 3% and EI = 2%.

Figure 3.77: The 8 step ahead predicted/actual turbine temperature along with
prediction intervals using NARX 7-11-1 trained with 60% of the available data for
FI = 3% and EI = 2%.
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Table 3.65: A 5 flight ahead turbine temperature prediction error for different number
of hidden neurons trained with 40% of the available data for FI = 3% and EI = 2%
using NARX neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

5 12.9333 8.2926 15.3449
6 11.5804 7.3566 13.7030
7 8.7180 9.4226 12.8081
8 10.4135 7.6127 12.8806
9 7.0833 7.5034 10.2959
10 8.1156 10.1260 12.9439
11 10.8225 9.7591 14.5455
12 13.8122 7.9806 15.9353
13 14.4565 9.7066 17.3903
14 15.6480 11.5768 19.4362
15 16.7434 9.2267 19.0988

Table 3.66: A 5 flight ahead turbine temperature prediction error for different number
of hidden neurons trained with 60% of the available data for FI = 3% and EI = 2%
using NARX neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

5 9.8367 5.9501 11.4770
6 9.4641 5.3497 10.8550
7 9.2584 5.0127 10.5134
8 6.1198 8.3927 10.3445
9 5.4717 6.1817 8.2265

10 6.3297 4.1259 7.5415
11 7.3068 4.6741 8.6581
12 8.4912 5.8153 10.2711
13 10.5707 5.7139 11.9992
14 11.8000 6.3364 13.3749
15 10.9266 8.3183 13.7011
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Table 3.67: A 5 flight ahead turbine temperature prediction error for different number
of hidden neurons trained with 80% of the available data for FI = 3% and EI = 2%
using NARX neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

5 5.0257 2.9173 5.7927
6 5.0799 2.8934 5.8282
7 3.3701 2.6276 4.2531
8 2.6127 2.9699 3.9276
9 2.4046 2.2983 3.3064
10 3.0942 2.6386 4.0450
11 3.4171 2.5782 4.2612
12 3.2607 3.1782 4.5256
13 3.6007 3.0292 4.6810
14 2.9373 3.8562 4.8090
15 4.1974 3.3073 5.3182

Table 3.68: An 8 flight ahead turbine temperature prediction error for different num-
ber of hidden neurons trained with 40% of the available data for FI = 3% and
EI = 2% using NARX neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

5 20.5033 10.4985 23.0149
6 19.1627 10.3366 21.7524
7 17.3023 10.7341 20.3379
8 15.5348 9.9133 18.4061
9 13.7050 9.1191 16.4406

10 10.9484 9.4038 14.4070
11 11.6201 9.2355 14.8193
12 13.1722 8.8732 15.8614
13 14.1578 9.1939 16.8602
14 15.2158 9.5227 17.9289
15 0.3043 20.5372 20.4537
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Table 3.69: An 8 flight ahead turbine temperature prediction error for different num-
ber of hidden neurons trained with 60% of the available data for FI = 3% and
EI = 2% using NARX neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

5 13.7393 8.4316 16.0926
6 14.6826 6.5364 16.0552
7 13.4530 6.4243 14.8909
8 13.0830 6.8458 14.7460
9 11.7161 6.3849 13.3238
10 10.9097 6.1620 12.5107
11 8.8926 7.7130 10.5503
12 9.3311 5.8667 11.0026
13 6.7579 8.8590 11.0982
14 9.8434 5.4255 11.2232
15 12.2375 6.7388 13.9500

Table 3.70: An 8 flight ahead turbine temperature prediction error for different num-
ber of hidden neurons trained with 80% of the available data for FI = 3% and
EI = 2% using NARX neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

5 5.5386 5.3098 6.4310
6 5.0507 4.6526 6.2062
7 4.4423 3.6802 5.7392
8 1.9276 3.7491 4.1737
9 3.1214 3.4528 4.6225
10 3.6223 3.6018 4.6186
11 4.5854 4.0130 5.4659
12 4.6213 3.4376 5.7340
13 3.9013 4.4040 5.8421
14 4.5122 4.2494 6.1616
15 4.7162 4.3268 6.3636
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Figure 3.78: The 8 step ahead predicted/actual turbine temperature along with
prediction intervals using NARX 7-8-1 trained with 80% of the available data for
FI = 3% and EI = 2%.
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3.1.3.3 FI=2% and EI = 3%

In this section, it is assumed that the compressor degrades by the amount of 2% due

to fouling and at the same time the turbine degrades by the amount of 3% due to

erosion in 200 flights. The compressor efficiency decreases 2% and its mass flow rate

decreases 1% and the turbine efficiency degrades 3% and its mass flow rate increases

1.5% because of these deteriorations.

The data generated in our Simulink model described in Section 2.6.5 are used

to train and evaluate NARX neural networks. Different NARX neural networks are

trained and tested by using various percentages of the available data. These networks

are then used to predict multi-flights ahead turbine temperatures. First, different

NARX neural network structures are trained by using 80 data points. The perfor-

mance of these networks on 2 flights ahead turbine temperature prediction are then

validated by 120 data points. The results of the prediction error for these networks are

tabulated in Table 3.71. As shown in Table 3.71, the network with 8 hidden neurons

has the lowest RMSE. The actual and predicted turbine temperatures along with the

prediction intervals for this network are depicted in Figure 3.79 where 70.83% of the

predicted data are within the prediction bounds.

When the training data increases to 120 data points the RMSE decreases to

5.4616K as shown in Table 3.72. The actual and predicted data points are shown

in Figure 3.80 for the network structure 7-10-1 where 65% of the predicted data are

within the prediction intervals.

The training data increases to 160 data points and different NARX neural network

structures are trained. The weights and biases for these networks stay fixed and these

networks are then evaluated by using 40 data points. The results of the prediction

error for these networks are summarized in Table 3.73. The actual and predicted

turbine temperatures are shown in Figure 3.81 for the network with 10 hidden neurons
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Figure 3.79: The 2 step ahead predicted/actual turbine temperature along with
prediction intervals using NARX 7-8-1 trained with 40% of the available data for
FI = 2% and EI = 3%.

Figure 3.80: The 2 step ahead predicted/actual turbine temperature along with
prediction intervals using NARX 7-10-1 trained with 60% of the available data for
FI = 2% and EI = 3%.
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Table 3.71: A 2 flight ahead turbine temperature prediction error for different number
of hidden neurons trained with 40% of the available data for FI = 2% and EI = 3%
using NARX neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

5 8.4260 6.4539 10.5973
6 6.8734 4.5040 8.2073
7 5.6363 4.8893 7.4481
8 3.8914 5.4676 6.6924
9 6.3480 3.8079 7.3902
10 6.9473 4.8999 8.4837
11 8.0732 4.1330 9.0579
12 7.0934 5.8312 9.1594
13 9.3818 6.1268 10.2390
14 8.7499 5.7920 10.4732
15 8.2973 6.5380 10.5384

where 87.5% of the predicted data are within the upper and the lower prediction

bounds. The errors for the 40 data points used in the testing phase are shown in

Figure 3.82.

Next the 5 flights ahead turbine temperatures are also predicted by using different

NARX neural network structures with different numbers of training and testing data

points. Table 3.74 shows the prediction error for the networks which are trained by

using 80 data points and evaluated by using 120 data points. Table 3.75 summarizes

the results when the networks are trained by using 120 data points. The performance

of these networks are then evaluated by the remaining 80 data points, and finally the

networks are trained with 160 data points and tested with 40 ones are shown in Table

3.76.

The actual and predicted turbine temperatures are depicted in Figures 3.83-3.85

for the three cases mentioned previously where 45% of the predicted data are within

the prediction bounds when the network structure 7-11-1 is trained by using 80 data

points. This value increases to 56.25% as shown in Figure 3.84 when the network
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Figure 3.81: The 2 step ahead predicted/actual turbine temperature along with
prediction intervals using NARX 7-10-1 trained with 80% of the available data for
FI = 2% and EI = 3%.

Figure 3.82: The prediction errors for the 2 step ahead turbine temperature when
FI = 2% and EI = 3% using NARX 7-10-1 trained with 80% of the available data.
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Table 3.72: A 2 flight ahead turbine temperature prediction error for different number
of hidden neurons trained with 60% of the available data for FI = 2% and EI = 3%
using NARX neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

5 4.7504 5.5926 7.3111
6 5.5321 3.4489 6.5077
7 4.8718 3.9168 6.2357
8 5.1952 2.9841 5.9820
9 3.1844 3.4492 4.6785

10 2.0377 3.9941 5.4616
11 4.3515 3.2026 5.3911
12 3.3814 4.4361 5.5557
13 4.7695 5.7532 7.4454
14 6.7818 4.6186 8.1888
15 7.6087 5.1869 9.1902

7-10-1 is trained with 120 data points, and finally 75% of the predicted data are

within the prediction bounds as depicted in Figure 3.85 where the network is trained

by using 160 available data points.

Next, 8 flights ahead turbine temperatures are predicted by using the NARX

neural network where 80 data are used to train different network structures and

these networks are then tested by using 120 remaining data. Note that du and dy

are both set to 3 and the number of hidden neurons is changed from 5 to 15. The

results of the prediction error are tabulated in Table 3.77. The actual and predicted

turbine temperatures along with their prediction bounds for the network with 12

hidden neurons are depicted in Figure 3.86 where only 34.1% of the predicted data

are within the prediction bounds.

The results of the prediction error when the networks are trained by using 120

data points and tested with 80 data are summarized in Table 3.78. Figure 3.87 shows

that 43.75% of the predicted data for the network structure 7-10-1 are within the

prediction intervals.
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Figure 3.83: The 5 step ahead predicted/actual turbine temperature along with
prediction intervals using NARX 7-11-1 trained with 40% of the available data for
FI = 2% and EI = 3%.

Figure 3.84: The 5 step ahead predicted/actual turbine temperature along with
prediction intervals using NARX 7-10-1 trained with 60% of the available data for
FI = 2% and EI = 3%.
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Figure 3.85: The 5 step ahead predicted/actual turbine temperature along with
prediction intervals using NARX 7-10-1 trained with 80% of the available data for
FI = 2% and EI = 3%.

Figure 3.86: The 8 step ahead predicted/actual turbine temperature along with
prediction intervals using NARX 7-12-1 trained with 40% of the available data for
FI = 2% and EI = 3%.
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Table 3.73: A 2 flight ahead turbine temperature prediction error for different number
of hidden neurons trained with 80% of the available data for FI = 2% and EI = 3%
using NARX neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

5 4.1778 2.8485 5.0364
6 3.8066 2.6179 4.6014
7 3.1913 2.5530 4.0669
8 2.5159 2.4166 3.4676
9 1.6127 2.1423 2.6600

10 1.2566 2.3534 2.6419
11 1.6684 2.1088 2.6682
12 2.5556 2.3510 3.4525
13 3.1783 2.9659 4.3218
14 3.9664 2.9941 4.9470
15 5.7980 2.9014 6.4672

Different NARX neural network structures are trained by using 160 data points.

The weights and biases remain fixed and the performance of the networks are evalu-

ated by using 40 unseen data. The prediction errors are shown in Table 3.79 where

the network with 10 hidden neurons has the lowest RMSE. The actual and predicted

turbine temperatures for this network are shown in Figure 3.88 where 82.5% of the

predicted data are within the upper and the lower prediction bounds.
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Figure 3.87: The 8 step ahead predicted/actual turbine temperature along with
prediction intervals using NARX 7-10-1 trained with 60% of the available data for
FI = 2% and EI = 3%.

Figure 3.88: The 8 step ahead predicted/actual turbine temperature along with
prediction intervals using NARX 7-10-1 trained with 80% of the available data for
FI = 2% and EI = 3%.
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Table 3.74: A 5 flight ahead turbine temperature prediction error for different number
of hidden neurons trained with 40% of the available data for FI = 2% and EI = 3%
using NARX neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

5 20.5303 11.1099 23.3215
6 17.0988 8.4411 19.0533
7 14.2158 10.0237 17.3703
8 14.3510 8.3092 16.5656
9 7.4152 11.0564 13.2744
10 9.8186 7.7857 12.5107
11 9.1387 7.1012 11.5552
12 10.6488 8.3867 13.5332
13 12.4504 7.4511 14.4937
14 12.6187 10.1850 16.1896
15 13.8096 9.3741 16.6687

Table 3.75: A 5 flight ahead turbine temperature prediction error for different number
of hidden neurons trained with 60% of the available data for FI = 2% and EI = 3%
using NARX neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

5 9.8423 5.9161 11.4645
6 9.6014 5.9797 11.2914
7 8.0704 5.7498 9.8883
8 7.8921 5.0527 9.3539
9 6.0753 4.6456 7.6303

10 5.0387 4.1620 6.5188
11 6.6337 4.3334 7.9088
12 6.8417 5.3748 8.6797
13 7.7636 6.3421 9.4050
14 9.1302 6.8936 11.4144
15 11.7492 8.7164 13.0503
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Table 3.76: A 5 flight ahead turbine temperature prediction error for different number
of hidden neurons trained with 80% of the available data for FI = 2% and EI = 3%
using NARX neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

5 4.1628 3.0305 5.1267
6 3.4165 3.0086 4.5275
7 2.8283 3.0231 4.1122
8 2.2921 3.1147 3.8357
9 2.6027 2.7176 3.7383

10 1.7818 2.9282 3.3963
11 2.3929 2.6626 3.5550
12 2.1137 3.0881 3.7102
13 2.6638 2.9119 3.9196
14 2.6922 3.3402 4.2575
15 2.8464 3.1184 4.1932

Table 3.77: An 8 flight ahead turbine temperature prediction error for different num-
ber of hidden neurons trained with 40% of the available data for FI = 2% and
EI = 3% using NARX neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

5 19.0451 11.9876 22.4771
6 18.7903 10.2153 21.3672
7 18.4043 8.9284 20.4394
8 18.2976 9.6353 20.6608
9 17.4263 9.0914 19.6378
10 17.4289 8.5985 19.4187
11 15.9244 9.3938 18.4687
12 15.3787 7.8746 17.2626
13 15.4387 9.1972 17.9510
14 16.4756 9.2509 18.8762
15 17.5003 8.6372 19.4998

189



Table 3.78: An 8 flight ahead turbine temperature prediction error for different num-
ber of hidden neurons trained with 60% of the available data for FI = 2% and
EI = 3% using NARX neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

5 11.8179 5.6414 13.0801
6 11.8256 4.8682 12.7768
7 11.1891 5.7642 12.5701
8 9.0959 5.3308 10.5261
9 7.7616 6.5899 10.1551

10 7.3068 5.8157 9.3160
11 8.7576 5.2319 10.1846
12 9.7501 6.0891 11.4751
13 10.8335 6.3823 12.5535
14 11.1948 5.9115 12.6425
15 11.6558 7.8005 13.9980

Table 3.79: An 8 flight ahead turbine temperature prediction error for different num-
ber of hidden neurons trained with 80% of the available data for FI = 2% and
EI = 3% using NARX neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

5 6.6548 3.8236 7.6512
6 5.1103 3.3844 6.1060
7 3.8866 3.5173 5.2123
8 3.8780 3.3448 5.0938
9 3.1339 3.2597 4.4923

10 3.3341 3.0063 4.4641
11 3.5776 3.6308 5.0648
12 3.9504 3.3291 5.1392
13 4.4922 3.8307 5.8726
14 5.0070 3.6628 6.1766
15 5.2447 4.0049 6.5685
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3.1.3.4 FI=3% and EI = 3%

This is the most severe case of the others mentioned previously where both compressor

and turbine efficiency in the gas turbine engine degrades by the amount of 3%. Fouling

in the compressor decreases the amount of mass flow rate by 1.5% and at the same time

the mass flow rate in the turbine increases by 1.5% due to the removal of the material

in this section of the gas turbine engine. The applicability of the NARX neural

network to predict the turbine output temperature is investigated by using different

NARX structures which are trained by various numbers of available data points where

40% of the 200 available data sets are used in the training phase. Different NARX

network structures are trained by changing the number of hidden neurons and their

performance in the testing phase are compared together in Table 3.80. The NARX

neural network structure 7-11-1 has the lowest RMSE. Actual and predicted values

for this network in the testing phase are shown pointwise in Figure 3.89 where 68.33%

of the predicted turbine temperatures are within the prediction bounds.

Table 3.80: A 2 flight ahead turbine temperature prediction error for different number
of hidden neurons trained with 40% of the available data for FI = 3% and EI = 3%
using NARX neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

5 11.8740 8.3382 14.4892
6 11.9577 9.0866 14.9955
7 11.1680 10.8334 14.2162
8 8.0708 8.9676 12.0368
9 7.9584 7.5348 10.9379
10 7.5474 6.6664 10.0516
11 2.9696 8.0453 8.5444
12 6.7463 8.1242 10.5340
13 8.8257 6.6908 11.0583
14 3.2469 10.9916 11.4171
15 7.0267 12.7429 14.5052
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Figure 3.89: The 2 step ahead predicted/actual turbine temperature along with
prediction intervals using NARX 7-11-1 trained with 40% of the available data for
FI = 3% and EI = 3%.

If the training data increases to 120 data points and the same procedure is re-

peated, the network with 12 hidden neurons has the lowest RMSE as presented in

Table 3.81. Comparing Tables 3.80 and 3.81, the RMSE decreases 18.47% by in-

creasing the training data 33.33%. Prediction bounds are depicted in Figure 3.90

to overcome the problem of uncertainty in measurements. In this case, 48.1% of the

predicted data are within the lower and the upper prediction intervals for the network

structure 7-12-1.

Table 3.82 summarizes the results of the prediction error when 160 data points are

used in the training phase and 40 data points are used to evaluate the performance of

the networks in 2 flights ahead prediction. When the network has 9 hidden neurons

the prediction mean error, standard deviation and RMSE are 2.3837K, 2.3512K, and

2.7317K, respectively. Based on Figure 3.91, 80% of the predicted data are within

the upper and the lower prediction bounds for this network.

Next the 5 flights ahead turbine temperatures are also predicted in presence of
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Figure 3.90: The 2 step ahead predicted/actual turbine temperature along with
prediction intervals using NARX 7-12-1 trained with 60% of the available data for
FI = 3% and EI = 3%.

Figure 3.91: The 2 step ahead predicted/actual turbine temperature along with
prediction intervals using NARX 7-9-1 trained with 80% of the available data for
FI = 3% and EI = 3%.
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Table 3.81: A 2 flight ahead turbine temperature prediction error for different number
of hidden neurons trained with 60% of the available data for FI = 3% and EI = 3%
using NARX neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

5 11.7929 6.5602 13.4749
6 10.0714 8.3660 11.3959
7 8.1696 7.2408 10.8865
8 9.2846 6.7820 10.9186
9 8.4268 6.1911 9.8804
10 5.8724 7.3508 9.3725
11 7.6846 5.6894 8.9872
12 4.7137 5.1611 6.9659
13 8.1895 6.9997 9.5787
14 8.0755 7.5133 10.3492
15 8.6271 8.2438 10.6266

3% compressor fouling and 3% turbine erosion. In the first case, the optimal NARX

neural network structure is found by using 80 data points in the training phase and

120 data points in the testing phase. The results are tabulated in Table 3.83 where

the network structure with 12 hidden neurons has the lowest RMSE (12.6999K). In

the second case, the training data increases to 120 data points, while 80 data points

are used to test the performance of the networks in 5 flights ahead turbine output

temperature prediction. The results for prediction error, standard deviation and

RMSE for these networks are summarized in Table 3.84, and finally different NARX

neural network structures are trained with 160 data points. The weights and biases

stay fixed and 40 unseen data points are given to the networks to predict 5 flights

ahead turbine temperature. The results are shown in Table 3.85 where the network

with 11 hidden neurons has the lowest RMSE.

Prediction bounds are depicted to overcome the problem of uncertainty in mea-

surements along with the actual and predicted turbine temperatures in Figures 3.92-

3.94 for the three cases mentioned previously where 33.33% of the predicted data
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Table 3.82: A 2 flight ahead turbine temperature prediction error for different number
of hidden neurons trained with 80% of the available data for FI = 3% and EI = 3%
using NARX neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

5 5.1657 2.8461 5.8806
6 4.3903 2.8360 5.2073
7 4.2897 2.8835 5.1487
8 2.8039 2.3484 3.6385
9 2.3837 2.3512 2.7317
10 3.3022 1.8746 3.7856
11 1.4828 3.6656 3.9115
12 3.2289 2.6348 4.1466
13 3.5025 2.2159 4.1297
14 4.2605 2.1932 4.7793
15 4.6362 2.7366 5.3662

when the network 7-12-1 is trained with 80 data points are within the prediction

bounds. This value increases to 40% for the network trained with 120 data points

and 82.5% for the network 7-11-1 which is trained with 160 data points.
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Figure 3.92: The 5 step ahead predicted/actual turbine temperature along with
prediction intervals using NARX 7-12-1 trained with 40% of the available data for
FI = 3% and EI = 3%.

Figure 3.93: The 5 step ahead predicted/actual turbine temperature along with
prediction intervals using NARX 7-10-1 trained with 60% of the available data for
FI = 3% and EI = 3%.
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Table 3.83: A 5 flight ahead turbine temperature prediction error for different number
of hidden neurons trained with 40% of the available data for FI = 3% and EI = 3%
using NARX neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

5 17.7998 11.5036 21.1675
6 16.5740 8.6363 18.6724
7 13.8457 9.6835 16.8728
8 12.6633 10.0978 16.1702
9 12.8932 8.9331 15.6643
10 11.8321 9.6109 15.2184
11 12.5051 7.5074 14.5695
12 5.3860 11.5495 12.6999
13 11.0525 7.3852 13.2757
14 11.0194 9.3195 14.4069
15 11.7512 10.2836 15.5872

Table 3.84: A 5 flight ahead turbine temperature prediction error for different number
of hidden neurons trained with 60% of the available data for FI = 3% and EI = 3%
using NARX neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

5 12.7737 7.3885 14.7335
6 12.0195 6.4010 13.5989
7 9.4691 7.1885 11.8614
8 8.6475 6.1071 10.5645
9 5.9013 6.8691 9.0233

10 6.5175 5.9827 8.8218
11 6.8080 7.3540 9.9877
12 8.8265 5.7435 10.5111
13 8.7222 7.0997 11.2184
14 10.4564 7.5270 12.8563
15 10.5410 8.2094 13.3291
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Table 3.85: A 5 flight ahead turbine temperature prediction error for different number
of hidden neurons trained with 80% of the available data for FI = 3% and EI = 3%
using NARX neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

5 6.2103 3.5399 7.1264
6 5.9962 3.3085 6.8284
7 5.9843 3.0907 6.7176
8 5.6036 3.0646 6.3684
9 4.9257 3.1214 5.8105
10 3.8496 2.7966 4.7376
11 2.4658 3.0878 3.9213
12 5.1546 3.0497 5.9698
13 5.1422 3.1677 6.0188
14 4.9759 4.6384 6.7629
15 5.6156 5.0267 7.4947

Figure 3.94: The 5 step ahead predicted/actual turbine temperature along with
prediction intervals using NARX 7-11-1 trained with 80% of the available data for
FI = 3% and EI = 3%.
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3.1.3.5 Summary of the Results

Tables 3.86-3.89 show the summary of the RMSE for the optimal NARX neural

networks found by trial and error in Section 3.1.3 for different scenarios when the

engine has both compressor fouling and turbine erosion at the same time, where

Ntrain is the number of data used in the training phase and Ntest is the number of

data which were used to test the trained network, and NF is the number of flights

ahead which the networks are used to predict the turbine temperature.

Table 3.86: Summary of the prediction errors for each scenario in presence of FI = 1%
and EI = 1% using NARX neural network.

Ntrain Ntest NF Network structure RMSE (K)

80 120 2 7-9-1 5.8402
120 80 2 7-9-1 4.8784
160 40 2 7-8-1 2.3584
80 120 5 7-11-1 6.2250
120 80 5 7-8-1 5.0015
160 40 5 7-6-1 3.2896
80 120 8 7-10-1 6.4827
120 80 8 7-9-1 5.9867
160 40 8 7-7-1 3.5577
80 120 12 7-11-1 7.9234
120 80 12 7-9-1 6.9783
160 40 12 7-9-1 4.1524

In presence of both fouling and turbine degradations at the same time, the amount

of fouling and erosion in the gas turbine engine plays an important role in the net-

work’s learning capability. As shown in Table 3.86, the NARX neural network can

predict turbine output temperature in 5 flights ahead with the accuracy of 99.76%

when it is trained with 80% of the available data points when the turbine has only 1%

fouling and 1% erosion where 92.5% of the predicted data points are within the upper

and the lower prediction bounds. However, the RMSE increases 16.1% in presence

of 3% compressor fouling and 3% turbine erosion. Only 82.5% of the predicted data
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Table 3.87: Summary of the prediction errors for each scenario in presence of FI = 3%
and EI = 2% using NARX neural network.

Ntrain Ntest NF Network structure RMSE (K)

80 120 2 7-10-1 7.9045
120 80 2 7-9-1 5.7057
160 40 2 7-9-1 2.5643
80 120 5 7-9-1 10.2959
120 80 5 7-10-1 7.5415
160 40 5 7-9-1 3.3064
80 120 8 7-10-1 14.4070
120 80 8 7-11-1 10.5503
160 40 8 7-8-1 4.1737

Table 3.88: Summary of the prediction errors for each scenario in presence of FI = 2%
and EI = 3% using NARX neural network.

Ntrain Ntest NF Network structure RMSE (K)

80 120 2 7-8-1 6.6924
120 80 2 7-10-1 4.4616
160 40 2 7-10-1 2.6419
80 120 5 7-11-1 11.5552
120 80 5 7-10-1 6.5188
160 40 5 7-10-1 3.3963
80 120 8 7-12-1 17.2626
120 80 8 7-10-1 9.3160
160 40 8 7-10-1 4.4641

points are within the prediction bounds in this case.

As the number of data which are used to train the network increases, the network

prediction error decreases. This is due to the fact that the network can learn the

trend of degradation better in presence of more available data. The RMSE decreases

70% when the number of training data increases from 80 data points to 160 data

points under FI = 3% and EI = 3%.

Comparing Tables 3.86 and 3.89, the prediction error increases when the engine
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Table 3.89: Summary of the prediction errors for each scenario in presence of FI = 3%
and EI = 3% using NARX neural network.

Ntrain Ntest NF Network structure RMSE (K)

80 120 2 7-11-1 8.5444
120 80 2 7-12-1 6.9659
160 40 2 7-9-1 2.7317
80 120 5 7-12-1 12.6999
120 80 5 7-10-1 8.8218
160 40 5 7-10-1 3.9213

goes through higher degradation rates. The RMSE increases 13.66% when the net-

work predicts 2 flight ahead turbine temperature under presence of 1% compressor

fouling and turbine erosion in comparison to presence of 3% degradations.

3.2 Conclusion

In this chapter, a NARX neural network scheme is proposed for turbine output tem-

perature prediction in aircraft jet engines in presence of degradations. The capability

of the NARX neural network in multi-flights ahead turbine output temperature pre-

diction has been investigated in detail and a large number of simulation results were

presented. Several scenarios for the NARX neural networks were trained where each

network corresponds to a specific degradation mode and specific training and testing

data sets. The presented simulations demonstrate the effectiveness of the proposed

strategy. The NARX neural networks have the potential to capture the dynamics of

non-linear systems. It has the ability to learn the trend of the compressor fouling

and turbine erosion degradations. In the next chapter we develop Elman network

schemes for the turbine temperature prediction in aircraft jet engines to investigate

the applicability of this neural network in multi-flights ahead prediction.
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Chapter 4

Jet Engine Prediction using Elman

Neural Networks

The basic idea behind the condition-based maintenance (CBM) is to make the main-

tenance strategy based on the condition of the engine. This is considered in this

chapter by using the Elman neural networks. The Elman neural networks is applied

to the data obtained from the degraded engine in Section 2.6 for learning the trend

of the degradation. This chapter is concerned with compressor fouling and turbine

erosion. Concurrent degradations may also occur in an engine. It is also assumed that

the compressor fouling and turbine erosion take place at the same time. Maximum

values of the fuel flow rate and turbine temperature in each flight are stored and these

values for multiple flights are used to train the Elman network.

An Elman neural network is a network which in principle is set up as a regular

feed-forward network where all neurons in one layer are connected with all the neurons

in the next layer. These connections are indicated with weights as described in Section

2.2. The distinction in this network is the context layer which is a special case of

a hidden layer. The neurons in this layer hold a copy of the output of the hidden

neurons. The values of the context neurons are used as an extra input for all the
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neurons in the hidden layer in the time steps later. Using the Elman neural network,

the memory is build through feedback from neurons to the first layer. The same set

of data sets including the fuel flow rate as an input and the turbine temperature as

the output of the network are given to the network several times as the connection

weights are refined. The training and weight update laws are described in Section

2.2.1. The weights are adjusted in such a way that the error between the actual output

and the network output is reduced. The process stops when the error reaches some

statistically desired point. The architecture of the Elman network during training

step is depicted in Figure 4.1.

Figure 4.1: An architecture of the Elman network during the training phase.

The trained networks are then used to predict the turbine temperature for various

flights ahead. Fuel flow rate is fed to the Elman neural network as an input and

the turbine temperature is predicted as the output of the network. Using these

predictions, one is able to study the behaviour of key parameters in future to obtain

early warnings of possible process malfunctioning. The main problem in time series

prediction with neural networks is to find the structure of the network which can

represent the dynamics of the system. The schematic view of this network in the
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testing phase is shown in Figure 4.2.

Figure 4.2: A schematic view of the Elman neural network in the testing phase.

4.1 Simulation Results

The performance of the Elman neural network in prediction depends on the number

of hidden neurons, the size of the training data set, the number of delays, etc. The

number of the data used in the training phase must be sufficient to capture the

dynamics of the degradation in the engine, while at the same time the number of

hidden neurons must be kept to a minimum in order to minimize the size of the

network. For the application under consideration, the fuel flow rate corresponds to

the input vectors at a given time step and the target vectors are the turbine output

temperature at the following time steps. The number of hidden neurons has to be
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adjusted. Optimal Elman neural network structure is achieved by using different

number of training data sets to predict 2 flights ahead turbine temperature. We will

also use 5 steps, 8 steps and 12 steps ahead turbine temperature to investigate the

reliability of the Elman neural network for the long term prediction problem.

4.1.1 Compressor Fouling

One of the important factors which reduces the performance of the gas turbine is the

airborne particles entering the engine with the air which are then adhered to the blades

of the compressor. This degradation directly affects the compressor performance. As

shown in Figure 2.13, the turbine temperature increases in presence of fouling in the

compressor which causes a reduction in the turbine output power. Therefore, the

fuel flow rate has to be increased to maintain the power in its constant value. This

fact emphasizes the importance of predicting the performance of the gas turbine due

to the fouling phenomena. It is worth noting that in most engine applications the

compressor is washed after 3% of compressor fouling, so it is not useful to predict the

turbine temperature for higher fouling indices. Various Elman neural networks are

trained and tested in presence of 1% and 3% compressor foulings to predict multi-

flights ahead turbine temperature. The predicted values help the operator to base

the maintenance decision on the actual deterioration of the system to avoid failures

and minimize the cost of maintenance.

4.1.1.1 FI = 1%

The Elman neural network is used in this section to predict the turbine output tem-

perature in presence of 1% compressor fouling. It is assumed that the compressor

degrades its efficiency by 1% and its mass flow rate by 0.5% in over 200 flights. The

fuel flow rate is given as an input to train the network. The delay is set to 2 which
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implies that 2 previous output values of the hidden layer neurons are saved and fed to

the network as additional inputs. The number of hidden neurons are increased from

2 to 8 and the 2 flights ahead turbine temperature is predicted. The available data

points are 200 where 40% are used to train the network and 120 data are used to

evaluate the performance of the network. The results of the prediction error, standard

deviation and RMSE are summarized in Table 4.1.

Table 4.1: A 2 flights ahead turbine temperature prediction error for different number
of hidden neurons trained with 40% of the available data for FI = 1% using Elman
neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

2 5.4221 3.7143 6.0584
3 5.0211 2.7122 5.7015
4 3.0354 2.5805 4.1086
5 5.2493 4.7278 5.9105
6 5.9010 4.7382 6.5005
7 6.5658 4.8319 7.1458
8 7.0613 5.7177 7.5621

As shown in Table 4.1, the network with 4 hidden neurons has the lowest RMSE.

The predicted data as well as their actual values are depicted pointwise in Figure 4.3.

Prediction bounds described in Section 2.4 are also shown to overcome the problem

of uncertainty in measurements where only 49.1% of the predicted data are within

the upper and the lower bounds. The error which is the absolute difference between

the actual and predicted data are shown in Figure 4.4.

Next, the training data is increased to 60% of the entire data set to train the

Elman network with different structures. The trained networks are then used to

predict 80 unseen data. The statistical errors in prediction are shown in Table 4.2

where the network structure 3-3-1 has the lowest RMSE equal to 2.9178K. Figure 4.5

shows the actual and the predicted turbine temperatures where 82.5% of the points

are within the prediction intervals.
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Figure 4.3: The 2 step ahead predicted/actual turbine temperature along with pre-
diction intervals using the Elman 3-4-1 trained with 40% of the available data for
FI = 1%.

Figure 4.4: Prediction errors for the 2 step ahead turbine temperature when FI = 1%
using the Elman 3-4-1 trained with 40% of the available data.
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Table 4.2: A 2 flights ahead turbine temperature prediction error for different number
of hidden neurons trained with 60% of the available data for FI = 1% using Elman
neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

2 3.9574 3.9356 4.4001
3 1.7575 2.3438 2.9178
4 3.6059 2.9223 4.0806
5 4.4195 3.0659 4.8731
6 4.9716 3.0924 5.3889
7 4.7388 4.1915 5.2152
8 6.1164 4.9550 6.4175

In order to investigate the effects of the number of training data sets in the per-

formance of the network, the training data points are increased to 160 points. The

number of hidden neurons are increased from 2 to 8 and the Elman networks are

tested with the remaining 40 data points. The prediction errors are tabulated in Ta-

ble 4.3. The predicted values are shown in Figure 4.6 for the network with 3 hidden

neurons where 85% of the predicted points are within the prediction bounds.

Table 4.3: A 2 flights ahead turbine temperature prediction error for different number
of hidden neurons trained with 80% of the available data for FI = 1% using Elman
neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

2 2.0331 3.1078 3.6811
3 1.4535 1.8815 2.3588
4 1.8863 1.7135 2.5340
5 2.0669 1.9186 2.8037
6 2.6636 2.0746 3.3603
7 2.7007 2.6699 3.7741
8 2.4821 2.8873 3.7801

Next the 5 flights ahead turbine temperature is predicted by using different number

of training and testing data sets. In the first case, 80 data points are used during

the training phase and 120 data points are used to evaluate the performance of the
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Figure 4.5: The 2 step ahead predicted/actual turbine temperature along with pre-
diction intervals using the Elman 3-3-1 trained with 60% of the available data for
FI = 1%.

Figure 4.6: The 2 step ahead predicted/actual turbine temperature along with pre-
diction intervals using the Elman 3-3-1 trained with 80% of the available data for
FI = 1%.

209



networks in prediction. The statistical errors for these network structures are shown

in Table 4.4. The network with 5 hidden neurons has the lowest RMSE. The actual

and the predicted data along with prediction intervals are depicted in Figure 4.7

where only 46.66% of the predicted data are within the prediction bounds.

Table 4.4: A 5 flights ahead turbine temperature prediction error for different number
of hidden neurons trained with 40% of the available data for FI = 1% using Elman
neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

2 4.3311 3.8182 5.7633
3 4.6236 2.6096 5.3039
4 4.0905 2.7746 4.9362
5 3.4385 2.0460 4.3933
6 3.8670 3.1634 4.9877
7 5.0077 2.6530 5.6619
8 4.9876 2.7641 5.6967

In the second case, the number of training data increases to 120 data points.

The number of hidden neurons are changed from 2 to 8 and the Elman networks are

trained. These networks are then used to predict 80 unseen data. The performance

of these networks in the testing phase are compared together in Table 4.5. The

predicted values are shown in Figure 4.8 for the Elman network 3-3-1 where 58.75%

of the predicted turbine temperatures are within the prediction intervals.

In the third case, 80% of the entire available data are used to train the Elman

networks. The entire data points are 200. Therefore, 160 data points are used in the

training phase and the remaining 40 data points are given to the network as inputs in

the evaluation phase. The network with 4 hidden neurons has the best performance

to predict 5 flights ahead turbine temperature. The mean, standard deviation and

RMSE for this network are 1.8568K, 2.1346K, and 2.8090K, respectively as shown

in Table 4.6. The temperature difference between the actual and predicted values are

depicted in Figure 4.9. Based on Figure 4.10, 85% of the predicted data are within
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Figure 4.7: The 5 step ahead predicted/actual turbine temperature along with pre-
diction intervals using the Elman 3-5-1 trained with 40% of the available data for
FI = 1%.

Figure 4.8: The 5 step ahead predicted/actual turbine temperature along with pre-
diction intervals using the Elman 3-3-1 trained with 60% of the available data for
FI = 1%.
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Table 4.5: A 5 flights ahead turbine temperature prediction error for different number
of hidden neurons trained with 60% of the available data for FI = 1% using Elman
neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

2 3.5879 1.9736 4.0890
3 2.6970 2.0148 3.3589
4 3.0355 2.2890 3.7932
5 3.5579 2.0438 4.0968
6 3.5871 2.2215 4.2119
7 4.1160 3.0452 4.5904
8 4.3405 3.0609 4.7994

the upper and the lower prediction bounds.

Table 4.6: A 5 flights ahead turbine temperature prediction error for different number
of hidden neurons trained with 80% of the available data for FI = 1% using Elman
neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

2 2.9058 2.8100 3.4114
3 2.2774 2.1732 3.1291
4 1.8568 2.1346 2.8090
5 2.3934 2.3405 3.3271
6 0.3854 3.9911 3.9597
7 3.8650 2.2189 4.4428
8 1.5013 4.8120 4.9830

The Elman networks are trained with the available data sets to predict the 8

flights ahead turbine output temperature. The available data sets are divided into 2

for training and testing purposes. First, 80 data points are used in the training phase

and 120 points are used to test the networks. The summary of the statistical errors

are shown in Table 4.7. Next, 120 data points are used to train the networks and

80 data points in the evaluation phase as shown in Table 4.8, and finally the results

of the prediction error for the networks which are trained with 160 data points and

tested with 40 data are tabulated in Table 4.9.
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Figure 4.9: Prediction errors for the 5 step ahead turbine temperature when FI = 1%
using the Elman 3-4-1 trained with 80% of the available data.

Figure 4.10: The 5 step ahead predicted/actual turbine temperature along with pre-
diction intervals using the Elman 3-4-1 trained with 80% of the available data for
FI = 1%.
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Table 4.7: An 8 flights ahead turbine temperature prediction error for different num-
ber of hidden neurons trained with 40% of the available data for FI = 1% using
Elman neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

2 4.7863 3.2036 5.7520
3 4.7890 2.5943 5.4414
4 4.5621 2.8880 5.3929
5 4.8792 3.7455 5.5930
6 4.5664 4.2985 5.6250
7 4.7352 3.2296 5.7241
8 5.3568 4.0432 6.1546

Table 4.8: An 8 flights ahead turbine temperature prediction error for different num-
ber of hidden neurons trained with 60% of the available data for FI = 1% using
Elman neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

2 5.1187 2.5195 5.6982
3 4.9068 3.6793 5.5826
4 3.6651 3.3379 4.9432
5 4.2592 2.1083 4.7913
6 4.7585 3.3668 5.3080
7 5.1974 3.0866 5.5957
8 5.0375 2.2939 5.5292

The predicted data points for the network structure 3-4-1 trained with 80 data

points are depicted in Figure 4.11 where only 29.17% of the points are between the

upper and the lower prediction intervals. This value increases to 51.25% for the

network 3-5-1 which is trained by using 120 data points as shown in Figure 4.12, and

82.5% for the Elman network 3-4-1 trained with 160 data points as can be seen in

Figure 4.13.

4.1.1.2 FI = 3%

In this section, the effects of 3% compressor fouling on the turbine temperature is

investigated. It is assumed that the engine goes through 3% fouling in 200 flights.
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Figure 4.11: The 8 step ahead predicted/actual turbine temperature along with pre-
diction intervals using the Elman 3-4-1 trained with 40% of the available data for
FI = 1%.

Figure 4.12: The 8 step ahead predicted/actual turbine temperature along with pre-
diction intervals using the Elman 3-5-1 trained with 60% of the available data for
FI = 1%.
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Table 4.9: An 8 flights ahead turbine temperature prediction error for different num-
ber of hidden neurons trained with 80% of the available data for FI = 1% using
Elman neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

2 1.7337 4.3442 4.6267
3 3.3514 2.1463 3.9653
4 2.9788 2.2637 3.7241
5 3.7869 2.8763 4.2159
6 3.4745 2.5813 4.3092
7 3.6613 3.1281 4.2215
8 4.0108 3.3203 4.6191

The compressor efficiency decreases by 3% and its mass flow rate decreases by 1.5%.

As done previously, the 2 flights ahead turbine temperature is predicted by using

different number of training data sets. Different Elman network structures are trained

by using 40% of the available data points. The remaining 60% is used to predict the

turbine temperature. The prediction errors of these networks in the testing phase are

summarized in Table 4.10. The network structure 3-5-1 has the lowest RMSE. The

actual and prediction values are depicted pointwise in Figure 4.14 where 69.17% of

the predicted data are within the prediction bounds.

Table 4.10: A 2 flights ahead turbine temperature prediction error for different number
of hidden neurons trained with 40% of the available data for FI = 3% using Elman
neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

2 2.1526 7.9250 8.1802
3 0.8793 7.2389 7.2621
4 2.5600 4.5839 5.2336
5 1.5824 4.3047 4.9451
6 4.8657 5.1565 7.0741
7 3.6380 6.4317 7.3660
8 5.6037 5.5785 7.8906

Next the Elman networks are trained by using 120 data points. The weights
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Figure 4.13: The 8 step ahead predicted/actual turbine temperature along with pre-
diction intervals using the Elman 3-4-1 trained with 80% of the available data for
FI = 1%.

Figure 4.14: The 2 step ahead predicted/actual turbine temperature along with pre-
diction intervals using the Elman 3-5-1 trained with 40% of the available data for
FI = 3%.
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and biases are fixed and these networks are then evaluated by using 80 data. The

error, standard deviation and RMSE are shown in Table 4.11 where the network

with 5 hidden neurons has the lowest RMSE equal to 3.8272K. The predicted data

for this network are shown pointwise in Figure 4.15 along with actual data. The

prediction bounds are also depicted where 68.75% of the predicted points are within

these bounds.

Table 4.11: A 2 flights ahead turbine temperature prediction error for different number
of hidden neurons trained with 60% of the available data for FI = 3% using Elman
neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

2 4.3613 3.5239 5.0311
3 4.1902 2.5762 4.9104
4 3.8160 2.7064 4.6685
5 2.8965 2.5174 3.8272
6 3.5800 2.7312 4.4925
7 3.7093 3.2949 4.9477
8 0.2536 5.6717 5.6418

Training data are increased to 160 data points and the number of hidden neurons

are changed from 2 to 8. We used 40 unseen data given to the networks and their

applicability in the 2 flights ahead turbine temperature are compared together in

Table 4.12. The predicted points for the Elman network with the structure of 3-3-1

are depicted in Figure 4.16 where only 15% of the predicted data are outside the

prediction intervals.

Next the 5 flights ahead turbine temperature is predicted using networks with

different number of hidden neurons. The entire data set equals to 200 points. A total

of 80 data points are used to train the networks and 120 data are used to evaluate

the performance of the networks. The statistical measures of errors are tabulated in

Table 4.13 where the network with 4 hidden neurons has the lowest RMSE. From

Figure 4.17 only 55.83% of the predicted points are within the upper and the lower

218



Figure 4.15: The 2 step ahead predicted/actual turbine temperature along with pre-
diction intervals using the Elman 3-5-1 trained with 60% of the available data for
FI = 3%.

Figure 4.16: The 2 step ahead predicted/actual turbine temperature along with pre-
diction intervals using the Elman 3-3-1 trained with 80% of the available data for
FI = 3%.
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Table 4.12: A 2 flights ahead turbine temperature prediction error for different number
of hidden neurons trained with 80% of the available data for FI = 3% using Elman
neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

2 2.2602 2.4097 3.2818
3 2.2778 1.7592 2.8646
4 2.0785 2.5344 3.2531
5 2.9959 1.8021 3.4845
6 3.3084 1.7995 3.7553
7 3.7759 2.2645 4.3883
8 3.9935 2.0857 4.4932

prediction bounds.

Table 4.13: A 5 flights ahead turbine temperature prediction error for different number
of hidden neurons trained with 40% of the available data for FI = 3% using Elman
neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

2 6.1215 6.1431 8.6542
3 1.6277 6.9424 7.1024
4 1.2975 5.3967 5.5286
5 4.5535 5.6105 7.2076
6 2.9885 7.0809 7.6585
7 6.4953 6.8698 9.4334
8 8.1291 5.2532 9.6669

Next the training data is increased to 120 data points and the networks are tested

by using 80 data points. Based on Table 4.14, the network with 5 hidden neurons has

the lowest RMSE equal to 4.3609K. The actual and predicted turbine temperatures

are depicted in Figure 4.18 along with prediction intervals where 55% of the predicted

points are within the prediction intervals. The absolute error between the actual and

predicted values are also shown in Figure 4.19.

Finally, 80% of the total available data are used to train the Elman networks and

the remaining 40 data are used in the evaluating phase. The prediction errors are
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Figure 4.17: The 5 step ahead predicted/actual turbine temperature along with pre-
diction intervals using the Elman 3-4-1 trained with 40% of the available data for
FI = 3%.

Figure 4.18: The 5 step ahead predicted/actual turbine temperature along with pre-
diction intervals using the Elman 3-5-1 trained with 60% of the available data for
FI = 3%.
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Table 4.14: A 5 flights ahead turbine temperature prediction error for different number
of hidden neurons trained with 60% of the available data for FI = 3% using Elman
neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

2 5.8020 4.6232 7.4007
3 4.2479 3.7186 5.6303
4 4.3678 3.8873 5.2259
5 3.0070 2.1783 4.3609
6 3.7790 3.6063 5.2081
7 3.4291 4.3768 5.5386
8 0.4297 6.2842 6.2596

summarized in Table 4.15 where the network with 4 hidden neurons has the low-

est RMSE. The mean error, standard deviation and RMSE are equal to 2.2243K,

2.6097K, and 3.4041K, respectively. Figure 4.20 shows the predicted turbine tem-

peratures with actual points where 82.5% of the predicted data are within the upper

and lower prediction bounds.

Table 4.15: A 5 flights ahead turbine temperature prediction error for different number
of hidden neurons trained with 80% of the available data for FI = 3% using Elman
neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

2 3.6765 2.8520 4.6311
3 2.4686 2.9625 3.8277
4 2.2243 2.6097 3.4041
5 2.5086 2.8682 3.7833
6 3.3746 2.3078 4.0719
7 3.8629 1.8189 4.2600
8 4.0228 2.3693 4.6536

The 8 flights ahead turbine temperature is also predicted in presence of 3% com-

pressor fouling. Three different data sets are used to train the Elman networks. The

performance of these networks are then evaluated by predicting the turbine temper-

ature in 8 flights ahead. Table 4.16 is the summary of the prediction errors when the
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Figure 4.19: Prediction errors for the 5 step ahead turbine temperature when FI =
3% using the Elman 3-5-1 trained with 60% of the available data.

Figure 4.20: The 5 step ahead predicted/actual turbine temperature along with pre-
diction intervals using the Elman 3-4-1 trained with 80% of the available data for
FI = 3%.
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networks are trained by using 80 data points and evaluated by using 120 data. When

the training data increased to 120 data points the best performance is achieved in

the network with 5 hidden neurons as shown in Table 4.17, and finally the RMSE

decreases to 4.1986K if the Elman network 3-5-1 is trained by using 160 data points

as tabulated in Table 4.18.

Table 4.16: An 8 flights ahead turbine temperature prediction error for different
number of hidden neurons trained with 40% of the available data for FI = 3% using
Elman neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

2 7.8886 7.9799 11.1973
3 7.6722 6.6721 10.1494
4 5.5862 7.7717 9.5447
5 7.6904 6.5868 10.1077
6 5.4812 9.2997 10.7614
7 6.3179 8.4534 10.5252
8 8.3741 7.4768 11.2055

Table 4.17: An 8 flights ahead turbine temperature prediction error for different
number of hidden neurons trained with 60% of the available data for FI = 3% using
Elman neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

2 7.0285 4.8012 8.4949
3 5.6840 5.1847 7.6715
4 6.1822 4.0264 7.3640
5 2.2337 3.7142 7.0361
6 5.9878 6.9509 7.1602
7 6.7399 6.2020 7.9286
8 4.3588 6.9220 8.1434

The actual and predicted data for the three cases mentioned previously are de-

picted in Figures 4.21-4.23. From Figure 4.21, only 40.83% of the predicted points

are within the upper and the lower prediction bounds when the network is trained

with 40% of the entire data points. This value increases to 55% if the network is
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Table 4.18: An 8 flights ahead turbine temperature prediction error for different
number of hidden neurons trained with 80% of the available data for FI = 3% using
Elman neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

2 4.6993 3.7431 5.4240
3 4.0017 3.8032 5.4878
4 4.1538 2.3348 4.7507
5 2.9293 2.0463 4.1986
6 2.6700 3.5995 4.4454
7 4.5158 4.4817 5.1378
8 4.5257 3.0334 5.4271

trained by using 60% of the available data points, and 77.5% in the case where 80%

of the data points are used in the training phase.

4.1.1.3 Summary of the Results

The optimal Elman neural network architectures found in Section 4.1.1.1 are sum-

marized in Table 4.19 for different number of training data sets when the engine goes

through 1% fouling in 200 flights. Note that Ntrain is the number of training data and

Ntest is the number of data which were used to test the trained network, and NF is the

number of flights ahead which the networks are used to predict their turbine temper-

ature. The RMSE decreases when the number of training data points increases. This

value decreases by 36.06% when the training data points increase from 80 to 160 in

predicting 5 flights ahead turbine temperature. Only 46.66% of the predicted points

are within the upper and the lower prediction bounds in the first case. However, this

value increases to 85% in the second case.

The summary of the optimal Elman networks in presence of 3% fouling in the

compressor are illustrated in Table 4.20 where Ntrain is the number of data used in

the training phase and Ntest is the number of data which were used to test the trained

network, and finally NF is the number of flights ahead. The statistical error measures
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Figure 4.21: The 8 step ahead predicted/actual turbine temperature along with pre-
diction intervals using the Elman 3-4-1 trained with 40% of the available data for
FI = 3%.

Figure 4.22: The 8 step ahead predicted/actual turbine temperature along with pre-
diction intervals using the Elman 3-5-1 trained with 60% of the available data for
FI = 3%.
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Figure 4.23: The 8 step ahead predicted/actual turbine temperature along with pre-
diction intervals using the Elman 3-5-1 trained with 80% of the available data for
FI = 3%.

increase as the number of flights ahead increases. The RMSE of the network used to

predict 2 flights ahead is equal to 2.8646K. This value increases to 4.1986K when the

Elman network used to predict 8 flights ahead with the same number of training data

points. Moreover, as the number of data used in the training phase increases, the

network learns the dynamics of the degradation better. Therefore, the error in the

prediction decreases. Comparing Tables 4.19 and 4.20, the capability of the Elman

network decreases in higher compressor fouling indices.

4.1.2 Turbine Erosion

Erosion in the turbine section of a gas turbine engine is among the main degradations

as described in Section 2.6.4 especially for aero engine applications. This deterioration

changes the surface blades which affects the blade aerodynamics. Erosion reduces the

turbine efficiency and increases the mass flow rate. The effect of erosion is investigated
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Table 4.19: Summary of the prediction errors for each scenario in presence of FI = 1%
using Elman neural network.

Ntrain Ntest NF Network structure RMSE (K)

80 120 2 3-4-1 4.1086
120 80 2 3-3-1 2.9178
160 40 2 3-3-1 2.3588
80 120 5 3-5-1 4.3933
120 80 5 3-3-1 3.3589
160 40 5 3-4-1 2.8090
80 120 8 3-4-1 5.3929
120 80 8 3-5-1 4.7913
160 40 8 3-4-1 3.7241

Table 4.20: Summary of the prediction errors for each scenario in presence of FI = 3%
using Elman neural network.

Ntrain Ntest NF Network structure RMSE (K)

80 120 2 3-5-1 4.9451
120 80 2 3-5-1 3.8272
160 40 2 3-3-1 2.8646
80 120 5 3-4-1 5.5286
120 80 5 3-5-1 4.3609
160 40 5 3-4-1 3.4041
80 120 8 3-4-1 9.5447
120 80 8 3-5-1 7.0361
160 40 8 3-5-1 4.1986

on turbine output temperature in presence of 1% and 3% erosion indices. It is assumed

that the engine goes under these 2 erosion indices during 200 flights. The data are

generated as mentioned in Section 2.5 using equations (2.6.3)-(2.6.4). These degraded

data are used to train and test various Elman neural networks to predict turbine

output temperature for multi-flights ahead.
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4.1.2.1 EI = 1%

In this section the turbine output temperature is predicted under presence of 1%

turbine erosion where the efficiency decreases 1% and the mass flow rate increases

0.5% due to removal of the materials from the flow path. The entire data sets are

equal to 200 and the delays associated with the hidden layer neurons are set to 2.

Also, 40% of the available data points are used to train Elman networks with different

structures. The performance of these networks are then evaluated by using 120 data

to predict 2 flights ahead turbine temperature. The prediction errors are shown in

Table 4.21. The actual and predicted values along with the upper and the lower

prediction bounds are depicted in Figure 4.24 for the Elman network with 4 hidden

neurons where 91.66% of the predicted data are within the bounds.

Table 4.21: A 2 flights ahead turbine temperature prediction error for different number
of hidden neurons trained with 40% of the available data for EI = 1% using Elman
neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

2 3.2051 2.3220 3.9521
3 2.7708 1.7813 3.2899
4 1.4919 2.0725 2.5466
5 2.2927 2.0167 3.0479
6 2.7571 1.9800 3.3896
7 2.6015 2.6715 3.7209
8 2.9971 2.7785 4.0790

Next the training data points increase to 120 and the number of hidden neurons

are increased from 2 to 8 to find the optimal Elman network structure to predict

2 flights ahead turbine temperature. The mean of the prediction error, standard

deviation and RMSE for these networks in the testing phase are shown in Table 4.22.

The predicted points for the network 3-3-1 are depicted pointwise in Figure 4.25 where

100% of these values are within the prediction intervals.
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Figure 4.24: The 2 step ahead predicted/actual turbine temperature along with pre-
diction intervals using the Elman 3-4-1 trained with 40% of the available data for
EI = 1%.

Figure 4.25: The 2 step ahead predicted/actual turbine temperature along with pre-
diction intervals using the Elman 3-3-1 trained with 60% of the available data for
EI = 1%.
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Table 4.22: A 2 flights ahead turbine temperature prediction error for different number
of hidden neurons trained with 60% of the available data for EI = 1% using Elman
neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

2 1.5922 2.0307 2.5704
3 0.2939 1.8504 1.8621
4 1.1517 2.1274 2.4075
5 2.1017 1.9103 2.8320
6 2.5500 1.7753 3.1008
7 1.1878 3.2584 3.4490
8 3.0355 1.9750 3.6147

When the data used in the training phase increase to 80% of the entire data

points, the network with 3 hidden neurons has the best performance based on Table

4.23 where the mean, standard deviation, and RMSE of the prediction error are

0.2020K, 1.4767K, and 1.4721K, respectively. Figure 4.26 shows the actual and

predicted points for this network where 100% of the networks output temperatures

are within the prediction bounds.

Table 4.23: A 2 flights ahead turbine temperature prediction error for different number
of hidden neurons trained with 80% of the available data for EI = 1% using Elman
neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

2 1.7920 1.5929 2.3843
3 0.2020 1.4767 1.4721
4 0.3735 1.9734 1.9840
5 1.4073 1.9311 2.3699
6 2.1787 1.4050 2.5829
7 2.2195 1.3777 2.6033
8 2.2367 1.4476 2.6544

The 5 flights ahead turbine temperature is now predicted as done previously by

using different number of training data sets. In the first case, the training data

points are 80 and the remaining 120 data are given to the trained network to test
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Figure 4.26: The 2 step ahead predicted/actual turbine temperature along with pre-
diction intervals using the Elman 3-3-1 trained with 80% of the available data for
EI = 1%.

the networks. The results of the prediction error are presented in Table 4.24. By

increasing the number of training data points, the best Elman network performance

is achieved when the network has the structure of 3-4-1 as summarized in Table 4.25.

Finally, various networks are trained by using 160 data points. The weights and biases

are fixed and 40 unseen data are given as inputs to the networks to predict 5 flights

ahead turbine temperatures. The RMSE for the network with 3 hidden neurons is

1.8563K as shown in Table 4.26.

Actual and predicted values for the network structure 3-3-1 trained by using 80

data points are depicted in Figure 4.27 where 80.83% of the predicted values are

within the upper and the lower prediction bounds. This value increases to 92.5% as

shown in Figure 4.28 when 120 data points are used to train the Elman network 3-

4-1, and finally 100% when the network with 3 hidden neurons (network architecture

3-3-1) is trained by using 160 data points and evaluated by using 40 unseen data as

depicted in Figure 4.29.
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Figure 4.27: The 5 step ahead predicted/actual turbine temperature along with pre-
diction intervals using the Elman 3-3-1 trained with 40% of the available data for
EI = 1%.

Figure 4.28: The 5 step ahead predicted/actual turbine temperature along with pre-
diction intervals using the Elman 3-4-1 trained with 60% of the available data for
EI = 1%.
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Table 4.24: A 5 flights ahead turbine temperature prediction error for different number
of hidden neurons trained with 40% of the available data for EI = 1% using Elman
neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

2 2.3515 1.9863 3.0728
3 1.5365 2.3477 2.7976
4 2.1778 2.3382 3.1882
5 1.8850 2.6803 3.2676
6 1.3360 3.4490 3.6853
7 2.2720 2.8467 3.6329
8 3.1514 2.3746 3.9400

Table 4.25: A 5 flights ahead turbine temperature prediction error for different number
of hidden neurons trained with 60% of the available data for EI = 1% using Elman
neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

2 1.7647 2.3627 2.9371
3 2.1105 1.9357 2.8556
4 0.9143 1.8265 2.0323
5 0.6139 2.3604 2.4246
6 2.1108 1.8547 2.8022
7 1.0219 1.8514 2.1045
8 1.9573 2.4834 3.1498

The applicability of the Elman network to predict 8 flights ahead turbine temper-

ature is examined in presence of 1% turbine erosion in over 200 flights. Also 40% of

the available data points are used to train the networks with various structures and

60% to evaluate their performance. The summary of the statistical error measures

are presented in Table 4.27 where the network with 5 hidden neurons has the best

performance. The actual and predicted data are shown in Figure 4.30 where 78.33%

of the points are between the upper and the lower prediction bounds.

The effect of the number of training data in the performance of the Elman neural

network is investigated by increasing the number of training data to 120 and 160. The

number of hidden neurons are changed from 2 to 8, and these networks are trained
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Figure 4.29: The 5 step ahead predicted/actual turbine temperature along with pre-
diction intervals using the Elman 3-3-1 trained with 80% of the available data for
EI = 1%.

Figure 4.30: The 8 step ahead predicted/actual turbine temperature along with pre-
diction intervals using the Elman 3-5-1 trained with 40% of the available data for
EI = 1%.
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Table 4.26: A 5 flights ahead turbine temperature prediction error for different number
of hidden neurons trained with 80% of the available data for EI = 1% using Elman
neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

2 1.7920 1.5929 2.3843
3 0.1666 1.8740 1.8563
4 0.3735 1.9734 1.9840
5 1.4073 1.9311 2.3699
6 2.1787 1.4050 2.5829
7 2.2195 1.3777 2.6033
8 2.2367 1.4476 2.6544

Table 4.27: An 8 flights ahead turbine temperature prediction error for different
number of hidden neurons trained with 40% of the available data for EI = 1% using
Elman neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

2 4.0273 2.8738 4.4386
3 3.6402 2.0393 4.1684
4 3.0594 2.0679 3.6879
5 2.0314 2.4874 3.2034
6 3.3177 2.2158 3.9845
7 3.6050 2.3152 4.2792
8 3.8453 2.2222 4.4366

by using 120 and 160 data points. These trained networks are then tested by using

80 and 40 unseen data to predict 8 flights ahead turbine temperature. The prediction

errors are then calculated and summarized in Tables 4.28 and 4.29 for the networks

trained by using 120 and 160 data points, respectively.

The actual and predicted values along with the upper and the lower prediction

intervals for the network 3-3-1 trained by using 120 data points are shown in Figure

4.31 where 91.25% of the predicted points are within these bounds. This value in-

creases to 97.5% when this network is trained by using 160 data points as depicted

in Figure 4.32.

For the next scenario different Elman network structures are trained to predict

236



Figure 4.31: The 8 step ahead predicted/actual turbine temperature along with pre-
diction intervals using the Elman 3-3-1 trained with 60% of the available data for
EI = 1%.

Figure 4.32: The 8 step ahead predicted/actual turbine temperature along with pre-
diction intervals using the Elman 3-3-1 trained with 80% of the available data for
EI = 1%.
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Table 4.28: An 8 flights ahead turbine temperature prediction error for different
number of hidden neurons trained with 60% of the available data for EI = 1% using
Elman neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

2 2.0909 2.0631 2.9283
3 1.2932 1.9471 2.3273
4 2.0041 1.6743 2.6047
5 1.6937 2.3141 2.8561
6 2.0932 2.2967 3.0968
7 2.6704 2.0043 3.3314
8 2.3664 2.6062 3.5081

Table 4.29: An 8 flights ahead turbine temperature prediction error for different
number of hidden neurons trained with 80% of the available data for EI = 1% using
Elman neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

2 2.0904 1.6661 2.6601
3 1.5485 1.5899 2.2051
4 1.7094 1.4454 2.4269
5 2.2707 1.3924 2.6545
6 2.6372 1.4030 2.9789
7 0.8705 3.1307 3.2115
8 2.9146 1.4503 3.2474

12 flights ahead turbine temperature. A total number of 80 data points is used in

the training phase and the networks are then tested by using 120 data. The network

with 4 hidden neurons has the best performance as presented in Table 4.30 where the

prediction error, standard deviation and RMSE are 2.4208K, 2.7697K, and 3.6699K,

respectively. Based on Figure 4.33, 73.33% of the predicted points are within the

prediction bounds.

When the Elman networks are trained with 60% of the entire data points available

the lowest RSME is 2.5350K for the network with 4 hidden neurons. The prediction

errors for various Elman network architectures are tabulated in Table 4.31. To over-

come the problem of uncertainty in measurements, the prediction bounds are depicted
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Table 4.30: A 12 flights ahead turbine temperature prediction error for different
number of hidden neurons trained with 40% of the available data for EI = 1% using
Elman neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

2 3.4905 3.1294 4.6793
3 3.8797 2.0227 4.3715
4 2.4208 2.7697 3.6699
5 3.4015 2.0219 3.9528
6 3.9324 2.1531 4.4790
7 4.1881 2.0474 4.6580
8 4.4698 2.1541 4.9578

in Figure 4.34 where 94.44% of the predicted points are within these bounds.

Table 4.31: A 12 flights ahead turbine temperature prediction error for different
number of hidden neurons trained with 60% of the available data for EI = 1% using
Elman neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

2 2.3826 1.9272 3.0560
3 2.0902 2.1537 2.9905
4 0.0413 2.5524 2.5350
5 1.8062 2.2274 2.8557
6 2.5666 1.9981 3.2441
7 2.6244 1.8415 3.1987
8 2.7896 2.0363 3.4454

Elman networks are next trained by using 160 data points in the training phase

and 40 data in the testing phase. The results of the prediction error are compared

together in Table 4.32. The actual and predicted values for the network 3-5-1 are

shown pointwise in Figure 4.35 where 100% of the predicted values are within the

prediction bounds.
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Figure 4.33: The 12 step ahead predicted/actual turbine temperature along with
prediction intervals using the Elman 3-4-1 trained with 40% of the available data for
EI = 1%.

Figure 4.34: The 12 step ahead predicted/actual turbine temperature along with
prediction intervals using the Elman 3-4-1 trained with 60% of the available data for
EI = 1%.
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Table 4.32: A 12 flights ahead turbine temperature prediction error for different
number of hidden neurons trained with 80% of the available data for EI = 1% using
Elman neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

2 1.7990 2.4255 2.9927
3 2.3489 1.5642 2.8100
4 2.2740 1.5355 2.7319
5 1.8962 1.0982 2.4037
6 2.0285 1.5845 2.5604
7 2.1477 1.6575 2.6988
8 2.3232 1.9666 3.0261

4.1.2.2 EI = 3%

The Elman network is used to predict the turbine temperature in presence of 3%

turbine erosion. The turbine efficiency decreases by the amount of 3%, while at the

same time the mass flow rate increases by 1.5%. It is considered that the turbine

eroded in 200 simultaneous flights. The fuel flow rate is given as an input to train

the networks. A total of 80 data points are used to train the networks with different

structures. The trained networks are then tested with 120 data points. The prediction

errors are tabulated in Table 4.33 where the network with 4 hidden neurons has the

best performance. The predicted values are shown pointwise in Figure 4.36 where

85.83% of the predicted points are within the prediction intervals.

Next the training data is increased to 120 data points. The number of hidden

neurons are changed from 2 to 8 and 2 flights ahead turbine temperature is predicted

for 80 points. The error, standard deviation and RMSE of prediction for these net-

works are presented in Table 4.34. Actual and predicted data are depicted in Figure

4.37 for the Elman network 3-5-1 where 76.25% of the predicted data are within the

prediction bounds. Comparing Tables 4.33 and 4.34 the RMSE decreases by 8.67%

when the training data points increases by 33.33%.
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Figure 4.35: The 12 step ahead predicted/actual turbine temperature along with
prediction intervals using the Elman 3-5-1 trained with 80% of the available data for
EI = 1%.

Figure 4.36: The 2 step ahead predicted/actual turbine temperature along with pre-
diction intervals using the Elman 3-4-1 trained with 40% of the available data for
EI = 3%.
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Table 4.33: A 2 flights ahead turbine temperature prediction error for different number
of hidden neurons trained with 40% of the available data for EI = 3% using Elman
neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

2 2.5718 3.2873 4.1630
3 1.0577 3.5509 3.6909
4 0.8590 3.1073 3.2113
5 2.4657 3.7638 4.4865
6 2.8403 4.1611 5.0237
7 4.2098 3.0841 5.2111
8 2.5513 4.9191 5.5232

Table 4.34: A 2 flights ahead turbine temperature prediction error for different number
of hidden neurons trained with 60% of the available data for EI = 3% using Elman
neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

2 3.1353 3.3126 4.5460
3 0.8692 4.3252 4.3851
4 2.1267 3.3157 3.9217
5 2.2403 1.9048 2.9329
6 2.4280 2.2548 3.3039
7 3.8887 2.0080 4.3708
8 3.9042 2.4928 4.6238

By increasing the number of training data sets to 80% of the entire available data,

the Elman network with 3 hidden neurons has the best performance in predicting

the turbine temperature for 2 flights ahead as shown in Table 4.35. Based on Figure

4.38, only 5% of the predicted values are outside the upper and the lower prediction

intervals.

In the next scenario, 5 flights ahead turbine temperature is predicted when the

engine goes through 3% erosion in the turbine section. First, 80 data points are used

to train the network and 120 data points to evaluate the networks performance for

various Elman network structures. The summary of the prediction errors are shown in

Table 4.36. The network structure 3-4-1 has the best performance. The mean error,
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Figure 4.37: The 2 step ahead predicted/actual turbine temperature along with pre-
diction intervals using the Elman 3-5-1 trained with 60% of the available data for
EI = 3%.

Figure 4.38: The 2 step ahead predicted/actual turbine temperature along with pre-
diction intervals using the Elman 3-3-1 trained with 80% of the available data for
EI = 3%.
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Table 4.35: A 2 flights ahead turbine temperature prediction error for different number
of hidden neurons trained with 80% of the available data for EI = 3% using Elman
neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

2 3.0364 2.1201 3.6881
3 0.2273 2.2120 2.1960
4 1.1597 1.9591 2.2554
5 1.2454 2.2962 2.5868
6 2.2862 1.7762 2.8814
7 2.2359 1.8395 2.8807
8 2.2848 1.9898 3.0134

standard deviation, and RMSE are 2.5925K, 2.8451K, and 3.8404K, respectively.

As depicted in Figure 4.39, 65.83% of the predicted points are within the prediction

bounds.

Table 4.36: A 5 flights ahead turbine temperature prediction error for different number
of hidden neurons trained with 40% of the available data for EI = 3% using Elman
neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

2 0.9553 4.6483 4.7264
3 2.6786 3.4534 4.3591
4 2.5925 2.8451 3.8404
5 1.3972 3.7467 3.9841
6 3.4845 2.7600 4.4380
7 2.7472 4.0198 4.8551
8 3.7081 4.0276 5.4623

The RMSE decreases to 3.5999K for the network 3-5-1 when it is trained by using

120 data points as presented in Table 4.37. Comparing Tables 4.36 and 4.37, the

RMSE decreases by 6.26%. The actual and predicted points are shown in Figure 4.40

along with the prediction bounds where 73.75% of the predicted points are within

these bounds. The absolute differences between the actual and predicted values are

also depicted in Figure 4.41.
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Figure 4.39: The 5 step ahead predicted/actual turbine temperature along with pre-
diction intervals using the Elman 3-4-1 trained with 40% of the available data for
EI = 3%.

Figure 4.40: The 5 step ahead predicted/actual turbine temperature along with pre-
diction intervals using the Elman 3-5-1 trained with 60% of the available data for
EI = 3%.
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Table 4.37: A 5 flights ahead turbine temperature prediction error for different number
of hidden neurons trained with 60% of the available data for EI = 3% using Elman
neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

2 3.9538 2.2588 4.5465
3 3.8675 2.2298 4.4573
4 3.3648 2.3123 4.0745
5 2.2460 2.4311 3.5999
6 3.0694 2.1975 3.7669
7 4.1733 2.4829 4.8481
8 4.2697 2.3735 4.8778

Next 80% of the entire available data are used to train the networks. The networks

are then used to predict 5 flights ahead turbine temperature of 40 unseen data. The

mean error, standard deviation and RMSE for these networks are summarized in

Table 4.38. The network with 5 hidden neurons has the lowest RMSE. The predicted

data for this network is shown pointwise in Figure 4.42 where 85% of the points are

within the prediction intervals.

Table 4.38: A 5 flights ahead turbine temperature prediction error for different number
of hidden neurons trained with 80% of the available data for EI = 3% using Elman
neural network

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

2 2.8287 2.2645 3.6057
3 2.1273 2.1881 3.0321
4 1.8348 2.3703 2.9739
5 1.4544 1.8783 2.3569
6 2.0098 1.9954 2.8145
7 3.0436 2.1152 3.6913
8 3.5869 2.1147 4.1504

For the next scenario, the Elman networks are trained and their performance

are evaluated to investigate the reliability of this network in 8 flights ahead turbine

temperature prediction. In the first case, 80 data points are used in the training
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Figure 4.41: The prediction errors for the 5 step ahead turbine temperature when
EI = 3% using the Elman 3-5-1 trained with 60% of the available data.

Figure 4.42: The 5 step ahead predicted/actual turbine temperature along with pre-
diction intervals using the Elman 3-5-1 trained with 80% of the available data for
EI = 3%.
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phase and 120 data are given to the networks with different architectures as inputs

to predict the turbine temperature. The prediction errors of these networks are

compared together in Table 4.39 where the network structure 3-4-1 has the best

performance. In the second case, 120 data points are used to train the networks and

the remaining 80 points to test the networks. The results of the prediction errors

are shown in Table 4.40, and finally Elman networks with different number of hidden

neurons are trained by using 160 available data. The networks then predict 40 unseen

data and their errors are tabulated in Table 4.41.

Table 4.39: An 8 flights ahead turbine temperature prediction error for different
number of hidden neurons trained with 40% of the available data for EI = 3% using
Elman neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

2 4.2111 4.0516 5.8320
3 4.1506 3.8326 5.6386
4 3.3153 3.5972 4.8809
5 3.3907 3.7828 5.0683
6 1.9441 4.8312 5.1890
7 3.6324 3.9445 5.3501
8 5.3755 3.5313 6.4235

Table 4.40: An 8 flights ahead turbine temperature prediction error for different
number of hidden neurons trained with 60% of the available data for EI = 3% using
Elman neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

2 5.0110 3.2372 5.9547
3 4.2063 3.2401 5.2971
4 4.4640 2.3812 5.0524
5 3.2773 3.1915 4.5606
6 4.0957 2.2221 4.6530
7 4.6202 2.4800 5.2364
8 5.1179 2.9695 5.9077

The actual and predicted values for the optimal networks described previously
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Table 4.41: An 8 flights ahead turbine temperature prediction error for different
number of hidden neurons trained with 80% of the available data for EI = 3% using
Elman neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

2 3.4859 2.3686 4.1978
3 2.7038 2.2592 3.5053
4 2.5370 2.2113 3.3472
5 2.9200 2.0888 3.5750
6 3.3334 2.3630 4.0688
7 3.5271 2.1275 4.1053
8 3.2557 2.5924 4.1415

are shown in Figures 4.43-4.45. Only 46.83% of the predicted values with the Elman

network 3-4-1 trained by using 40% of the entire data sets are within the prediction

bounds. This value increases to 76.25% when the Elman network 3-5-1 is trained with

60% of the available data points, and 80% when the network with 4 hidden neurons

is trained by using 80% of the entire data points.

4.1.2.3 Summary of the Results

The optimal Elman neural networks are found in Section 4.1.2.1 to predict the turbine

output temperature in presence of 1% erosion, and in Section 4.1.2.2 in presence of

3% erosion. The optimal networks are summarized for multi-flights ahead prediction

in Tables 4.42 and 4.43, where Ntrain is the number of training data points and Ntest

is the number of data which were used to evaluate the trained network, and finally

NF is the number of flights ahead which the networks are used to predict the turbine

temperature.

Based on Table 4.42, the RMSE decreases by the amount of 31.62% when the

number of training data points increases by 50% for the Elman network to predict 2

flights ahead turbine temperature which emphasizes the importance of the training

data sets in network performance. Moreover, the RMSE increases when the network
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Figure 4.43: The 8 step ahead predicted/actual turbine temperature along with pre-
diction intervals using the Elman 3-4-1 trained with 40% of the available data for
EI = 3%.

Figure 4.44: The 8 step ahead predicted/actual turbine temperature along with pre-
diction intervals using the Elman 3-5-1 trained with 60% of the available data for
EI = 3%.
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Figure 4.45: The 8 step ahead predicted/actual turbine temperature along with pre-
diction intervals using the Elman 3-4-1 trained with 80% of the available data for
EI = 3%.

is used to predict more flights ahead with the same number of training data points

as shown in Table 4.43 where the RMSE increases from 2.1960K to 3.3472K when

the Elman network predicts 8 flights ahead turbine temperature instead of 2 flights

ahead.

4.1.3 Concurrent Degradations

In this section, it is assumed that both fouling in the compressor and erosion in the

turbine occur at the same time in the gas turbine engine. As described in Section 2.6.5

and equations (2.6.1)-(2.6.4), these degradations are modelled in our Simulink model.

These degradations affect the performance of the engine. Based on Table 2.8, turbine

temperature increases which causes an increase in the fuel flow rate. Therefore,

it is important to predict the future health of the engine to reduce maintenance

costs. Multi-flights ahead turbine temperature is predicted for different scenarios to
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Table 4.42: Summary of the prediction errors for each scenario in presence of EI = 1%
using Elman neural network.

Ntrain Ntest NF Network structure RMSE (K)

80 120 2 3-4-1 2.5466
120 80 2 3-3-1 1.8621
160 40 2 3-3-1 1.4721
80 120 5 3-3-1 2.7976
120 80 5 3-4-1 2.0323
160 40 5 3-3-1 1.8563
80 120 8 3-5-1 3.2034
120 80 8 3-3-1 2.3273
160 40 8 3-3-1 2.2051
80 120 12 3-4-1 3.6699
120 80 12 3-4-1 2.5350
160 40 12 3-5-1 2.4037

investigate the reliability of the Elman neural network in long term prediction.

4.1.3.1 FI=1% and EI = 1%

The optimal Elman networks are found to predict multi-flights ahead turbine output

temperature in presence of 1% compressor fouling and 1% turbine erosion. The

efficiency of the compressor and turbine decreases by 1%. The compressor mass flow

rate decreases by 0.5% due to adherence of particles to the blades, while the turbine

mass flow rate increases by 0.5% due to the removal of materials from flow path in

the turbine section of an engine. The entire data available equals to 200 points, and

these data are used to train and evaluate the network for 2 flights ahead turbine

temperature prediction. A total of 80 data sets are used to train different Elman

networks. The trained networks are then tested with 120 data. The prediction errors

are summarized in Table 4.44.

Based on Table 4.44, the network with 5 hidden neurons has the best performance

to predict 2 flights ahead turbine temperature. The mean error, standard deviation
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Table 4.43: Summary of the prediction errors for each scenario in presence of EI = 3%
using Elman neural network.

Ntrain Ntest NF Network structure RMSE (K)

80 120 2 3-4-1 3.2113
120 80 2 3-5-1 2.9329
160 40 2 3-3-1 2.1960
80 120 5 3-4-1 3.8404
120 80 5 3-5-1 3.5999
160 40 5 3-5-1 2.3569
80 120 8 3-4-1 4.8809
120 80 8 3-5-1 4.5606
160 40 8 3-4-1 3.3472

Table 4.44: A 2 flight ahead turbine temperature prediction error for different number
of hidden neurons trained with 40% of the available data for FI = 1% and EI = 1%
using Elman neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

2 7.7967 4.0355 8.7715
3 6.5263 5.3286 8.4113
4 6.0506 3.4838 6.9746
5 4.1148 4.0672 5.7737
6 5.6754 3.7180 6.7763
7 6.4345 4.7575 7.4434
8 7.4894 3.9419 8.4558

and RMSE are 4.1148K, 4.0672K,and 5.7737K respectively. The actual and predicted

data are depicted pointwise in Figure 4.46 where 61.66% of the predicted points are

within the upper and the lower prediction bounds.

By increasing the number of training data sets to 120, the Elman network with

5 hidden neurons has the lowest RMSE. The comparison of prediction errors among

various Elman network structures are presented in Table 4.45. The predicted and

actual values are shown in Figure 4.47. The prediction intervals are also depicted to

overcome the uncertainty problem where 58.75% of the predicted points are between

these bounds.
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Figure 4.46: The 2 step ahead predicted/actual turbine temperature along with pre-
diction intervals using the Elman 3-5-1 trained with 40% of the available data for
FI = 1% and EI = 1%.

Figure 4.47: The 2 step ahead predicted/actual turbine temperature along with pre-
diction intervals using the Elman 3-5-1 trained with 60% of the available data for
FI = 1% and EI = 1%.
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Table 4.45: A 2 flight ahead turbine temperature prediction error for different number
of hidden neurons trained with 60% of the available data for FI = 1% and EI = 1%
using Elman neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

2 6.1118 4.8770 6.7474
3 5.8293 4.9921 6.5438
4 5.0066 3.1942 5.4608
5 3.4052 2.9470 5.1942
6 4.6696 3.7691 5.4201
7 5.7958 4.7724 6.4173
8 6.2362 4.6377 6.7647

Next 160 data points are used in the training phase. The number of hidden neurons

are changed and the trained networks are tested with 40 unseen data. The networks

output which is the predicted turbine temperature for 2 flights ahead are compared to

the actual ones, and the mean, standard deviation and RMSE of these networks are

summarized in Table 4.46. The actual and predicted points for the Elman network

3-3-1 are shown in Figure 4.48 where only 7.5% of the predicted points are outside

the prediction intervals.

Table 4.46: A 2 flight ahead turbine temperature prediction error for different number
of hidden neurons trained with 80% of the available data for FI = 1% and EI = 1%
using Elman neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

2 1.4533 2.8847 3.1977
3 2.0799 1.9849 2.8579
4 2.3353 2.0632 3.0990
5 2.6940 1.8796 3.2714
6 2.7442 2.0118 3.3878
7 2.8261 2.6069 3.8226
8 3.7595 2.0301 4.2606

A 5 flights ahead turbine temperature is predicted using the Elman neural network

under three different cases. The entire available data set is 200. First, 40% of the
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Figure 4.48: The 2 step ahead predicted/actual turbine temperature along with pre-
diction intervals using the Elman 3-3-1 trained with 80% of the available data for
FI = 1% and EI = 1%.

available data is used in the training phase. Different Elman network structures are

trained. The weights and biases are fixed and these networks are evaluated by using

80 data points. The prediction error for these networks are presented in Table 4.47

where the network with 4 hidden neurons has the lowest RMSE. The predicted data

for this network are shown in Figure 4.49 along with the prediction bounds where

only 54.17% of the predicted data are within the bounds.

In the second case 60% of the entire data points are used in the training phase

and 40% for the network evaluation. The statistical error measures for the Elman

networks with different architectures are presented in Table 4.48. The network with

5 hidden neurons has the best performance in prediction. The mean, standard devi-

ation, and RMSE during testing phase are 4.6767K, 3.3411K, and 5.6227K, respec-

tively. The predicted values for this network are shown in Figure 4.50 where 63.75%

of the predicted data are within the prediction intervals.
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Figure 4.49: The 5 step ahead predicted/actual turbine temperature along with pre-
diction intervals using the Elman 3-4-1 trained with 40% of the available data for
FI = 1% and EI = 1%.

Figure 4.50: The 5 step ahead predicted/actual turbine temperature along with pre-
diction intervals using the Elman 3-5-1 trained with 60% of the available data for
FI = 1% and EI = 1%.
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Table 4.47: A 5 flight ahead turbine temperature prediction error for different number
of hidden neurons trained with 40% of the available data for FI = 1% and EI = 1%
using Elman neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

2 6.2283 4.9385 7.9358
3 5.9884 4.9427 7.1607
4 4.0647 5.2907 6.6543
5 5.9259 5.4716 6.8606
6 6.8877 4.9289 7.9213
7 7.4555 5.1972 8.5472
8 7.7421 5.7884 8.6124

Table 4.48: A 5 flight ahead turbine temperature prediction error for different number
of hidden neurons trained with 60% of the available data for FI = 1% and EI = 1%
using Elman neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

2 5.8268 5.0556 6.5705
3 5.6780 4.7286 6.2922
4 5.0947 4.0183 5.9121
5 4.6767 3.3411 5.6227
6 5.4340 4.7873 6.0992
7 5.9604 4.4649 6.4441
8 6.3741 5.0993 7.0792

Finally, in the third case, Elman networks are trained with 80% of the entire data

points and tested with the remaining 20% of the data. The results of the prediction

error are tabulated in Table 4.49. The actual and predicted values for the Elman

network 3-5-1 are depicted in Figure 4.51 where 92.5% of the predicted points are

between the upper and the lower prediction bounds.

Different Elman neural network structures are trained and tested to investigate

the applicability of the Elman network to predict 8 flights ahead turbine output

temperature. A total number of 80 data sets are used in the training phase and these

networks are then tested to predict 120 data. The summary of the prediction errors
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Table 4.49: A 5 flight ahead turbine temperature prediction error for different number
of hidden neurons trained with 80% of the available data for FI = 1% and EI = 1%
using Elman neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

2 3.0996 3.1008 4.3569
3 3.1581 2.3252 3.9045
4 2.9105 2.2540 3.6640
5 2.5491 1.1230 3.3003
6 2.5507 2.4512 3.5163
7 3.9935 2.4088 4.6482
8 4.2441 3.3961 4.8590

are shown in Table 4.50. When the number of training data points is increased to

120, the results of the prediction error are presented in Table 4.51, and finally the

prediction error for the networks trained by using 160 data points and evaluated with

40 data are presented in Table 4.52.

Table 4.50: An 8 flight ahead turbine temperature prediction error for different num-
ber of hidden neurons trained with 40% of the available data for FI = 1% and
EI = 1% using Elman neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

2 7.8829 5.8387 8.7609
3 7.3827 4.5589 8.1893
4 6.5183 5.7355 7.5050
5 7.0811 5.7407 8.0012
6 7.5220 5.5246 8.7682
7 8.3073 5.8244 9.1387
8 8.4650 6.9634 9.3399

Figure 4.52 shows the predicted turbine temperatures when the Elman network

3-4-1 trained by using 80 data points where 56.67% of the predicted points are within

the prediction bounds. Predicted values of the network 3-5-1 which is trained by

using 120 data points are shown in Figure 4.53 where 78.75% of the predicted values

are within the upper and the lower bounds, and finally 90% of the predicted values
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Figure 4.51: The 5 step ahead predicted/actual turbine temperature along with pre-
diction intervals using the Elman 3-5-1 trained with 80% of the available data for
FI = 1% and EI = 1%.

of the network 3-3-1 trained with 160 data points are within the prediction intervals

as shown in Figure 4.54.

4.1.3.2 FI=3% and EI = 2%

The reliability of the Elman neural network in multi-step ahead turbine temperature

prediction is investigated in presence of 3% compressor fouling and 2% turbine erosion.

The compressor efficiency degrades by 3% and the turbine efficiency degrades by 2%.

Due to this deterioration, the compressor mass flow rate decreases by the amount of

1.5% and the turbine mass flow rate increases by 1%. This degradation is modelled in

our Simulink model as described in Section 2.6.5. It is assumed that the engine goes

through this degradation in over 200 flights. Turbine temperature is predicted for 2

flights ahead. A total of 80 data sets are used to train the Elman networks and 120

ones are used in the testing phase. A comparison of the prediction error for different
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Figure 4.52: The 8 step ahead predicted/actual turbine temperature along with pre-
diction intervals using the Elman 3-4-1 trained with 40% of the available data for
FI = 1% and EI = 1%.

Figure 4.53: The 8 step ahead predicted/actual turbine temperature along with pre-
diction intervals using the Elman 3-5-1 trained with 60% of the available data for
FI = 1% and EI = 1%.
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Table 4.51: An 8 flight ahead turbine temperature prediction error for different num-
ber of hidden neurons trained with 60% of the available data for FI = 1% and
EI = 1% using Elman neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

2 6.5760 4.1223 7.2712
3 6.2754 5.6145 6.7919
4 6.0641 4.7921 6.6688
5 5.6791 4.7611 6.2444
6 5.8427 3.8494 6.4927
7 5.9752 4.0472 7.2027
8 6.7890 5.7668 7.7525

Table 4.52: An 8 flight ahead turbine temperature prediction error for different num-
ber of hidden neurons trained with 80% of the available data for FI = 1% and
EI = 1% using Elman neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

2 4.6052 2.1179 5.0578
3 3.6561 3.0559 4.1819
4 3.6147 3.3550 4.2981
5 3.8170 3.6848 4.6473
6 4.2644 3.1708 4.7728
7 4.1435 3.7586 4.9586
8 5.0144 3.6416 5.6523

network architectures are shown in Table 4.53.

Based on Table 4.53, the Elman network with 6 hidden neurons has the lowest

RMSE. The actual and predicted data of this network are shown in Figure 4.55 where

only 39.17% of the predicted data are within the upper and the lower prediction

intervals.

Next the number of training data sets is increased to 120 points and the networks

with different number of hidden neurons are trained. These networks are then eval-

uated with 80 unseen data. The prediction errors are summarized in Table 4.54 for

these networks. The predicted values for the network 3-5-1 are depicted in Figure
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Figure 4.54: The 8 step ahead predicted/actual turbine temperature along with pre-
diction intervals using the Elman 3-3-1 trained with 80% of the available data for
FI = 1% and EI = 1%.

Figure 4.55: The 2 step ahead predicted/actual turbine temperature along with pre-
diction intervals using the Elman 3-6-1 trained with 40% of the available data for
FI = 3% and EI = 2%.
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Table 4.53: A 2 flight ahead turbine temperature prediction error for different number
of hidden neurons trained with 40% of the available data for FI = 3% and EI = 2%
using Elman neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

2 8.8630 8.2584 12.0907
3 8.4562 8.8843 11.5701
4 3.6856 8.8616 9.5633
5 7.9072 5.5022 9.0898
6 6.6141 4.6846 8.7059
7 5.8079 6.6092 8.7777
8 8.0963 5.6931 9.8839

4.56 where 47.5% of the predicted values are within the prediction intervals.

Table 4.54: A 2 flight ahead turbine temperature prediction error for different number
of hidden neurons trained with 60% of the available data for FI = 3% and EI = 2%
using Elman neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

2 5.8748 6.9415 9.0606
3 7.8104 6.2795 8.8931
4 6.5060 5.0708 7.6611
5 6.3884 5.2956 7.1789
6 6.7413 4.3843 8.0266
7 8.0554 5.8064 9.3649
8 10.3323 10.2666 12.0638

When the networks are trained by using 160 data points, the network with 4

hidden neurons has the lowest RMSE equal to 3.2062K as shown in Table 4.55. The

actual and predicted points for this network are depicted pointwise in Figure 4.57.

To overcome the problem of uncertainty in measurements the upper and the lower

prediction bounds are also shown where 70% of the predicted values are within these

bounds.

A 5 flights ahead turbine temperature is predicted using the Elman network. Also

40% of the entire data points which is equal to 80 data are used to train the networks.
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Figure 4.56: The 2 step ahead predicted/actual turbine temperature along with pre-
diction intervals using the Elman 3-5-1 trained with 60% of the available data for
FI = 3% and EI = 2%.

Figure 4.57: The 2 step ahead predicted/actual turbine temperature along with pre-
diction intervals using the Elman 3-4-1 trained with 80% of the available data for
FI = 3% and EI = 2%.
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Table 4.55: A 2 flight ahead turbine temperature prediction error for different number
of hidden neurons trained with 80% of the available data for FI = 3% and EI = 2%
using Elman neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

2 4.0396 3.7581 4.8719
3 3.1827 2.7049 4.1549
4 2.5514 1.9663 3.2062
5 2.9799 2.1257 3.6450
6 3.0128 3.1168 4.3068
7 3.8794 3.8912 4.8166
8 4.0313 3.8362 4.9086

The number of hidden neurons are changed from 2 to 8. The trained networks are

then evaluated by using 120 data. The statistical error measures during testing phase

are summarized in Table 4.56. The network with 5 hidden neurons has the lowest

error. The actual and predicted data are shown pointwise in Figure 4.58 where 44.1%

of the predicted points are within the prediction intervals.

Table 4.56: A 5 flight ahead turbine temperature prediction error for different number
of hidden neurons trained with 40% of the available data for FI = 3% and EI = 2%
using Elman neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

2 12.6527 8.7047 14.7973
3 0.2152 14.2474 14.1895
4 11.5619 8.6939 13.8701
5 7.9979 8.1988 11.4291
6 2.0911 12.6356 12.7554
7 10.5910 9.8166 13.1438
8 12.4005 9.6799 14.5692

Next 60% of the available data points are used in the training phase and the net-

works are tested with the remaining 40% data. The networks with different structures

are trained and their performance in 5 flights ahead turbine temperature prediction

is compared together in Table 4.57. The network with 5 hidden neurons has the best
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Figure 4.58: The 5 step ahead predicted/actual turbine temperature along with pre-
diction intervals using the Elman 3-5-1 trained with 40% of the available data for
FI = 3% and EI = 2%.

performance. The predicted values of this network are depicted in Figure 4.59 along

with the actual data and prediction bounds where only 32.5% of the predicted points

are between the upper and the lower prediction bounds.

Finally, the number of training data sets increases to 80% of the entire data.

Seven different Elman network structures are trained with these data. The networks

are then used to predict 5 flights ahead turbine temperature. The differences between

the actual and the network’s output are calculated and the errors are summarized

in Table 4.58 where the network with 4 hidden neurons has the lowest RMSE. The

outputs of this network are depicted in Figure 4.60 along with the actual temperatures

and prediction bounds where 77.5% of the predicted turbine temperatures are within

the prediction bounds.
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Figure 4.59: The 5 step ahead predicted/actual turbine temperature along with pre-
diction intervals using the Elman 3-5-1 trained with 60% of the available data for
FI = 3% and EI = 2%.

Figure 4.60: The 5 step ahead predicted/actual turbine temperature along with pre-
diction intervals using the Elman 3-4-1 trained with 80% of the available data for
FI = 3% and EI = 2%.
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Table 4.57: A 5 flight ahead turbine temperature prediction error for different number
of hidden neurons trained with 60% of the available data for FI = 3% and EI = 2%
using Elman neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

2 9.6321 6.6395 11.1438
3 9.3996 5.6849 10.9666
4 7.7219 5.3091 9.3521
5 7.1577 5.1450 8.7961
6 7.5014 4.9824 8.9881
7 9.6420 6.0456 11.3605
8 10.4984 7.7584 11.9566

Table 4.58: A 5 flight ahead turbine temperature prediction error for different number
of hidden neurons trained with 80% of the available data for FI = 3% and EI = 2%
using Elman neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

2 2.0918 4.0369 4.5016
3 2.7761 2.7782 3.9028
4 2.6687 2.6793 3.7578
5 2.8205 2.7801 3.9358
6 3.2786 2.4964 4.1019
7 3.6132 3.2711 4.8464
8 3.9551 3.1391 5.0250

4.1.3.3 FI=2% and EI = 3%

The turbine goes through 2% fouling in 200 flights which implies that the compressor

efficiency decreases by the amount of 2% and its mass flow rate decreases by the

amount of 1%. In the same time the turbine eroded by the index of 3% which

implies a reduction of 3% in the turbine efficiency and a 1.5% increase in its mass

flow rate. Data is generated in our Simulink model described in Section 2.5 based on

equations (2.6.1)-(2.6.4). As done previously in Section 4.1.3.2, the entire data set

is divided into two parts; one part is used for training the networks and the other

part is used to evaluate the performance of the networks in multi-step prediction.
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Turbine temperature is predicted for 2 flights ahead using three different training and

testing data sets. First, 80 data points are used in the training phase and 120 data

are used in the evaluation phase. Networks with different structures are trained and

their performance are compared together in Table 4.59.

Table 4.59: A 2 flight ahead turbine temperature prediction error for different number
of hidden neurons trained with 40% of the available data for FI = 2% and EI = 3%
using Elman neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

2 8.0711 5.8208 8.9229
3 5.9866 4.9807 7.1801
4 1.0283 6.7492 6.7993
5 0.6764 4.7356 6.2641
6 4.8687 4.8680 6.8706
7 6.2466 4.0767 7.4499
8 4.9268 6.0001 7.7443

Based on Table 4.59, the network with 5 hidden neurons has the lowest error in

predicting turbine temperature. The predicted values of this network are shown in

Figure 4.61 along with the actual values and prediction bounds where 73.33% of the

predicted points are within the bounds.

Second, the number of training data sets is increased to 120 points. The number

of hidden neurons are changed from 2 to 8 and these networks are tested by using

the remaining 80 data. The summary of the prediction errors is presented in Table

4.60. The Elman network 3-5-1 has the best performance. The mean, standard

deviation, and RMSE are 3.8652K, 3.4199K, and 5.3468K, respectively. The actual

and predicted turbine temperatures for the network 3-5-1 are shown in Figure 4.62

where 77.5% of the predicted points are within the prediction intervals.

Finally, 160 data sets are used in the training phase and 40 data are used in the

testing phase. As can be seen in Table 4.61, the network structure 3-3-1 has the

best performance in 2 flights ahead prediction. From Figure 4.63, only 22.5% of the
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Figure 4.61: The 2 step ahead predicted/actual turbine temperature along with pre-
diction intervals using the Elman 3-5-1 trained with 40% of the available data for
FI = 2% and EI = 3%.

Figure 4.62: The 2 step ahead predicted/actual turbine temperature along with pre-
diction intervals using the Elman 3-5-1 trained with 60% of the available data for
FI = 2% and EI = 3%.
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Table 4.60: A 2 flight ahead turbine temperature prediction error for different number
of hidden neurons trained with 60% of the available data for FI = 2% and EI = 3%
using Elman neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

2 5.1915 4.6292 6.3212
3 4.8148 3.7585 6.0936
4 4.7437 3.6655 5.9809
5 3.8652 3.4199 5.3468
6 5.0226 3.4772 6.0965
7 5.7938 4.4818 6.7483
8 5.7613 4.0403 7.0223

predicted points for this network are outside the bounds.

Table 4.61: A 2 flight ahead turbine temperature prediction error for different number
of hidden neurons trained with 80% of the available data for FI = 2% and EI = 3%
using Elman neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

2 2.1824 2.2490 3.1136
3 1.1941 2.8238 3.0333
4 1.8942 2.5914 3.1836
5 2.4971 2.2160 3.3201
6 3.0801 2.2261 3.7840
7 2.8747 2.9658 4.1036
8 3.3372 2.7747 4.3178

A 5 flights ahead trubine temperature is now predicted through 3 different cases

using the Elman neural network. In the first case, various network architectures are

trained with 80 data sets. These networks are then evaluated by using 120 data. The

prediction errors are tabulated in Table 4.62 where the network structure 3-4-1 has

the best performance. In the second case the number of training points are increased

to 120 and the performance of the networks are compared together by the remaining

80 data. The comparison of the prediction error among these networks are presented

in Table 4.63, and finally 160 data points are used in the training phase, while the
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Figure 4.63: The 2 step ahead predicted/actual turbine temperature along with pre-
diction intervals using the Elman 3-3-1 trained with 80% of the available data for
FI = 2% and EI = 3%.

networks are tested by using 40 unseen data. The summary of the statistical errors of

prediction can be seen in Table 4.64 where the network 3-5-1 has the lowest RMSE.

The predicted values for the optimal networks found in Tables 4.62-4.64 are de-

picted in Figures 4.64-4.66. For the Elman network 3-4-1 trained by using 80 data

points 74.17% of the points are within the prediction bounds. This value increases

to 76.25% when the network 3-3-1 is trained with 120 data points, and finally 95% if

the network 3-5-1 is trained with 160 data sets as shown in Figure 4.66.

The Elman network now is used to predict 8 flights ahead turbine temperature as

done previously. A total number of 80 data points are used to train different structures

and these structures are evaluated by using 120 unseen data. The prediction errors

are shown in Table 4.65. The actual and predicted values for the network 3-6-1

are depicted pointwise in Figure 4.67 along with the upper and the lower prediction

bounds where 39.17% of the predicted values are between these bounds.
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Figure 4.64: The 5 step ahead predicted/actual turbine temperature along with pre-
diction intervals using the Elman 3-4-1 trained with 40% of the available data for
FI = 2% and EI = 3%.

Figure 4.65: The 5 step ahead predicted/actual turbine temperature along with pre-
diction intervals using the Elman 3-3-1 trained with 60% of the available data for
FI = 2% and EI = 3%.
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Figure 4.66: The 5 step ahead predicted/actual turbine temperature along with pre-
diction intervals using the Elman 3-5-1 trained with 80% of the available data for
FI = 2% and EI = 3%.

Figure 4.67: The 8 step ahead predicted/actual turbine temperature along with pre-
diction intervals using the Elman 3-6-1 trained with 40% of the available data for
FI = 2% and EI = 3%.
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Table 4.62: A 5 flight ahead turbine temperature prediction error for different number
of hidden neurons trained with 40% of the available data for FI = 2% and EI = 3%
using Elman neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

2 5.6536 7.4967 9.3646
3 6.7013 5.7415 8.8089
4 3.3736 6.5438 7.3380
5 2.2206 7.2106 7.5160
6 4.9378 7.0162 8.5556
7 5.1583 7.5647 9.1300
8 6.9449 6.4089 9.4320

Table 4.63: A 5 flight ahead turbine temperature prediction error for different number
of hidden neurons trained with 60% of the available data for FI = 2% and EI = 3%
using Elman neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

2 5.4737 5.0543 7.4289
3 3.7161 4.7873 6.0366
4 3.4097 5.4115 6.3674
5 5.6589 5.3514 7.7655
6 7.0202 5.8909 8.5385
7 7.1277 5.1758 8.7896
8 6.9979 5.1518 8.6707

Next 7 different Elman network architectures are trained with 120 data sets. The

weights and biases are fixed. The remaining 80 data are given as unseen inputs

to the networks and the predictability of these networks for 8 flights ahead turbine

temperature are compared together in Table 4.66. The actual and the predicted data

for the network with 4 hidden neurons are depicted pointwise in Figure 4.68 where

61.25% of the predicted points are within the prediction intervals.

By increasing the number of training data sets to 160, the best Elman network

performance is achieved when the network has 5 hidden neurons. The results of the

prediction error for different number of hidden neurons are summarized in Table 4.67.
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Table 4.64: A 5 flight ahead turbine temperature prediction error for different number
of hidden neurons trained with 80% of the available data for FI = 2% and EI = 3%
using Elman neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

2 2.4798 3.2331 4.0424
3 2.7526 2.5949 3.7606
4 2.1071 3.0084 3.6420
5 2.1718 2.6081 3.3688
6 2.8924 2.9070 4.0749
7 2.9802 2.8258 4.0826
8 2.4372 4.0326 4.6686

Table 4.65: An 8 flight ahead turbine temperature prediction error for different num-
ber of hidden neurons trained with 40% of the available data for FI = 2% and
EI = 3% using Elman neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

2 14.9085 10.8718 17.8579
3 14.0705 10.7831 16.0640
4 9.9017 9.4105 13.6332
5 7.9760 8.1151 11.3544
6 7.5660 6.9366 10.2450
7 12.5919 10.8934 14.8440
8 15.1500 12.0836 17.6451

Figure 4.69 shows the predicted turbine temperatures of the network 3-5-1 where 80%

of the predicted values are within the upper and the lower prediction intervals.

4.1.3.4 FI=3% and EI = 3%

In the most severe scenario the engine has 3% fouling in the compressor and at the

same time 3% erosion in the turbine. The compressor and turbine efficiency both

degrade by the amount of 3%. The compressor mass flow rate decreases by the

amount of 1.5%, while the turbine mass flow rate increases by this amount. The

degraded data are generated by using the engine Simulink model as mentioned in
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Figure 4.68: The 8 step ahead predicted/actual turbine temperature along with pre-
diction intervals using the Elman 3-4-1 trained with 60% of the available data for
FI = 2% and EI = 3%.

Figure 4.69: The 8 step ahead predicted/actual turbine temperature along with pre-
diction intervals using the Elman 3-5-1 trained with 80% of the available data for
FI = 2% and EI = 3%.
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Table 4.66: An 8 flight ahead turbine temperature prediction error for different num-
ber of hidden neurons trained with 60% of the available data for FI = 2% and
EI = 3% using Elman neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

2 6.6665 5.7236 8.7631
3 4.9613 5.2806 7.2216
4 3.1573 5.7938 6.5664
5 5.6156 4.7804 7.3554
6 6.3504 4.6937 7.8792
7 6.8274 6.5262 8.7619
8 7.6073 5.0773 9.1284

Table 4.67: An 8 flight ahead turbine temperature prediction error for different num-
ber of hidden neurons trained with 80% of the available data for FI = 2% and
EI = 3% using Elman neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

2 3.3740 5.2178 6.1587
3 4.2172 4.3670 6.0315
4 4.4924 3.5524 5.6996
5 3.0664 3.0065 4.2681
6 3.5594 3.5779 5.0150
7 4.8131 4.1029 6.2912
8 5.8251 3.8360 6.9483

Section 2.5 and equations (2.6.1)-(2.6.4). It is assumed that this deterioration occurs

in 200 simultaneous flights. Therefore, a total of 200 data points are available to

train and test the networks. As done in Sections 4.1.3.1-4.1.3.3, the applicability of

the Elman neural network to predict turbine temperature for multi-flights ahead is

investigated using different numbers of training and testing data sets.

The turbine temperature is now predicted for 2 flights ahead. A total number

of 80 data sets are used to train different Elman network architectures. The trained

networks are then evaluated by using 120 data points, and the differences between the

network’s output and actual output are calculated. The statistical error measures are
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illustrated in Table 4.68. The network with 6 hidden neurons has the best performance

in predicting turbine temperature. The actual turbine temperature and predicted

values for this network are depicted pointwise in Figure 4.70 along with the upper

and the lower prediction bounds where 40% of the predicted points are within the

bounds.

Table 4.68: A 2 flight ahead turbine temperature prediction error for different number
of hidden neurons trained with 40% of the available data for FI = 3% and EI = 3%
using Elman neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

2 8.0600 14.6631 16.6787
3 13.5524 8.1041 15.7733
4 11.5534 7.8173 13.9313
5 1.2491 12.9811 12.9871
6 7.6364 6.8518 10.2407
7 10.9578 7.4031 13.2069
8 10.0160 9.0986 13.5061

By increasing the number of training data points to 120, the lowest RMSE is

achieved when the network has 4 hidden neurons. The summary of the prediction

errors for 7 Elman network structures are shown in Table 4.69. Figure 4.71 shows

the predicted values for the network 3-4-1 where 56.25% of the predicted values are

within the prediction intervals.

Next the Elman networks are trained by using 160 data sets. The weights and

biases are fixed and the networks are tested with 40 unseen data. The summary

of the prediction errors are presented in Table 4.70. The Elman network 3-5-1 has

the lowest RMSE equal to 3.5316K. The mean and standard deviation are 2.7712K

and 2.0170K, respectively. The actual and predicted points are shown in Figure 4.72

where 77.5% of the predicted values are within the upper and the lower prediction

intervals.

A 5 flights ahead turbine temperature is now predicted using different number of
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Figure 4.70: The 2 step ahead predicted/actual turbine temperature along with pre-
diction intervals using the Elman 3-6-1 trained with 40% of the available data for
FI = 3% and EI = 3%.

Figure 4.71: The 2 step ahead predicted/actual turbine temperature along with pre-
diction intervals using the Elman 3-4-1 trained with 60% of the available data for
FI = 3% and EI = 3%.
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Table 4.69: A 2 flight ahead turbine temperature prediction error for different number
of hidden neurons trained with 60% of the available data for FI = 3% and EI = 3%
using Elman neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

2 10.1601 5.0045 11.3119
3 7.5663 5.3709 9.2593
4 6.2317 5.0496 8.0008
5 7.3853 4.8796 8.8349
6 7.5701 5.1710 9.1494
7 8.4786 5.7557 10.2274
8 8.0634 6.2049 10.1507

Table 4.70: A 2 flight ahead turbine temperature prediction error for different number
of hidden neurons trained with 80% of the available data for FI = 3% and EI = 3%
using Elman neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

2 4.1886 2.3905 4.8080
3 3.5808 2.0533 4.1150
4 3.2616 1.8031 3.7159
5 2.7712 2.0170 3.5316
6 3.1450 2.1893 3.8163
7 3.6321 2.6454 4.4739
8 3.9005 2.3839 4.5557

training and testing data points for different Elman network structures. In the first

case 40% of the entire available data are used in the training phase and the networks

are then tested with 120 data. The mean error of prediction, standard deviation and

RMSE are summarized in Table 4.71. Next, the number of training data increases

to 120 and the networks are tested with 80 data as shown in Table 4.72, and finally

the prediction errors of the networks which are trained by using 160 data points are

summarized in Table 4.73 where the network with 5 hidden neurons has the lowest

RMSE.
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Figure 4.72: The 2 step ahead predicted/actual turbine temperature along with pre-
diction intervals using the Elman 3-5-1 trained with 80% of the available data for
FI = 3% and EI = 3%.

The predicted values for the optimal networks shown in Tables 4.71-4.73 are de-

picted in Figures 4.73-4.75. The actual and predicted data of the network 3-5-1

trained by using 40% of the entire data sets are shown pointwise in Figure 4.71 where

20.83% of the predicted turbine temperatures are within the prediction intervals. This

value increases to 47.5% for the network 3-4-1 which is trained by using 60% of the

available data, and finally 70% for the network 3-5-1 trained by using 80% of the

entire data points.

4.1.3.5 Summary of the Results

The mean, standard deviation and RMSE of the turbine temperature prediction of

the optimal networks found in Section 4.1.3 under presence of both compressor fouling

and turbine erosion are summarized in Tables 4.74-4.77, where Ntrain is the number

of data used in the training phase and Ntest is the number of data which were used to
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Figure 4.73: The 5 step ahead predicted/actual turbine temperature along with pre-
diction intervals using the Elman 3-5-1 trained with 40% of the available data for
FI = 3% and EI = 3%.

Figure 4.74: The 5 step ahead predicted/actual turbine temperature along with pre-
diction intervals using the Elman 3-4-1 trained with 60% of the available data for
FI = 3% and EI = 3%.
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Table 4.71: A 5 flight ahead turbine temperature prediction error for different number
of hidden neurons trained with 40% of the available data for FI = 3% and EI = 3%
using Elman neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

2 16.1962 10.3088 19.1756
3 14.5396 10.3822 17.8407
4 12.5910 9.3492 15.6593
5 11.7348 9.3395 14.9735
6 13.4131 9.5548 16.4452
7 14.9727 11.0984 18.6099
8 15.7119 11.3414 19.3499

Table 4.72: A 5 flight ahead turbine temperature prediction error for different number
of hidden neurons trained with 60% of the available data for FI = 3% and EI = 3%
using Elman neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

2 11.5078 8.9112 13.4014
3 9.0311 6.6780 11.2071
4 4.7238 9.7767 10.8030
5 11.4508 7.2715 13.5401
6 10.5464 9.0468 13.8581
7 13.7821 7.6639 15.7463
8 13.9011 7.8308 15.9310

test the trained network, and NF is the number of flights ahead which the networks

are used to predict the turbine temperature.

As shown in Tables 4.74-4.77, the reliability of the Elman neural networks is

highly dependent on the amount of fouling and erosion in the engine. The network

RMSE increases 19.07% when the network predicts 2 flights ahead in presence of 3%

compressor fouling and turbine erosion instead of 1%. The network prediction error

decreases as the number of training data points increases. Based on Table 4.77, the

network RMSE decreases 65.5% if the training data points increases from 80 to 160

data in 2 flights ahead prediction. The accuracy of the prediction also increases if
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Table 4.73: A 5 flight ahead turbine temperature prediction error for different number
of hidden neurons trained with 80% of the available data for FI = 3% and EI = 3%
using Elman neural network.

Number of hidden neurons Mean (K) Standard deviation (K) RMSE (K)

2 4.4724 3.3408 5.5574
3 3.6597 3.1139 4.7799
4 3.7877 2.6983 4.6309
5 3.6052 2.3468 4.2857
6 3.3283 2.9702 4.4361
7 3.1297 3.7598 4.8557
8 4.4430 3.5645 5.6682

Table 4.74: Summary of the prediction errors for each scenario in presence of FI = 1%
and EI = 1% using Elman neural network.

Ntrain Ntest NF Network structure RMSE (K)

80 120 2 3-5-1 5.7737
120 80 2 3-5-1 5.1942
160 40 2 3-3-1 2.8579
80 120 5 3-4-1 6.6543
120 80 5 3-5-1 5.6227
160 40 5 3-5-1 3.3003
80 120 8 3-4-1 7.5050
120 80 8 3-5-1 6.2444
160 40 8 3-3-1 4.1819

the networks are trained by using more data points. Only 20.83% of the predicted

values are within the upper and the lower prediction bounds when the network which

is trained with 80 data sets predicts 5 flights ahead turbine temperature in presence

of 3% fouling and erosion. However, this value increases to 70% if the network is

trained by using 160 data sets as presented in Table 4.77.
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Figure 4.75: The 5 step ahead predicted/actual turbine temperature along with pre-
diction intervals using the Elman 3-5-1 trained with 80% of the available data for
FI = 3% and EI = 3%.

4.2 Comparison of the NARX Neural Network and

the Elman Neural Network

There should be a measure to compare the capability of the NARX and Elman neural

networks. Using an appropriate neural network will increase the accuracy of predic-

tion for maintenance actions. Model selection refers to the problem of using the data

to select a model from a list of models [170]. Model selection should be based on

the fact that it is impossible to find the ”true” model that generates the data we

observed. However, it should be based on a well-justified criterion to find the ”best”

model [168]. Model selection is a trade-off between bias (the distance between the av-

erage prediction and the actual value) and variance (spread of the prediction around

the actual points). In other words, there is usually an improvement in the fit by

increasing the parameters in the model, but at the same time parameter estimates

288



Table 4.75: Summary of the prediction errors for each scenario in presence of FI = 3%
and EI = 2% using Elman neural network.

Ntrain Ntest NF Network structure RMSE (K)

80 120 2 3-6-1 8.7059
120 80 2 3-5-1 7.1789
160 40 2 3-4-1 3.2062
80 120 5 3-5-1 11.4291
120 80 5 3-5-1 8.7961
160 40 5 3-4-1 3.7578

Table 4.76: Summary of the prediction errors for each scenario in presence of FI = 2%
and EI = 3% using Elman neural network.

Ntrain Ntest NF Network structure RMSE (K)

80 120 2 3-5-1 6.2641
120 80 2 3-5-1 5.3468
160 40 2 3-3-1 3.0333
80 120 5 3-4-1 7.3380
120 80 5 3-3-1 6.0366
160 40 5 3-5-1 3.3688
80 120 8 3-6-1 10.2450
120 80 8 3-4-1 6.5664
160 40 8 3-5-1 4.2681

are worse because there is less data per parameter, and there is an increase in the

computational time [169]. There are various model selection criteria in the litera-

ture; namely Akaike information criterion, Bayesian information criterion, deviance

information criterion, etc [171].

Evaluation of the networks described previously are conducted by using Normal-

ized Bayesian Information Criterion (NBIC) which has been widely used for model

identification in time-series studies [172]. Therefore, suitable model can be found in

each scenario for prediction. The NBIC can be defined as:

NBIC = ln(σ2) + k
ln(n)

n
(4.2.1)
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Table 4.77: Summary of the prediction errors for each scenario in presence of FI = 3%
and EI = 3% using Elman neural network.

Ntrain Ntest NF Network structure RMSE (K)

80 120 2 3-6-1 10.2407
120 80 2 3-4-1 8.0008
160 40 2 3-5-1 3.5316
80 120 5 3-5-1 14.9735
120 80 5 3-4-1 10.8030
160 40 5 3-5-1 4.2857

where σ2 is the variance of the prediction error calculated from equation (4.2.2), k

is the total number of parameters in the neural network, and n is the number of

observations. It should be noted that smaller value for the NBIC implies that the

model can predict the values better.

σ = (standard− deviation)2 (4.2.2)

The NBIC calculated for the neural networks considered in this thesis for each

scenario are now compared together in Tables 4.78-4.85 for the NARX networks and

Tables 4.86-4.93 for the Elman networks, where NF is the number of flights ahead. In

order to obtain the NBIC for the NARX network 7-6-1 tested by using 120 data points

which predicts 2 flights ahead turbine temperature under presence of 1% compressor

fouling, the standard deviation is 2.3338 and the variance is 5.4466 where n is 120 , and

the factor k is the sum of the connections between the inputs and the hidden neurons

which is 42 and the total number of inputs is 7 and the connections between the

hidden neurons and the output which is 6. Therefore, the total number of parameters

in the network is 55, and from equation (4.2.1) the NBIC becomes 3.8892.

For the Elman network 3-4-1 which predicts 2 flights ahead turbine temperature

in presence of 1% fouling, there are 2 delays fed back from the hidden neurons to

290



the input layer. Therefore, there are ((2*4)+1=9) inputs to the network and the k

parameter is equal to the sum of the 9 inputs, 36 connections between the inputs and

the hidden neurons, and 4 connections between the hidden neurons and the output

neuron which is equal to 49 parameters. The standard deviation is 2.5805 and the

variance is 6.6589 and n is 120. Thus, the NBIC becomes 3.8508.

Table 4.78: NBIC values for each case in presence of FI = 1% for the NARX neural
network.

NF Network structure σ2 n k NBIC

2 7-6-1 5.4466 120 55 3.8892
2 7-5-1 3.4062 80 47 3.8
2 7-6-1 2.9299 40 55 6.1471
5 7-7-1 8.159 120 63 4.6125
5 7-8-1 4.7276 80 71 5.4424
5 7-6-1 3.3764 40 55 6.289
8 7-8-1 7.8815 120 71 6.852
8 7-8-1 4.6475 80 71 5.4254
8 7-6-1 6.0851 40 55 6.878

Table 4.79: NBIC values for each case in presence of FI = 3% for the NARX neural
network.

NF Network structure σ2 n k NBIC

2 7-8-1 18.98 120 71 5.776
2 7-9-1 9.9944 80 79 6.6292
2 7-8-1 4.2638 40 71 7.9979
5 7-9-1 28.8605 120 79 6.5142
5 7-6-1 9.4421 80 55 5.4579
5 7-9-1 3.2942 40 79 8.4777
8 7-10-1 47.0198 120 87 7.3215
8 7-7-1 15.3170 80 63 6.1798
8 7-7-1 12.0798 40 63 8.3015

Comparing the calculated NBIC in Tables 5.1-5.8 for different scenarios for the

NARX neural network and Tables 5.9-5.16 for the same scenarios for the Elman

network, one can conclude that the Elman network has lower NBIC which implies
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Table 4.80: NBIC values for each case in presence of EI = 1% for the NARX neural
network.

NF Network structure σ2 n k NBIC

2 7-6-1 4.6786 120 55 3.7373
2 7-8-1 2.6024 80 71 4.8455
2 7-6-1 2.2807 40 55 5.8967
5 7-9-1 5.0332 120 79 4.7678
5 7-8-1 3.1994 80 71 5.052
5 7-6-1 2.4124 40 55 5.9528
8 7-8-1 9.5011 120 71 5.084
8 7-5-1 4.9301 80 47 4.1697
8 7-7-1 3.5253 40 63 7.0699
12 7-10-1 4.7759 120 87 5.0345
12 7-8-1 5.3726 80 71 5.5704
12 7-7-1 3.0828 40 63 6.9358

that for the same degradation and the same training and testing data points, the

Elman network outperforms the NARX network. This is mainly because the number

of parameters k plays an important rule in the calculation of NBIC. The Elman

network has a lower number of delays and hidden neurons. Thus, it can learn the

trend of the degradations more efficiently and quicker.
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Table 4.81: NBIC values for each case in presence of EI = 3% for the NARX neural
network.

NF Network structure σ2 n k NBIC

2 7-11-1 13.8041 120 95 6.4150
2 7-8-1 10.1111 80 71 6.2027
2 7-8-1 3.8749 40 71 7.9023
5 7-9-1 11.4595 120 79 5.5906
5 7-6-1 11.9467 80 55 5.493
5 7-7-1 3.5838 40 63 7.0864
8 7-10-1 14.8248 120 87 6.1672
8 7-7-1 10.3638 80 63 5.7892
8 7-7-1 8.0105 40 63 7.8907

Table 4.82: NBIC values for each case in presence of FI = 1% and EI = 1% for the
NARX neural network.

NF Network structure σ2 n k NBIC

2 7-9-1 23.2102 120 79 6.2963
2 7-9-1 6.2785 80 79 6.1644
2 7-8-1 3.6336 40 71 7.838
5 7-11-1 12.868 120 95 6.3448
5 7-8-1 11.975 80 71 6.3719
5 7-6-1 9.1664 40 55 7.2877
8 7-10-1 12.0881 120 87 5.9631
8 7-9-1 15.4158 80 79 7.0626
8 7-7-1 7.4261 40 63 7.815

Table 4.83: NBIC values for each case in presence of FI = 3% and EI = 2% for the
NARX neural network.

NF Network structure σ2 n k NBIC

2 7-10-1 37.5475 120 87 7.0965
2 7-9-1 21.4036 80 79 7.3908
2 7-9-1 3.1301 40 79 8.4266
5 7-9-1 56.3010 120 79 7.1825
5 7-10-1 17.023 80 87 7.6
5 7-9-1 5.2822 40 79 8.9499
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Table 4.84: NBIC values for each case in presence of FI = 2% and EI = 3% for the
NARX neural network.

NF Network structure σ2 n k NBIC

2 7-8-1 29.8946 120 71 6.2303
2 7-10-1 15.9528 80 87 7.5351
2 7-10-1 5.5385 40 87 9.735
5 7-11-1 50.427 120 95 7.7106
5 7-10-1 17.3222 80 87 7.6174
5 7-10-1 8.5743 40 87 10.1721
8 7-12-1 62.0093 120 103 8.2365
8 7-10-1 33.8223 80 87 8.2866
8 7-10-1 9.0378 40 87 10.2247

Table 4.85: NBIC values for each case in presence of FI = 3% and EI = 3% for the
NARX neural network.

NF Network structure σ2 n k NBIC

2 7-11-1 64.7268 120 95 7.9603
2 7-12-1 26.6369 80 103 8.9241
2 7-9-1 5.5281 40 79 8.9953
5 7-12-1 133.3909 120 103 9.0025
5 7-10-1 35.7927 80 87 8.3432
5 7-11-1 9.5345 40 95 11.016

Table 4.86: NBIC values for each case in presence of FI = 1% for the Elman neural
network.

NF Network structure σ2 n k NBIC

2 3-4-1 6.6589 120 49 3.8508
2 3-3-1 5.4934 80 31 3.4016
2 3-3-1 3.54 40 31 4.123
5 3-5-1 4.1861 120 71 4.2643
5 3-3-1 4.0594 80 31 3.099
5 3-4-1 4.5565 40 49 6.0354
8 3-4-1 8.3405 120 49 4.076
8 3-5-1 4.4449 80 71 5.3808
8 3-4-1 5.1243 40 49 6.1528
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Table 4.87: NBIC values for each case in presence of FI = 3% for the Elman neural
network.

NF Network structure σ2 n k NBIC

2 3-5-1 18.5304 120 71 5.752
2 3-5-1 6.3373 80 71 5.7355
2 3-3-1 3.0947 40 31 3.9886
5 3-4-1 29.1243 120 49 5.3265
5 3-5-1 4.7450 80 71 5.4461
5 3-4-1 6.8105 40 49 6.4373
8 3-4-1 60.3993 120 49 6.0558
8 3-5-1 13.7952 80 71 6.5134
8 3-5-1 4.1873 40 71 7.9798

Table 4.88: NBIC values for each case in presence of EI = 1% for the Elman neural
network.

NF Network structure σ2 n k NBIC

2 3-4-1 4.2952 120 49 3.4124
2 3-3-1 3.4239 80 31 2.9288
2 3-3-1 2.1806 40 31 3.6385
5 3-3-1 5.5117 120 31 2.9436
5 3-4-1 3.3361 80 49 3.8888
5 3-3-1 3.5118 40 31 4.115
8 3-5-1 6.1871 120 71 4.6551
8 3-3-1 3.7912 80 31 3.0307
8 3-3-1 2.5278 40 31 3.7862
12 3-4-1 7.6712 120 49 3.9924
12 3-4-1 6.5147 80 49 4.5581
12 3-5-1 1.2060 40 71 6.7351
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Table 4.89: NBIC values for each case in presence of EI = 3% for the Elman neural
network.

NF Network structure σ2 n k NBIC

2 3-4-1 9.6553 120 49 4.2224
2 3-5-1 3.6283 80 71 5.1778
2 3-3-1 4.8929 40 31 4.4467
5 3-4-1 8.0946 120 49 4.0461
5 3-5-1 5.9102 80 71 5.6657
5 3-5-1 3.528 40 71 7.8085
8 3-4-1 12.9398 120 49 4.5152
8 3-5-1 10.1856 80 71 6.21
8 3-4-1 4.8898 40 49 6.106

Table 4.90: NBIC values for each case in presence of FI = 1% and EI = 1% for the
Elman neural network.

NF Network structure σ2 n k NBIC

2 3-5-1 16.5421 120 71 5.6385
2 3-5-1 8.6847 80 71 6.0506
2 3-3-1 3.9398 40 31 4.23
5 3-4-1 27.9915 120 49 5.2868
5 3-5-1 11.1629 80 71 6.3016
5 3-5-1 1.2611 40 71 6.7797
8 3-4-1 32.8959 120 49 5.4482
8 3-5-1 22.668 80 71 7.01
8 3-3-1 9.3385 40 31 5.093

Table 4.91: NBIC values for each case in presence of FI = 3% and EI = 2% for the
Elman neural network.

NF Network structure σ2 n k NBIC

2 3-6-1 21.9455 120 97 6.9584
2 3-5-1 28.0433 80 71 7.2228
2 3-4-1 3.8663 40 49 5.8712
5 3-5-1 67.2203 120 71 7.0406
5 3-5-1 26.471 80 71 7.1651
5 3-4-1 7.1786 40 49 6.4899
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Table 4.92: NBIC values for each case in presence of FI = 2% and EI = 3% for the
Elman neural network.

NF Network structure σ2 n k NBIC

2 3-5-1 22.4259 120 71 5.9428
2 3-5-1 11.6957 80 71 6.3482
2 3-3-1 7.9738 40 31 4.9351
5 3-4-1 42.8213 120 49 5.7119
5 3-3-1 22.9182 80 31 4.8299
5 3-5-1 6.8022 40 71 8.4651
8 3-6-1 48.1164 120 97 7.7435
8 3-4-1 33.5681 80 49 6.1976
8 3-5-1 9.0391 40 71 8.7493

Table 4.93: NBIC values for each case in presence of FI = 3% and EI = 3% for the
Elman neural network.

NF Network structure σ2 n k NBIC

2 3-6-1 46.9472 120 97 7.7189
2 3-4-1 25.4984 80 49 5.9226
2 3-5-1 4.0682 40 71 7.9501
5 3-5-1 87.2263 120 71 7.3011
5 3-4-1 95.5839 80 49 7.2441
5 3-5-1 5.5075 40 71 8.2539
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4.3 Conclusion

In this chapter, the turbine output temperature in an aircraft jet engine is predicted

in presence of deteriorations. It is assumed that the engine has different compressor

fouling and turbine erosion rates. A series of simulations are conducted to illustrate

the effectiveness of the Elman neural network in turbine temperature prediction.

This prediction leads to the choice of condition-based maintenance according to the

data collected from the engine through continuous monitoring. A discussion on the

simulation results for each scenario is also provided. The presented simulations show

that the Elman network has the capability to learn the trend of the degradations

successfully. After that, the NBIC is calculated to compare the predictability of the

NARX neural networks and the Elman neural networks which shows that the Elman

neural network is preferred to achieve a more reliable prognostics.
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Chapter 5

Conclusions and Future Work

The objective of this thesis was to develop an intelligent-based approach for fault

prognosis of aircraft engines. Towards this end, artificial neural networks were em-

ployed due to their great capability in learning the dynamics of non-linear systems

and their capabilities to cope with the system complexity. The reliability of these net-

works are then evaluated to predict the turbine temperature for multi-flights ahead

in presence of various deteriorations.

Two significant degradations which affect the performance of the engine namely,

compressor fouling and turbine erosion were modelled. We have also considered the

scenarios where both compressor fouling and turbine erosion occur at the same time.

The thermodynamic parameters of the engine can be affected by these degradations

which are modelled by a decrease in the compressor and turbine efficiency. A reduction

in the compressor mass flow rate and an increase in the turbine mass flow rate are

also associated with these degradations.

The prediction capabilities of two neural networks were compared. The first pre-

diction scheme was achieved by using the non-linear autoregressive neural network

with exogenous input (NARX). The structure of this network consists of three layers

of input, hidden, and output layers with delays of the output fed back to the input
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layer. The delays of the input are also given as an extra input to the network. The

optimal networks were found for a specific degradation mode. The statistical pre-

diction errors such as mean, standard deviation, and RMSE for each network were

presented.

The second prediction scheme utilized the Elman neural network. The Elman

network architecture is also composed of three layers of input, hidden, and output

layers. The main difference between this network and the NARX network is that the

delays from the output of the neurons in the hidden layer are fed back to the input

layer. This network is used to predict the turbine output temperature for multi-flights

ahead in presence of different degradation rates. These predicted values are compared

to the actual turbine temperatures.

The capability of the NARX neural network and the Elman neural network is

compared using the normalized Bayesian information criterion. The results show

that for the same degradation and the same training and testing data points the

Elman neural network outperforms the NARX neural network.
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5.1 Suggestions for Future Work

A number of potential future direction of research to extend the current work can be

investigated. Some of our plans for future research are explained in the following:

First, there are different degradations which affect the performance of the jet en-

gine. However, in this thesis only the compressor fouling and the turbine erosion were

modelled in our Simulink model. Deteriorations such as corrosion, hot temperature

oxidation, thermal distortion in the combustion chamber, and the tip clearance are

among the degradations which cause a change in the performance of the engine’s

components. Therefore, future techniques can be focused on the investigation of the

engine’s health in the case when these degradations occur in the engine.

Second, the delays associated with the NARX network and the Elman network

were assumed to be fixed. One can analyze the effects of the number of delays in

the performance of the networks. Moreover, adaptive networks where the delays

themselves are being updated along with the weights of the networks can also be

investigated to see if the prediction accuracy can be improved.

Third, other neural network approaches can also be applied to predict multi-

flights ahead turbine temperature. The reliability of the dynamic networks such as

time delayed neural networks (TDNN), radial basis function neural networks (RBF),

and Jordan networks can also be examined through simulations. Comparison of these

other architectures may help to identify the best structure for this type of problem.

Fourth, as another recommendation for future studies, other criterion can be ap-

plied to find the proper model for prediction such as Akaike information criterion,

deviance information criterion, cross-validation, and stepwise regression.
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