455 research outputs found

    Hybrid modeling of aboveground biomass carbon using disturbance history over large areas of boreal forest in eastern Canada

    Get PDF
    Le feu joue un rĂŽle important dans la succession de la forĂȘt borĂ©ale du nord-est de l’AmĂ©rique et le temps depuis le dernier feu (TDF) devrait ĂȘtre utile pour prĂ©dire la distribution spatiale du carbone. Les deux premiers objectifs de cette thĂšse sont: (1) la spatialisation du TDF pour une vaste rĂ©gion de forĂȘt borĂ©ale de l'est du Canada (217,000 km2) et (2) la prĂ©diction du carbone de la biomasse aĂ©rienne (CBA) Ă  l’aide du TDF Ă  une Ă©chelle liĂ©e aux perturbations par le feu. Un modĂšle non paramĂ©trique a d’abord Ă©tĂ© dĂ©veloppĂ© pour prĂ©dire le TDF Ă  partir d’historiques de feu, des donnĂ©es d'inventaire et climatiques Ă  une Ă©chelle de 2 km2. Cette Ă©chelle correspond Ă  la superficie minimale d’un feu pour ĂȘtre inclus dans la base de donnĂ©es canadienne des grands feux. Nous avons trouvĂ© un ajustement substantiel Ă  l’échelle de la rĂ©gion d’étude et Ă  celle de paysages rĂ©gionaux, mais la prĂ©cision est restĂ©e faible Ă  l’échelle de cellules individuelles de 2 km2. Une modĂ©lisation hiĂ©rarchique a ensuite Ă©tĂ© dĂ©veloppĂ©e pour spatialiser le CBA des placettes d’inventaire Ă  la mĂȘme Ă©chelle de 2 km2. Les proportions des classes de densitĂ© du couvert Ă©taient les variables les plus importantes pour prĂ©dire le CBA. Le CBA co-variait Ă©galement avec la vitesse de rĂ©cupĂ©ration du couvert au travers de laquelle le TDF intervient indirectement. Finalement, nous avons comparĂ© des estimations de CBA obtenues par tĂ©lĂ©dĂ©tection satellitaire avec celles obtenues prĂ©cĂ©demment. Les rĂ©sultats indiquent que les proportions des classes de densitĂ© du couvert et des types de dĂ©pĂŽts ainsi que le TDF pourraient servir comme variables auxiliaires pour augmenter substantiellement la prĂ©cision des estimĂ©s de CBA par tĂ©lĂ©dĂ©tection. Les rĂ©sultats de cette Ă©tude ont montrĂ©: 1) l'importance d’allonger la profondeur temporelle des historiques de feu pour donner une meilleure perspective des changements actuels du rĂ©gime de feu; 2) l'importance d'intĂ©grer l’information sur la reprise du couvert aprĂšs feu aux courbes de rendement de CBA dans les modĂšles de bilan de carbone; et 3) l'importance de l'historique des feux et de la rĂ©cupĂ©ration de la vĂ©gĂ©tation pour amĂ©liorer la prĂ©cision de la cartographie de la biomasse Ă  partir de la tĂ©lĂ©dĂ©tection.Fire is as a main succession driver in northeastern American boreal forests and time since last fire (TSLF) is seen as a useful covariate to infer the spatial variation of carbon. The first two objectives of this thesis are: (1) to elaborate a TSLF map over an extensive region in boreal forests of eastern Canada (217,000 km2) and (2) to predict aboveground carbon biomass (ABC) as a function of TSLF at a scale related to fire disturbances. A non-parametric model was first developed to predict TSLF using historical records of fire, forest inventory data and climate data at a 2-km2 scale. Two kilometer square is the minimum size for fires to be considered important enough and included in the Canadian large fire database. Overall, we found a substantial agreement at the scale of both the study area and landscape units, but the accuracy remained fairly low at the scale of individual 2-km2 cells. A hierarchical modeling approach is then presented for scaling-up ABC from inventory plots to the same 2 km2 scale. The proportions of cover density classes were the most important variables to predict ABC. ABC was also related to the speed of post-fire canopy recovery through which TSLF acts indirectly upon ABC. Finally, we compared remote sensing based aboveground biomass estimates with our inventory based estimates to provide insights on improving their accuracy. The results indicated again that abundances of canopy cover density classes of surficial deposits, and TSLF may serve as ancillary variables for improving substantially the accuracy of remotely sensed biomass estimates. The study results have shown: 1) the importance of lengthening the historical records of fire records to provide a better perspective of the actual changes of fire regime; 2) the importance of incorporating post-fire canopy recovery information together with ABC yield curves in carbon budget models at a spatial scale related to fire disturbances; 3) the importance of adding disturbance history and vegetation recovery trends with remote sensing reflectance data to improve accuracy for biomass mapping

    Puistute takseertunnuste hindamine aerolidari mÔÔtmisandmete pÔhjal hemiboreaalsetes metsades

    Get PDF
    A Thesis for applying for the degree of Doctor of Philosophy in Forestry.Forest management and planning requires up-to-date data, which commonly is acquired using field experts and ground measurements. Nowadays, more and more of data about forest stands is measured using remotely sensing methods. Most common methods include aerial photography and laser scanning from airplanes, also spectral measurements from satellites or even drone images and applications. This doctoral thesis focuses on developing applications and methods for utilising the airborne laser scanning (ALS) data that is freely available for the whole Estonia. The ALS measurements are carried out by the Estonian Land Board on a routine basis twice a year – in spring and summer. The first variable that was studied in this thesis was forest height. Based on the thesis, the most reliable method for forest height assessment was using the ALS point-cloud 80th height percentile (HP80). The small circular plot (radius of 15
30 m) and stand based studies showed high correlations with the field-measured forest heights and with great confidence it can be said, that ALS-based forest height estimations are close or even with higher accuracy, than field inspected. The second studied variable was standing wood volume. The ALS-based methods and models that were developed throughout this thesis used the idea, that standing wood volume is based on forest height and density. For this the HP80 and a threshold-based point count ratio was used (canopy cover - CC). ALS-based CC (CCALS) estimates were studied and compared with digital hemispherical photo based measurements. The results showed similar errors as were shown in other similar studies, with around 10-15% root mean square error (RMSE). The strongest correlation was shown using all echoes above a 1.3 metre threshold. Combining the CCALS and HP80 showed standing wood volume estimates with a similar error as we would receive from field measurements (<20%). The freely available multitemporal ALS data showed promising results for forest height growth monitoring and detecting small-scale disturbances. CCALS was shown to have strong predictive value, when compared with a four year difference in thinned and unthinned stands. The nation-wide ALS data can also be combined with forest height predictions from satellites, providing a faster update compared to the ALS data. Promising results were shown using the interferometric synthetic aperture radar (InSAR). Stand species maps generated using self-learning algorithms and satellite based spectral data can be used for developing species specific models of standing wood volume prediction. By combining these different datasets we can construct a nation-wide forest resource to help make better decisions for forest management and targeting fieldwork.Metsades majandamisotsuste langetamiseks ja metsamajanduslike tööde planeerimiseks on metsaomanikel vaja andmeid. HarjumuspĂ€raselt on andmete kogumiseks tehtud metsas maapealseid mÔÔtmisi. Viimastel aastakĂŒmnetel on metsade inventeerimiseks ĂŒha enam aga kasutatud mittekontaktseid mÔÔtmisi - lennukitelt tehtavad aerofotosid, laserskaneerimist, satelliitidelt tehtavaid kiirgusmÔÔtmisi vĂ”i viimastel aastatel ka droonidelt tehtud pilte. Antud doktoritöö on vĂ”tnud fookusesse aerolaserskaneerimise (ALS) andmete pĂ”hjal Eesti metsadesse sobilike rakenduste vĂ€ljatöötamise. ALS mÔÔtmisi teeb Eesti Maa-amet rutiinsete lendude kĂ€igus kaks korda aastas, nii kevadel kui ka suvel. Aastast 2008 alustatud mÔÔtmiste tulemusel on Eesti ĂŒks vĂ€heseid riike maailmas, kus on vabalt kasutada mitmekordselt kogu riiki kattev ALS andmestik. Doktoritöö tulemusel töötati vĂ€lja metsa kĂ”rguse hindamiseks sobilikud meetodid, kasutades selleks punktipilvede kĂ”rgusprotsentiile. Tugevamaid seoseid metsas proovitĂŒkkidel mÔÔdetud kĂ”rgustega nĂ€itas punktipilve 80-protsentiil (HP80) ja uuringute pĂ”hjal vĂ”ib vĂ€ita, et metsa kĂ”rguse mÀÀramine suvistelt aerolidari andmetelt on ligilĂ€hedane tĂ€psustele, mida saadakse metsas kohapeal mÔÔtes. Teine oluline tunnus, mida metsade majandamise planeerimisel silmas peetakse, on kasvava metsa tagavara. Teadustöö pĂ”hjal töötati vĂ€lja mudelite kujud ja metoodika, mille abil prognoositud tagavara oli sarnase veapiiriga, mis on lubatud metsas hinnanguid tegevatele taksaatoritele (<20%). VĂ€ljatöötatud ALS-pĂ”hine mudeli kuju jĂ€rgib loogikat, et metsa tagavara on otseselt seotud mÔÔdetud kĂ”rguse ja metsa tihedusega. Tihenduse hindamiseks aerolidari andmetelt kasutatakse nivoopĂ”hist punktide suhtearvu ehk nn katvushinnangut (CCALS). Katvushinnangu tĂ€psuse valideerimiseks ja tihedas metsas sobiva prognoosimeetodi vĂ€ljatöötamiseks tehti vĂ€limÔÔtmisi kasutades poolsfÀÀrikaameraid. PoolsfÀÀripiltide pĂ”hjal tehtud valideerimise tulemused andsid sarnaseid veahinnanguid, mida on ka varasemates teadusuuringutes esitletud (RMSE = 10
15%). Kahe sarnasest fenoloogilisest perioodist ALS andmestiku lahutamisel uuriti ka muutuste tuvastamise vĂ”imalikkust. Uuringud andsid paljulubavaid tulemusi metsade kĂ”rguskasvu hindamiseks ja CCALS osutus ka oluliseks tunnuseks vĂ€iksemate hĂ€iringute, nagu nĂ€iteks harvendusraie, tuvastamiseks. Kogu riiki katva ALS andmestiku kombineerimisel erinevate satelliitandmetega vĂ”i nĂ€iteks spektraalsete mÔÔtmiste pĂ”hjal tehtud puistu liigiliste koosseisu kaartidega on vĂ”imalik antud töös vĂ€lja pakutud meetodite abil anda igal aastal kogu Eesti metsaressursside ĂŒlevaade. Samuti on vĂ”imalik koostada vaid kaugseirevahendeid ja proovitĂŒkkidel lĂ€hendatud mudeleid kasutades eraldiste pĂ”hised takseerkirjeldused, mida siis taksaatorid saavad nĂ€iteks kasutada oma vĂ€litööde kavandamisel.  Publication of this thesis is supported by the Estonian University of Life Sciences

    Interactions among land cover, disturbance, and productivity across Arctic-Boreal ecosystems of Northwestern North America from remote sensing

    Get PDF
    Arctic and Boreal ecosystems are experiencing accelerated carbon cycling that coincides with trends in the normalized difference vegetation index (NDVI), a widely used remotely sensed proxy for vegetation productivity. Meanwhile, a variety of processes are extensively altering Arctic-Boreal land cover, complicating the relationship between NDVI and productivity. Because high-quality information on land cover is lacking, understanding of relationships among Arctic-Boreal greenness trends, productivity, and land cover change is lacking. Multidecadal time series of moderate resolution (30 m) reflectance data from Landsat and high resolution (<4 m) imagery were used to map annual cover and quantify changes in land cover over the study domain of NASA’s Arctic-Boreal Vulnerability Experiment. Results identify two primary modes of ecosystem transformation that are consistent with increased high latitude productivity: (1) in the Boreal biome, simultaneous decreases in Evergreen Forest area and increases in Deciduous Forest area caused by fire and harvest; and (2) climate change-induced expansion of Arctic Shrub and Herbaceous vegetation. Land cover change imposes first-order control on the sign and magnitude of NDVI trends. Over a quarter of NDVI trends were associated with land cover change. Relative to locations with stable land cover, areas of land cover change were twice as likely to exhibit statistically significant trends in Landsat-derived NDVI. The highest magnitude trends were concentrated in areas of forest disturbance and regrowth and shrub expansion, while undisturbed land showed subtler, but widespread, greening trends. Based on Orbiting Carbon Observatory-2 data, sun-induced fluorescence, a proxy for productivity, reflected relationships among land cover, disturbance age, and productivity that were not fully captured in NDVI data. In contrast with NDVI, time series of aboveground biomass provide physically-based measures of productivity in forests. Using Landsat-based land cover and reflectance and ICESat lidar data, aboveground biomass was mapped annually across the study domain. Most forests showed increasing biomass, with wildfires imposing substantial interannual variability and harvest imposing steady biomass losses. This dissertation provides new information on how disturbances are driving land cover and productivity change across Arctic-Boreal northwestern North America and reveals insights regarding the interpretation of remote sensing observations in these biomes

    Metabolic scaling theory and remote sensing to model large-scale patterns of forest biophysical properties

    Full text link
    Advanced understanding of the global carbon budget requires large-scale and long-term information on forest carbon pools and fluxes. In situ and remote sensing measurements have greatly enhanced monitoring of forest carbon dynamics, but incomplete data coverage in space and time results in significant uncertainties in carbon accounting. Although theoretical and mechanistic models have enabled continental-scale and global mapping, robust predictions of forest carbon dynamics are difficult without initialization, adjustment, and parameterization using observations. Therefore, this dissertation is focused on a synergistic combination of lidar measurements and modeling that incorporates biophysical principles underlying forest growth. First, spaceborne lidar data from the Geoscience Laser Altimeter System (GLAS) were analyzed for monitoring and modeling of forest heights over the U.S. Mainland. Results showed the best GLAS metric representing the within-footprint heights to be dependent on topography. Insufficient data sampling by the GLAS sensor was problematic for spatially-complete carbon quantification. A modeling approach, called Allometric Scaling and Resource Limitations (ASRL), successfully alleviated this problem. The metabolic scaling theory and water-energy balance equations embedded within the model also provided a generalized mechanistic understanding of valid relationships between forest structure and geo-predictors including topographic and climatic variables. Second, the ASRL model was refined and applied to predict large-scale patterns of forest structure. This research successfully expanded model applicability by including eco-regional and forest-type variations, and disturbance history. Baseline maps (circa 2005; 1-km2 grids) of forest heights and aboveground biomass were generated over the U.S. Mainland. The Pacific Northwest/California forests were simulated as the most favorable region for hosting large trees, consistent with observations. Through sensitivity and uncertainty analyses, this research found that the refined ASRL model showed promise for prognostic applications, in contrast to conventional black-box approaches. The model predicted temporal evolution of forest carbon stocks during the 21st century. The results demonstrate the effects of CO2 fertilization and climate feedbacks across water- and energy-limited environments. This dissertation documents the complex mechanisms determining forest structure, given availability of local resources. These mechanisms can be used to monitor and forecast forest carbon pools in combination with satellite observations to advance our understanding of the global carbon cycle

    SATELLITE MICROWAVE MEASUREMENT OF LAND SURFACE PHENOLOGY: CLARIFYING VEGETATION PHENOLOGY RESPONSE TO CLIMATIC DRIVERS AND EXTREME EVENTS

    Get PDF
    The seasonality of terrestrial vegetation controls feedbacks to the climate system including land-atmosphere water, energy and carbon (CO2) exchanges with cascading effects on regional-to-global weather and circulation patterns. Proper characterization of vegetation phenology is necessary to understand and quantify changes in the earthÆs ecosystems and biogeochemical cycles and is a key component in tracking ecological species response to climate change. The response of both functional and structural vegetation phenology to climatic drivers on a global scale is still poorly understood however, which has hindered the development of robust vegetation phenology models. In this dissertation I use satellite microwave vegetation optical depth (VOD) in conjunction with an array of satellite measures, Global Positioning System (GPS) reflectometry, field observations and flux tower data to 1) clarify vegetation phenology response to water, temperature and solar irradiance constraints, 2) demonstrate the asynchrony between changes in vegetation water content and biomass and changes in greenness and leaf area in relation to land cover type and climate constraints, 3) provide enhanced assessment of seasonal recovery of vegetation biomass following wildfire and 4) present a method to more accurately model tropical vegetation phenology. This research will establish VOD as a useful and informative parameter for regional-to-global vegetation phenology modeling, more accurately define the drivers of both structural and functional vegetation phenology, and help minimize errors in phenology simulations within earth system models. This dissertation also includes the development of Gross Primary Productivity (GPP) and Net Primary Productivity (NPP) vegetation health climate indicators as part of a NASA funded project entitled Development and Testing of Potential Indicators for the National Climate Assessment; Translating EOS datasets into National Ecosystem Biophysical Indicators

    CaractĂ©risation spatio-temporelle de la dynamique des trouĂ©es et de la rĂ©ponse de la forĂȘt borĂ©ale Ă  l'aide de donnĂ©es lidar multi-temporelles

    Get PDF
    La forĂȘt borĂ©ale est un Ă©cosystĂšme hĂ©tĂ©rogĂšne et dynamique façonnĂ© par les perturbations naturelles comme les feux, les Ă©pidĂ©mies d'insectes, le vent et la rĂ©gĂ©nĂ©ration. La dynamique des trouĂ©es joue un rĂŽle important dans la dynamique forestiĂšre parce qu'elle influence le recrutement de nouveaux individus au sein de la canopĂ©e et la croissance de la vĂ©gĂ©tation avoisinante par une augmentation des ressources. Bien que l'importance des trouĂ©es en forĂȘt borĂ©ale fut reconnue, les connaissances nĂ©cessaires Ă  la comprĂ©hension des relations entre le rĂ©gime de trouĂ©es et la dynamique forestiĂšre, en particulier sur la croissance, sont souvent manquantes. Il est difficile d'observer et de mesurer extensivement la dynamique des trouĂ©es ou les changements de la canopĂ©e simultanĂ©ment dans le temps et l'espace avec des donnĂ©es terrain ou des images bidimensionnelles (photos aĂ©riennes,...) et ce particuliĂšrement dans des systĂšmes complexes comme les forĂȘts ouvertes ou morcelĂ©es. De plus, la plupart des recherches furent menĂ©es en s'appuyant sur seulement quelques trouĂ©es reprĂ©sentatives bien que les interactions entre les trouĂ©es et la structure forestiĂšre furent rarement Ă©tudiĂ©es de maniĂšre conjointe. Le lidar est un systĂšme qui balaye la surface terrestre avec des faisceaux laser permettant d'obtenir une image dense de points en trois dimensions montrant les aspects structuraux de la vĂ©gĂ©tation et de la topographie sous-jacente d'une grande superficie. Nous avons formulĂ© l'hypothĂšse que lorsque les retours lidar de tirs quasi-verticaux sont denses et prĂ©cis, ils permettent une interprĂ©tation de la gĂ©omĂ©trie des trouĂ©es et la comparaison de celles-ci dans le temps, ce qui nous informe Ă  propos de leur influence sur la dynamique forestiĂšre. De plus, les mesures linĂ©aires prises Ă  diffĂ©rents moments dans le temps permettraient de donner une estimation fiable de la croissance. Ainsi, l'objectif de cette recherche doctorale Ă©tait de dĂ©velopper des mĂ©thodes et d'accroĂźtre nos connaissances sur le rĂ©gime de trouĂ©es et sa dynamique, et de dĂ©terminer comment la forĂȘt borĂ©ale mixte rĂ©pond Ă  ces perturbations en termes de croissance et de mortalitĂ© Ă  l'Ă©chelle locale. Un autre objectif Ă©tait aussi de comprendre le rĂŽle Ă  court terme des ouvertures de la canopĂ©e dans un peuplement et la dynamique successionelle. Ces processus Ă©cologiques furent Ă©tudiĂ©s en reconstituant la hauteur de la surface de la canopĂ©e de la forĂȘt borĂ©ale par l'utilisation de donnĂ©es lidar prises. en 1998, 2003 (et 2007), mais sans spĂ©cifications d'Ă©tudes similaires. L'aire d'Ă©tude de 6 kmÂČ dans la ForĂȘt d'Enseignement et de Recherche du Lac Duparquet, QuĂ©bec, Canada, Ă©tait suffisamment grande pour capter la variabilitĂ© de la structure de la canopĂ©e et de la rĂ©ponse de la forĂȘt Ă  travers une gamme de peuplements Ă  diffĂ©rents stades de dĂ©veloppement. Les recherches menĂ©es lors de cette Ă©tude ont rĂ©vĂ©lĂ© que les donnĂ©es lidar multi-temporelles peuvent ĂȘtre utilisĂ©es a priori dans toute Ă©tude de tĂ©lĂ©dĂ©tection des changements, dont l'optimisation de la rĂ©solution des matrices et le choix de l'interpolation des algorithmes sont essentiels (pour les surfaces vĂ©gĂ©tales et terrestres) afin d'obtenir des limites prĂ©cises des trouĂ©es. Nous avons trouvĂ© qu'une technique basĂ©e sur la croissance de rĂ©gions appliquĂ©e Ă  une surface lidar peut ĂȘtre utilisĂ©e pour dĂ©limiter les trouĂ©es avec une gĂ©omĂ©trie prĂ©cise et pour Ă©liminer les espaces entre les arbres reprĂ©sentant de fausses trouĂ©es. La comparaison de trouĂ©es avec leur dĂ©limitation Iidar le long de transects linĂ©aires de 980 mĂštres montre une forte correspondance de 96,5%. Le lidar a Ă©tĂ© utilisĂ© avec succĂšs pour dĂ©limiter des trouĂ©es simples (un seul arbre) ou multiples (plus de 5 mÂČ). En utilisant la combinaison de sĂ©ries temporelles de trouĂ©es dĂ©rivĂ©es du lidar, nous avons dĂ©veloppĂ© des mĂ©thodes afin de dĂ©limiter les divers types d'Ă©vĂšnements de dynamique des trouĂ©es: l'occurrence alĂ©atoire de trouĂ©es, l'expansion de trouĂ©es et la fermeture de trouĂ©es, tant par la croissance latĂ©rale que la rĂ©gĂ©nĂ©ration. La technique proposĂ©e pour identifier les hauteurs variĂ©es arbre/gaulis sur une image lidar d'un ModĂšle de Hauteur de Couvert (MHC) a montrĂ© prĂšs de 75 % de correspondance avec les localisations photogrammĂ©triques. Les taux de croissance libre suggĂ©rĂ©s basĂ©s sur les donnĂ©s lidar brutes aprĂšs l'Ă©limination des sources possibles d'erreur furent utilisĂ©s subsĂ©quemment pour des techniques statistiques afin de quantifier les rĂ©ponses de croissance en hauteur qui ont Ă©tĂ© trouvĂ©es afin de faire varier la localisation spatiale en respect de la bordure de la trouĂ©e. À partir de la combinaison de donnĂ©s de plusieurs groupes d'espĂšces (de conifĂšres et dĂ©cidues) interprĂ©tĂ©e Ă  partir d'images Ă  haute rĂ©solution avec des donnĂ©es structurales lidar nous avons estimĂ© les patrons de croissance en hauteur des diffĂ©rents groupes arbres/gaulis pour plusieurs contextes de voisinage. Les rĂ©sultats on montrĂ© que la forĂȘt borĂ©ale mixte autour du lac Duparquet est un systĂšme hautement dynamique, oĂč la perturbation de la canopĂ©e joue un rĂŽle important mĂȘme pour une courte pĂ©riode de temps. La nouvelle estimation du taux de formation des trouĂ©es Ă©tait de 0,6 %, ce qui correspond Ă  une rotation de 182 ans pour cette forĂȘt. Les rĂ©sultats ont montrĂ© aussi que les arbres en pĂ©riphĂ©rie des trouĂ©es Ă©taient plus vulnĂ©rables Ă  la mortalitĂ© que ceux Ă  l'intĂ©rieur du couvert, rĂ©sultant en un Ă©largissement de la trouĂ©e. Nos rĂ©sultats confirment que tant la croissance latĂ©rale que la croissance en hauteur de la rĂ©gĂ©nĂ©ration contribuent Ă  la fermeture de la canopĂ©e Ă  un taux annuel de 1,2 %. Des Ă©vidences ont aussi montrĂ© que les trouĂ©es de conifĂšres et de feuillus ont des croissances latĂ©rales (moyenne de 22 cm/an) et verticales similaires sans tenir compte de leur localisation et leur hauteur initiale. La croissance en hauteur de tous les gaulis Ă©tait fortement positive selon le type d'Ă©vĂšnement et la superficie de la trouĂ©e. Les rĂ©sultats suggĂšrent que la croissance des gaulis de conifĂšres et de feuillus atteint son taux de croissance maximal Ă  des distances respectives se situant entre 0,5 et 2 m et 1,5 et 4 m Ă  partir de la bordure d'une trouĂ©e et pour des ouvertures de moins de 800 mÂČ et 250 mÂČ respectivement. Les effets des trouĂ©es sur la croissance en hauteur d'une forĂȘt intacte se faisaient sentir Ă  des distance allant jusqu'Ă  Ă  30 m et 20 m des trouĂ©es, respectivement pour les feuillus et les conifĂšres. Des analyses fines de l'ouverture de la canopĂ©e montrent que les peuplements Ă  diffĂ©rents stades de dĂ©veloppement sont hautement dynamiques et ne peuvent systĂ©matiquement suivre les mĂȘmes patrons successionels. Globalement, la forĂȘt est presqu'Ă  l'Ă©quilibre compositionnel avec une faible augmentation de feuillus, principalement dĂ» Ă  la rĂ©gĂ©nĂ©ration de type infilling plutĂŽt qu'une transition successionelle de conifĂšres tolĂ©rants Ă  l'ombre. Les trouĂ©es sont importantes pour le maintien des feuillus puisque le remplacement en sous-couvert est vital pour certains rĂ©sineux. L'Ă©tude Ă  dĂ©montrĂ© Ă©galement que la derniĂšre Ă©pidĂ©mie de tordeuse des bourgeons de l'Ă©pinette qui s'est terminĂ©e il y a 16 ans continue d'affecter de vieux peuplements rĂ©sineux qui prĂ©sentent toujours un haut taux de mortalitĂ©. Les rĂ©sultats obtenus dĂ©montrent que lidar est un excellent outil pour acquĂ©rir des dĂ©tails rapidement sur les dynamiques spatialement extensives et Ă  court terme des trouĂ©es de structures complexes en forĂȘt borĂ©ale. Les Ă©vidences de cette recherche peuvent servir tant Ă  l'Ă©cologie, la sylviculture, l'amĂ©nagement forestier et aux spĂ©cialistes lidar. Ces idĂ©es ajoutent une nouvelle dimension Ă  notre comprĂ©hension du rĂŽle des petites perturbations et auront une implication directe pour les amĂ©nagistes forestiers en quĂȘte d'un amĂ©nagement forestier Ă©cologique et du maintien des forĂȘts mixtes. ______________________________________________________________________________ MOTS-CLÉS DE L’AUTEUR : Perturbation naturelle, Dynamique forestiĂšre, Dynamique des trouĂ©es, Croissances latĂ©rales, RĂ©gĂ©nĂ©ration, Succession, Lidar Ă  retours discrets, Grande superficie, Localisation des arbres individuels, Croissance en hauteur

    Optical remote sensing for biomass estimation in the tropics: the case study of Uganda

    Get PDF
    This study investigates the capabilities and limitations of freely available optical satellite data at medium resolution to estimate aboveground biomass density of vegetation at national scales in the tropics, and compares this approach with existing methodologies to understand and quantify the sources of variability in the estimations. Uganda was chosen as a case-study because it presents a reliable national biomass reference dataset. As a result of this thesis, aboveground woody biomass for the year circa-2000 was mapped at national scale in Uganda at 30-m spatial resolution on the basis of Landsat ETM+ images, a national land cover dataset and field data using an object-oriented approach. A regression tree-based model (Random Forest) produced good results (cross-validated RÂČ 0.81, RMSE 13 Mg/ha) when trained with a sufficient number of field plots representative of the vegetation variability. This study demonstrated that in certain contexts Landsat data can effectively spatialize field biomass measurements and produce accurate and detailed estimates of biomass distribution at national scale. This approach tended to provide conservative biomass estimates and its limitations were mainly related to the saturation of the optical signal at high biomass density and to the cloud cover. When compared with the Uganda national biomass dataset, the map produced in this study presented higher agreement than other five regional/global biomass maps. The comparative analysis showed strong disagreement between the products, with estimates of total biomass of Uganda ranging from 343 to 2201 Tg and different spatial distribution patterns. Maps based on biome-average biomass values, such as the Intergovernmental Panel on Climate Change default values, and global land cover datasets strongly overestimated biomass stocks, while maps based on satellite data provided conservative estimates. The comparison of the maps predictions with field data confirmed the above findings

    Improved detection of abrupt change in vegetation reveals dominant fractional woody cover decline in Eastern Africa

    Get PDF
    While cropland expansion and demand for woodfuel exert increasing pressure on woody vegetation in East Africa, climate change is inducing woody cover gain. It is however unclear if these contrasting patterns have led to net fractional woody cover loss or gain. Here we used non-parametric fractional woody cover (WC) predictions and breakpoint detection algorithms driven by satellite observations (Landsat and MODIS) and airborne laser scanning to unveil the net fractional WC change during 2001-2019 over Ethiopia and Kenya. Our results show that total WC loss was 4-times higher than total gain, leading to net loss. The contribution of abrupt WC loss (59%) was higher than gradual losses (41%). We estimated an annual WC loss rate of up to 5% locally, with cropland expansion contributing to 57% of the total loss in the region. Major hotspots of WC loss and degradation corridors were identified inside as well as surrounding protected areas, in agricultural lands located close to agropastoral and pastoral livelihood zones, and near highly populated areas. As the dominant vegetation type in the region, Acacia-Commiphora bushlands and thickets ecosystem was the most threatened, accounting 69% of the total WC loss, followed by montane forest (12%). Although highly outweighed by loss, relatively more gain was observed in woody savanna than in other ecosystems. These results reveal the marked impact of human activities on woody vegetation and highlight the importance of protecting endangered ecosystems from increased human activities for mitigating impacts on climate and supporting sustainable ecosystem service provision in East Africa.Peer reviewe

    Remote Sensing of Biophysical Parameters

    Get PDF
    Vegetation plays an essential role in the study of the environment through plant respiration and photosynthesis. Therefore, the assessment of the current vegetation status is critical to modeling terrestrial ecosystems and energy cycles. Canopy structure (LAI, fCover, plant height, biomass, leaf angle distribution) and biochemical parameters (leaf pigmentation and water content) have been employed to assess vegetation status and its dynamics at scales ranging from kilometric to decametric spatial resolutions thanks to methods based on remote sensing (RS) data.Optical RS retrieval methods are based on the radiative transfer processes of sunlight in vegetation, determining the amount of radiation that is measured by passive sensors in the visible and infrared channels. The increased availability of active RS (radar and LiDAR) data has fostered their use in many applications for the analysis of land surface properties and processes, thanks to their insensitivity to weather conditions and the ability to exploit rich structural and texture information. Optical and radar data fusion and multi-sensor integration approaches are pressing topics, which could fully exploit the information conveyed by both the optical and microwave parts of the electromagnetic spectrum.This Special Issue reprint reviews the state of the art in biophysical parameters retrieval and its usage in a wide variety of applications (e.g., ecology, carbon cycle, agriculture, forestry and food security)
    • 

    corecore