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Résumé 
Le feu joue un rôle important dans la succession de la forêt boréale du nord-est de l’Amérique et le temps 

depuis le dernier feu (TDF) devrait être utile pour prédire la distribution spatiale du carbone. Les deux 

premiers objectifs de cette thèse sont: (1) la spatialisation du TDF pour une vaste région de forêt boréale 

de l'est du Canada (217,000 km2) et (2) la prédiction du carbone de la biomasse aérienne (CBA) à l’aide 

du TDF à une échelle liée aux perturbations par le feu. 

Un modèle non paramétrique a d’abord été développé pour prédire le TDF à partir d’historiques de feu, 

des données d'inventaire et climatiques à une échelle de 2 km2.  Cette échelle correspond à la superficie 

minimale d’un feu pour être inclus dans la base de données canadienne des grands feux. Nous avons 

trouvé un ajustement substantiel à l’échelle de la région d’étude et à celle de paysages régionaux, mais la 

précision est restée faible à l’échelle de cellules individuelles de 2 km2.  

Une modélisation hiérarchique a ensuite été développée pour spatialiser le CBA des placettes 

d’inventaire à la même échelle de 2 km2. Les proportions des classes de densité du couvert étaient les 

variables les plus importantes pour prédire le CBA. Le CBA co-variait également avec la vitesse de 

récupération du couvert au travers de laquelle le TDF intervient indirectement. 

Finalement, nous avons comparé des estimations de CBA obtenues par télédétection satellitaire avec 

celles obtenues précédemment. Les résultats indiquent que les proportions des classes de densité du 

couvert et des types de dépôts ainsi que le TDF pourraient servir comme variables auxiliaires pour 

augmenter substantiellement la précision des estimés de CBA par télédétection. 

Les résultats de cette étude ont montré: 1) l'importance d’allonger la profondeur temporelle des 

historiques de feu pour donner une meilleure perspective des changements actuels du régime de feu; 2) 

l'importance d'intégrer l’information sur la reprise du couvert après feu aux courbes de rendement de CBA 

dans les modèles de bilan de carbone; et 3) l'importance de l'historique des feux et de la récupération de 

la végétation pour améliorer la précision de la cartographie de la biomasse à partir de la télédétection. 
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Abstract  
Fire is as a main succession driver in northeastern American boreal forests and time since last fire (TSLF) 

is seen as a useful covariate to infer the spatial variation of carbon. The first two objectives of this thesis 

are:  (1) to elaborate a TSLF map over an extensive region in boreal forests of eastern Canada (217,000 

km2) and (2) to predict aboveground carbon biomass (ABC) as a function of TSLF at a scale related to fire 

disturbances.  

A non-parametric model was first developed to predict TSLF using historical records of fire, forest 

inventory data and climate data at a 2-km2 scale. Two kilometer square is the minimum size for fires to be 

considered important enough and included in the Canadian large fire database. Overall, we found a 

substantial agreement at the scale of both the study area and landscape units, but the accuracy remained 

fairly low at the scale of individual 2-km2 cells.  

A hierarchical modeling approach is then presented for scaling-up ABC from inventory plots to the same 2 

km2 scale. The proportions of cover density classes were the most important variables to predict ABC. 

ABC was also related to the speed of post-fire canopy recovery through which TSLF acts indirectly upon 

ABC. 

Finally, we compared remote sensing based aboveground biomass estimates with our inventory based 

estimates to provide insights on improving their accuracy. The results indicated again that abundances of 

canopy cover density classes of surficial deposits, and TSLF may serve as ancillary variables for 

improving substantially the accuracy of remotely sensed biomass estimates. 

The study results have shown: 1) the importance of lengthening the historical records of fire records to 

provide a better perspective of the actual changes of fire regime; 2) the importance of incorporating post-

fire canopy recovery information together with ABC yield curves in carbon budget models at a spatial 

scale related to fire disturbances; 3) the importance of adding disturbance history and vegetation recovery 

trends with remote sensing reflectance data to improve accuracy for biomass mapping 
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1. General Introduction 

 1.01 What is a forest carbon stock? 

The carbon cycle can be defined as “the constant movement of carbon from the land and water through 

the atmosphere and living organisms” (Natural Resources Canada, 2015). Carbon is an abundant 

element that is a constituent of all terrestrial life. Several reservoirs make up the carbon (C) cycle. Among 

these, forests cover ~32 million km2 (Hansen et al., 2010) in tropical, temperate, and boreal biomes and 

play an important role in tempering terrestrial climatic variations (Schimel, 1995). “A forest ecosystem 

includes the living organisms of the forest, and it extends vertically upward into the atmospheric layer 

enveloping forest canopies and downward to the lowest soil layers affected by roots and biotic processes” 

(Waring and Running, 2007). In forest ecosystems, C begins its cycle through photosynthesis. 

Atmospheric C is transformed into carbohydrates using solar energy and water. Trees release part of their 

carbohydrates through respiration and store another part in their biomass (foliage, stems, and roots) 

which constitute carbon stocks. Tree biomass contains approximately 50% carbon. Through senescence, 

litterfall and mortality, organic matter accumulates on soil and is either released during its decomposition 

by biological organisms or accumulates in soil carbon stocks. 

Aboveground biomass (AGB) is an important biophysical parameter for understanding terrestrial carbon 

stocks dynamics (Houghton et al., 2009). AGB corresponds to the total oven-dried biological material or 

mass present above the soil including stump, stem, branches, and foliage in a given area at a given time. 

Most of C stocks are in the tropical forests (55% of total C stocks, including in soil to 1m depth and live 

biomass), whereas 32% of C stock is present in boreal forests (Pan et al., 2011). The allocation of C 

stocked between the vegetation and soils of all ecosystems varies with latitude (Dixon et al., 1994). For 

example, boreal ecosystems store large amount of the carbon in the soils rather than in vegetation, i.e., 

84% of the carbon lies in soil organic matter and the remaining in the living biomass (Malhi et al., 1999). 

Deforestation is the main driver of carbon dynamics in tropical forests, whereas in boreal forests, natural 

disturbance and harvesting are the most prominent disturbances that influence carbon stocks (Houghton, 

2005). With an increasing interest in the effects of human alteration on the global carbon cycle, 

knowledge of forest carbon content on a regional and extended-time scale becomes important (Houghton, 

2003).  

1.02 Carbon stocks in Canadian boreal ecosystems  

The boreal forest consists of coniferous and deciduous tree species that covers 11% of the earth's 

terrestrial surface (Bonan and Shugart, 1989). Twelve percent of the global boreal biome is found within 

Canada (Burton et al., 2010). Canada’s forests therefore play a role in global C cycle for its size and 

enormous quantity of C stored in vegetation, deep soil, and permafrost pools (Natural Resources Canada, 

2012). Canada’s managed forest stocks about 28 Pg of carbon in biomass, dead organic matter and soil 
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pools (Kurz et al., 2013). Improving accuracy in quantifying carbon stocks with an enhanced knowledge of 

the boreal ecosystems is a key objective of carbon science in Canada (Natural Resources Canada, 

2012). Still, capturing spatial variability of carbon stocks at a large scale in the boreal forest remains a 

challenging issue.  

The boreal forests of Canada are the largest supplier of forest products to the world markets (Golden et 

al., 2011). Intergovernmental panel on climate change (IPCC) recognises that the use of harvested wood 

products for construction instead of concrete, steel, aluminum and plastic materials could generate carbon 

emissions reductions (Watson, 2009). The use of forest products for energy also provides a sustainable 

and renewable resource of energy (Barker, 2007). In recent years, the Canadian forest sector has been 

facing difficult times and it is in the view of diversifying its markets through the sale of harvest residues 

and biomass for energy to increase revenue (Paré et al., 2011). To make a profitable forest based 

products business, it is a responsibility of forest managers to follow an ecosystem-based forest 

management approach. Ecosystem-based forest management approach is defined as “a management 

approach that aims to maintain healthy and resilient forest ecosystems by focusing on a reduction of 

differences between natural and managed landscapes to ensure long term maintenance of ecosystem 

functions and thereby retain the social and economic benefits they provide to society” (Gauthier et al., 

2009). In this approach, the management practices should emulate natural disturbances and maintain 

biodiversity and forest ecosystem functions (Bergeron et al., 1999). The underlying concept is that 

species are usually adapted to their natural environmental conditions, including the range of natural 

variability. This basic concept entails that “past conditions and processes provide a context and the 

guidance for managing ecological systems today, and that disturbance-driven spatial and temporal 

variability is a vital attribute of nearly all ecological systems” (Landres et al., 2007). In this context, 

understanding ecosystem processes and functions including disturbance regimes, is essential to reduce 

the differences between natural and managed landscapes (Gauthier et al., 2002). This ecosystem-based 

management approach is based on coarse filter principles. Under a coarse-filter approach, forest 

management should ensure the conservation of most species through the preservation of habitat diversity 

(North and Keeton, 2008). At the landscape level, forest age structure (i.e. age class distribution) is 

targeted within the natural range of variability. Determination of the harvest rate is based on the rate of 

natural disturbance (Armstrong, 1999). “The closer an ecosystem is managed to allow for natural 

ecological processes to function, the more successful that management strategy will be” (Elmore and 

Kauffman, 1994).  

Forest carbon cycle is also an important forest ecological process (Landsberg & Sands, 2010). A coarse 

filter approach should also tend to reduce the differences between carbon storage in managed and 

natural landscapes (Henschel and Gray, 2007). Stand carbon content is the sum of the organic carbon 

(C) present in the overstory biomass, organic soil floor (litter, understory bryophytes, and sphagnum peat 
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mosses) and inorganic or mineral layer. The fundamental elements of the stand-level C contents are the 

tree species composition, size of trees, canopy cover density, understory, litter, including coarse woody 

debris and soil substrate (Liu et al., 2011). In Canadian boreal forests, natural disturbance such as fire or 

insect outbreaks and logging influence the forest C pool. Disturbance is defined as “any relatively discrete 

event in time that disrupts ecosystem, community, or population structure and changes resources, 

substrate availability or the physical environment” (Kasischke & Stocks, 2000). Natural disturbances alter 

forest structure and disturb carbon dynamics in ecosystems (Kurz et al., 2008b). They transfer carbon 

from the living pool biomass to dead coarse woody debris, forest floor litter and subsurface soil pools. 

Disturbances modify forest soil’s physical and chemical factors and microclimatic environments. They 

impact forest structure and reset forest succession transfer (Liu et al., 2011). For example, by altering 

forest structure, fire also controls soil thermal and moisture regimes, and indirectly controls metabolic 

processes that drive forest succession, photosynthesis and soil microbial processes (Kasischke & Stocks, 

2000).  

The important processes which are directly linked to sequestration of carbon are; 1) the rate of 

photosynthesis which is determined by site productivity, species composition, climate and age of the 

forest (Kurz et al., 2013); and 2) the rate of decomposition of organic matter (Kasischke and Stocks, 

2000). These processes are mostly influenced by climate, physiography and soil factors (Banfield et al., 

2002). The rate of C accumulation in the biomass pools depends on the temporal scale; on a short time 

frame, it is a function of the net ecosystem exchange (daily to weekly to yearly) and on a longer time 

frame, on the dynamics of forest succession (yearly to decadal time scales) (Kasischke & Stocks, 2000). 

Following a stand replacing disturbance, C stock in boreal forests first gets reduced and then reaches a 

maximum during intermediate stand ages that depends on the type and intensity of the last stand 

replacing disturbance and also of post-fire tree regeneration (Kurz et al., 2013).  At landscape level, C 

stocks are therefore determined by the age class distribution that is the proportion of forest area in 

different age classes. The forest age-class structure is left shifted with predominately young forests in 

recently disturbed areas, which has a low C density, whereas it reaches a point of maximum C density 

with a right shifted age class structure (Kurz and Apps, 1999) in infrequently disturbed forests.  In this 

way, C stays for a certain period of time before it escapes the forest ecosystem due to decomposition and 

respiration processes and natural disturbances. This residence time of carbon is related to the stability of 

forest ecosystems (Henschel and Gray, 2007). This residence time further conditions the resistance and 

resilience qualities which are related to the ability of ecosystem to recover from disturbances (Thompson 

et al., 2009). The quantity of carbon stocks is also an index of forest ecosystem productivity (Simard et al., 

2007, Malhi 2012) and timber production (Simard et al., 2007).  
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1.03 Dynamics of the black spruce forest  

The black spruce (Picea mariana (Mill.) BSP) - moss forest (closed-crown forest) is the dominant North 

American boreal ecosystem (De Lafontaine and Payette, 2011), and such a forest in eastern Canada is 

the focus of this study.  These forests make a large belt at the boundary between closed-canopy and 

open-canopy (taiga) boreal forests. In this ecosystem, fire is a natural driver of the ecological processes 

(succession) that dictate forest structure and function (Lecomte et al., 2006, Cyr et al., 2007). 

Disturbances and succession are key ecological processes that structure landscapes as a mosaic of 

forest stands of different ages and compositions. Natural black spruce stands originate from fire, after 

killing the previously established trees, developing into even-aged and closed-crown stands (Kneeshaw 

and Gauthier, 2003). High severity burns release the nutrients from soil organic carbon content supporting 

the regeneration of black spruce. In the absence of fire after 120-200 years approximately (Rossi et al., 

2009), black spruce trees reach maturity and the death and falling of trees create gaps in the canopy 

(Grandpré et al., 2000; Harper et al., 2006). Long fire return intervals of approximately 300-1000 years in 

black spruce forest of eastern Canada (Bergeron et al., 2004b; Bouchard et al., 2008) exceed the life 

expectancy of black spruce and favors the presence of uneven old-aged stands with unbalanced stand 

structure (Harper et al., 2006; Bouchard et al., 2008). Black spruce stands are able to maintain for 

thousands of years in the absence of fire (stable state) (Pollock and Payette, 2010). This represents up to 

70% of stands of the eastern black spruce-moss forest in the Province of Quebec (Boucher et al., 2003). 

The age distribution of black spruce stands is therefore highly skewed towards old stands in this 

ecosystem and has profound influence on the storage of carbon in soils and living biomass.  

Forest age distribution has to be considered for the extrapolation of stand-level carbon budgets to 

landscapes or regions (Kurz et al., 2008b). In these forests, successional changes are related less to tree 

species succession but more to structural changes (Harper et al., 2005). The replacement of even-aged 

closed stands to uneven-aged open canopy stands corresponds to a gradual decline in stand productivity, 

and is followed by a steady-state phase (Garet et al., 2009). In this way, the stand carbon yield curve is 

slow at first and then rapidly increases before reaching a maximum near canopy closure, and declines 

when stands become old and then stabilizes or reduces in the absence of fire (Wang et al., 2003, Martin 

et al., 2005). Thus, the age structure of the stands conditions the size of carbon stocks stored in forest 

biomass (Kurz et al., 2008). In fact, TSLF is the right temporal variable to explain the long term dynamics 

of forest age structure in this region, when the mean longevity of the dominant species can be lower than 

the time elapsed since the last stand-initiating disturbance (Garet et al., 2012) and also to infer 

successional patterns (Bouchard et al., 2008). In such case, the mean canopy age will underestimate time 

since last fire. In this region, the empirical relationship existing between mean canopy age and carbon 

stocks and the use of mean canopy age to comprehend successional patterns may not be valid. TSLF is 

also the primary determinant of the accumulation of stand biomass and the soil organic carbon layer 
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depth and its distribution (Simard et al., 2007, Pollock and Payette, 2010). For these reasons, generating 

wall to wall information of TSLF becomes important in this region for the quantification of biomass.  

1.04 Why map TSLF? 

Producing a map of TSLF allows us to understand long-term relationships between vegetation, fire and 

climate for analysing the impact of changes in fire regimes on forest composition. Understanding the 

extent of change in fire regimes due to climate variability can be used to quantify past ecosystem changes 

and to compute typical fire return intervals. A TSLF map could also help understand the influence of TSLF 

on carbon stocks at a regional scale and also aid forest managers for finding insights on ecosystem 

change for natural resources management planning. Biomass maps integrated with TSLF information can 

help landscape forest managers to devise management strategies for reducing differences in carbon 

storage between natural and managed landscapes.  

Boreal forest productivity is not only under the control of permanent physical factors but also of transient 

factors related to forest succession, notably species compositional (Anyomi et al., 2014) and stand 

structural changes (Boucher et al., 2006). These successional traits are linked to TSLF and thus to past 

fire activity. Furthermore, landscape productivity is related to its forest age structure, not only because 

stand productivity is related to its age, but also because tree sensitivity to drought events or to the length 

of growing seasons is related to its age (Girardin et al., 2012). As a result, past fire activity has a role in 

forest management and conservation plans for enhancing sustainability and also a significant impact on 

the actual productivity of the forest.  

1.05 Research problem and motivation 

Mapping TSLF across a large area over a long temporal scale is inherently challenging in heterogeneous 

forest environments (Morgan et al., 2001). Existing methods employed to provide TSLF information are 

either temporally or spatially limited. For example, dendroecological sampling (Girardin et al., 2006) and 

dating may provide TSLF for longer time spans (Bergeron and Brisson, 1990) but are labour intensive and 

provide only a spatially-coarse representation of past fire activities (Cyr et al., 2010). The delineation of 

recent fire scars using aerial photographs provides spatial data of recent burns (Gauthier et al., 2002, Le 

Goff et al., 2007, Bélisle et al., 2011), but the delineation of fire boundaries remains ambiguous (Cyr et al. 

2010). A disadvantage of all these methods is that only present standing trees are measured (recent 

TSLF), and the information is also spatially restricted over time (Niklasson and Granström, 2000). 

Analysis of charcoal in lake sediments can be used to determine TSLF over much longer periods of time 

(Carcaillet et al., 2007, Hély et al., 2010, Payette et al., 2012), but gathering the information is costly and 

remains limited in space (Niklasson and Granström, 2000).  

“Time since last fire” requires making the assumption of complete stand replacement (Johnson and 

Wagner, 1985). This assumption is only partially valid, since burned areas are expected to be 
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heterogeneous, with residual unburned patches and islands that may occupy between none to 17% of a 

burned area (Perera et al., 2009).  Fire severity is also lower at the burn periphery (Epting and Verbyla, 

2005). Burn heterogeneity therefore complicates the estimation of the TSLF, but plays an important role 

for forest succession (Schmiegelow et al., 2006). Estimation of TSLF at a coarse spatial scale could allow 

circumventing these issues. There are significant relationships between fire records and vegetation 

composition and structure (as measured from forest inventory maps) that can be exploited to derive TSLF 

map (Cyr et al., 2010), but such relationships at a large regional scale have yet to be explored. The 

spatial variations of successional patterns are also a function of drainage (topographic features) and 

climatic variables (Senici et al., 2010). Therefore, at large spatial scale, existing fire history generated 

from dendroecological reconstruction, recent fire burns, and aerial photographs could be linked with the 

present species composition, age class structure (bottom-up level controls), and climatic variations (top-

down controls) and then extrapolated to a larger regional landscape.  

Fire alone does not account for the spatial variability of C stocks (Houghton, 2005) and there are other 

environmental factors (e.g., elevation, soil texture and drainage, Banfield et al., 2002). Most carbon 

budget models (e.g. Kurz et al., 2009, Masera et al., 2003) do not integrate forest successional dynamics 

with environmental factors to explain the spatial variability of carbon stocks. It is thus necessary to 

elaborate a model of carbon dynamics that allows estimating the domain of forest age structures and 

consequently of carbon stocks that can be expected under a natural disturbance regime (Cyr et al., 2009). 

Yet, the spatial variability of carbon stocks in relation with TSLF at regional and even local landscape 

levels is still poorly understood due to the limitation of spatially explicit TSLF information and needs to be 

better quantified (Balshi et al., 2007, 2009). There is also a lack of knowledge on the relative importance 

of TSLF and forest structural attributes for estimating aboveground biomass carbon (ABC) across a 

regional scale in the boreal forest to inform carbon budget models.  

Existing methods for mapping ABC fall under two main approaches: 1) ground based and 2) remote 

sensing approaches. We first have focussed on ground based approaches and later on remote sensing 

approaches. Modelling may be empirical, process-based and hybrid. Both empirical and process-based 

methods have advantages and disadvantages. We chose a hybrid modelling approach which is the 

combination of empirical and process-based knowledge to overcome the limitations encountered with 

both approaches (Landsberg, 2003). Existing ground based methods utilize large scale forest inventory 

data to estimate biomass using allometric regression equations or biomass expansion factors or remote 

sensing data coupled with forest inventory data. Remote sensing techniques are based on the correlation 

between spectral information (intensity of electromagnetic radiation received by the sensor) and biomass 

estimated from field measurements and allometric equations. These methods are very useful when there 

is a scarcity of ground plots data. Studies have demonstrated the existence of correlation between 

spectral reflectance variables (e.g MODIS, Moderate Resolution Spectroradiometer, Muukkonen et al., 
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2007) or radar backscatter (e.g. ASAR, Advanced Synthetic Aperture Radar, Thurner et al., 2014) with 

above ground biomass (AGB). However, these methods are limited in estimating biomass in regions of 

high biomass, especially when the canopy is closed (Turner et al., 1999). Moreover, the relationship 

between single date reflectance data and AGB is weak under high leaf area and complex canopy 

conditions (Pflumagher et al., 2014). On the other hand, LiDAR (light detection and ranging, e.g 

Geoscience Laser Altimeter System, GLAS) active remote sensing systems, estimate canopy height and 

vertical structure of the forests directly by determining distance between the sensor and target through 

obtaining the time between the emission pulse of laser light from the sensor and signal received back in 

the instrument after reflecting off from the forest canopy and ground (Lefsky et al., 2002). Factors, such as 

data saturation, mixed pixels, complex biophysical environments, the selection of remote sensing 

variables, and the modelling approaches all affect AGB accuracy (Lu, 2006). Recent studies of comparing 

biomass maps from GLAS and MODIS in tropical forests indicated a need to improve their accuracy (Hill 

et al., 2013, Mitchard et al., 2014). Comparing biomass estimates from remote sensing data with 

inventory based estimates may therefore allow us to find potential ancillary variables to overcome the 

problems of saturation signal.  Here AGB was used instead of ABC, because AGB maps based on remote 

sensing data for the area of interest were already available (e.g. Beaudoin et al., 2014, Thurner et al., 

2014).   

1.06 Objectives 

The three objectives of this research are: 

1) To map TSLF over large areas of boreal forest at a regional scale by generalizing the empirical 

relationships that exist between the historical records of fire, forest inventory data, and 

biophysical setting of the landscape. 

2) To predict the spatial variability of ABC as a function of stand and environmental variables 

across the landscape at a regional scale, and to determine the contribution of TSLF to the 

predictive model. 

3) To explain the spatial variation in AGB differences derived from different remote sensing data 

(MODIS, GLAS and ASAR) and an AGB model based on ground-inventory data on a large area 

of boreal forest.  

We have chosen the Quebec black spruce-moss commercial forest (area, 217,000 km2) for its rich 

information on fire history maps and ground inventory plots, thus serving as a useful training area to map 

TSLF and further allow us to link aboveground carbon biomass in relation with TSLF. Based on these 

three objectives, we tailored three chapters for this research in the form of articles published in, submitted 
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to or in preparation for peer reviewed scientific journals. The texts follow the format required for a 

scientific journal (Forest Ecology and Management).  

Chapter 1- Lengthening the historical records of fire history over large areas of boreal forest in eastern 

Canada using empirical relationships  

Chapter 2- Cover density recovery after fire disturbance controls landscape aboveground biomass carbon 

in the boreal forest of eastern Canada 

Chapter 3- Fire disturbance history improves the consistency of remotely sensed aboveground biomass 

estimates for boreal forests in eastern Canada 
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2.01 Abstract  

Fire plays an important role for boreal forest succession, and time since last fire (TSLF) is therefore seen 

as a useful covariate to devise forest management strategies, but TSLF information is currently either 

spatially or temporarily limited. We therefore developed a TSLF map for an extensive region in eastern 

Canada (217 000 km2) by generalizing the empirical relationships that exist between regional historical 

records of fire (1880-2000) with forest inventory data and biophysical variables. Two random forest 

models were used to predict TSLF at the scale of 2-km2 cells. These cells were first classified into TSLF ≤ 

120 years and > 120 years and TSLF was then estimated by decade for cells classified as younger than 

120 years. Overall, both models showed a substantial agreement at the scale of both the study area and 

landscape units, but the accuracy remained fairly low at the scale of individual cells. Results show that the 

decades between 1920 and 1940 were characterized by widespread fire activity covering approximately 

28% of the study region. Studies have reported a doubling of the burn rate from 1970 to 2000, but our 

longer-term analysis suggests that the 1970 to 2000 burn rate (4.3% decade-1) is lower than the one 

detected between 1920 and 1940 (16.4% decade-1) and provides a relevant context for interpreting the 

recent increases in area burned observed since 1970. These results highlight the importance of 

lengthening the historical records of fire history maps in order to provide a better perspective of the actual 

changes of fire regime.  

 

Key words: boreal forest; fire history; time since last fire; succession; decadal burn rate; Random forests. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



17 
 

2.02 Introduction 

Boreal forests play a significant role in the global carbon budget (32% of global forest carbon stocks, Pan 

et al., 2011). In Canada, disturbances such as fire, insect outbreaks and logging influence the overall 

stability of the boreal forest carbon sink, but stand-replacing fires remain a key driver of carbon dynamics 

of the boreal forest (Wooster and Zhang, 2004; Stinson et al., 2011).  It directly influences the age 

structure and vegetation mosaic of the landscape (Weber and Stocks, 1998) while its stochasticity in 

space and time (Morgan et al., 2001; McKinley et al. 2011) creates heterogeneous and complex 

landscapes (He and Mladenoff, 1999). Time since last fire (TSLF) is thus a primary determinant of the 

accumulation of stand biomass and soil organic carbon (Simard et al., 2007; Raymond and McKenzie, 

2012), and is related to the abundance and diversity of animal and plant communities (Azeria et al., 2009; 

Bergeron and Fenton, 2012). Furthermore, TSLF can be used to characterize forest age structure when 

the mean lifetime of the dominant tree species is shorter than the fire return interval (Garet et al., 2012).  

Forest age structure is used as an indicator of economic, social and ecological sustainability (Didion et al., 

2007; Cyr et al., 2009; Bouchard and Garet, 2014) and forest management strategies fundamentally 

manipulate the age structure to optimize trade-offs between timber supply, habitat and recreation values 

(Bettinger et al., 2009). Past fire activity has therefore a significant impact on how forest management and 

conservation plans are dimensioned to enhance sustainability. 

However, forest managers usually have access to detailed archives of fires only for the last few decades, 

a constraint that limits their capacity to set management targets based on natural variability in forest 

ecosystem processes.  Longer historical records help better define the range of natural variability of fire 

regime and thus of forest age structures (Cyr et al., 2009; Bergeron et al., 2010). Knowledge of TSLF over 

a large spatial extent is therefore seen as useful for the planning of timber production and the 

conservation of biodiversity, as both types of activities require a good understanding of natural 

disturbances (Nalle et al., 2004; Bergeron et al., 2004a; Hauer et al., 2010; Savage et al., 2013; Börger 

and Nudds, 2014).  

TSLF information can be acquired through direct measurements of burned areas from aerial photographs 

or satellite images, or through indirect methods in which fire history is reconstructed from 

dendroecological information (Frelich and Reich, 1995; Heyerdahl et al., 2001). All such methods are 

spatially or temporally limited. For instance, archived databases of area burned (Kasischke et al., 2002; 

Stocks et al., 2003) provide direct information over large areas but only for the past few decades. In 

contrast, tree or charcoal sampling and dating provide TSLF over century-level time scales but only cover 

limited spatial extents (Cyr et al., 2010).   

Vegetation composition, cover density and stand structure of a specific forest area are known to be 

related to its TSLF. Across the North American boreal forest, the mean time since the last fire (MTSLF) 

exceeds 500 years (Bouchard et al., 2008) in the east and shortens to 100-150 years  further west 
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(Johnstone et al., 2010). This pattern creates an east-west gradient in within-stand age structure from 

uneven-aged to even-aged (Cumming et al., 2000; Bergeron et al., 2004a). In boreal forests, a shorter 

MTSLF promotes the dominance of fire-adapted jack pine (Pinus banksiana Lamb) or trembling aspen 

(Populus tremuloides Michaux) (Weir et al., 2000; De Groot et al., 2003), while a longer MTSLF promotes 

the dominance by black spruce (Picea mariana (Mill.) B.S.P.) and, in extremely long MTSLF, fire-averse 

balsam fir (Abies balsamea (L.) Mill.) (Bouchard et al., 2008).  Forest composition and structure are 

available from regular forest properties mapping over large areas and could be used as an indirect 

method to enhance the current spatial coverage of TSLF information. 

The objective of this study was therefore to estimate TSLF for a 217,000 km2 region of black spruce 

dominated boreal forest in eastern Canada through the integration of multiple sources of direct and 

indirect information. The specific objectives of this study were 1) to develop a TSLF map at a regional 

scale through the generalization of the empirical relationship existing between historical fire records with 

forest inventory and climate data, 2) to determine the accuracy and the temporal variation of the decadal 

burn rate from derived TSLF map, and 3) to identify how the burn rate estimated for the 20th century at the 

landscape scale with the TSLF map is related to present vegetation composition. To this effect, we first 

trained random forest models over specific areas of our study area with known TSLFs. Vegetation, 

geomorphological characteristics, and climate data were used as input data. We used bootstrap 

replications to build confidence intervals for the TSLF estimates, which were then extrapolated to the 

entire study area. Finally, MTSLF values were computed with survival analyses at the scale of landscape 

units (~ 100 – 3000 km2) from the resulting TSLF map to visualize how they were related to the existing 

vegetation composition. 

2.03 Methods 

2.03.01 Study Area 

The study area is located in the eastern boreal forest of Canada (Fig. 2.1) and extends approximately 

from 49°N to 52°N and 66°W to 79°30’W corresponding to the portion of the black spruce – feather moss 

bioclimatic domain actually allocated to forest management and commercial harvest in the  province of 

Québec (Robitaille and Saucier, 1996). The total extent of the study area is 217 000 km2. This area is 

particularly rich in fire history maps (Fig. 2.1) and thus serving as a useful training area for testing the 

applicability of our methodology. The mean annual temperature for the study area varies from 0°C to -

2.5°C (Bergeron et al., 2004). Mean annual precipitation increases from 800 in the west to 1200 mm year-

1 in the east (Grondin et al., 2007).  
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Figure 2.1. Location of study area (outlined in dark black) and fire history maps (numbered grayed areas, refer to Table 
2.2). Inventory plots used for the training of the TSLF models are not shown. 

 

Largely underlain by the Precambrian rocks of the Canadian Shield, the study area varies from organic 

deposits and a flat topography of the Clay Belt in the west, near James Bay (Cyr et al., 2010), to 

moderately hilly landscapes overlain by glacial-fluvial deposits and tills in the rest of the area. The central 

region has moderate elevation (339 to 535 m) with surficial deposits dominated by mesic glacial tills 

(Bélisle et al., 2011). The eastern section is characterized by till and rock deposits on a hilly to high hilled 

landscape (Bouchard et al., 2008).  

The dominant forest types found in the study area vary along the precipitation gradient. Although black 

spruce stays dominant throughout the area, it shares its dominance with jack pine in the west, and with 

fire-averse balsam fir in the wetter east.  Fire is the dominant disturbance across the study area, but its 

impact decreases in the wetter east. Spruce budworm (Choristoneura fumiferana Clemens) is a major 

periodic disturbance in the eastern half of the study area, especially in balsam fir dominated stands 

(Bouchard and Pothier, 2011).  

2.03.02 Characterization of study units 

For modeling purposes we partitioned the landscape into a square grid of 2 km2 cells (cells of about 1414 

m x 1414 m, and total of 108,477 cells). For ease of comparison with other studies and to increase our 

chances of past fire detection (Héon et al., 2014), we focused on the large fires (> 200 ha) that accounted 
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for 97% of the area burned between 1960 and 2000 in Canada (Stocks et al., 2003). Our grid corresponds 

to the minimum fire size of the Canadian Large Fire Database (200 ha), which provides the burned area in 

Canada from 1959 to 1999.  

These 2-km2 cells were characterized across the study area with a geospatial database based on forest 

maps produced by the Quebec Ministry of Natural Resources for its third inventory program (1992-2002), 

and climatic variables derived from the NCEP-NCAR Twentieth Century Reanalysis (20CR) project 

(Compo et al., 2011). The “Spatial information on Forest Composition based on Tessera” geospatial 

database – (SIFORT, Pelletier et al., 2007) is based on forest maps derived from the photointerpretation 

of false color infrared photos on a 1/15000 scale, for the years 1990 to 1999. The map is divided into 

square tiles of 15 seconds in longitude by 15 seconds in latitude, each covering a mean area of 

approximately 14 ha. This database provides information for each grid centroid on stand composition, 

age, height, cover density, surficial deposit and drainage. Surficial deposits and drainage classes were 

combined into seven groups defined by their rock fraction and texture and linked to the drying potential of 

the surficial deposits (Mansuy et al., 2010).  

Meteorological stations are very sparse throughout the study region. We therefore used 1971-2000 daily 

minimum and maximum temperatures and precipitation obtained from the 20CR project. This climate 

dataset has a 2⁰ x 2⁰spatial resolution and was specifically chosen because of its demonstrated link to 

tree growth in the eastern Canadian boreal forest (Girardin et al., 2012). Climatic variables (Table 2.1) 

were selected because of their demonstrated links to the fire regime (Le Goff et al., 2009; Mansuy et al., 

2012) and downscaled with the BioSIM model (Régnière and St-Amant, 2008; Régnière, 2009). Altitude 

values, required to perform spatial interpolation with BioSIM, were obtained from the Shuttle Radar 

Topographic Mission Digital Elevation Model with 90 m resolution (van Zyl, 2001). 

We aggregated the SIFORT geodatabase to our grid, with an average of 14 SIFORT tile centroids per 2-

km2 cell. Within each cell, the relative frequencies of species groups, age, height, cover density classes 

and surficial deposit groups were estimated with the SIFORT geodatabase and used as explanatory 

variables to estimate TSLF (Table 2.1). We removed cells for which more than 50% of the SIFORT 

tessera centroids were classified as water (7694 cells, 7.1% of total), wetlands and peatlands (8423 cells, 

7.8% of total), heaths (4700, 4.3% of total), harvested land (9339 cells, 8.6% of total), insects-killed 

stands or wind throws (118 cells), and human infrastructure (38 cells), leaving 78,136 cells for analysis 

(henceforth referred to as the study dataset, corresponding to 72% of the total cell dataset and 89% of the 

forest area). 
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Table 2-1. List of explanatory variables considered for the training of the random forest models 

Variables Description 

Relative frequencies of 

vegetation attributes (a) 

 

Species composition groups   ≥75% stand cover = pure, < 75% = mixed. Classified into black 

spruce (Pma), balsam fir (Aba), jack pine (Pba), intolerant hardwoods 

(Iha – aspen or birch), mixed (Mix), other conifers (Oco - conifers 

other than black spruce, balsam fir and jack pine) and no species 

composition but identified as a burned area (Brn), following Gauthier 

et al., (2010). 

Stand age classes 0 - 20 years (age 0-20), 21 - 40 (age 21-40), 41 - 60 (age 41-60), 61 - 

80 (age 61-80), 81 - 100 (age 81-100), ≥ 101 (age ≥ 101), young 

uneven-aged (Yua) and old uneven-aged (Oua). 

Stand height classes > 22 m (height > 22), 17 - 22 m (height 17-22), 12 - 17 m (height 12-

17), 7 - 12m (height 7-12), 4 - 7 m (height 4-7), 2 - 4 m (height 2-4) 

and 0 - 2 m (height 0-2). 

Stand cover density classes The percentage of stands with density greater than 81% (cover > 

81%), 61% - 80 % (cover 61-80%), 41% - 60% (cover 41-60%) and 

25% - 40 % (cover 25-40%). 

Physical variables   

Relative frequencies of surficial 

deposit groups (a) 

Based on a combination of soil stoniness and texture, linked to the 

drying potential of the surficial deposits (Mansuy et al., 2010): VAVC 

(very abundant, very coarse), MM (moderate, moderate), MAM 

(moderately abundant, moderate), MAC (moderately abundant, 

coarse), AC (abundant, coarse), ROC (rock) and ORG (organic) 

(Mansuy et al., 2010). 

Elevation The elevation for the centroid of 2 km2 cells from SRTM DEM (90 m 

resolution) (van Zyl, 2001). 

Slope The slope for the centroid of 2 km2 cells derived from elevation in 

ArcGIS 10.0 from the SRTM DEM. 



22 
 

Climate Derived from the 20CR project (Compo et al., 2011) and BioSIM. 

Temperature The annual mean temperature (oC) for the period of 1971-2000. 

Total precipitation  The mean of annual total precipitation (mm year-1) for the period of 

1971-2000. 

Degree-days  The annual degree-days (above 5°C) for the period of 1971-2000 (°C 

year-1). 

Growing season  The mean length of growing season (days for which the mean 

temperature is above 5°C) for the period of 1971-2000 (days year-1). 

Potential evapotranspiration  The mean annual total Thornwaite’s potential evapotranspiration 

(PET) (mm) for the period of 1971-2000 (Dunne and Leopold, 1978). 

Aridity index The mean annual aridity index for the period of 1971-2000 (mm), 

corresponding to the annual sum of the differences between monthly 

Thornthwaite’s potential evapotranspiration and monthly precipitation. 

Drought code Fire weather index corresponding to moisture content of the deep 

layer of compacted organic matter, 10–20 cm deep (Amiro et al., 

2005). 

a Derived from the SIFOR geospatial database  

2.03.03 Modelling TSLF 

In our study region, the 200-year mean longevity of black spruce, the dominant tree species, is shorter 

than the reported > 500-year mean fire return interval (Bouchard et al., 2008). In the absence of fire, black 

spruce trees die asynchronously, thereby generating complex uneven-aged structures of near-constant 

mean canopy age while TSLF increases.  In such cases, mean canopy age underestimates TSLF (Garet 

et al., 2012). We therefore based our prediction of TSLF (large spatial scale) on the relative proportions of 

tree species, of tree age classes, of cover densities and of heights, and on values of specific climatic 

variables.   

We trained our TSLF model using detailed information on TSLF available for parts of the study area either 

from fire history maps (Fig. 2.1, Table 2.2) or from forest inventory plots. First, we discarded 9552 cells 

that were covered 50% or more by fires in the 1970-2000 fire maps produced operationally by the 

SOPFEU (the Quebec forest fire control agency, Société de protection des forêts contre le feu) (Table 

2.2, Boulanger et al., 2013), since there was no need to model TSLF for that well-documented period. We 
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did not consider fires that burned after 2000 because the SIFORT database provides updated data on 

forest vegetation up to 2000. Cells covered 50% or more by a known fire polygon were attributed the 

TSLF value of that fire, yielding an initial training dataset of 23 289 cells, or 29.8% of the studied dataset 

(Table 2.2).  

Inventory plots of the Quebec Ministry of Natural Resources’ third inventory program (n =6,415 plots) 

were also used to generate additional training information for our TSLF model.  According to the two plot-

level rules set by Bélisle et al. (2011), tree age and TSLF are equivalent 1- if the plot is dominated by 

post-fire species (white birch, trembling aspen, jack pine, black spruce), and 2- if the plot is even-aged, 

that is with no more than 20 years of age difference among the cored dominant trees. The TSLF of cells 

with more than one admissible plot was set as the mean age of cored trees within the oldest plot. This 

procedure enabled us to assign TSLF to 2218 additional cells (2.8%), for a total of 25,507 cells with a 

known TSLF (32.6% of the studied dataset).  

Modeling TSLF involved the successive application of two separate models in which climatic variables 

and forest attributes were used as explanatory variables (Table 2.1).  Since our TSLF modeling relies on 

forest succession, climatic variables were expected to influence its dynamics. Also, two models were 

needed because of the censored nature of TSLF data (e.g. Johnson and Gutsell, 1994), since although all 

forests have burned at some point in the past, there is a cut-off value beyond which TSLF cannot be 

evaluated. The first model was thus used to determine that TSLF cut-off value beyond which TSLF 

estimates acquired a greater uncertainty.  Model uncertainty was rated using the improvement of the 

overall classification accuracy of burned / unburned cells (TSLF ≤ or > a cut-off value) as the cut-off TSLF 

value was gradually reduced from a maximum of 200 years. This initial analysis yielded a cut-off TSLF 

value of 120 years, a value more related to the oldest age class provided by the SIFORT database (Table 

2.1) than to the maximal temporal depth common to all available fire history maps (Table 2.2).  Cells of 

the training dataset with a TSLF value greater than 120 years were thus all categorized as “unburned” 

(TSLF > 120 years) for further model training. A second model was then used to estimate TSLF for cells 

for which the first model predicted a TSLF value below 120 years.  
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Table 2-2. Sources used to generate the response variable for the training dataset for the random forest TSLF models 

No Fire data source Period  Area used 

in the study 

(km2) 

Location of region 

1 Quebec’s Société de 

Protection contre les Feux 

(SOPFEU) 

1970-2000 19104 Province of Quebec, 

Canada 

2 Bouchard et al. (2008) 1800-2000 41472 The eastern portion of 

study area (70-66.5°W to 

49-51.5°N) 

3 Bélisle et al. (2011) 1734-2009 228 The central part of study 

area (71°15’W-72°45’W 

and 49°36’N-50°59’N) 

4 Le Goff et al. (2007) 1720-2000 232 The central portion of 

study area  (75°W-

76°30’W and 49°30’N-

50°30’N) 

5 Bergeron et al. (2004b) 1675-2000 4192 The western part of study 

area (78°30’W-79°30’W 

and 48°N-50°N) 

6 Lesieur et al. (2002) 1923-2000 454 The south-central portion 

of study area 

(74°52’55”W-73°45’15”W 

and 47°57’13”N-

49°08’22”N)  

 

 

 Both models were developed using Random Forests (RF), with the randomForest package (Liaw and 

Wiener, 2002) in R (Venables and Smith, 2013). This non-parametric method makes no assumptions 

about the distribution of the data and can model non-linear relationships. It has the ability to handle high 

dimensional input variables and rank variable importance. For both models, 1000 bootstrap samples were 

used to draw 63% (Cutler et al., 2007) of the training dataset to build classification or regression trees 
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whose predictions were then combined. The remaining data (out-of-bag data) was used for cross-

validation for each bootstrap iteration. The values of training parameters used in model development 

were: ntree, the number of trees to grow (1000), mtry, the number of the predictor variables sampled for 

each node (default parameters, classification: square root of the number of variables and regression: the 

number of variables/3), and node size (default parameters, classification: 1 and regression: 5). In the case 

of the first RF model used to form two groups based on a cut-off TSLF value, the final classification 

corresponded to the class most often selected by the classification trees. Accuracy was assessed with 

Cohen’s kappa measure of agreement and the percent of correctly classified classes (PCC) through the 

construction of confusion matrices between the actual and predicted classes. The kappa measure 

corresponds to the classification accuracy adjusted for agreements that may occur due to chance alone 

(Cohen, 1960). A non-parametric method such as random forest is not affected by spatial autocorrelation 

as it does not require residuals to be independent and identically distributed, but the presence of residual 

autocorrelation could indicate among other things the omission of one or more important explanatory 

variables (e.g. Dormann et al. 2007). Furthermore, forest fire is a contagious process with potential 

inherent spatial autocorrelation. As a consequence we tested for the presence of residual autocorrelation 

with a global Moran’s I index as a function of neighboring distance (Moran, 1950). To this effect, the 

Moran I index was computed with the cells having a value of 0 (incorrectly) or 1 (correctly classified).  

For the second RF model used to estimate TSLF for cells where TSLF 120 years, taking the average of 

the bootstrap values (Cutler et al., 2007) led to biased predictions for values close to the bounds set at 30 

and 120 years (i.e. corresponding to years of stand origin of 1970 and 1880). Different strategies were 

employed to avoid such biases, including a bias reduction technique proposed by Zhang and Lu (2012) 

(their model 3) or by taking the median instead of the mean as prediction. However, we found that biases 

were greatly reduced when bootstrap-predicted values were categorized into decades for each cell and 

the most frequent decade was selected as the predicted value. As a consequence of categorizing TSLF-

predicted values by decades, accuracy of the second RF model was also assessed with the Cohen’s 

kappa and the percent of correctly classified classes, instead of the coefficient of determination and root 

mean square error. We also tested for the presence of residual autocorrelation using the same 

methodology as described before (i.e. with cells being correctly or incorrectly classified). We also tested 

the association of the residuals (cells having a value of 0, incorrectly classified or 1, correctly classified) of 

both RF models with the data sources for the TSLF maps (Table 2.2) using chi-square test. Further, 

Cramer's V value was calculated to measure association between the two discrete variables (residuals: 0 

and 1 and data sources of the TSLF maps). Cramer's V value range from 0 to 1 and the value of 0 

corresponds to no association between the variables and 1 indicates perfect complete association.   

The measure of the importance of a predictor variable (mean decrease in Gini coefficient when 

classification is used with RF and mean decrease in mean square error when regression is used instead) 
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is the normalized decrease in classification accuracy or mean squared error for the out-of-bag data by 

including the predictor variable either as originally observed or as randomly permutated in the out-of-bag 

data. For both models, only the six most important variables ranked by RF were used in the model 

building process to develop robust models (Thompson and Spies, 2009). Colinearity among selected 

explanatory variables was checked through correlation analyses.  More details on the RF algorithm can 

be found elsewhere (e.g. Cutler et al., 2007; Timm and McGarigal, 2012). 

2.03.04 TSLF extrapolation to the entire study area 

Both models were used to impute a TSLF value (either TSLF > 120 years or a decade of stand origin 

between 1880 and 1970) to each 2-km2 cell of the studied dataset, except those used in the training 

dataset and those covered by the fires of the SOPFEU 1970-2000 fire history map (imputed dataset, 

43,077 cells). The difference between the 95th and 5th percentiles of TSLF (individual years, TSLF ≤ 120 

years) generated through bootstrapping were used to provide a 90% confidence interval for each 2-km2 

cell. Half the width of these confidence intervals served to estimate margins of error of predicted values 

and their frequency distributions were computed by classes of predicted decade. 

The three datasets (SOPFEU, training and imputed datasets) were combined to produce a TSLF map 

expressed in decadal classes for the entire study area.  The burn rate per decade between 1880 and 

2000 was then estimated for the study area from the areas belonging to each decadal TSLF and a 

survival analysis (Reed et al., 1998), considering that each decade might have a different burn rate 

(Fauria and Johnson, 2008). A survival analysis estimates the probability of an area having gone without 

fire for a given period of time (Johnson and Gutsell, 1994) and was required to correct for the effect of 

overlap in successive fires on burn rate estimates.  Reed et al. (1998) have provided a recursive method 

to correct these past burned areas, accounting for the fact that the burn rate may change through time. 

The decadal burn rate was thus estimated in a recursive fashion, starting from 1980-1990 and correcting 

the area that had then burned by the inverse of its survival probability until the date of the 2000 TSLF map  

2.03.05 Relating forest composition with past disturbances at the landscape 
scale 

The use of a nonparametric method such as random forests makes it much more difficult to interpret the 

results. The results were therefore synthesized to better understand how the 20th century landscape-scale 

burn rate estimated with the TSLF map is related to present forest composition. To this effect, TSLF was 

statistically upscaled to the 625 ecological districts within our study area (size between 65 km2 and 2975 

km2) by computing the mean time since last fire (MTSLF). Ecological districts (Robitaille and Saucier, 

1996) correspond to landscape units of similar topography, surficial deposits and drainage, and have 

been used for characterizing vegetation (Anyomi et al., 2013; Grondin et al., 2014). MTSLF for each 

ecological district was computed by fitting a Weibull distribution of TSLF with PROC LIFEREG (SASv9.2, 

SAS Institute Inc., Cary, NC, USA). Survival analysis allows computing MTSLF by considering censored 
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data (TSLF > 120 years), for which an accurate estimation of TSLF was not available. Three ecological 

districts that completely burned between 1970 and 2000 were not considered in this analysis as a recent 

burn with no photointerpreted vegetation covered them.  

Ecological districts were regrouped into homogeneous forest landscapes on the basis of the relative 

abundance of SIFORT grid cells by species composition (Table 2.1) using PROC FASTCLUS (SASv9.2, 

SAS Institute Inc., Cary, NC, USA). The optimum number of clusters (4) was detected with the first local 

maximum value of the cubic clustering criterion (CCC) by plotting its value as a function of an increasing 

number of clusters (Sarle, 1983). CCC is an optimization criterion that compares R2, the proportion of the 

variance explained by the given number of clusters to the expected value of R2 determined by clustering 

data from uniform distribution (Sarle, 1983). For each of these vegetation clusters, we computed the cell 

frequency with a TSLF value above or below 120 years and the variability of MTSLF values between 

districts of an individual cluster.   

 2.04 Results 

2.04.01 Accuracy of TSLF models 

For our first random forest model that classified 2-km2 cells into two groups of TSLF (≤ or > 120 years), 

the six top-ranked predictor variables were the proportions of the four oldest stand age classes (61-80, 

81-100, ≥ 101 years, old uneven-aged, Table 2.1), the relative abundance of balsam fir, and the total 

precipitation (Fig. 2.2a). The Cohen’s kappa (0.72) indicated a substantial agreement in the classification 

(Landis and Koch, 1977). The model was better able to predict unburned cells (TSLF > 120 years) 

(classification error of 8.3%) compared to burned cells (TSLF ≤ 120 years) (error of 19.5%). Spatial 

autocorrelation of incorrectly classified cells was significant, which indicates clustering, and global Moran I 

index remained above 0.10 for distances inferior to 20 km. Clusters of incorrectly classified cells were 

therefore located at the boundaries or within individual fires (Supplementary material, Fig. A.1). A visual 

examination of the spatial distribution of these clusters did not indicate any latent spatial pattern that 

would have pointed to important processes not included in the RF model. The association between the 

residuals and data sources for the TSLF maps were significant (Chi-square value = 4934.5, P < 0.01). 

The degree of association specified by Cramér's V value was 0.43 (P<0.001). The percentage of errors 

(incorrectly classified) was significantly higher in the cells calibrated from the data of Bouchard et al. 

(2008) than the other data sources for the TSLF maps (Table 2.2). The results of the classification 

suggest that 22,196 cells (52% of the imputed dataset) burned between 1880 and 1970 (TSLF ≤ 120 

years).  

For our second random forest model that estimated TSLF for cells predicted as having a TSLF ≤ 120 

years with the first model, the six top-ranked predictor variables (Fig. 2.2b) were the proportions of 

intermediate age classes 41-60, 61-80, 81-100, the total precipitation, the potential evapotranspiration, 
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and the percentage of stands originating from a burn. Total precipitation and potential evapotranspiration 

were only weakly correlated between themselves (r = -0.19, P < 0.01) and both variables were kept. TSLF 

values predicted by this second RF model and categorized by decade of stand origin, were unbiased (Fig. 

2.2c) and correctly classified 85.5% of the time. This represents an “almost perfect” agreement with 

observed data (Cohen’s kappa of 0.82, Landis and Koch, 1977). The cell-level margin of error was 

typically around 20 years, which is fairly high provided the time span covered (1880-2000) and no 

temporal trend was detected (Fig. 2.2d). The global Moran I index of incorrectly classified decades 

showed an approximately identical pattern with distance and values as seen in the previous model. Again, 

clusters of incorrectly classified decades did not show any spatial pattern over the whole study area that 

would have pointed to important variables missing in the RF model (Supplementary material, Fig. A.2). 

The residuals were significantly related to the data sources for the TSLF maps (Chi-square value = 123.6, 

P < 0.01). However, the strength of association was weak (Cramér's V value =0.15, P<0.001). 

 

Figure 2.2. For the top six variables (Table 2.1), ranked by the random forest models for the classification of 2-km2 cells 
into TSLF ≤ 120 years and TSLF > 120 years, (a) normalized mean decrease in Gini coefficient, and (b) normalized mean 
decrease in mean square error in predicted cell-level TSLF for cells in which TSLF is predicted to be less than 120 years;  
c) density plot of observed vs predicted year of stand origin for cells for which TSLF is predicted ≤ 120 years; d) box-
and-whisker plots of margins of error for predicted TSLF values grouped by decade class; e) Decadal burn rates 
between 1880 and 2000 for the study region (dark grey: burn rate correction due to survival analyses, light grey: highest 
values of burn rate, hatching: burn rates between 1970 and 2000). 
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The decadal burn rate between 1880 and 2000 at the scale of the whole study area ranged from 0.5 to 
16.4 % decade-1 (Fig. 2.2e). More importantly, decades between 1920 and 1940 seemed characterized by 
a widespread fire activity corresponding to 28% of the study area. This period is surrounded by two 
periods of moderate to low fire activity (1880-1920 and 1940-1960). Most of the fire activity between 1880 
and 2000 is concentrated in a region situated between the organic plains of Abitibi, where very few fire 
events have occurred, and Lake Chibougamau (Fig. 2.3). Further east, the fire activity was moderate 
between Lake Mistassini and the White Mountains, and low on the North Shore.  

 

 

Figure 2.3. Map of predicted time since last fire by decade class (between1880 and 2000). The map was generalized by 
aggregating 2-km2 cells of identical period of fire activity (1880-1920, 1920-1940, 1940-1970 and 1970-2000) and by 
removing any object smaller than 4 km2. 

 

At the scale of landscapes (ecological districts), cluster analysis indicated that dividing the study area into 
four regions or zonations based on regional vegetation composition was the optimal number to explain the 
heterogeneity in tree species composition. Except in one cluster, black spruce (co-)dominates in all 
clusters (Table 2.3). The cluster dominated by balsam fir has a median MTSLF of 217 years (Fig. 2.4b) 
and the highest proportion of 2-km2 cells with a TSLF > 120 years (Fig. 2.4c) compared to the cluster 
dominated by black spruce and jack pine. The cluster dominated by black spruce has a closely equal 
proportion of cells with a TSLF ≤ 120 or > 120 years (Fig. 2.4c).  
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Table 2-3. Average proportions of tree species by vegetation cluster after a clustering analysis to explain the 
homogeneity of landscape units by vegetation composition. Species names are provided in Table 2.1. Bold numbers 
indicate the dominant species 

Mean of species cluster 

Cluster 

name 

Abundance Aba Pma Iha Pba Mix Oco Brn 

Pma-

Pba 

18% 0.03 0.42 0.09 0.35 0.05 0.00 0.06 

Aba-

Pma 

24% 0.50 0.37 0.05 0.02 0.04 0.00 0.03 

Pma 47% 0.11 0.69 0.05 0.06 0.04 0.00 0.05 

Brn-Pma 11% 0.05 0.28 0.03 0.11 0.02 0.00 0.51 
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Figure 2.4. a) Vegetation map of landscape units (ecological districts) derived from a cluster analysis based on species 
abundance. Average proportions of species and names for each cluster are presented in Table 2.3; b) box-and-whisker 
plots of mean time since last fire by ecological district across the vegetation clusters; c) frequency of 2-km2 cells with a 
TSLF value above or below 120 years by vegetation cluster. 

 

2.05 Discussion 

In this study, we modeled TSLF over an area covering 217 000 km2. Cyr et al. (2010) used a similar 
approach (Bayesian Belief network) to estimate the proportion of old-growth forest (stands older than 150 
years) over 6500 km2 in central Canada (Ontario), with a similar accuracy but at the scale of forest stands 
(areas of approximately 20 ha). Empirical methods such as random forests or Bayesian belief networks 
are useful to characterize the errors incurred by the extrapolation of TSLF from local observations 
(sample area or sample plots) that is otherwise done manually (Figs. 2.2c and 2.2d). Notably, ambiguities 
remain apparent when trying to spatially distinguish individual fires that have occurred between 1920 and 
1940 (map provided as supplementary material, Fig. A.3).   
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2.05.02 Interpretation of TSLF predictors 

The proportions of stand age classes per cell (Table 2.2) were strong predictors of TSLF for TSLF ≤ 120 

years (Figs. 2.2a and 2.2b). Probability of predicting a TSLF > 120 years increased with an increase in the 

proportion of older stands, in the abundance of balsam fir and in precipitation. Such a result is in 

accordance with the mean longevity of black spruce in the eastern part of the study area (c. 200 years, 

Garet et al., 2009) and the time required for balsam fir to gradually reach the canopy (c. 200 years, 

Bouchard et al, 2008, their Fig. 4). Other variables that we expected to be related to the fire regime and 

thus to TSLF were not selected by the RF models as strong predictors. For instance, we expected the 

relative abundance of open spruce woodlands, a forest type that apparently results from deficient post-fire 

forest recovery (Lavoie and Sirois, 1998; Girard et al., 2008; Mansuy et al., 2012), to help in the 

estimation of TSLF. This lack of relationship may point to a relative importance of other factors such as 

drought events and surficial deposits that contribute to their abundance (Mansuy et al., 2012). Or 

alternatively, the causal relationship between fire and open spruce woodlands may operate at a finer 

spatial scale than that used in the present study. In fact, surficial deposits are known to be related to fire 

regime because of their drying potential (Mansuy et al., 2010) but the study area is dominated by only two 

surficial deposit groups (75%) that correspond to thick and thin undifferentiated tills with moderate to 

abundant stoniness with a moderate drying potential. Finally, we also expected elevation to help in the 

estimation of TSLF (Kasischke et al., 2002), especially in the White Mountains and the North Shore (Fig. 

2.4), but at the scale of the study area, elevation is correlated with precipitation (R2 = 0.41, p < 0.001) and 

precipitation was selected as strong predictor in the RF models (Figs. 2.2a and 2.2b).   

2.05.03 Impacts of spatial scale on TSLF modelling 

Houghton (2005) suggested as a rule of thumb that the spatial scale to be used for estimating standing 

biomass should be equivalent to that of fire disturbances. The spatial scale used in the present study (2 

km2) probably helped circumvent some of the problems encountered at a finer scale when relating stand 

age to TSLF, notably (1) the variability of fire severity linked to past fire dates (Miller et al., 2012) that 

affects the post-fire species composition (Barrett et al., 2011; Johnstone et al., 2011), (2) the errors linked 

to the photointerpretation of cartographic attributes of stand species composition, structure and age at the 

scale of forest stands (< 10 ha) (Waldron et al., 2012; Bernier et al., 2010), (3) the interaction between 

cartographic stand age and succession when TSLF exceeds the longevity of pioneering post-fire species 

(Garet et al., 2012; Cyr et al., 2010) and (4) local neighbourhood effects (sensu Frelich and Reich, 1999) 

observed at the scale of stands that blur the relationship existing between TSLF and species composition 

(e.g. Chen and Taylor, 2012). Indeed, at the coarser scale used here, it is not the exact stand age or the 

presence-absence of forest species that are indicators of TSLF but rather their proportional abundances 

within the cell (Figs. 2.2a and 2.2b).  
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2.05.04 Temporal changes in regional burn rate 

A period of widespread fire activity over the whole study area was detected between 1920 and 1940 (Fig. 

2.3) during which slightly more than 28% of the area has burned (6.1 Mha, Fig. 2.2e), corresponding to a 

burn rate of 16.4% decade-1. This contrasts with the 4.3% decade-1 burn rate estimated between 1970 and 

2000.  The high mid-century peak in burn rate had already been observed by Grondin et al. (2014), and is 

apparent on account of the remarkably high proportion of stands aged between 60 and 80 years (22%). 

Such fire activity has also been identified by dendro-ecological studies carried out between Lake 

Mistassini and the organic plains of Abitibi (Lesieur et al., 2002; Le Goff et al., 2007), and to a lesser 

extent in other parts of the study area (Bergeron et al., 2004b; Bouchard et al., 2008; Girardin et al., 

2013). This 6.1 Mha of burned area between 1920 and 1940 is not covered by the data of the Canadian 

forest fire statistics (e.g. Kurz and Apps, 1999, their Fig. 3 for “Boreal East”) and provides a historical 

reference against which to compare, at least regionally, the recent increase in burn rate between 1980 

and 2000 (Fig. 2.2e) that has been associated with climate change in the Canadian boreal region (e.g. 

Kasischke and Turetsky, 2006).   

The methodology developed above to estimate regional TSLF may also help refine past estimates of fire-

related carbon emissions from Canada’s forests.  Past assessments have been based on historical 

observational records.  However, incomplete fire detection has been acknowledged (Podur et al., 2002; 

Stocks et al., 2003), especially before 1975 (Murphy et al., 2000).  This situation may have led to incorrect 

century-long assessments of carbon budgets, at least for eastern Canada (Kurz and Apps, 1999; Chen et 

al., 2000; Mouillot and Field, 2005).  

2.05.05 Management and conservation implications 

The results discussed above show the importance of lengthening the historical records of fire history 

maps in order to provide a better perspective on the actual changes of fire regime and to better 

understand the relationship between fire activity and climate (Fauria and Johnson, 2008; Le Goff et al., 

2007). The derived TSLF map has revealed the regional differences in fire regime and forest age class 

structures, which should be taken into account to devise region-specific forest ecosystem management 

strategies for maintaining regional-scale heterogeneity. In addition, the statistical model presented in this 

study to derive TSLF is a new tool that forest managers can use to estimate regional TSLF.  Estimates of 

long-term fire history can also help forest ecologists forecast fire regime under future climate scenarios 

and understand the impacts of climate warming on the forest.  

2.06 Conclusion  

We have devised an approach for modelling and mapping TSLF at a relatively coarse resolution (cells of 

2 km2) over a large spatial extent (> 200 000 km2). The training of the models used over existing fire 

history maps showed that at this resolution, TSLF is essentially and not surprisingly related to the 
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observed proportions of stand age classes. Such a relationship is modulated by the climate gradient that 

occurs over the study area (precipitation, evapotranspiration) and by the abundance of fire-averse tree 

species such as balsam fir. When TSLF is categorized into decades, the accuracy is excellent at the scale 

of both the study area and landscape units but remains fairly low at the scale of individual cells. At least 

regionally, our results suggest that the burn rates during the 20th century were characterized by 

widespread fire activity occurred between 1920 and 1940, more important than the recent increase 

observed between 1980 and 2000. This highlights the need for lengthening the historical records of fire 

over large spatial extents to provide a better appraisal of contemporaneous changes in the burn rate (e.g. 

Bergeron et al., 2010). Our approach could be adapted and transferred to the other ecological systems 

where there is evidence of succession trends following TSLF (Pausas et al., 2008; Baeza et al., 2011; 

Higuera et al., 2011). 
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  Fig. A.1. Map of residuals for classifying cells into TSLF ≤ 120 years (between 1880 and 1970) and TSLF > 120 years (< 1880) (training dataset). The value of 0 
(red region) indicates incorrectly classified cell and 1 (green region) indicates a correctly classified cell  
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Fig. A.2. Map of residuals for predicting the decade of stand origin (between 1880 and 1970) (training dataset). The value of 0 (red) indicates cells with an 
incorrectly classified decade and 1 (green), cells with a correctly classified decade. 
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Fig. A.3. Map of predicted year of stand origin (between 1880 and 1970), predicted TSLF > 120 years (< 1880), and observed TSLF (1970-2000, SOPFEU dataset) 
for the study region. 
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3.01 Abstract  

In existing carbon budget models, carbon stocks are not explicitly related to forest successional dynamics 

and environmental factors. Yet time-since-last-fire (TSLF) is an important variable for explaining 

successional changes and subsequent carbon storage. The objective of this study was to predict the 

spatial variability of aboveground biomass carbon (ABC) as a function of TSLF and other environmental 

factors across the landscape at regional scales. ABC was predicted using random forest models, both at 

the sample-plot level and at the scale of 2-km2 cells. This cell size was chosen to match the observed 

minimum fire size of the Canadian large fire database. The percentage variance explained by the 

empirical sample-plot level model of ABC was 50%. At that scale, TSLF was not significantly related to 

ABC. At the 2-km2 scale, ABC was influenced mainly by the proportions of cover density classes, which 

explained 83% of the variance. Changes in cover density were related to TSLF at the same 2-km2 scale, 

indicating that the increase in cover density following fire disturbance is a dominant mechanism through 

which TSLF acts upon ABC at the scale of landscapes.  

Keywords: time-since-last-fire; boreal forest; Random Forest; aboveground biomass carbon; Successional 

dynamics 

 

 

 

 



47 
 

3.02 Introduction 

The boreal forest stores 32% of global total forest (861 ± 66 Pg) carbon (C) and has a C stock 

density comparable to that of tropical forests (Pan et al., 2011a). Residence times of C in forest 

ecosystems play an important role in the global C cycle (Melillo et al., 2002; Magnani et al., 

2007), and control the stability (Malhi and Grace, 2000) and productivity (Simard et al., 2007; 

Malhi, 2012) of forest ecosystems. Aboveground biomass carbon (ABC) is a key variable for 

understanding contribution of forests on global carbon budget (Houghton, 2005). Forest stand 

age, as determined by stand-replacing disturbances such as fire, is a key variable for estimating 

forest C stocks. Living C biomass peaks around the average life expectancy of the dominant tree 

species within the canopy of boreal forests, but undergoes further increases with stand age in 

tropical and temperate forests (Pregitzer and Euskirchen, 2004). Spatial variation of C stock is 

not solely related to forest age (Houghton, 2005) but also to other factors such as soil drainage 

(Wang et al., 2003), soil texture, climate (Chen et al., 2015) and topography (Grant, 2004).  

Fire is a major driver that controls landscape C storage in boreal forests (Harden et al., 2000; 

Stinson et al., 2011). Extrapolation of C budgets from the stand- to the landscape-level must also 

consider forest age class structure (Kurz et al., 2009; Pan et al., 2011b). Understanding the 

interaction between forest age class structure, forest succession and stand-replacing 

disturbances can improve the spatial accuracy of C stock estimates (Houghton, 2003), 

particularly ABC. Existing C budget models (e.g. Chen et al., 2003; 2010; Kurz et al., 2009) use 

growth and yield curves as a function of stand age to explain the spatial variability of ABC stocks, 

but these curves do not incorporate forest succession dynamics (i.e., post-disturbance recovery, 

stand composition and structural changes; Taylor et al., 2009).  These elements of forest 

succession dynamics are related to TSLF (time-since-last fire). Further, stand age is only related 

to TSLF until the canopy trees of the first cohort begin to die off, which occurs when the time that 

has elapsed since the last stand-initiating disturbance exceeds the mean longevity of the 

dominant canopy tree species (Garet et al., 2012). The use of forest age alone as a surrogate 

variable for TSLF may thus lead to inaccuracies in subsequent carbon budget analyses. 

Post-fire forest successional dynamics vary according to the disturbance frequency and the 

physical environment of the landscape (Johnstone et al., 2010). Given the large longitudinal 

gradient in fire cycle length across the North American boreal forest (Bergeron et al., 2004), the 

use of mean tree age alone in empirical yield tables will therefore not provide accurate 

landscape-level values of ABC estimates (Banfield et al., 2002). In such cases, a better way to 

infer landscape-level ABC estimates could be provided through the use of probability distribution 

functions of ABC as a function of TSLF and environmental factors. Yet variability of boreal forest 
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carbon, including ABC, at regional scales in relation with TSLF is still poorly understood due to 

the general lack of spatially explicit fire history data (Balshi et al., 2007).  

The objective of this study was thus to predict the spatial variability of ABC as a function of stand 

and environmental variables across the landscape at a regional scale, and to determine the 

contribution of TSLF to the predictive model. To this effect, a hybrid modelling approach was 

selected to overcome the limitations that are encountered with both theoretical ecological models 

and statistical relationships (Mäkelä et al., 2000; Landsberg, 2003). We developed two ABC 

models with a hierarchical scaling approach, one at the fine scale of 400-m2 forest inventory 

plots, and one at the coarse scale of 2-km2 square cells, for the black spruce-feather moss forest 

of eastern Canada (area: 217,000 km2). The 2-km2 cell size was selected to match the minimum 

fire size that was used in the Canadian large fire database (1950-1999). Fires that were 200 ha 

and more in areas accounted for 97% of the forest area that had been burned in Canada 

between 1950 and 1999 (Stocks et al., 2003). The experimental region was specifically selected 

for its richness in terms of fire history maps as a means of serving as a training area for studying 

variation in ABC over the landscape in relation to TSLF. We compared the predictive accuracy of 

the fine and coarse-scale models, and evaluated the contribution of TSLF to both models. Our 

overall modelling approach aimed at testing the hypothesis that TSLF is the main factor 

explaining spatial variation in ABC.  

3.03 Material and Methods 

3.03.01 Study region 

The study was conducted in a 217,000 km2 region of the boreal forest roughly bounded between 

49° N and 52° N, and from 66° W to 79°30’ W (Fig. 3.1). This region is influenced by both 

continental and maritime climates with a mean annual temperature between 0 °C and -2.5 °C, 

increasing from north to south, and mean annual precipitation between 800 mm and 1400 mm, 

increasing from west to east. The length of the growing season (i.e., the number of days with a 

mean daily temperature above 5 oC) varies between 120 and 160 days y-1 (Robitaille and 

Saucier, 1998).  

The region is located on the Canadian Shield, composed mostly of Precambrian rocks. In the 

western portion of the study, the area adjacent to James Bay is dominated by organic deposits 

with flat topography (Clay Belt). The central region is a landscape of moderate elevation (300-

500 m) covered by mesic glacial tills. In the east, the landscape becomes hillier with elevations 

ranging from 700 to 1000 m and is covered by glacial tills of varying thickness.  

The forest canopy is dominated by black spruce (Picea mariana (Mill.) BSP) in conjunction with 

jack pine (Pinus banksiana Lamb.) in the west and fire-averse balsam fir (Abies balsamea [L.] 
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Miller) in the eastern portion of the study region. Other tree species that are present in small 

numbers are trembling aspen (Populus tremuloides Michx.), paper or white birch (Betula 

papyrifera Marsh.), white spruce (Picea glauca [Moench] Voss), and eastern larch or tamarack 

(Larix laricina [Du Roi] K.Koch). The understory vegetation consists mainly of hypnaceous 

mosses and ericaceous shrubs.  

Fire in the region is a major driver of succession (Lecomte et al., 2006; Cyr et al., 2007). The fire 

cycle is shorter (100 to 300 years) in the west (Bergeron et al., 2004) than in the east (> 500 

years) (Bouchard et al., 2008). The western region is characterized by continental and warm 

climate that favours more frequent fires.  On contrary, the eastern region is characterized by a 

maritime climate with high precipitation that promotes long fire free periods. Spruce budworm 

(Choristoneura fumiferana [Clemens]) outbreaks occurred in the southeastern part of the study 

region, especially where balsam fir stands dominate the landscape (Bouchard and Pothier, 

2011).  

3.03.02 Datasets and study units 

We used temporary sample plot (TSP) data (Fig. 3.1b), forest stand maps, fire history maps (Fig. 

3.1a), and climate data derived from the NCEP-NCAR Twentieth Century Reanalysis (20CR) 

project (Compo et al., 2011). These datasets were produced at various spatial scales. Therefore, 

we adopted a spatially explicit hierarchical approach (Wu and David, 2002) to scale data up or 

down to the scale of our study units (i.e., plot, stand, and 2-km2 square cells).  

The TSP third inventory database (1992–2003) contains measurements that were taken across 

the whole region (Fig. 3.1b) by the Ministry of Natural Resources of Quebec (MRNQ). The 400-

m2 field plots within that database were established in transects of from 2 to 7 plots. In each plot, 

species and diameter at 1.3 m (diameter at breast height, DBH) were recorded for all the trees 

with a DBH > 9.0 cm. Age was estimated for three to five dominant or co-dominant trees from 

growth ring counts on cores taken at 1 m height. Organic layer depth, drainage class, surficial 

deposit type, soil texture and humus type were also recorded for 8739 plots. Values of plot-level 

aboveground biomass were computed by summing the aboveground biomasses of individual 

trees (foliage, branches, stem wood and stem bark), which were estimated through the 

application of species-specific DBH-based biomass allometric equations (Buech and Rugg, 

1989; Ter-Mikaelian and Korzukhin, 1997; Jenkins et al., 2004; Lambert et al., 2005; Ung et al., 

2008). Biomass estimates were then transformed to carbon using a conversion factor of 0.5 g of 

C per gram of oven-dry biomass (Gower et al., 1997).  

A TSLF value was attributed to each plot that was located within the fire history maps. If more 

than one TSLF value was available because of overlapping fire polygons, the most recent TSLF 
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value was attributed to each plot. A TSLF value was also assigned to the plots lying outside of 

the fire history maps when post-fire species (paper birch, trembling aspen, jack pine, black 

spruce) dominated their cover and the age difference among their cored dominant trees is less 

than 20 years (Bélisle et al., 2011). In total, 7509 plots had a TSLF value; this was the ABC 

training dataset.  

Forest stand maps were based on photo-interpretation of 1:15000 aerial photographs that were 

acquired by MRNQ between 1990 and 1999, and used to delineate stands (average size, ~8 ha) 

and classify their vegetation. Given the extent of the study area, we used the SIFORT spatial 

geodatabase (Spatial information on Forest Composition, based on Tessera; Pelletier et al., 

2007) rather than entire forest maps. This database is derived from forest maps and 

systematically divides the area into tiles of 15 seconds longitude by 15 seconds latitude, with 

each tile covering about 14 ha at the latitude of the study region.  Information on species type, 

stand structure, surficial deposit and drainage was extracted from these maps for each tile 

centroid. Surficial deposits refer to quaternary sediments (clay, gravel, sand, and silt) that occur 

on the surface of overlying bedrock that were deposited or accumulated by ice, wind, or gravity 

(Fullerton et al., 2003). Surficial deposits were grouped into seven classes that explained soil 

drying potential based on a combination of soil stoniness and texture: very abundant, very 

coarse (VAVC); moderate, moderate (MM); moderately abundant, moderate (MAM); moderately 

abundant, coarse (MAC); abundant, coarse (AC); rock (ROC); and organic (ORG) (Mansuy et 

al., 2010).  

The region of interest has very few weather stations. Therefore, values of climate variables that 

were required for our analysis were extracted from downscaled 20CR climate reanalysis data 

(Compo et al., 2011). Downscaling from a 2 x 2 spatial resolution to plot, SIFORT tile centroid, 

and 2-km2 cell levels was conducted using BioSIM (Régnière and St-Amant, 2008) and the 90-m 

resolution grid of Shuttle Radar Topographic Mission (SRTM) digital elevation model (DEM) (Van 

Zyl, 2001). Daily minimum and maximum temperatures, and precipitation for the period 1971-

2000 were extracted from the 20CR data and entered into BioSIM to compute climate variables 

that were known to relate to tree growth in eastern Canadian boreal forests (Girardin et al., 

2012): annual mean temperature; annual total precipitation; annual degree-days (above 5 oC); 

growing season length, i.e., cumulative days where mean temperature is > 5 oC (days y-1); an 

aridity index (mm y-1), which was computed as the annual summed differences between monthly 

Thornthwaite potential evapotranspiration (PET) and monthly precipitation (Dunne and Leopold, 

1978); potential evapotranspiration (Dunne and Leopold, 1978); and drought code, which is a fire 

weather index indicating moisture content of the deep compacted organic matter layer (10-20 

cm; Amiro et al., 2005). 
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Figure 3.1. Panel a) Location of the study area (dark outline) with training areas for which time- since-last-fire 
was available from published studies. Panel b) Distribution of forest inventory plots used in the analysis.  

For estimating ABC in relation with TSLF, we chose a scale of 2-km2, which corresponds to the 
minimum fire size of the Canadian large fire database (1950-1999), as fires larger than 2 km2 in 
size account for most of the burned area (Stocks et al., 2003). We consequently partitioned our 
study area into a square grid of 2-km2 cells (1414 m x 1414 m, 108,477 cells). We overlaid the 2-
km2 square cells onto the SIFORT geospatial database, with an average of 14 SIFORT tile 
centroids per 2-km2 cell, and estimated the within-cell relative frequencies of all SIFORT 
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attributes. Cells in which more than 50% of the SIFORT tile centroids were classified as water 

(7694 cells, 7.1% of total), wetlands and peatlands (8423 cells, 7.8% of total), heaths (4700, 

4.3% of total), harvested land (9339 cells, 8.6% of total), insect-killed stands or windthrows (118 

cells), and human infrastructure (38 cells) were removed, leaving 78,136 cells for the analysis of 

ABC (89% of forest area).  

We assigned a TSLF value to each 2-km2 cell when 50% or more of its area was covered by the 

fire polygon maps that were produced by SOPFEU (Société de protection des forêts contre le 

feu, the Quebec forest fire control agency; 9552 cells). We used fire polygons between 1970 and 

2000 because the cartographic attributes of the SIFORT database correspond to the years 1990-

1999. For the remaining cells, a TSLF value was assigned to cells when 50% or more of the area 

was covered by a known fire polygon of existing fire history maps (Fig. 3.1a, 23,289 cells). For 

remaining cells that lacked a TSLF value, we selected cells that had more than one forest 

inventory plot meeting the rules set by Bélisle et al. (2011). This process provided a TSLF value 

for 1393 additional cells. Overall, 34,234 cells had a TSLF value (training dataset, 43.8% of the 

studied dataset). For the remaining 43,092 cells (imputed dataset), predicted TSLF values (1880 

to 2000, by decadal classes) were available from Irulappa Pillai Vijayakumar et al. (2015), based 

on the training of existing fire history information with forest maps and climate data.  

3.03.03 Scaling framework 

We scaled ABC estimates that were derived from plots to SIFORT tiles and, subsequently, to 2-

km2 cells along a “hierarchical scaling ladder” (Wu and David 2002) using successive models. 

We first trained a random forest (RF) model on plot-level ABC estimates using cartographic 

stand structural attributes (species composition groups, stand age classes, stand height classes, 

and stand cover density classes) as predictors, together with observed TSLF values that were 

classified into decadal classes, climatic and physical variables (surficial deposit classes, 

elevation and slope). This model was used to estimate ABC values at all SIFORT tile centroids 

that were included in the training dataset, which were then averaged within each 2-km2 cell 

included in the same dataset. Using these 2-km2 cell-level estimates of ABC, we then trained 

another predictive RF model, which used the within-cell relative frequencies of SIFORT 

attributes, a set of climate variables, and the observed TSLF values that had been classed in 

decadal classes as predictor variables. The resulting model was used to evaluate the importance 

of TSLF for predicting ABC at the scale of 2-km2, and to estimate values of ABC within all 2-km2 

cells across the entire study region. 

The RF procedure builds a multitude of classification or regression trees using a bootstrap 

approach that randomly selects 63% (Cutler et al., 2007) of the training dataset for each 

individual tree. The remaining OOB data (out-of-bag data) were used for cross-validation at each 
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bootstrap iteration. Tree-level predictions are combined by taking their mean, median or modal 

values. We found that frequency distributions (1000 trees) of predicted values were strongly 

skewed, on account of the tendency of estimated ABC frequency distribution being significantly 

skewed at the plot level. Therefore, we used the median value as the final predictor to control 

potential bias problems.  

For this modelling exercise, predictor variables were pre-selected (initial variable selection) using 

the Boruta package (adapted from Kursa and Rudnicki, 2010) in R (Venables and Smith, 2013) 

with imax = 1000 (maximum number of iterations) and ntree = 1000 (number of trees). Predictor 

variables were also assessed for multicollinearity using Pearson product-moment (r) correlation 

coefficients with a 0.70 threshold (Dormann et al., 2013), and their ecological relevance with 

respect to the processes of interest (Austin, 2002). For each RF model, only six variables were 

retained to maintain model parsimony (Thompson and Spies, 2009). The RF procedure in R was 

run using the following parameter settings: ntree, the number of trees that were to be grown 

(1000); mtry, the number of predictor variables that were sampled for each node (the number of 

variables/3, i.e., 6/3); and node size, the minimum number of cases within terminal nodes (5). 

Further details regarding the RF procedure can be found in Cutler et al. (2007) and Timm and 

McGarigal (2012).  

We evaluated model accuracy by computing the coefficient of determination (r2) between 

predicted and observed ABC values, and the root-mean-square error (RMSE). The differences 

between the 95th and 5th percentiles (1000 iterations) of bootstrap-generated ABC values were 

divided by the predicted median value to obtain a coefficient of variation (CV,%) for each cell. 

Although it is not an absolute assessment of accuracy, the CV provides a relative measure of 

uncertainty (Saatchi et al., 2007). The difference between the 95th and 5th percentiles of ABC at 

each 2-km2 cell also served as a confidence interval. 

Random Forest is a non-parametric, non-spatially explicit model that does not account for spatial 

autocorrelation among predictors. However, residual spatial autocorrelation may point to the 

absence of important processes that are relevant to predictions (e.g., Dormann et al., 2007; 

Bahn et al., 2013). We computed Moran’s I, an index of spatial autocorrelation (Moran, 1950), as 

a model diagnostic, calculated over a range of from 2 to 30 km in ArcGIS 10.0 (ESRI, Redlands, 

CA, USA). We applied a threshold criterion that the absolute index values were > 0.3 as an 

indicator of autocorrelation (e.g., Oliver and Webster, 1990; Hitziger et al., 2014). We checked if 

the mean residuals of ABC at the scale of 2-km2 differ among data sources for the TSLF maps 

(Fig. 3.1a) using Analysis of variance (ANOVA) test. The R2 value was calculated from the 

ANOVA table to measure the strength of relationship between the mean residuals of ABC and 

data sources for the TSLF maps.  
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3.03.04 Quantifying information loss due to scaling-up 

A strategy of scaling-up that was based on predicted values from models artificially reduces data 

variability at coarser scales. Therefore we checked whether ignoring the prediction error of ABC 

values at the scale of SIFORT tiles influenced the results of model training at the 2-km2 scale. 

These ABC values correspond to the median value of 1000 regression tree predictions. Instead 

of using these median values, we randomly sampled (with replacement) one of these predictions 

for each SIFORT tile within each 2-km2 cell one thousand times to compute 1000 ABC values for 

each 2-km2 cell. These values were then randomly picked for training the 2-km2 scale RF 

models. The number of RF models to train at that scale was fixed to constrain the coefficient of 

variation (CV) of residual variance at the scale of individual 2-km2 cells below 10%. This 

procedure allowed us to rate the loss of residual variation at the 2-km2 scale by not accounting 

for the prediction error of predicted values at SIFORT-tile level.  

3.03.05 Result synthesis and visualization 

Analyzing variation in ABC as a function of TSLF is equivalent to producing ABC yield curves. 

The quantity of aboveground biomass that is found in a forest site is related to its productivity 

(Skovsgaard and Vanclay, 2008). For this reason, we regrouped ecological districts into 

homogeneous regions using biophysical factors that were related to forest productivity and 

compared ABC yield curves between these homogeneous regions. Ecological districts are 

landscape units (65 km2 to 2975 km2) of similar topography, dominant surficial deposits, drainage 

and climate (Robitaille and Saucier, 1996). Gauthier et al. (2015) have shown for a study area 

that encompassed our own that forest productivity at our regional scale is related mainly to 

growing season degree-days and a combination of surficial deposits and drainage.  

Ecological districts were regrouped with disjoint cluster analysis (PROC FASTCLUS, SAS v9.4, 

SAS Institute Inc., Cary, NC, USA) as a function of their centroid degree-days and their relative 

abundances of marginal surficial deposit groups that are least abundant within study region 

(organic, stony and coarse textured and rock surficial deposits; provided by Mansuy et al., 2010). 

We only used marginal surficial deposit groups, because the study area was dominated (75%) by 

undifferentiated tills with moderate to abundant stoniness. Clustering should identify one zone 

with biophysical factors that are typical of the study area and marginal zones, which differ in 

terms of their climate or their abundance of growth-limiting surficial deposits. The optimum 

number of clusters was chosen with the first local maximum value of the cubic clustering criterion 

when plotted against the number of clusters. For each cluster, we computed frequency 

distributions of ABC values at the 2-km2 scale by TSLF decade within the training dataset.  



55 
 

3.04 Results 

3.04.01 Estimation of aboveground biomass carbon 

Plot-level estimates of ABC ranged between 0.1 Mg ha-1 and 188.3 Mg ha-1 (mean, 44.5 Mg ha-

1). The six top-ranked variables predicting plot-level ABC were stand cover density, height 

classes, cover type, dominant tree age, total precipitation, and surficial deposits (Fig. 3.2a).  

Correlation between ABC and TSLF at the plot scale was significant, but weak (r = - 0.03, P < 

0.01). The plot-level RF model explained 50% of the observed variance, while its RMSE was of 

13.9 Mg ha-1 (Fig. 3.2b). Moran’s I for the residuals of ABC indicated weak spatial autocorrelation 

(I = 0.05 at distances less than 20 km).  

The six top-ranked variables predicting ABC at the 2-km2 scale were relative abundance of three 

cover density classes (25-40%, 41-60%, 61-80%), potential evapotranspiration, growing season 

length, and total precipitation (Fig. 3.2d). The relative abundances of cover density classes were 

the most important variables explaining ABC at the 2-km2 scale (Fig. 3.2d). Correlation between 

ABC and TSLF at the scale of 2-km2 was much stronger than at the plot-level (r2 = 0.67, r = 0.82, 

P < 0.01), yet TSLF was not included among the most important predictor variables. Total 

precipitation, potential evapotranspiration and growing season length were only weakly inter-

correlated. The percentage of variance explained when predicting ABC was 83% (Fig. 3.2e), 

which was greater than the value of 50% that was calculated at the plot-level. Predicted values of 

ABC at the scale of 2-km2 ranged from 1.2 Gg km-2 to 7.8 Gg km-2 (Fig. 3.2c). RMSE in the 

prediction of ABC was 0.28 Gg km-2. Residuals for ABC at the scale of 2-km2 also indicated 

minor spatial autocorrelation (Moran’s I = 0.09 at distances less than 20 km. The mean residuals 

of ABC at 2-km2 scale differ significantly among data sources for the TSLF maps (ANOVA test F 

value = 38.6, P < 0.001). However, the strength of relationship between them was negligible (R2 

= 0.007).  
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Figure 3.2. Top six variables ranked by the random forest models for the prediction of ABC at plot level (a) and 
at scale of 2-km2 cells (d). Density plot of estimated ABC vs predicted ABC at plot level (b) and at 2-km2 scale 
(e). c) Map of ABC predicted with RF modelling at the scale of 2 km2. 

 
A minimum 300 repetitions of 2-km2 scale RF model training with randomly selected prediction 
values at SIFORT-tile level was necessary to achieve a CV of ABC residual variance at 2-km2 
cell scale that was below 10% (Fig. 3.3a). With this method, the percentage of variance that was 
explained for ABC was 82% (Fig. 3.3b), a value very close to that obtained initially (83%, Fig. 
3.2e). The coefficient of determination between predictions of ABC at the 2-km2 scale, which 
included or excluded the variability of predictions at the SIFORT-tile level, was 95% (Fig. 3.3c).   
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Figure 3.3. (a) Box-and-whisker plots of the coefficient of variation of residual variance for individual 2-km2 
cells as a function of the number of repetitions of RF model training for ABC prediction. (b) Density plot of 
estimated vs predicted ABC values at 2-km2 scale when variability of predicted values at SIFORT tile centroid 
level is considered for ABC predictions. (c) Density plot of predicted values of ABC at 2-km2 scale when 
variability of predicted values at SIFORT tile centroid level is considered (B) or not (A). 

 

3.04.02 Variation of cover density and ABC yield curves at a regional 
scale 

Important variables for explaining forest productivity at the regional scale (growing season 

degree-days, abundances of marginal surficial deposits) were used for a clustering analysis of 

landscapes (ecological districts). Partitioning the study area into three (Fig. 3.4) was optimal for 

creating homogenous forest productivity zones or regions that were based on the local maximum 

value of the cubic clustering criterion. The first zone was characterized by surficial organic 

deposits (> 40 cm thickness, i.e., the “organic” zone); the second zone was dominated by stony 

and coarse-textured deposits (the “coarse” zone). The third zone corresponded to the rest of the 

study area (the “typical” zone) (Table 3.1). RF models at the 2-km2 scale indicated that the 

relative abundance of cover density classes are more important predictors of ABC than TSLF. 

We computed variation in the abundance of closed-cover stands (sum of three cover density 
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classes: > 81%, 61-80%, and 41-60%) as a function of TSLF for 2-km2 scale cells in the organic, 

coarse and typical zones (Fig. 3.5).   

ABC of 2-km2 cells generally increases as a function of TSLF (60 to 90 years, maximum biomass 

stage) and later on stabilizes (coarse and typical zones, Figs. 3.5b and 3.5c) or declines in the 

later years (organic zone, Fig. 3.5a). Important differences in ABC values appeared to occur 

between the typical and the two other zones in the 30-60 year TSLF class, in relation to the 

abundance of closed-cover densities. Furthermore, maximum values of closed-cover density 

abundances were lower and achieved earlier in the organic zone when compared with the typical 

zone (Fig. 3.5d vs 3.5f).  

Table 3-1. Mean proportions of the relative abundances of surficial deposits classes: very abundant, very 
coarse (VAVC); abundant, coarse (AC); rock (ROC); and organic (ORG) (Mansuy et al., 2010), and the means of 
degree-days by each cluster, which were used to explain homogeneity of the landscape units. Bold numbers 
indicate the maximum value of variables that were used for clustering (values are normalized). 

 

Cluster name Degree-days AC ROC ORG VAVC 

Organic 0.90 -0.13 -0.52 1.60 -0.46 

Coarse -0.31 0.14 -0.51 -0.10 1.70 

Typical -0.16 -0.11 0.29 -0.42 -0.34 
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Figure 3.4. Cluster map (“organic,” “coarse,” and “typical” zones) of ecological districts based on centroid degree-days and their relative abundances of marginal surficial deposit groups (organic, 
stony and coarse-textured, and rock surficial deposits). 
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Figure 3.5. Box-and-whisker plots of ABC as a function of time-since-last-fire at 2-km2 scale cells in “organic” (a), “coarse” (b), and “typical” (c) zones; box-and-whisker plots of the abundance of 
closed-density cover (> 81%, 61-80%, and 41-60%) as a function of time-since-last-fire for 2-km2 scale cells “organic” (d), “coarse” (e), and “typical” (f) zones. 
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3.05 Discussion 

3.05.01 Interpretation of ABC predictors at plot level  

Our analysis found that cover density, stand height, species composition, tree age, total precipitation, and 

surficial deposits are the six best predictors of ABC at the plot level. Except for surficial deposits and 

precipitation, these variables are all standard inputs of growth and yield models (Weiskittel et al., 2011; 

Burkhart and Tomé, 2012). As forests grow over time, age should be a relatively good predictor of ABC; if 

height and cover density were used, they would be better predictors than age because the former 

normally covary with ABC, as they also account for site conditions. Surficial deposits are also an 

important predictor of ABC, in that they determine site drainage (e.g., Wang et al., 2003) and drying 

potential conditions. In contrast, TSLF was poorly correlated with ABC at the plot level (r = - 0.03, P < 

0.01), possibly because of a scale mismatch between plot size (400 m2) at which scale ABC was 

determined, and minimum fire size (> 200 ha - Stocks et al., 2003) at which scale TSLF was estimated. 

Fire polygons were initially drawn at a scale that may be too coarse to accurately capture boundary 

features or internal zones of unburned forests in which the plots may fall. For boreal black spruce stands 

in the western portion of our study area, Lecomte et al. (2006) have shown that aboveground biomass at 

the plot level is better explained by past fire burn severity and its interaction with TSLF than by TSLF 

alone. Chaieb et al. (2015) similarly found that TSLF alone is not a good predictor of stand successional 

stages because of the interaction between succession, fire burn severity and paludification in the western 

part of our study region. Past fire burn severity information that is linked with fire dates is related to post-

fire canopy recovery (Johnstone et al., 2010; Jin et al., 2012). Post-fire canopy recovery at the plot level is 

influenced, in turn, by local neighbourhood effects (Frelich and Reich, 1999). These effects may further 

blur the relationship between plot-level ABC and TSLF (Taylor and Chen, 2011). TSLF can be a good 

predictor of biomass in even-aged stands, but partial disturbances other than fire dominate when their 

canopy structure becomes irregular or uneven, and fluctuation in biomass might be less predictable (e.g., 

Bergeron and Fenton, 2012).  

Alexander et al. (2012) had explained 33% of the variability in plot-level aboveground biomass with TSLF 

across upland boreal forests of Alaska, but their TSLF timespan was relatively short (20–59 years after 

fire) compared to the expected lifespan of black spruce. Wang et al. (2003) and Mack et al. (2008) also 

reported significant relationships between TSLF and plot-level carbon pools in the black spruce forests of 

western Canada and Alaska. All of these models included TSLF as the sole explanatory variable, and the 

significant relationships were based on a few sample plots (n < 10).  

3.05.02 Relationship between ABC and TSLF at the 2-km2 scale 

At the 2-km2 scale, we found a much stronger correlation between TSLF and ABC (r2 = 0.67 r = 0.82). 

Nevertheless, TSLF was not selected as a strong predictor of ABC and the relative proportions of cover 
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density classes were the most influential variables of ABC at that scale. TSLF appears to have a 

significant effect on ABC values during the first decades following fire (Alexander et al., 2012), i.e., up to 

60 to 90 years (Figs 3.5d-e, and also Mansuy et al., 2012: Fig. 3.6b). The effect of TSLF in the time 

following fire becomes much less important after 60 years at the 2-km2 scale (Figs. 3.5a-c). These results 

agreed with those of Fourrier et al. (2013), who found that merchantable volume yield dynamics were 

controlled mainly by stand density during the first few decades following disturbance in the southeastern 

part of our study area.  

The relative abundance of the 25-40% cover density class (open stands) was the most important 

predictor. Open stands or woodlands may be created when post-fire recovery is insufficient, and their 

presence is only partly linked to TSLF (Girard et al., 2008; Mansuy et al., 2012). Deficient post-fire canopy 

recovery may prevail anywhere within the black spruce forest landscape (Girard et al., 2008), but more 

often in pure black spruce stands (Jasinski and Payette, 2005), where it interacts with fire regime, climate 

and drying potential of surficial deposits (Figs. 3.2d, 3.5d-e; Simard et al., 2007; Mansuy et al., 2012).   

3.05.03 Comparing accuracy with previous studies  

The model r2 (0.83) value for predicting ABC at the scale of 2-km2 accords with those of previously 

published studies from remote sensing data, because of the selected spatial scale of 2 km2. Beaudoin et 

al. (2014) reported an r2 of 0.62 (vs 0.50 at plot- and 0.83 at 2-km2 scales) for predicting aboveground 

biomass at a 250 x 250 m pixel size (0.06 km2; number of training pixels, 21,037) across the forests of 

Canada (area, 4.0 x 106 km2). Margolis et al. (2015) reported an r2 values between 0.50 and 0.84 at plot 

scale (n = 565) to predict aboveground biomass across the North American boreal forest (area: 3.3 x 106 

km2) from the study of Neigh et al. (2013). Boudreau et al. (2008) obtained an r2 of 0.65 at plot scale (400 

m2 plot size, n = 207) for timber-productive forests in the province of Quebec (area: 1.3 x 106 km2), within 

which our study region is located.  

Our ABC data at the 2-km2 scale is a product of models and, therefore, may have been stripped of much 

of its uncontrolled randomness, reducing the range of estimates and increasing the value of r2. With the 

strategy of scaling-up that we used in the present study, only 5% of variability was lost when extrapolating 

ABC from the plot-level to the 2-km2 scale. Considering this additional 5% of variability in the plot-level 

model predictions would not have changed to any great degree the coefficient of determination between 

estimated and predicted values at the 2-km2 scale.  

3.05.04 Implications for C budget modelling 

Studies analyzing the interaction between ABC and both TSLF (long temporal scale) and forest structure 

attributes at coarse scales are rare. Existing C budget models (e.g., Chen et al., 2003; 2010; Kurz et al., 

2009) drive carbon dynamics with yield curves as a function of stand age, which is exact at the plot level. 

However, ABC at a coarser scale is not directly related to stand age and, therefore, TSLF; rather, it is 
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related to the speed of post-fire canopy recovery, through which TSLF exerts indirect control on ABC 

(Mansuy et al., 2012). ABC is related to canopy recovery (and therefore succession dynamics) at the plot 

level as well (e.g. Lecomte et al. 2006), but at scales coarser than the plot level, forest succession 

dynamics seems to be the most important ecological process dictating ABC contents.  

The rate of landscape carbon accumulation over time depends upon the potential of forests to regenerate 

following fire, which in turn depends upon pre-fire forest conditions, TSLF, and fire severity coupled with 

climate (Epting et al., 2005; Johnstone and Chapin, 2006a; 2006b). The importance of post-fire vegetation 

recovery for estimating forest biomass is not only applicable to the eastern Canadian boreal forest, but 

also to the western boreal forest (Jones et al., 2013), Siberian larch forest (Berner et al., 2012), temperate 

forests (Pflugmacher et al., 2014), and tropical forests (Chazdon et al., 2003; Read et al., 2003), for 

example. Houghton (2009) and Frolking (2009) have likewise highlighted the importance of information on 

post-fire vegetation recovery for the assessment of global carbon dynamics. In this context, global 

terrestrial C budget models (e.g., Ruimy et al., 1996) should consider global monitoring of post-fire 

vegetation response and recovery that can be measured from satellite remote sensing data (Goetz et al., 

2010). In our study region, C budget models that are currently in use (e.g., Kurz et al., 2009) should 

incorporate post-fire canopy recovery information, along with ABC yield curves.  

3.06 Conclusion  

Our objective was to test the hypothesis that TSLF is the variable controlling landscape aboveground 

carbon biomass. We used large datasets including fire history maps, forest maps, and forest inventory 

plots to quantify spatial variation of ABC in the eastern Canadian black spruce-moss forest over a large 

spatial extent (> 200,000 km2) at 2-km2 spatial resolution. We devised a modelling approach to link 

different spatial scales for scaling-up from inventory plots to landscapes, which provided an avenue for 

understanding the relative contributions of TSLF and forest structural attributes on ABC at a coarse scale. 

Not surprisingly, plot-level ABC is related to observed stand characteristics (height and density) and 

species composition. At the scale of 2-km2, the relative abundances of cover density classes maintain 

control over ABC. In the eastern Canadian boreal forest, cover density increases over time through which 

TSLF indirectly acts upon ABC at the scale of landscapes. Our results thus illustrated the importance of 

post-fire canopy recovery information for assessing carbon dynamics in boreal forest ecosystems. A 

further study would be necessary to gain knowledge regarding the interactions of TSLF, fire severity, 

environmental factors and regional climate with canopy recovery after fire disturbances over large forest 

areas and at a coarse scale (~ 2 km2). That scale may help address the challenge due to the variation of 

trajectories of post-fire forest recovery within fire perimeters that depend upon pre-fire and post-fire site 

conditions and the local severity of fire. Such a type of study would further serve for carbon budget 

models on how to incorporate post-fire canopy recovery information with ABC yield curves. Our study also 
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points to the importance of monitoring post-fire vegetation response and recovery to inform global carbon 

budget analyses.  
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4.01 Abstract  

Fire is an important driver of boreal forest succession dynamics in North America and time since last fire 

(TSLF) is seen as a useful variable to explain successional change and subsequently aboveground 

biomass (AGB). Accurate estimation of AGB using remote sensing data is still challenging and an 

approach based on an understanding of forest disturbance and succession could help improve AGB 

estimation. Within a large study area (> 200 000 km2) located in the northeastern American boreal forest, 

we compared remotely sensed biomass estimates of MODIS (Moderate Resolution Imaging 

Spectroradiometer), GLAS (Geoscience Laser Altimeter System) and ASAR (Advanced Synthetic 

Aperture Radar) with inventory-based estimates derived from ground plots, and forest maps. This 

comparison was made at a spatial scale of 2-km2, which corresponds to the minimum size for fires to be 

considered important enough and included in the Canadian large fire database. Large fires play a 

determinant role on the landscape mosaic in these forests. We identified that TSLF could explain the 

differences between MODIS (45%), GLAS (47%) or ASAR (23%) and inventory based estimates, when 

associated with surficial geological substrate information at that scale. Our results therefore showed the 

importance of generating maps of TSLF to serve as a potential ancillary variable for improving the 

accuracy of remotely sensed AGB estimates in North American boreal forests. We also demonstrated the 

effectiveness of scaling up remotely sensed data to a scale at which disturbances tend to occur for 

integrating fire history information.  

Keywords: Aboveground biomass; boreal forests; remote sensing; successional dynamics; MODIS; 

GLAS; ASAR  
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4.02 Introduction 

Forested biomes cover approximately 3.7 billion ha (FAO, 2015), and accordingly play a major role in the 

global carbon (C) cycle. Tropical forests store about 55% of total (861 ± 66 Pg, including in soil (to 1-m 

depth) and in live biomass: above and below ground) C stocks in comparison to 32 % and 14% for boreal 

and temperate forests, respectively (Pan et al., 2011). In a recent study, Bradshaw et al. (2015) reported 

total carbon stocks of 367.3 to 1715.8 Pg (mid-point = 1095 Pg), which are about 3.8 times those 

estimated by Pan et al. (2011) for boreal forests. These considerable differences indicate that 

improvements are still required to improve the accuracy of C stock estimates.  In tropical forests, 

deforestation is the main cause for changes in C stocks, but natural disturbances remain the main driver 

in temperate and boreal forests (Houghton 2005). It follows that trajectories of forest recovery patterns 

after disturbance play a key role in both regional and global C budgets (Frolking et al., 2009) and may 

adequately help for C stocks estimations (Irulappa Pillai Vijayakumar et al., 2016). Information on 

aboveground biomass (AGB) is used for assessing the contribution of forest ecosystems to the global C 

budget (McGuire, 2002), for assessing forest ecosystem productivity (Malhi, 2012), or for supporting 

bioenergy production (Mansuy et al., 2015).  

The remotely sensed spatial distribution of AGB is estimated through the correlation that exists between 

remote-sensing reflectance data at the pixel scale with field measurements of biomass using allometric 

equations or biomass expansion factors. For example, Thurner et al. (2014) applied a biomass retrieval 

algorithm called BIOMASAR (Santoro et al., 2011) to ENVISAT (Environment Satellite) Advanced 

Synthetic Aperture Radar (ASAR) data to obtain a carbon density map for northern boreal and temperate 

forests across the Northern Hemisphere. Beaudoin et al. (2014) used the Moderate Resolution Imaging 

Spectroradiometer (MODIS) to map forest attributes, including AGB, across Canada’s forests with a non-

parametric model that had been calibrated from a systematic grid of photo-plots that were established and 

maintained by Canada’s National Forest Inventory (Gillis et al., 2005). Optical multispectral remote 

sensing data (e.g. MODIS) are not physically related to AGB because canopy reflectance is more related 

to leaf area index and canopy cover (Le Toan et al., 2011). Radar measurements are physically related to 

AGB for their ability to penetrate forest canopy (Kasischke et al., 1997), but their penetration capability 

depends on the radar wavelength.  Radar measurements are acquired in K, X, C, L and P bands (different 

wavelengths) and their penetration capability increases with wavelength (Dobson et al., 1992). Short-

wavelength X- or C-band cannot penetrate into canopy and interacts principally with canopy cover 

elements. In contrast, long-wavelength P-band has stronger penetration capability capturing vertical 

structure information and is accordingly highly sensitive to AGB estimation (Saatchi et al., 2011a). 

Ongoing planning is underway for the launch of European Space Agency P-band BIOMASS radar satellite 

that appears to be the only sensor capable of providing both AGB and height measurements (Le Toan et 

al., 2011). Optical multispectral imagery and short-wavelength radar data (e.g. C-band ENVISAT ASAR) 

are limited by saturation when estimating biomass in regions of high biomass and complex canopy 
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structures (Turner et al., 1999; Pflugmacher et al., 2012). In contrast, LiDAR (Light Detection and 

Ranging)-based active remote sensing technologies can measure canopy height and crown dimensions 

directly, through measurements of distance between the sensor and target, thereby overcoming data 

saturation in biomass estimation (Drake et al., 2003).  

Global empirical relationships have been established between LiDAR-derived forest canopy height and 

AGB (Lefsky et al., 2002; Drake et al., 2003; Lefsky et al., 2005; Asner et al., 2012). Airborne LiDAR 

methods represent an effective alternative to optical and short-wavelength radar sensors to provide 

accurate information on AGB (Zolkas et al., 2013). Their use is however only possible at local to small-

regional scales (Zhao and Popescu, 2009), as they become prohibitive at larger scales for their high cost 

of data acquisition (Popescu et al., 2011). Spaceborne LiDAR (Light Detection and Ranging) sensors also 

exist, and the Geoscience Laser Altimeter System (GLAS) onboard the Ice, Cloud and land Elevation 

Satellite (ICESat), which was launched by NASA in 2003, was the first spaceborne LiDAR sensor to 

potentially provide global estimates of forest canopy height. . However, GLAS data are limited for wall-to-

wall AGB mapping due to their spatially discrete coverage, with  60-70 m footprints spaced by 170 m 

along the satellite track and 2.5 to 15 km between tracks (Sun et al., 2011). To overcome these 

limitations, Simard et al. (2011) used the relationship between GLAS footprint level LiDAR-derived canopy 

height and spatially continuous ancillary variables from MODIS data for generating a wall to wall map of 

canopy height at the global scale. Zhang et al. (2014b) demonstrated that those GLAS canopy height 

estimates were promising data for calculating biomass in the forest regions of Alberta, Canada (r2 = 0.62, 

root mean square error (RMSE) = 47.03 Mg ha-1). Chi et al. (2015) also used MODIS data for 

extrapolating AGB estimates from GLAS footprint level at a nation-wide scale in China. Nevertheless, the 

use of global relationships between canopy height and biomass across large forest areas at regional 

scales may fail to incorporate spatial gradients that exist across the landscape and, thus, may produce 

large spatially correlated errors (Mitchard et al., 2014). Each set of satellite remote sensing product has 

limitations, therefore, with respect to its spatial resolution, spatial coverage and temporal resolution 

(Frolking et al., 2009). An accurate model of spatial variability of AGB depends upon the choice of remote 

sensing variables, scale and modelling methodologies (Houghton, 2005; Lu, 2006; Zhao et al., 2010).  

The comparisons of biomass maps from different sources of remote sensing data may provide useful 

information from which more accurate AGB estimates can be derived (e.g., Mitchard et al., 2013). Hill et 

al. (2013) compared biomass estimates from nine different studies (e.g., Saatchi et al., 2011b; Baccini et 

al., 2012) based on MODIS and GLAS data that were acquired across tropical forests at the extent of 

continental Africa. They found only low correlations between the various estimates, suggesting a need to 

improve assessment of their accuracy. In particular, the lack of sufficient spatially exhaustive ground-

based data tends to underestimate errors in remotely sensed estimates (Hill et al., 2013; Mitchard et al., 

2014).  
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The addition of prior vegetation recovery trends, disturbance histories (e.g., Pflugmacher et al., 2014), 

and known forest structural attributes (e.g., Main-Knorn et al., 2011) to remote sensing data could 

subsequently improve the accuracy of biomass estimation. In North American boreal ecosystems, 

changes in C storage over time are related to fire events (Harden et al., 2000), which are highly stochastic 

in both time and space (Girardin et al., 2013). A disturbance regime may be characterized by disturbance 

frequency, size and severity (Bergeron et al., 2002). Small fires are most frequent, but infrequent large 

fires predominantly shape the boreal landscape mosaic (Johnson et al., 1998; Bergeron et al., 2004). 

Burn severity varies inside fire perimeters (Johnstone et al., 2010; Jin et al., 2012), which blurs the 

relationship existing between disturbance history, post-fire canopy recovery and AGB (Lecomte et al., 

2006; Chaieb et al., 2015). Time since last fire (TSLF) is the most significant predictor of postfire canopy 

recovery (Mansuy et al., 2012), which is related to changes associated with forest structural attributes 

over time (e.g. canopy cover) that control AGB at the scale of landscapes (Irulappa Pillai Vijayakumar et 

al., 2016). Postfire canopy recovery process is also influenced by edaphic factors (surficial deposits, 

parent material, organic matter accumulation), topography and regional climate (Mansuy et al., 2012). 

Studies based on remote sensing data to estimate AGB seldom consider the spatial knowledge of 

recorded forest disturbances and recovery patterns of the study system (Chu and Guo, 2014). Fire 

disturbances and their distribution over the landscape are inherently spatial and therefore, the choice of 

the spatial scale for an analysis relating AGB with vegetation recovery and disturbance histories is 

important. Frolking et al. (2009) recommended matching the scale of biomass estimation with that of fire 

disturbance, namely large fires in this case.  

The goal of this study was to explain the spatial variation in AGB differences between estimates that were 

derived from different remote sensing data (MODIS, GLAS and ASAR) and those that were obtained from 

an AGB model based on ground-inventory data amassed over a large area of the boreal forest. AGB 

estimates generated from different remote sensing sensors, namely passive optical (MODIS), active 

microwave (ASAR) and active optical (GLAS) should be expected to differ. Therefore, our purpose was 

not to find the best remote sensing data product, to validate existing modelling approaches, or to compare 

different remote sensing products. But we intended to determine how much each satellite-derived AGB 

estimates diverge from inventory estimates over large forest areas, and possibly identify factors that 

would help to improve their accuracy, especially information on past disturbance history. We have 

selected Quebec’s black spruce-feather moss forest in eastern Canada (area: 217 000 km2) as a study 

region, given its richness in terms of fire history maps and forest inventory data. Thus this study region 

served as a useful training area to derive relatively accurate biomass values and to analyze biomass 

estimation differences over a very large area. AGB estimates that are based on MODIS spectral data, and 

ASAR data collected for the study area were already available from Beaudoin et al. (2014) and Thurner et 

al. (2014), respectively. We also estimated AGB using ICESat/GLAS data following the methodology 

successfully developed by Zhang et al. (2014b). We compared these estimates, with an inventory based 
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AGB map (Irulappa Pillai Vijayakumar et al., 2016) based on a large number of forest inventory plots and 
spatial explicit aerial photo-interpreted stand maps. Our comparison analysis aimed at identifying the 
important predictors, especially TSLF (time-since-last fire), that could be used as ancillary input variables 
for more accurate remotely sensed biomass estimates.   

4.03 Methods 
A general flow diagram of the data and methods used for AGB estimation and comparison is displayed in 
Fig.4.1. 

 

Figure 4.1. General flow diagram 

Our study region (Fig. 4.2) is the black spruce (Picea mariana (Mill.) BSP) -moss bioclimatic domain 
(Robitaille and Saucier, 1998) within the province of Quebec, Canada (49°N to 52°N and 66°W to 79° 
30’W, area : 217,000 km2). It is divided along a longitudinal climate gradient into eastern and western 
subdomains, which differ from one another in biophysical environments and consequently in fire regime 
and vegetation. The western continental climate favors more frequent forest fires, unlike the east, which is 
characterized by a maritime climate that is due to the influence of the Atlantic Ocean and the Gulf of St. 
Lawrence. Fuel moisture conditions are rarely conducive to fire spread.  
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Current vegetation composition is particularly related to this gradient in climate and fire activity. In the 
west (near James Bay), relief is generally flat. Annual precipitation and mean annual temperature are 700 
mm and -0.65 °C, respectively, with an average growing season of 165 days (Robitaille and Saucier, 
1998). This western region is thus characterized by relatively short fire return intervals (270 years; 
Bergeron et al., 2004), leading to the establishment of landscapes that are dominated by post-fire tree 
species such as black spruce, jack pine (Pinus banksiana Lamb.) and, to a lesser extent, by white or 
paper birch (Betula papyrifera Marsh.) and trembling aspen (Populus tremuloides Michx.). In the east, 
annual precipitation varies between 1000 and 2000 mm and mean annual temperature is -1.5 °C, with a 
growing season of 150 days (Saucier et al., 2009). Fire return intervals are thus longer (> 500 years; 
Bouchard et al., 2008) which generate abundant fire-averse balsam fir (Abies balsamea [L.] Mill.), mixed 
with black spruce.  

 

Figure 4.2. Locations of the study area (dark outline) and training datasets (grey areas) from the published studies. 

We used the inventory-based AGB estimates of Irulappa Pillai Vijayakumar et al. (2016). AGB values 
were estimated at a spatial scale of 2-km2 in line with a process-based understanding of fire disturbance 
in our study area. This cell-size corresponds to the minimum size for large fires included in the Canadian 
large fire database and large fires account for 97% of the total area burned between 1959 and 1999 
(Stocks et al., 2003). Such scale also seemed adequate to circumvent confounding issues typically found 
with finer scales, such as the variation of post-fire forest recovery patterns within burned areas due to the 
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variability of fire severity (Jin et al., 2012) and neighboring effects (Frelich and Reich, 1999). A spatial 

explicit hierarchical modelling (Wu and David, 2002) approach was developed by Irulappa Pillai 

Vijayakumar et al. (2016) to sequentially scale-up aboveground biomass carbon (ABC) from inventory 

plots (temporary sample plot database; 400-m2, 1992-2003) to forest stands map (size: 14 ha) and then to 

the scale of 2-km2 cells. Spatial explicit forest stand properties across the study area were obtained from 

the SIFORT geospatial database (Spatial Information on Forest Composition based on Tesserae, Pelletier 

et al., 2007) originating from forest maps (1:15,000 scale) and elaborated by the Quebec Ministry of 

Natural Resources between 1990 and 1999 for its third inventory program (1992-2002). This database 

consists of a mosaic of square tiles, divided into slices of 15 s of latitude by 15 s of longitude and covering 

an average area of 14 hectares. Eighty-nine percent of the study area was considered for AGB 

estimation, leaving wetlands and peatlands, water, heaths, harvested land, insect-killed stands or 

windthrows and human infrastructure.  

First, a non-parametric RF plot-level model (r2 = 0.50, RMSE = 13.88 Mg ha-1) was trained relating ABC 

estimates using observed forest attributes and climate variables. This model was then extrapolated to all 

SIFORT tile centroids in a training dataset, and then averaged within each 2-km2 cell to obtain spatially 

continuous estimates. The training dataset covered 43.8% of the present study area (Fig. 4.2) and 

included all areas for which a TSLF value could be provided from contemporaneous and historical fire 

maps. More details on this training area are provided below. Another non-parametric RF model was then 

calibrated at 2-km2 scale (r2 = 0.83, RMSE = 0.28 Gg km-2) to impute ABC across the whole study area. 

Abundances of canopy cover density classes were the main variables influencing ABC estimates at the 2-

km2 scale. ABC represents 50% of AGB (Gower et al., 1997). More detailed information can be found in 

Irulappa Pillai Vijayakumar et al. (2016).  

4.03.03 Estimations of AGB from remote sensing data 

We have used three remote sensing data products (MODIS, GLAS and ASAR) to estimate biomass at the 

2-km2 scale. We have selected these three data products to consider the most common types of sensors 

(passive [optical multi-spectral] and active [radar and laser scanner]) used for AGB estimation (Lu et al., 

2014). We first calibrated an AGB model with spaceborne GLAS LiDAR canopy height data by adapting 

the methodology developed by Zhang et al. (2014b). In a 450 000 km2 study area in Alberta (western 

Canada), they showed that observed canopy height, elevation and climate variables were significantly 

related to AGB at the plot level (n = 1968) using random forest model. They then used this relationship to 

predict AGB values for the entire area at a 1-km2 scale using GLAS canopy height data. Accordingly, we 

used a combination of plot inventory data, GLAS data, climate data (from the NCEP-NCAR Twentieth 

Century Reanalysis project; Compo et al., 2011), and elevation to predict AGB. GLAS canopy height data 

at the 1-km2 scale for our study region were obtained from Simard et al. (2011). They established a 

relationship between spatially discrete GLAS footprint level LiDAR‐derived canopy height estimates and 
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spatially continuous ancillary variables such as the MOD44B percent tree cover product (Hansen et al., 

2003) from MODIS, the elevation information from the Shuttle Radar Topography Mission (Farr et al., 

2007), global climate data from the Tropical Rainfall Measuring Mission  (Kummerow et al., 1998), and the 

Worldclim database (Hijmans et al., 2005) to generate global canopy height map. Plot-level AGB values 

(n = 8739, from the third regular forest inventory [1992-2003], Ministry of Natural Resources of Quebec) 

were estimated by converting diameter at breast height (DBH, 1.3 m) into biomass using species-specific 

allometric equations for commercial tree species (Lambert et al., 2005; Ung et al., 2008), non-commercial 

tree species (Ter-Mikaelian and Korzukhin, 1997), and shrubs (Buech and Rugg, 1989). These estimates 

were summed at the plot level. A random forest (RF) model was then developed to estimate plot-level 

AGB with observed canopy height (dominant height of the canopy, i.e., mean height of the dominant 

trees; Burkhart and Tomé, 2012), elevation and climate variables (Table 4.1). This model was then used 

to interpolate AGB across the study region using GLAS canopy height data at 1 km resolution.  

We developed RF models in the R package randomForest (Liaw and Wiener, 2002). A random forest  

model is non-parametric and insensitive to non-normal and skewed data, has the ability to model non-

linear relationships, and can provide the measurements of relative strength of predictor variables. The 

selection of predictors for fitting RF models was performed using the Boruta package (iterations = 1000; 

number of trees = 1000) for R (adapted from Kursa and Rudnicki, 2010).  We selected the six most 

important variables assessed by Boruta to fit parsimonious and robust models (Thompson and Spies, 

2009). Correlation analyses were performed to detect collinearity between the selected predictors 

(threshold: r > 0.70, e.g., Dormann et al., 2013) to avoid problems of multicollinearity. We tested for 

spatial autocorrelation in model residuals to detect potential omission of important variables (Dormann et 

al., 2007). To this end, we computed Global Moran’s I, an index of spatial autocorrelation, as a function of 

neighbouring distance (Moran, 1950). We further analyzed residuals using Anselin's Local Moran I 

statistic (Anselin et al., 1995) to characterize local patterns of spatial association by identifying clusters 

with values similar in magnitude, and to identify spatial outliers. 

An AGB map that was based on MODIS data for our study region was provided by Beaudoin et al. (2014). 

They mapped AGB at 250 x 250 m pixel resolution as a function of MODIS spectral reflectance, climatic 

and topographic variables using Canada’s National Forest inventory photo- plots (2 km x 2 km) and the k 

nearest-neighbour (kNN) method. Each 2 km x 2 km photo-plot consisted of forest polygons that were 

characterized by cartographic attributes of vegetation composition, stand structure, and AGB information 

based on the models of Boudewyn et al. (2007). They rasterized AGB information from photo-plots to the 

250 m x 250 m MODIS grid and used these photo-plot pixels as references to impute AGB values to the 

rest of the study area.  

We also obtained an AGB map that was based on ASAR data from Thurner et al. (2014). This AGB map 

covers the Northern Hemisphere between 30o N and 80o N for boreal and temperate forests of North 
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America, Europe and Asia. It is based on estimates of growing stock volume (volume of tree stems per 

unit area, m3 ha-1) that was obtained with the BIOMASAR retrieval algorithm developed for Envisat/ASAR 

satellite data at a spatial resolution of 0.01o (Santoro et al., 2011). BIOMASAR is an automated approach 

for modelling growing stock volume as a function of radar backscatter. This technique is based on how 

forest structural properties affect the response of a radar signal. Volume estimates were then converted to 

biomass. A more detailed explanation of these products is given by Thurner et al. (2014).  

We reprojected these biomass products of different resolution (1 km, GLAS biomass map; 250 m x 250 

m, MODIS biomass estimates, Beaudoin et al., 2014; and 0.01o (approximately 1 km) resolution, ASAR 

biomass estimates, Thurner et al., 2014) to the same projection (North American Datum 1983; Lambert 

conformal conic projection). We then rescaled them to a resolution of 2 km2 to match the spatial resolution 

of inventory-based estimates produced by Irulappa Pillai Vijayakumar et al. (2016) using a nearest-

neighbour resampling method (Langner et al., 2014). Pixel values remain unchanged with this method, 

thereby avoiding the mixing of unsaturated and saturated pixels and the introduction of artefacts (Mitchard 

et al., 2013, 2014). 

4.03.04 Comparison of biomass maps 

The comparison results are to be inferred taking into consideration that AGB generated from different 

remote sensing sensors, passive optical (MODIS), active microwave (ASAR) and active optical (GLAS) 

were expected to differ. Therefore, comparisons are affected by the physical principles of data acquisition 

used in sensors and also by the spatial resolution used for the comparisons. We could not estimate the 

accuracy of remotely sensed biomass estimates at the scale of 2 km2 due to the lack of observed AGB 

values at that scale. Comparisons of these products at a finer scale resolution were also not considered 

so as to match the scale from which large fire disturbances start to impact forest landscape structure on a 

regional scale (e.g. Johnson and Gutsell, 1994: Fig. 5; Frolking et al., 2009). The inventory-based AGB 

map of Irulappa Pillai Vijayakumar et al. (2016) was therefore of limited use to validate remote sensing 

products, but was useful to show agreement or disagreement in the spatial trends observed between 

remote sensing and inventory-based estimates over a large area and to search for ancillary variables 

related to past disturbance history.  

Accuracy denotes the agreement of model-predicted values with the true values, whereas precision 

measures how closely the model-predicted values agree with one another (Tedeschi, 2006). Still, 

estimation accuracy cannot exceed precision and, therefore, precise estimates should be close to one 

another (Hill et al., 2013). We first explored covariations between the each of the GLAS, MODIS, ASAR 

and inventory based estimates in the training dataset using the Pearson correlation coefficient accounting 

for spatial autocorrelation in the SpatialPack package for R. We calculated the difference between each of 

the GLAS, MODIS and ASAR-based AGB estimates, and the up-scaled inventory-based estimates of 

AGB for each cell in the training dataset to identify potential ancillary variables. To this end, we used the 
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training dataset created by Irulappa Pillai Vijayakumar et al. (2015). This training dataset consists of 

34,234 cells of 2-km2 size. In this dataset, 50 % or more of the area of each 2-km2 cell is covered by fire 

polygons of SOPFEU (the Quebec forest fire control agency, Société de protection des forêts contre le 

feu, 1970-2000) or fire history maps (1880-2000) (Fig. 4.2). In addition, cells that included at least more 

than one inventory plot (third inventory program [1992-2003], Ministry of Natural Resources of Quebec) 

indicated that forest stands were dominated by post-fire tree species (paper birch, trembling aspen, jack 

pine, black spruce) and were even-aged (oldest plot age was used as TSLF) (Bélisle et al., 2011).  

We developed RF models relating these differences to covariates for cell-level inventory attributes 

(relative cell frequencies of SIFORT attributes, Table 4.1) and observed TSLF at the 2-km2 scale. At that 

scale, inventory-based AGB estimates are related to the relative proportions of canopy cover density 

classes (Irulappa Pillai Vijayakumar et al., 2016), while canopy cover density is linked with signal 

saturation in remotely sensed estimates (Zhang et al., 2014a). Irulappa Pillai Vijayakumar et al. (2016) 

have further shown that changes in canopy cover density at that scale are related to TSLF. Therefore, 

TSLF that was associated with biophysical variables could serve as a surrogate of canopy density to 

overcome saturation effects. Furthermore, Asner et al. (2010) have shown for the Peruvian Amazon 

forests that surficial geological substrate and forest type information should be incorporated with satellite 

remote sensing data for more accurate biomass mapping. We therefore included indices of surficial 

deposits in the models. Results of these non-parametric models are difficult to interpret and synthesize. 

For this reason, we also analyzed the variation in remotely sensed AGB estimates as a function of 

observed TSLF at the 2-km2 scale, which is equivalent to producing AGB yield curves. This was intended 

to provide insights on the relationship existing between remotely sensed biomass estimates and TSLF at 

the scale of 2-km2.   

Table 4-1. List of explanatory variables used in estimating AGB 

Relative frequencies of 
vegetation variables (a) 

         Physical site variables Climate variables  (b) 

Species composition groups - 

Black spruce, balsam fir, jack 

pine, intolerant hardwoods, 

mixed, other conifers and no 

species composition but 

identified as a burned area, 

following Gauthier et al., (2010). 

 

Surficial deposit groups (a) –VAVC 

(very abundant, very coarse), MM 

(moderate, moderate), MAM 

(moderately abundant, moderate), 

MAC (moderately abundant, 

coarse), AC (abundant, coarse), 

ROC (rock) and ORG (organic) 

(Mansuy et al. 2010).  

 

Temperature (oC) – annual 

mean temperature  

Total precipitation (mm year-1) –

the mean of annual total 

precipitation  

Degree-days (°C year-1) – 

Annual growing degree-days 

summation (above 5°C)  
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Stand age classes - between 0 

and 20 years, 21 to 40, 41 to 

60, 61 to 80, 81 to 100, ≥ 101, 

young uneven-aged, and old 

uneven-aged. 

Stand height classes - > 22 m, 

17 to 22 m, 12 to 17 m, 7 to 

12m, 4 to 7 m, 2 to 4 m, and 0 

to 2 m. 

Stand cover density classes - > 

81%, 61 to 80 %, 41 to 60%, 

and 25 to 40 %. 

 

Elevation (m) - Derived for study 

units from SRTM DEM (90 m 

resolution) (van Zyl, 2001). 

 

 

Slope (o) - derived from elevation 

data in ArcGIS 10.0  

 

 

 

Growing season length (days 

year-1) –Duration of days for 

which the mean temperature is 

above 5°C 

Potential evapotranspiration 

(mm) – Annual total potential 

evapotranspiration (Dunne and 

Leopold 1978) 

Aridity index (mm year-1) – 

Aridity is accumulation of 

monthly water deficit (monthly 

Thornthwaite potential 

evapotranspiration - monthly 

precipitation) 

  Canadian drought code – 

Moisture content of the deep 

layer of compacted organic 

matter, 10–20 cm deep (Amiro 

et al., 2005) 

 

4.04 Results  

4.04.01 Estimation of AGB using GLAS canopy height data  

Ground-measured canopy height was moderately correlated with AGB at the plot level (r = 0.43, P < 

0.01). With this relationship, we extrapolated AGB to the entire landscape using GLAS canopy height data 

at 1-km resolution. However, ground-measured canopy height and GLAS-measured canopy height were 

not correlated at the plot level (r = 0.014, P > 0.05). Variable importance rating with the Boruta procedure 

and the set of explanatory variables that were used by Zhang et al. (2014b) indicated that observed 

canopy height had the greatest influence on AGB, followed by potential evapotranspiration (PET), 

precipitation, elevation, drought code, and growing season (Table 4.1, Fig. 4.3a). Elevation was not 

included in subsequent RF model training, given its strong correlation with growing season length (r = -

0.82, P < 0.01). Overall, the prediction accuracy of AGB was very weak at the plot level (r2 = 0.29, RMSE 
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= 33.21 Mg ha-1; Fig. 4.3b). Residuals were weakly spatially autocorrelated (Global Moran’s I statistic = -
0.05, for distances < 20 km).   

 

Figure 4.3. Top six variables ranked by a random forest model for the estimation of AGB based on observed canopy 
height at plot level (a); (b) density plot of estimated vs predicted AGB by the model based on observed canopy height at 
plot level 

At the scale of the study area, maximum and minimum AGB values that had been calculated from remote 
sensing data and inventory data were in close agreement, except for ASAR estimates (MODIS estimates: 
0.1 to 19.8 Gg km-2; GLAS estimates: 3.9 to 18 Gg km-2; ASAR estimates: 0.1 to 12 Gg km-2; and 
inventory-based estimates: 2.1 to 18.6 Gg km-2). AGB maps from MODIS and ASAR showed an expected 
pattern of high and low values along an east-west gradient (Figs. 4.4b, 4.4d), relative to the fire regime 
gradient that was observed over the study area. Spatial distributions of AGB that were estimated from 
MODIS and inventory data also agreed with one another. When the maps were compared visually with 
fire disturbance history, both maps showed low biomass values in regions of recently burned areas (Figs. 
4.4a, 4.4b). The spatial gradient of AGB estimates from ASAR also showed similar degree of agreement 
in depicting low values in regions with recently burned areas, but these low values were more noticeable 
in this map (Fig. 4.4d). The GLAS biomass map exhibited a very different spatial pattern of low and high 
values along a north-south gradient (Fig. 4.4c), which is not associated with fire disturbance history.  

When comparing remotely sensed estimates with inventory-based estimates, MODIS estimates exhibited 
the greatest correlation with inventory-based estimates (r = 0.54, P < 0.01; Table 4.2), when compared to 
GLAS (r = 0. 50, P < 0.01; Table 4.2) or ASAR estimates (r = 0.26, P < 0.01; Table 4.2). At the scale of 2 
km2, correlations among remotely sensed AGB estimates of MODIS, GLAS and ASAR were weak to 
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moderate: ASAR vs GLAS, r = 0.37, P < 0.01; ASAR vs MODIS, r = 0.55, P < 0.01; GLAS vs MODIS, r = 

0.38, P < 0.01 (Table 4.2).  

Table 4-2. Pearson correlations between each of MODIS, GLAS, ASAR and inventory based AGB estimates after 
accounting for spatial autocorrelation*. 

 MODIS GLAS ASAR 

Inventory based 0.54 0.50 0.26 

MODIS  0.36 0.55 

GLAS   0.37 

*P < 0.01 
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Figure 4.4. Maps of AGB at the scale of 2 km2 based on: inventory data (a); MODIS data obtained from Beaudoin et al. 
(2014) (b); GLAS data (c); ASAR data obtained from Thurner et al. (2014) (d) 
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4.04.03 Spatial analysis of differences between inventory and remotely sensed 
biomass estimates  

We detected significant positive spatial autocorrelations, when spatially analyzing differences between 

inventory and remotely sensed biomass estimates (Global Moran’s I, distances < 20 km: MODIS 

estimates, I = 0.26, P < 0.01; GLAS estimates, I = 0.31, P < 0.01; ASAR estimates, I = 0.27, P < 0.01). 

Further analysis of differences between inventory and remotely sensed biomass estimates using Anselin’s 

local Moran I (Anselin et al., 1995) indicated significant spatial clusters that were spatially linked to TSLF 

(Supplementary material, Figs. A.1c, A.2c, A.3c).   

When we compared differences between inventory and MODIS estimates (inventory minus MODIS 

estimates) in recently disturbed cells (TSLF < 30 years), differences were between -2 to 2 Gg km-2, 

matching low-similarity clusters (low values in a low-value neighborhood) (Supplementary material Figs. 

A.1a, A.1b). Differences increased (between 2 and 6 Gg km-2) with increasing TSLF, especially in the 

eastern part of the study region, linked to high-similarity spatial-clusters (high values in a high-value 

neighborhood) (Supplementary material Fig. A.1c). High-dissimilarity spatial clusters (high values in a low 

value neighborhood) were mixed with low-similarity clusters (low values in a low value neighborhood).  

When analyzing differences between inventory and GLAS estimates (inventory minus GLAS estimates), 

cells with TSLF < 30 years exhibited values between -6 and 0 Gg km-2, indicating GLAS biomass values 

that were higher than inventory-based ones in recently burned areas and linked to low-similarity clusters 

(Supplementary material Figs. A.2a, A.2b). With increasing TSLF, however, positive differences were 

observed (0-4 Gg km-2), indicating lower GLAS biomass values than inventory-based ones, corresponding 

to high-similarity clusters (Supplementary material Fig. A.2c).  

Mapped differences between inventory based and ASAR biomass estimates (inventory minus ASAR 

estimates) showed that most cells had values ranging from 0 to 8 Gg km-2, indicating lower ASAR 

biomass values. These were associated with two types of clusters, i.e., high-similarity clusters and high-

dissimilarity clusters (Supplementary material Figs. A.3b, A.3c). Differences also tended to increase with 

increasing TSLF. Low-dissimilarity and low-similarity clusters were infrequent at the scale of the training 

area.  

4.04.04 Detecting potential ancillary variables for remotely sensed AGB 
estimation  

The relative proportions of cover density classes at the 2-km2 scale were revealed as the most important 

potential ancillary variables when training RF models with differences between remotely sensed (MODIS, 

GLAS, ASAR) and inventory-based estimates (Figs. 4.5a-c). Other important variables were the relative 

proportions of both dominant surficial deposits (undifferentiated tills with moderate to abundant stoniness, 

i.e., MAM, MM; Table 1), and stony surficial deposits (ROC, Table 1). The RF models explained from 50 
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to 28% of variation differences observed between remotely sensed and inventory-based estimates 

(MODIS, r2 = 0.50, RMSE = 1.36 Gg km-2; GLAS, r2 = 0.48, RMSE = 1.56 Gg km-2; ASAR, r2 = 0.28, 

RMSE = 1.97 Gg km-2; Figs. 4.5d-f).   

Differences between inventory-based and remotely sensed estimates generally increased as a function of 

the percentage of closed cover (summed frequency of three cover density classes: > 81 %, 61-80 %, 41-

60 %) (Figs. 4.6a-c). We also identified TSLF as a potential alternative variable for canopy cover density 

(Figs. 4.7a-c) to reduce the discrepancy between remotely sensed and inventory-based estimates. 

Indeed, the percentages of variation that was explained by models including TSLF (MODIS, r2 = 0.47, 

RMSE = 1.47 Gg km-2; GLAS, r2 = 0.47, RMSE = 1.57 Gg km-2; ASAR, r2 = 0.23, RMSE = 2.02 Gg km-2; 

Figs. 4.7d-f) were similar to those of models relying upon the abundances of cover density classes.   

4.04.05 AGB yield curves with remotely sensed products 

Correlations were moderate between TSLF and remotely sensed AGB estimates at the scale of 2-km2 

(MODIS: r = 0.54, P < 0.01; GLAS: r = 0.32, P < 0.01; ASAR: r = 0.47, P < 0.01). These correlations were 

lower than the correlation between inventory-based estimates and TSLF (r = 0.82, P < 0.01). AGB yield 

curves that were based on MODIS estimates exhibited an expected trend of biomass increase as a 

function of TSLF until 60 to 90 years had elapsed, and a decrease thereafter, which consistent with 

curves that were based on inventory data, but with lower median values (Figs. 4.8a-b). AGB estimates 

that were based on GLAS data showed unexpectedly high values in recently disturbed 2-km2 cells (TSLF 

< 30 years) (Fig. 4.8c). AGB yield curves from ASAR data exhibited a comparable trend of biomass 

increase as a function of TSLF (Fig. 4.8d), but their median values were consistently lower than GLAS, 

MODIS and inventory-based estimates.  
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Figure 4.5 Top-six variables ranked by RF models used to explain the differences observed between remotely sensed and inventory based AGB estimates with relative frequencies of SIFORT 
attributes (Table 4.1) and observed TSLF: MODIS (a); GLAS (b); and ASAR (c); density plots of observed vs predicted AGB differences between inventories based and remotely sensed AGB 
estimates: MODIS (d), GLAS (e), and ASAR data (f).   
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Figure 4.6. Box-and-whisker plots of differences observed between inventory based AGB estimates and biomass estimates of MODIS (a), GLAS (b), and ASAR (c), regrouped by abundance classes of 
canopy closed cover density. 
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Figure 4.7. Top-six variables ranked by RF models used to explain the differences observed between remotely sensed and inventory based AGB estimates when abundances of cover canopy density 
classes are removed from the list of potential explanatory variables: MODIS, (a); GLAS, (b); and ASAR, (c); density plots of observed vs predicted AGB differences between remotely sensed and 
inventory based AGB estimates: MODIS (d); GLAS (e); and ASAR data (f).   



93 
 

 
Figure 4.8. Box-and-whisker plots of AGB estimates based on inventory data (a), MODIS (b), GLAS (c), and ASAR data (d) as a function of TSLF at the 2-km2 scale. 
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4.05 Discussion  

4.05.01 Interpreting covariation and spatial distribution of biomass estimates 

Our comparison results are affected by the different physical principles of data acquisition in sensors 

(optical, LiDAR and radar) at different spatial resolutions, sampling modes, and also methods used for 

generating AGB at a continental, national or regional scale.  For example, with coarser scales, water, 

open areas, and infrastructure, etc. are subsumed in the pixels and influence the spectral response which 

affects AGB estimations. The GLAS (active optical, point-based) footprint size is 65 m, therefore sampling 

only 7% of the pixels, in which only a fraction of waveforms come from forest canopies. Furthermore, 

averaged canopy height values were predicted for areas not covered by GLAS waveform based on 

regression between footprint level LiDAR‐derived canopy height estimates and spatially continuous 

ancillary variables from MODIS data (Simard et al., 2011). ASAR AGB estimates are based on a physical 

model of retrieval of growing stock volume from radar backscatter coefficient which was validated with 

ground data but only at a regional scale.   

Our analysis revealed a low degree of consistency at the 2-km2 scale between estimates that were based 

on field inventory data and remotely sensed biomass estimates (Figs. 4.5a-c), particularly in the case of 

ASAR data. This response can be attributed to the acquisition of ASAR estimates at the pan-terrestrial 

scale, while GLAS and MODIS estimates were obtained using forest inventory data or Canada’s national 

forest inventory photo-plot data located within the study area. An another reason for low correlation 

between ASAR and inventory estimates is that ASAR biomass estimates were based upon generic 

biomass conversion factors from a global wood density database (Chave et al., 2009), while our 

inventory-based estimates were obtained using region-specific allometric equations.   

Among the three remote sensing products, MODIS estimates exhibited the highest correlation with 

inventory-based estimates (r = 0.54, P < 0.01; Table 4.2) when compared to GLAS and ASAR estimates. 

The spatial gradient of biomass that was based on MODIS is similar to the patterns that were observed 

with the inventory data. MODIS estimates were obtained from Canada’s National forest inventory photo-

plots, which had been calibrated against provincial forest maps and standing volume data. In fact, MODIS 

and inventory-based AGB models use similar data, but differed in their modelling approaches, including 

different allometric equations to extrapolate AGB obtained from plots to the landscape. Despite such a 

high correlation, MODIS AGB estimates were consistently lower than inventory estimates all across our 

training area (Fig. 4.8b), and differences between inventory and MODIS biomass estimates were greatly 

related to observed TSLF (Figs. 4.7a, 4.7d). These differences were lower for recently disturbed cells 

(TSLF < 30 years) and increased with increasing TSLF, particularly for cells with TSLF equal to 60 to 90 

years (Fig. 4.8b). The latter are linked to the abundance of closed canopy cover density estimates (> 75 

%) with high biomass levels at a 2-km2 scale within our training area (Fig. 4.6a; Irulappa Pillai 
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Vijayakumar et al., 2016). This may be related to the underestimation related to a saturation issue in the 

regions of high biomass (Beaudoin et al., 2014) and also to underestimation of large observed AGB 

values and overestimation of small observed AGB values, which is a typical problem of the k-NN method 

(Magnussen et al., 2010) used to generate the MODIS estimates. 

We followed the approach of Zhang et al. (2014b) for developing an AGB model based upon GLAS data 

since they found a strong correlation (r = 0.70) between observed canopy height and AGB at the plot level 

(total n = 1968: 400 to 8092-m2: n = 1478; 100 x 100 m: n = 490). Our analysis, in contrast, indicated only 

a moderate correlation (r = 0.43, P < 0.01) between observed canopy height and AGB of ground plots 

(400-m2, n = 8739), together with weak model accuracy for AGB prediction at the plot level (R2 = 0.29). 

Differences in plot selection can explain these contrasting results, since Zhang et al. (2014b) calibrated 

their relationships with 75% of plots that had been selected in regions of high productivity. Tree species in 

high productivity regions are generally taller and have higher volumes and biomass, whereas in less 

productive regions, other factors, such as stand density and species composition, might also become 

important (Irulappa Pillai Vijayakumar et al., 2016). This would imply that canopy height alone cannot fully 

explain variation of AGB variation for our region of study, which contains a range of site productivities. 

AGB estimates and GLAS-measured canopy height were not correlated at the plot level in our training 

region (r = -0.03, P > 0.05) and this lack of a relationship may point to a difference in scale between forest 

inventory observations and GLAS acquisitions (e.g., Zhao et al., 2009). Canopy height may be an 

important variable to estimate biomass at the plot level but not at the spatial scale of 1 km2. Because of 

this potential scale mismatch problem, the GLAS-derived biomass map (Fig. 4.4c) showed greatly 

contrasting spatial differences when compared to spatial patterns of AGB derived from MODIS, ASAR 

and inventory-based estimates. This mismatch can also explain the unexpectedly high values in areas 

that were recently disturbed by fire (Fig. 4.8d).  

Nelson et al. (2010) calibrated airborne estimates of AGB with GLAS waveform metrics for the 

commercial forests in Quebec (area, 1.27 x 106 km2). They found a weak relationship (R2 = 0.3-0.4, their 

Fig. 2) in the northern zone located between 47o N and 52o N, which corresponds to our study region (Fig. 

4.2). R2 values (GLAS heights vs airborne laser heights) were below 0.2 on average and maximum 

airborne laser heights of 6.6 m and 11.9 m, respectively. Pflugmacher et al. (2008) also suggested that 

GLAS estimates of biomass would be valuable on a global scale, but would differ from inventory 

estimates at a regional scale. Margolis et al. (2015), however, have reported higher R2 values (0.59-0.79) 

for predicting AGB using GLAS height metrics across the boreal forest of North America (area, 3.7 million 

km2), by scaling up airborne estimates of AGB with ICESAT-GLAS height metrics.   
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4.05.02 Consistency of results among comparable studies   

Our results of weak to moderate correlations between remotely sensed biomass estimates for boreal 

forests in eastern Canada agree with those from similar studies. Mitchard et al. (2013) compared two 

aboveground biomass maps (Saatchi et al., 2011b; Baccini et al., 2012) for tropical forests in Africa, 

South America and Asia (area, 2.5 billion ha) obtained from GLAS data using different mapping methods. 

They found substantial differences between the two maps for particular regions, but estimates from both 

maps were consistent at the country level. For the Colombian Amazon forests (area of 165,000 km2), the 

GLAS biomass maps of Saatchi et al. (2011b) and Baccini et al. (2012) overestimated AGB by 23% and 

42 % when compared with the map of Asner et al. (2012), which was derived from field plots and airborne 

LiDAR. Mitchard et al. (2014) compared the GLAS biomass maps of Saatchi et al. (2011b) and Baccini et 

al. (2012) to a ground-plot dataset (n = 413, Amazon Forest inventory network; Malhi et al., 2002) across 

tropical forests of the Amazon basin (area, ~ 6.8 x 108 ha; Espírito-Santo et al., 2014). Both maps over- or 

under-estimated ground-based estimates of AGB by more than 25% and also showed different spatial 

patterns. The observed gradient of increasing AGB from SW to NE Amazonia was not replicated by either 

remote-sensed product. They indicated that the global relationships between GLAS and biomass could 

not capture variation in forest biomass throughout the Amazon forest because the map did not account for 

regional variation in wood density and tree diameter: height relationships.  

Avitabile et al. (2011) compared six biomass maps that were based on Landsat, MODIS and global land 

cover datasets (Drigo, 2006; Gibbs and Brown, 2007; Baccini et al., 2008; Ruesch and Gibbs, 2008; 

Henry, 2010; Avitabile et al., 2012) for tropical forests in Uganda (area, 241,551 km2) against a reference 

map that was based on country-specific field data (n = 3510 plots; size, 50 × 50 m) and a national land 

cover dataset. They found a lack of agreement between the remote sensing products (ranging from 343 to 

2201 Tg, their Table 2) and also different mapped distribution patterns.  The remote sensing products 

were also found to be biased (-4.8 Mg/ha to 51.1 Mg/ha; Avitabile et al., 2011, their Table. 3) with respect 

to the field plots. Finally, Margolis et al. (2015) compared GLAS AGB estimates of Neigh et al. (2003) with 

AGB estimates based on MODIS data (Beaudoin et al., 2014) for 3.7 million km2 of the North American 

boreal forest. Differences in mean AGB densities between both maps (GLAS–MODIS) at the scale of 

World Wildlife Fund eco-regions for eastern Canadian forests and central Canadian Shield forests were 

0.6 and 3.2 Mg ha-1, respectively (Margolis et al., 2015, their Table 13). GLAS estimates of total eco-

region AGB were consistently higher than MODIS estimates for 16 of 18 the eco-regions in Canada 

(Margolis et al., 2015).  

4.05.03 Potential ancillary variables for remotely sensed AGB estimation 

Our results reveal that the relative proportions of forest cover density classes were the most effective 

variables in reducing the differences between remotely sensed (MODIS, GLAS, ASAR) and inventory-

based estimates. This is not surprising because cover density is linked with signal saturation in MODIS 
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and ASAR. This result underscores the absence of cover density in the AGB model that was based on 

GLAS data and which had much influence on inventory-based estimates.   

Problems of scale-matching were also identified in the present study. In North American boreal 

ecosystems, successional dynamics are characterized by fire disturbances and post-fire vegetation 

recovery, which affect forest carbon stocks (Jones et al., 2013). Fire disturbances occur at a scale greater 

than most existing spatial resolutions of satellite data (Frolking et al., 2009; Bartels et al., 2016). In this 

regard, at a 2-km2 scale, we found that TSLF could provide potential information for estimating biomass 

with single date reflectance data and also served proxy for canopy cover density in potentially rectifying 

problems of saturating signals. Disturbance history and vegetation recovery information, together with 

biophysical factors (surficial deposits), represent potential factors that require greater attention for more 

accurate estimations of AGB over large areas of the boreal forest.   

The inclusion of ancillary variables when using remotely sensed data is well established. In mixed-conifer 

forests of Blue Mountains of eastern Oregon, USA (area, 830 km2), Pflugmacher et al. (2014) 

demonstrated the importance of including a succession trajectory and adding disturbance histories prior to 

the dates on which estimates were made to improve AGB predictions. Main-Knorn et al. (2011) found that 

adding tree height or stand volume as predictors to Landsat TM data could significantly improve 

performance for estimating biomass in coniferous forests (area, ~116,000 ha) of the Carpathian 

Mountains (border regions of Poland, Czech Republic and Slovakia). For tropical forests of the Amazon 

basin (area, ~ 6.8 x 108 ha; Espírito-Santo et al., 2014), Mitchard et al., (2014) also illustrated the 

significance of adding spatial layers of species information to the GLAS data for more accurate estimates 

of biomass.  

Forest disturbance and recovery play a major role in global C budgets (Houghton, 2005). In this context, 

our results of showing the potential interest of generating maps of TSLF, based on the understanding of 

forest succession dynamics are therefore also applicable to other ecosystems (tropical and temperate). 

Frolking et al. (2009) have likewise emphasized the importance of combining field data with remote 

sensing for generating information on disturbance histories and recovery patterns to accurately estimate 

biomass across forests world-wide. The current condition of a forest stand is related to its disturbance and 

recovery history (Pflugmacher et al., 2012). Time series analysis of satellite data would provide detailed 

information on prior canopy recovery/vegetation trend conditions that were based on disturbance histories 

(Main-Knorn et al., 2013; Ahmed et al., 2014; Madoui et al., 2015). Chu and Guo (2014) have proposed 

merging different remote sensing data with field data for generating high-quality and quantitative 

information on post-fire canopy recovery patterns.  
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4.06 Conclusion  

We undertook this study to assess the spatial variation in AGB differences from models that were based 

on different remote sensing data collected over a large area of boreal forest. The basic goal was to help 

improve their accuracy. To do this, we compared MODIS, GLAS and ASAR estimates with inventory-

based estimates that were derived from forest inventory plots and forest maps at a 2-km2 scale over a 

large spatial extent (> 200,000 km2).  Correlations between remote sensing and inventory-based 

estimates were weak to moderate. Spatial distributions of AGB that were estimated from MODIS, 

inventory data and ASAR agreed with one another with an expected pattern that was related to fire 

regime; the spatial pattern provided by GLAS data was different. Our analysis for identifying ancillary 

variables indicated the potential for enhancing the relationship between reflectance data and AGB through 

the incorporation of disturbance histories and vegetation recovery trends. Not surprisingly, the relative 

proportion of canopy cover density that was linked to signal saturation can reduce the differences 

between inventory and remotely sensed biomass estimates. TSLF may represent a proxy for representing 

the relative proportion of canopy cover density at the 2-km2 scale, which would potentially rectify problems 

of signal saturation.  

Looking forward, the future of remote sensing of vegetation biomass relies on LiDAR technology for 

studying trees in a three-dimensional context. For instance, airborne LiDAR is preferred to spaceborne 

LiDAR to estimate AGB, but its use remains confined to relatively small study areas due to prohibitive 

acquisition costs (Zolkas et al., 2013). Combining airborne LiDAR metrics with spaceborne LiDAR 

measurements may by pass this problem of cost (e.g. Margolis et al., 2015) and in conjunction with 

information on disturbance history and surficial geological substrate information may provide still more 

accurate AGB estimates.  Furthermore, we also have demonstrated the usefulness of scaling up to 

integrate ground plots with remotely sensed data up to a scale at which disturbances tend to occur. We 

also suggest that adequate measures of uncertainty should be provided with remotely sensed biomass 

estimates by using spatially exhaustive ground-plot data. Our results also show that vertical canopy 

structure information alone is insufficient for predicting biomass in our study region. We therefore propose 

the inclusion of metrics that relate to both horizontal and vertical canopy structures (Lu et al., 2014) and 

factors relevant for forest disturbance and recovery patterns (e.g. TSLF, surficial deposits) for AGB 

estimation.  

4. 07 Acknowledgements 

This study was supported by the Fonds Québécois de la Recherche sur la Nature et les Technologies. 

The Direction des inventaires forestiers, MFFPQ (Ministère de la Forêt, de la Faune et des Parcs du 

Québec), provided forest inventory plots, forest maps and the SOPFEU fire history map, for which we are 

grateful. We thank Héloïse Le Goff, Annie-Claude Bélisle and Daniel Lesieur for their fire history maps, 

and Glenda Russo for helping us to access AGB maps that were based on MODIS data from Canada's 



99 
 

National Forest Inventory portal. Martin Thurner graciously provided ASAR biomass estimates. We also 

thank Marc Simard for freely allowing us to access GLAS canopy height data. Rémi Saint-Amant provided 

the normal climate database from the NCEP-NCAR Twentieth Century Reanalysis project for the BioSIM 

simulations. We thank Dr. Mike Wulder (Research Scientist, Pacific Forestry Centre, Natural Resources 

Canada), Dr. Richard Fournier (Professor, Centre d’Applications et de Recherches en Télédétection, 

Université de Sherbrooke), Dr. Martin Schlerf (Senior Research Associate in Earth Observation, 

Luxembourg Institute of Science and Technology) and Dr. Steven Cumming (Professor, Département des 

sciences du bois et de la forêt, Université Laval) for providing very useful comments on the final version of 

this manuscript and W.F.J. Parsons (Centre d’Étude de la Forêt) for English editing.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



100 
 

4.08 References  

Ahmed, O.S., Franklin, S.E., Wulder, M.A., 2014. Interpretation of forest disturbance using a time series 
of Landsat imagery and canopy structure from airborne lidar. Can. J. Remote Sens. 39, 521–542. 
http://dx.doi.org/10.5589/m14-004. 

Amiro, B. D., Stocks, B. J., Alexander, M. E., Flannigan, M. D., Wotton. B. M., 2001. Fire, climate change, 
carbon and fuel management in the Canadian boreal forest. Int. J. Wildl. Fire 10, 405–413. 
http://dx.doi.org/10.1071/WF03066.  

Asner, G P, Clark, J.K., Mascaro, J., Galindo García, G.A., Chadwick, K.D., Navarrete Encinales, D.A., 
Paez-Acosta, G., Cabrera Montenegro, E., Kennedy-Bowdoin, T., Duque, Á., Balaji, A., von Hildebrand, 
P., Maatoug, L., Phillips Bernal, J.F., Yepes Quintero, A.P., Knapp, D.E., García Dávila, M.C., Jacobson, 
J., Ordóñez, M.F., 2012. High-resolution mapping of forest carbon stocks in the Colombian Amazon. 
Biogeosciences 9, 2683–2696. http://dx.doi.org/10.5194/bg-9-2683-2012. 

Asner, G.P., Mascaro, J., Muller-Landau, H.C., Vieilledent, G., Vaudry, R., Rasamoelina, M., Hall, J.S., 
van Breugel, M., 2012. A universal airborne LiDAR approach for tropical forest carbon mapping. 
Oecologia 168, 1147–1160. http://dx.doi.org/10.1007/s00442-011-2165-z. 

Asner, G.P., Powell, G.V.N., Mascaro, J., Knapp, D.E., Clark, J.K., Jacobson, J., Kennedy-Bowdoin, T., 
Balaji, A., Paez-Acosta, G., Victoria, E., Secada, L., Valqui, M., Hughes, R.F., 2010. High-resolution forest 
carbon stocks and emissions in the Amazon. Proc. Natl. Acad. Sci. 107, 16738–16742. 
http://dx.doi.org/10.1073/pnas.1004875107. 

Avitabile, V., Baccini, A., Friedl, M.A., Schmullius, C., 2012. Capabilities and limitations of Landsat and 
land cover data for aboveground woody biomass estimation of Uganda. Remote Sens. Environ. 117, 366–
380. http://dx.doi.org/10.1016/j.rse.2011.10.012.  

Avitabile, V., Herold, M., Henry, M., Schmullius, C., 2011. Mapping biomass with remote sensing: a 
comparison of methods for the case study of Uganda. Carbon Balance Manag. 6, 1–14. 
http://dx.doi.org/10.1186/1750-0680-6-7.  

Baccini, A., Goetz, S.J., Walker, W.S., Laporte, N.T., Sun, M., Sulla-Menashe, D., Hackler, J., Beck, 
P.S.A., Dubayah, R., Friedl, M.A., Samanta, S., Houghton, R.A., 2012. Estimated carbon dioxide 
emissions from tropical deforestation improved by carbon-density maps. Nat. Clim. Chang. 2, 182–185. 
http://dx.doi.org/10.1038/nclimate1354. 

Baccini, A., Laporte, N., Goetz, S.J., Sun, M., Dong, H., 2008. A first map of tropical Africa’s above-
ground biomass derived from satellite imagery. Environ. Res. Lett. 3, 45011. 
http://dx.doi.org/10.1088/1748-9326/3/4/045011. 

Bartels, S.F., Chen, H.Y.H., Wulder, M.A, White, J., 2016. Trends in post-disturbance recovery rates of 
Canada's forests following wildfire and harvest. For. Ecol. Manage. 361, 194–207. 
http://dx.doi.org/10.1016/j.foreco.2015.11.015 

Beaudoin, A., Bernier, P.Y., Guindon, L., Villemaire, P., Guo, X.J., Stinson, G., Bergeron, T., Magnussen, 
S., Hall, R.J., 2014. Mapping attributes of Canada’s forests at moderate resolution through kNN and 
MODIS imagery. Can. J. For. Res. 44, 521–532. http://dx.doi.org/10.1139/cjfr-2013-0401.  

Bélisle, A.C., Gauthier, S., Cyr, D., Bergeron, Y., Morin, H., 2011. Fire regime and old-growth boreal 
forests in central Québec, Canada: an ecosystem management perspective. Silva Fenn. 45, 889–908. 
http://dx.doi.org/10.14214/sf.77.  



101 
 

Bergeron, Y., Gauthier, S., Flannigan, M., Kafka, V., 2004. Fire regimes at the transition between 
mixedwood and moniferous boreal forest in northwestern Quebec. Ecology 85, 1916–1932. 
http://dx.doi.org/10.1890/02-0716.  

Bergeron, Y., Leduc, A., Harvey, B.D., Gauthier, S., 2002. Natural fire regime: a guide for sustainable 
management of the Canadian boreal forest. Silva Fenn. 36, 81–95. 
http://www.metla.eu/silvafennica/full/sf36/sf361081.pdf. 

Bouchard, M., Pothier, D., Gauthier, S., 2008. Fire return intervals and tree species succession in the 
North Shore region of eastern Quebec. Can. J. For. Res. 38, 1621–1633. http://dx.doi.org/10.1139/X07-
201.  

Boudreau, J., Nelson, R.F., Margolis, H.A., Beaudoin, A., Guindon, L., Kimes, D.S., 2008. Regional 
aboveground forest biomass using airborne and spaceborne LiDAR in Québec. Remote Sens. Environ. 
112, 3876–3890. http://dx.doi.org/10.1016/j.rse.2008.06.003.  

Bradshaw, C.J.A., Warkentin, I.G., 2015. Global estimates of boreal forest carbon stocks and flux. Glob. 
Planet. Change 128, 24–30. http://dx.doi.org/10.1016/j.gloplacha.2015.02.004. 

Buech, R.R., Rugg, D.J., 1989. Biomass relations of shrub components and their generality. For. Ecol. 
Manage. 26, 257–264. http://dx.doi.org/10.1016/0378-1127(89)90086-8 

Burkhart, H.E., Tomé, M., 2012. Modeling forest trees and stands. Springer Science & Business Media. 

Chaieb, C., Fenton, N.J., Lafleur, B., Bergeron, Y., 2015. Can we use forest inventory mapping as a 
coarse filter in ecosystem based management in the black spruce boreal forest? Forests 6, 1195–1207. 
http://dx.doi.org/10.3390/f6041195. 

Chave, J., Coomes, D., Jansen, S., Lewis, S. L., Swenson, N. G., Zanne, A. E., 2009. Towards a 
worldwide wood economics spectrum. Ecol. Lett. 12, 351-366. http://dx.doi.org/10.1016/ 10.1111/j.1461-
0248.2009.01285.x. 

Chi, H., Sun, G., Huang, J., Guo, Z., Ni, W., Fu, A., 2015. National forest aboveground biomass mapping 
from ICESat/GLAS Data and MODIS Imagery in China. Remote Sens. 7, 5534-5564.  

Chu, T., Guo, X., 2014. Remote sensing techniques in monitoring post-fire effects and patterns of forest 
recovery in Boreal forest regions: A review. Remote Sens. 6, 470-520. 

Compo, G.P., Whitaker, J.S., Sardeshmukh, P.D., Matsui, N., Allan, R.J., Yin, X., Gleason, B.E., Vose, 
R.S., Rutledge, G., Bessemoulin, P., Brönnimann, S., Brunet, M., Crouthamel, R.I., Grant, A.N., 
Groisman, P.Y., Jones, P.D., Kruk, M.C., Kruger, A.C., Marshall, G.J., Maugeri, M., Mok, H.Y., Nordli, Ø., 
Ross, T.F., Trigo, R.M., Wang, X.L., Woodruff, S.D., Worley, S.J., 2011. The twentieth century reanalysis 
project. Q. J. Roy. Meteorol. Soc. 137, 1–28. http://dx.doi.org/10.1002/qj.776.   

Dobson, M. C., Ulaby, F. T., LeToan, T., Beaudoin, A., Kasischke, E. S., Christensen, N., 1992. 
Dependence of radar backscatter on coniferous forest biomass. IEEE Trans. Geosci. Remote Sens.  30, 
412-415. 

Dormann, C.F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., Garcia Marquéz, J.R., Gruber, B., 
Lafourcade, B., Leitão, P.J., Münkemüller, T., McClean, C., Osborne, P.E., Reineking, B., Schröder, B., 
Skidmore, A.K., Zurell, D., Lautenbach, S., 2013. Collinearity: a review of methods to deal with it and a 
simulation study evaluating their performance. Ecography, 36, 27–46. http://dx.doi.org/10.1111/j.1600-
0587.2012.07348.x.  



102 
 

Drake, J.B., Knox, R.G., Dubayah, R.O., Clark, D.B., Condit, R., Blair, J.B., Hofton, M., 2003. Above-
ground biomass estimation in closed canopy Neotropical forests using lidar remote sensing: factors 
affecting the generality of relationships. Glob. Ecol. Biogeogr. 12, 147–159. 
http://dx.doi.org/10.1046/j.1466-822X.2003.00010.x. 

Drigo, R., 2006. WISDOM - East Africa. Woodfuel Integrated Supply/DemandOverview Mapping 
(WISDOM) Methodology. Spatial woodfuel production and consumption analysis of selected African 
countries. Wood Energy Working Paper: FAO Forestry Department  http://agris.fao.org/agris-
search/search.do?recordID=XF2007431847. (Accessed 1. 07. 2015) 

Dunne, T., Leopold, L.B., 1978. Water in Environmental Planning. 1st ed. W.H. Freeman & Company, 
San Francisco. pp. 566–580. 

Espírito-Santo, F.D.B., Gloor, M., Keller, M., Malhi, Y., Saatchi, S., Nelson, B., Junior, R.C.O., Pereira, C., 
Lloyd, J., Frolking, S., Palace, M., Shimabukuro, Y.E., Duarte, V., Mendoza, A.M., López-González, G., 
Baker, T.R., Feldpausch, T.R., Brienen, R.J.W., Asner, G.P., Boyd, D.S., Phillips, O.L., 2014. Size and 
frequency of natural forest disturbances and the Amazon forest carbon balance. Nat Commun 5, Art. No. 
3434. http://dx.doi.org/10.1038 /ncomms4434.  

FAO, 2015. Global Forest Resources Assessment 2015. How are the world’s forests changing?. 
http://www.fao.org/3/a-i4793e.pdf. (Accessed 29.10.2015) 

Farr, T. G., et al. 2007. The Shuttle Radar Topography Mission, Rev. Geophys. 45, RG2004, 
http://dx.doi.org/10.1029/2005RG000183. 

Frelich, L.E., Reich, P.B., 1999. Neighborhood effects, disturbance severity, and community stability in 
forests. Ecosystems 2, 151–166. http://dx.doi.org/10.1007/s100219900066 

Frolking, S., Palace, M.W., Clark, D.B., Chambers, J Q., Shugart, H.H., Hurtt, G.C., 2009. Forest 
disturbance and recovery: A general review in the context of spaceborne remote sensing of impacts on 
aboveground biomass and canopy structure. J. Geophys. Res.-Biogeo. 114, G2. 
http://dx.doi.org/10.1029/2008JG000911. 

Gibbs, H. K., Brown, S. 2007. Geographical distribution of woody biomass carbon in tropical Africa: An 
Updated Database for 2000. Oak Ridge, Tennessee: Carbon Dioxide Information Center, Oak Ridge 
National Laboratory. http://cdiac.ornl.gov/epubs/ndp/ndp055/ndp055b. html.  (Accessed 21. 10. 2015) 

Gillis, M.D., Omule, A.Y., Brierley, T., 2005. Monitoring Canada’s forests: The National Forest Inventory. 
For. Chron. 81, 214–221. http://dx.doi.org/10.5558/tfc81214-2.  

Girardin, M.P., Ali, A.A., Carcaillet, C., Gauthier, S., Hely, C., Le Goff, H., Terrier, A., Bergeron, Y., 2013. 
Fire in managed forests of eastern Canada: Risks and options. For. Ecol. Manage. 294, 238–249. 
http://dx.doi.org/10.1016/j.foreco.2012.07.005. 

Girardin, M.P., Guo, X.J., Bernier, P.Y., Raulier, F., Gauthier, S., 2012. Changes in growth of pristine 
boreal North American forests from 1950 to 2005 driven by landscape demographics and species traits. 
Biogeosci. Discuss. 9, 1021–1053. http://dx.doi.org/ 10.5194/bg-9-2523-2012. 

Gower, S.T., Vogel, J.G., Norman, J.M., Kucharik, C.J., Steele, S.J., Stow, T.K., 1997. Carbon distribution 
and aboveground net primary production in aspen, jack pine, and black spruce stands in Saskatchewan 
and Manitoba, Canada. J. Geophys. Res. Atmos. 102, 29029–29041. 
http://dx.doi.org/10.1029/97JD02317. 

Hansen, M., DeFries, R. S., Townshend, J. R. G., Carroll, M., Dimiceli, C., Sohlberg, R. A., 2003. Global 
percent tree cover at a spatial resolution of 500 meters: First results of the MODIS vegetation continuous 



103 
 

fields algorithm, Earth Interact. 7, 1–15, http://dx.doi.org/10.1175/1087-
3562(2003)007<0001:GPTCAA>2.0.CO;2. 

Harden, J.W., Trumbore, S.E., Stocks, B.J., Hirsch, A., Gower, S.T., O’neill, K.P., Kasischke, E.S., 2000. 
The role of fire in the boreal carbon budget. Glob. Chang. Biol. 6, 174–184. 
http://dx.doi.org/10.1046/j.1365-2486.2000.06019.x.  

Henry M., 2010. Carbon stocks and dynamics in Sub-Saharan Africa. PhD Thesis, University of Tuscia, 
AgroParisTech/ENGREF; 2010 
http://www.agroparistech.fr/geeft/Downloads/Pub/Theses/PhD/Henry_PhD_thesis.pdf  (Accessed, 
September 6th, 2015) 

Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., Jarvis, A., 2005. Very high resolution 
interpolated climate surfaces for global land areas, Int. J. Climatol. 25, 1965–1978. 
http://dx.doi.org/10.1002/joc.1276. 

Hill, T. C., Williams, M., Bloom, A. A., Mitchard, E. T., Ryan, C. M., 2013. Are inventory based and 
remotely sensed above-ground biomass estimates consistent? PLoS ONE 8, e74170. 
http://dx.doi.org/10.1371/journal.pone.0074170 

Houghton, R.A., 2005. Aboveground Forest Biomass and the Global Carbon Balance. Glob. Chang. Biol. 
11, 945–958. http://dx.doi.org/10.1111/j.1365-2486.2005.00955.x. 

Irulappa Pillai Vijayakumar, D. B., Raulier, F., Bernier, P. Y., Gauthier, S., Bergeron, Y., Pothier, D., 2015. 
Lengthening the historical records of fire history over large areas of boreal forest in eastern Canada using 
empirical relationships. For. Ecol. Manage. 347, 30–39. http://dx.doi.org/10.1016/j.foreco.2015.03.011.  

Irulappa Pillai Vijayakumar, D. B., Raulier, F., Bernier, P. Y., Paré, D., Gauthier, S., Bergeron, Y., Pothier, 
D., 2016. Cover density recovery after fire disturbance controls landscape aboveground carbon biomass 
in the boreal forest of eastern Canada. For. Ecol. Manage. 360, 170–180. 
http://dx.doi.org/10.1016/j.foreco.2015.10.035.  

Jenkins, J.C., Chojnacky, D.C., Heath, L.S., Birdsey, R.A., 2004. Comprehensive database of diameter-
based biomass regressions for North American tree species. USDA Forest Service, Northeastern 
Research Station, Newton Square, PA. General Technical Report NE-319. 45 pp. 
http://svinet2.fs.fed.us/ne/durham/4104/papers/ne_gtr319_jenkins_and_others.pdf> (accessed 
19.09.2014) 

Jin, Y., Randerson, J.T., Goetz, S.J., Beck, P.S., Loranty, M.M., Goulden, M.L., 2012. The influence of 
burn severity on postfire vegetation recovery and albedo change during early succession in North 
American boreal forests. J. Geophys. Res.-Biogeo.117, G01036. http://dx.doi.org/10.1029/2011JG001886 

Jones, M. O., Kimball, J. S., Jones, L. A., 2013. Satellite microwave detection of boreal forest recovery 
from the extreme 2004 wildfires in Alaska and Canada. Glob. Change Biol. 19, 3111–3122. 
http://dx.doi.org/10.1111/gcb.12288. 

Johnson, E. A., Gutsell, S. L., 1994. Fire frequency models, methods and Interpretations. Adv. Ecol. Res. 
25, 239–287. 

Johnson, E.A., Miyanishi, K., Weir, J.M.H., 1998. Wildfires in the Western Canadian Boreal Forest: 
Landscape Patterns and Ecosystem Management. J. Veg. Sci. 9, 603–610. 
http://www.jstor.org/stable/3237276. 



104 
 

Johnstone, J.F., Hollingsworth, T.N., Chapin III, F.S., Mack, M.C., 2010. Changes in fire regime break the 
legacy lock on successional trajectories in Alaskan boreal forest. Glob. Change Biol. 16, 1281–1295. 
http://dx.doi.org/10.1111/j.1365-2486.2009.02051.x. 

Kasischke, E.S., Melack, J.M., Dobson, M.C., 1997. The use of imaging radars for ecological 
applications—A review. Remote Sens. Environ. 59, 141-156. http://dx.doi.org/10.1016/S0034-
4257(96)00148-4.  

Kummerow, C., Barnes, W., Kozu, T., Shiue, J., Simpson, J., 1998. The Tropical Rainfall Measuring 
Mission (TRMM) sensor package, J. Atmos. Oceanic Technol. 15, 809–817. 
http://dx.doi.org/10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2. 

Kursa, M.B, Rudnicki, W.R., 2010. Feature selection with the Boruta package. Journal of Statistical 
Software 36, 1–13. http://www.jstatsoft.org/v36/i11. 

Langner, A., Achard, F., Grassi, G., 2014. Can recent pan-tropical biomass maps be used to derive 
alternative Tier 1 values for reporting REDD+ activities under UNFCCC? Environ. Res. Lett. 9, 124008. 
http://dx.doi.org/10.1088/1748-9326/9/12/124008. 

Lambert, M.C., Ung, C.-H., Raulier. F., 2005. Canadian national tree aboveground biomass equations. 
Can. J. For. Res. 35, 1996–2018. http://dx.doi.org/10.1139/x05-112. 

Le Toan, T., Quegan, S., Davidson, M.W.J., Balzter, H., Paillou, P., Papathanassiou, K., Plummer, S., 
Rocca, F., Saatchi, S., Shugart, H. Ulander, L., 2011. The BIOMASS mission: Mapping global forest 
biomass to better understand the terrestrial carbon cycle. Remote Sens. Environ. 115, 2850-2860. 
http://dx.doi.org/10.1016/j.rse.2011.03.020.  

Lecomte, N., Simard, M., Fenton, N., Bergeron, Y., 2006. Fire severity and long-term ecosystem biomass 
dynamics in coniferous boreal forests of eastern Canada. Ecosystems 9, 1215–1230. 
http://dx.doi.org/10.1007/s10021-004-0168-x. 

Le Goff, H., Flannigan, M.D., Bergeron, Y., Girardin, M.P., 2007. Historical fire regime shifts related to 
climate teleconnections in the Waswanipi area, central Quebec, Canada. Int. J. Wildland Fire 16, 607–
618. http://dx.doi.org/10.1071/WF06151.  

Lefsky, M.A., Cohen, W.B., Harding, D.J., Parker, G.G., Acker, S.A., Gower, S.T., 2002. Lidar remote 
sensing of above‐ground biomass in three biomes. Glob. Ecol. Biogeogr. 11, 393–399. 
http://dx.doi.org/10.1046/j.1466-822x.2002.00303.x. 

Lefsky, M.A., Harding, D.J., Keller, M., Cohen, W.B., Carabajal, C.C., Del Bom Espirito-Santo, F., Hunter, 
M.O., de Oliveira, R., 2005. Estimates of forest canopy height and aboveground biomass using ICESat. 
Geophys. Res. Lett. 32, L22S02. http://dx.doi.org/10.1046/ 10.1029/2005GL023971.  

Lesieur, D., Gauthier, S., Bergeron, Y., 2002. Fire frequency and vegetation dynamics for the south-
central boreal forest of Quebec, Canada. Can. J. For. Res. 32, 1996–2009. http://dx.doi.org/10.1139/x02-
113.  

Lu, D., 2006. The potential and challenge of remote sensing‐based biomass estimation. Int. J. Remote 
Sens. 27, 1297–1328. http://dx.doi.org/10.1080/01431160500486732. 

Lu, D., Chen, Q., Wang, G., Liu, L., Li, G., Moran, E., 2014. A survey of remote sensing-based 
aboveground biomass estimation methods in forest ecosystems. Int. J. Digit. Earth, 1-43. 
http://dx.doi.org/10.1080/17538947.2014.990526.  



105 
 

McGuire, A.D., 2002. Ecosystem element cycling. Pages 614–618 in A. H. El-shaarawi and W. W. 
Piegorsch, editors. Encyclopedia of Environmetrics. John Wiley and Sons Ltd., Chichester, UK. 

Madoui, A., Gauthier, S., Leduc, A., Bergeron, Y., Valeria, O., 2015. Monitoring forest recovery following 
wildfire and harvest in boreal forests using satellite imagery. Forests, 6, 4105-4134. 
http://dx.doi.org/10.3390/f6114105.  

Magnussen, S., Tomppo, E., McRoberts, R.E., 2010. A model-assisted k-nearest neighbour approach to 
remove extrapolation bias. Scand. J. For. Res. 25, 174–184. 
http://dx.doi.org/10.1080/02827581003667348. 

Main-Knorn, M., Moisen, G.G., Healey, S.P., Keeton, W.S., Freeman, E.A., Hostert, P., 2011. Evaluating 
the remote sensing and inventory-based estimation of biomass in the Western Carpathians. Remote 
Sens. 3, 1427-1446. http://dx.doi.org/10.3390/rs3071427.  

Main-Knorn, M., Cohen, W.B., Kennedy, R.E., Grodzki, W., Pflugmacher, D., Griffiths, P., Hostert, P., 
2013. Monitoring coniferous forest biomass change using a Landsat trajectory-based approach. Remote 
Sens. Environ. 139, 277-290. http://dx.doi.org/10.1016/ j.rse.2013.08.010.  

Malhi, Y., 2012. The productivity, metabolism and carbon cycle of tropical forest vegetation. J. Ecol. 100, 
65–75. http://dx.doi.org/10.1111/j.1365-2745.2011.01916.x. 

Malhi, Y., Phillips, O.L., Lloyd, J., Baker, T., Wright, J., Almeida, S., et al., 2002. An international network 
to monitor the structure, composition and dynamics of Amazonian forests (RAINFOR). J. Veg. Sci. 13, 
439-450. http://dx.doi.org/10.1658/1100-9233(2002)013[0439:AINTMT]2.0.CO;2. 

Mansuy, N., Gauthier, S., Robitaille, A., Bergeron, Y., 2010. The effects of surficial deposit–drainage 
combinations on spatial variations of fire cycles in the boreal forest of eastern Canada. Int. J. Wildland 
Fire 19, 1083–1098. http://dx.doi.org/10.1071/WF09144. 

Mansuy, N., Gauthier, S., Robitaille, A., Bergeron, Y., 2012. Regional patterns of postfire canopy recovery 
in the northern boreal forest of Quebec: interactions between surficial deposit, climate, and fire cycle. 
Can. J. For. Res. 42, 1328–1343. http://dx.doi.org/10.1139/x2012-101. 

Mansuy, N., Thiffault, E., Lemieux, S., Manka, F., Paré, D., Lebel, L., 2015. Sustainable biomass supply 
chains from salvage logging of fire-killed stands: A case study for wood pellet production in eastern 
Canada. Appl. Energy 154, 62–73. http://dx.doi.org/ 10.1016/j.apenergy.2015.04.048. 

Mitchard, E.T., Feldpausch, T.R., Brienen, R. J., Lopez‐Gonzalez, G., Monteagudo, A., Baker T.R., et al., 
2014. Markedly divergent estimates of Amazon forest carbon density from ground plots and satellites. 
Glob. Ecol. Biogeogr. 23, 935-946. http://dx.doi.org/ 10.1016/10.1111/geb.12168.  

Mitchard, E.T., Saatchi, S.S., Baccini, A., Asner, G.P., Goetz, S.J., Harris, N.L., Brown, S., 2013. 
Uncertainty in the spatial distribution of tropical forest biomass: a comparison of pan-tropical maps. 
Carbon Balance Manag. 8, 1-13.  http://dx.doi.org/10.1186/1750-0680-8-10. 

Margolis, H.A., Nelson, R.F., Montesano, P.M., Beaudoin, A., Sun, G., Andersen, H.-E., Wulder, M.A., 
2015. Combining satellite lidar, airborne lidar, and ground plots to estimate the amount and distribution of 
aboveground biomass in the boreal forest of North America. Can. J. For. Res. 45, 838–855. 
http://dx.doi.org/10.1139/cjfr-2015-0006. 

Neigh, C.S., Nelson, R.F., Ranson, K.J., Margolis, H.A., Montesano, P.M., Sun, G., et al., 2013. Taking 
stock of circumboreal forest carbon with ground measurements, airborne and spaceborne LiDAR. Remote 
Sens. Environ. 137, 274-287. http://dx.doi.org/10.1016/ j.rse.2013.06.019. 



106 
 

Nelson, R., 2010. Model effects on GLAS-based regional estimates of forest biomass and carbon. Int. J. 
Remote Sens. 31, 1359-1372. http://dx.doi.org/10.1080/01431160903380557. 

Pan, Y., Birdsey, R.A., Fang, J., Houghton, R., Kauppi, P.E., Kurz, W.A., Phillips, O.L., Shvidenko, A., 
Lewis, S.L., Canadell, J.G., Ciais, P., Jackson, R.B., Pacala, S.W., McGuire, A.D., Piao, S., Rautiainen, 
A., Sitch, S., Hayes, D., 2011. A large and persistent carbon sink in the World's forests. Science 333, 
988–993. http://dx.doi.org/10.1126/science.1201609. 

Pelletier, G., Dumont, Y., Bédard, M., 2007. SIFORT: Système d’Information FORestière par Tesselle, 
Manuel de l’usager. Ministère des Ressources naturelles et de la Faune du Québec. Québec, QC, 
Canada. https://www.mffp.gouv.qc.ca/publications/forets/fimaq/usager.pdf (accessed 2.10. 2014) 

Pflugmacher, D., Cohen, W., Kennedy, R., Lefsky, M., 2008. Regional applicability of forest height and 
aboveground biomass models for the Geoscience Laser Altimeter System. For. Sci. 54, 647-657.  

Pflugmacher, D., Cohen, W.B., Kennedy, R.E., 2012. Using Landsat-derived disturbance history (1972–
2010) to predict current forest structure. Remote Sens. Environ. 122, 146-165. 
http://dx.doi.org/10.1016/j.rse.2011.09.025.  

Pflugmacher, D., Cohen, W.B., Kennedy, R.E., Yang, Z., 2014. Using Landsat-derived disturbance and 
recovery history and lidar to map forest biomass dynamics. Remote Sens. Environ. 151, 124-137. 
http://dx.doi.org/10.1016/j.rse.2013.05.033. 

Popescu, S. C., Zhao, K., Neuenschwander, A., Lin, C. 2011. Satellite lidar vs. small footprint airborne 
lidar: Comparing the accuracy of aboveground biomass estimates and forest structure metrics at footprint 
level. Remote Sens. of Environ. 115, 2786-2797. http://dx.doi.org/10.1016/j.rse.2011.01.026.  

Ruesch, A., Gibbs, H.K., 2008.  New IPCC Tier-1 Global biomass carbon map for the year 2000. Oak 
Ridge, Tennessee: Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory. 
http://cdiac.ornl.gov/epubs/ndp/global_carbon/carbon_documentation.html. (accessed 5.10. 2014) 

Régnière, J., St-Amant, R., 2008. BioSIM 9 user’s manual. Natural Resources Canada, Canadian Forest 
Service, Laurentian Forestry Centre, Quebec, QC, Canada. Information Report LAU-X-134E. 
https://cfs.nrcan.gc.ca/publications?id=28768.(accessed 7.10. 2014) 

Saucier, J.-P., Grondin, P., Robitaille, A., Gosselin, J., Morneau, C., Richard, P.J.H., Brisson, J., Sirois, L., 
Leduc, A., Morin, H., Thiffault, E., Gauthier, S., Lavoie, C., Payette, S., 2009. Écologie forestière - 
Chapitre 4. Pages 167–315 Manuel de Foresterie (2ème édition). Éditions M. Québec. 

Santoro, M., Beer, C., Cartus, O., Schmullius, C., Shvidenko, A., McCallum, I., Wegmüller, U. Wiesmann, 
A., 2011. Retrieval of growing stock volume in boreal forest using hyper-temporal series of Envisat ASAR 
ScanSAR backscatter measurements. Remote Sens. Environ. 115, 490–507. 
http://dx.doi.org/10.1016/j.rse.2010.09.018.  

Saatchi, S.S., Harris, N.L., Brown, S., Lefsky, M., Mitchard, E.T., Salas, W., et al. 2011a. Benchmark map 
of forest carbon stocks in tropical regions across three continents. Proc. Natl Acad. Sci. 108, 9899-9904. 
http://dx.doi.org/10.1073/pnas.1019576108.  

Saatchi, S., Marlier, M., Chazdon, R. L., Clark, D. B., Russell, A. E. 2011b. Impact of spatial variability of 
tropical forest structure on radar estimation of aboveground biomass. Remote Sens. Environ.115, 2836-
2849.  

Simard, M., Pinto, N., Fisher, J.B., Baccini, A., 2011. Mapping forest canopy height globally with 
spaceborne lidar. J. Geophys. Res. Biogeosciences 116, G04021. http://dx.doi.org/ 
10.1029/2011JG001708.  



107 
 

Sun, G., Ranson, K. J., Guo, Z., Zhang, Z., Montesano, P., Kimes, D., 2011. Forest biomass mapping 
from lidar and radar synergies. Remote Sens. Environ. 115, 2906-2916. 

Tedeschi, L.O., 2006. Assessment of the adequacy of mathematical models. Agric. Syst. 89, 225–247. 
http://dx.doi.org/10.1016/j.agsy.2005.11.004.  

Ter-Mikaelian, M.T., Korzukhin, M.D.,1997. Biomass equations for sixty-five North American tree species. 
For. Ecol. Manage. 97, 1–24. http://dx.doi.org/10.1016/S0378-1127(97)00019-4. 

Thompson, J.R., Spies, T.A., 2009. Vegetation and weather explain variation in crown damage within a 
large mixed-severity wildfire. For. Ecol. Manage. 258, 1684–1694. 
http://dx.doi.org/10.1016/j.foreco.2009.07.031.  

Thurner, M., Beer, C., Santoro, M., Carvalhais, N., Wutzler, T., Schepaschenko, D., Shvidenko, A., 
Kompter, E., Ahrens, B., Levick, S. R. Schmullius, C., 2014. Carbon stock and density of northern boreal 
and temperate forests. Glob. Ecol. Biogeogr. 23, 297–310. http://dx.doi.org/10.1016/10.1111/geb.12125.  

Ung, C.H., Bernier, P., Guo, X.-J., 2008. Canadian national biomass equations: new parameter estimates 
that include British Columbia data. Can. J. For. Res. 38, 1123–1132. http://dx.doi.org/10.1139/X07-224. 

Van Zyl, J.J. 2001. The Shuttle Radar Topography Mission (SRTM): a breakthrough in remote sensing of 
topography. Acta Astronautica 48, 559–565. http://dx.doi.org/10.1016/S0094-5765(01)00020-0. 

Wu, J., David, J.L., 2002. A spatially explicit hierarchical approach to modeling complex ecological 
systems: theory and applications. Ecol. Model. 153, 7–26. http://dx.doi.org/10.1016/S0304-
3800(01)00499-9.  

Zhang, G., Ganguly, S., Nemani, R.R., White, M.A., Milesi, C., Hashimoto, H., Wang, W., Saatchi, S., Yu, 
Y., Myneni, R.B., 2014a. Estimation of forest aboveground biomass in California using canopy height and 
leaf area index estimated from satellite data. Remote Sens. Environ. 151, 44–56. http://dx.doi.org/ 
10.1016/j.rse.2014.01.025. 

Zhang, J., Huang, S., Hogg, E.H., Lieffers, V.J., Qin, Y., He, F., 2014b. Estimating spatial variation in 
Alberta forest biomass from a combination of forest inventory and remote sensing data. Biogeosciences 
11, 2793–2808. http://dx.doi.org/10.5194/bg-11-2793-2014. 

Zhao, K., Popescu, S., 2009. Lidar-based mapping of leaf area index and its use for validating 
GLOBCARBON satellite LAI product in a temperate forest of the southern USA. Remote Sens, Environ. 
113, 1628-1645. http://dx.doi.org/10.1016/j.rse.2009.03.006. 

Zhao, K., Popescu, S., Nelson, R. 2009. Lidar remote sensing of forest biomass: A scale-invariant 
estimation approach using airborne lasers. Remote Sens. Environ. 113, 182-196. 
http://dx.doi.org/10.1016/j.rse.2008.09.009.  

Zhao, S.Q., Liu, S., Li, Z., Sohl, T.L., 2010. A spatial resolution threshold of land cover in estimating 
terrestrial carbon sequestration in four counties in Georgia and Alabama, USA. Biogeosciences 7, 71–80. 
http://dx.doi.org/0.5194/bg-7-71-201.  

Zolkos, S. G., Goetz, S. J., Dubayah, R., 2013. A meta-analysis of terrestrial aboveground biomass 
estimation using lidar remote sensing. Remote Sens. Environ. 128, 289-298. 
http://dx.doi.org/10.1016/j.rse.2012.10.017. 

 

 

 



108 
 

4.09 Supplementary material 

 

Fig. A.1. a) Map of time since last fire in the training areas; b) the map of observed AGB differences (Gg 

km-2) between inventory and MODIS estimates; c) spatial clusters of the differences between inventory 

and MODIS estimates. 
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Fig. A.2. a) Map of time since last fire in the training areas; b) the map of observed AGB differences (Gg 

km-2) between inventory and GLAS estimates; c) spatial clusters of the differences between inventory and 

GLAS estimates 
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Fig. A.3. a) Map of time since last fire in the training areas; b) the map of observed AGB differences (Gg 

km-2) between inventory and ASAR estimates; c) spatial clusters of the differences between inventory and 

ASAR estimates 
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5. General Conclusion  
Studies of carbon storage in any part of boreal forests generally lack wall to wall TSLF information over a 

long temporal scale (Balshi et al., 2007). For this reason, our understanding of the interaction between 

TSLF, vegetation composition and structure, climate and environmental factors on aboveground biomass 

carbon (ABC) at a regional scale across the boreal forest remains fragmentary.  

In our study region, we had the privilege to use most of the available fire history maps that allowed us to 

devise a method for mapping TSLF (1880-2000, 120 years) over a large forest area through deriving 

empirical relationships between existing historical fire records, forest inventory and climate data at a 

coarse spatial scale (2-km2). The selection of a large spatial scale (2-km2) allowed circumventing the 

heterogeneity of burning and severity of fire at that scale and detection problems of past burns. 

Furthermore, we analyzed the contribution of TSLF to predict aboveground biomass carbon (ABC) at plot 

level and coarse spatial scale (2-km2). The results of this work revealed the following: 1) the need for 

lengthening the historical records of fire records for assessing past carbon dynamics and also to evaluate 

long-term changes of fire regime and 2) at such a coarse scale (2-km2), ABC is not directly related to 

stand age and therefore TSLF, but rather to the speed of post-fire canopy recovery, through which TSLF 

exerts an indirect control on ABC.  

Existing carbon budget models (e.g., Kurz et al., 2009, Seely et al., 2002) use growth and yield curves as 

a function of stand age at a fine spatial scale (plot or stand scale). At such a scale, forest successional 

dynamics is difficult to observe and our results point to the necessity of developing landscape ABC yield 

curves that consider forest succession dynamics. Contrary to parametric carbon yield curves, we have 

developed through a hybrid modelling approach non-parametric empirical models without any 

assumptions about the structure of data and also based on process understanding. The selection of scale 

(2-km2) in agreement with the major disturbance agent in our study area of interest allowed us to analyze 

emergent outcomes of the interactions existing between TSLF, forest composition, structure and climate 

on ABC at that scale. We detected that post-fire vegetation recovery is controlling landscape 

aboveground forest carbon stocks at a scale coarser than that of forest inventory plots or of existing 

remote sensing data. We have drawn conclusions at one coarse scale only over large spatial extent (> 

200,000 km2), which may change could we reduce or enlarge the study area or change of scale. A further 

multi-scale research would be necessary to expand or generalize these results. 

Further studies should analyze more directly how post-fire dynamics controls biomass recovery after fire 

over a large spatial extent to inform carbon budget models. In addition, classifying and identifying 

trajectories of forest recovery over extensive areas and finding their link with standing carbon stocks 

remain to be explored. Biomass dynamics in tropical and temperate forests are also related to post-fire 

vegetation recovery legacies that depend on human-induced disturbances/land use (e.g., Letcher et al., 
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2009) or major natural disturbances (e.g., Chambers et al., 2007) respectively. Therefore, global 

monitoring of post-fire vegetation response and recovery seems to be a prerequisite for better 

understanding biomass recovery and also biomass spatial distribution.  

We did not incorporate soil carbon pools, which are important C pools in the boreal forest ecosystems, 

containing enormous amounts of C, particularly in peatlands and permafrost soils. Further studies also 

should apply our method for soil carbon pools and total ecosystem carbon content and results may 

change.  

We incorporated the knowledge obtained from the above two studies with a study on remotely sensed 

biomass estimates for improving their accuracy.  Remote sensing is very useful when there is a scarcity of 

ground inventory data. But the relationship between single date reflectance and biomass is weak under 

high leaf area conditions and closed canopy conditions (saturation). Our analysis indicated that the 

discrepancy existing between remote sensing and inventory based estimates could be reduced by 

incorporating disturbance histories and vegetation recovery trends. The trajectories of forest structure 

recovery information could be derived from long-term time series data (e.g. Pflugmacher et al., 2012). 

MODIS burned area products (Giglio et al., 2006) and existing fire polygons data from forest inventory 

area are potential data to be used in biomass estimation (e.g. Margolis et al., 2015). Chu et al. (2014) 

proposed the integration of different remote sensing data with field data to support monitoring of post-fire 

forest recovery patterns.  

The future of remote sensing is on studying trees in a three-dimensional view (Shugart et al., 2010). 

Currently, ICESat GLAS is not functional and data were produced only from 2003 to 2009. ICESat-2 will 

be launched in 2017 (http://icesat.gsfc.nasa.gov/) and has the mission objective to provide vegetation 

heights. LiDAR is limited to sampling and profile measurement and must be fused with other remote 

sensing data to provide information on forest structure (Saatchi et al., 2010). For developing a potential 

method to estimate biomass, it would be necessary to follow an upscaling approach by integrating AGB 

information from ground plots with remote sensing data (e.g. Margolis et al., 2015), along with disturbance 

history and recovery information, from long-term records of observations.   
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