4,071 research outputs found

    A new method to determine multi-angular reflectance factor from lightweight multispectral cameras with sky sensor in a target-less workflow applicable to UAV

    Full text link
    A new physically based method to estimate hemispheric-directional reflectance factor (HDRF) from lightweight multispectral cameras that have a downwelling irradiance sensor is presented. It combines radiometry with photogrammetric computer vision to derive geometrically and radiometrically accurate data purely from the images, without requiring reflectance targets or any other additional information apart from the imagery. The sky sensor orientation is initially computed using photogrammetric computer vision and revised with a non-linear regression comprising radiometric and photogrammetry-derived information. It works for both clear sky and overcast conditions. A ground-based test acquisition of a Spectralon target observed from different viewing directions and with different sun positions using a typical multispectral sensor configuration for clear sky and overcast showed that both the overall value and the directionality of the reflectance factor as reported in the literature were well retrieved. An RMSE of 3% for clear sky and up to 5% for overcast sky was observed

    Evaluation of pre/post-fire differenced spectral indices for assessing burn severity in a Mediterranean environment with landsat thematic mapper

    Get PDF
    In this study several pre/post-fire differenced spectral indices for assessing burn severity in a Mediterranean environment are evaluated. GeoCBI (Geo Composite Burn Index) field data of burn severity were correlated with remotely sensed measures, based on the NBR (Normalized Burn Ratio), the NDMI (Normalized Difference Moisture Index) and the NDVI (Normalized Difference Vegetation Index). In addition, the strength of the correlation was evaluated for specific fuel types and the influence of the regression model type is pointed out. The NBR was the best remotely sensed index for assessing burn severity, followed by the NDMI and the NDVI. For this case study of the 2007 Peloponnese fires, results show that the GeoCBI-dNBR (differenced NBR) approach yields a moderate-high R(2) = 0.65. Absolute indices outperformed their relative equivalents, which accounted for pre-fire vegetation state. The GeoCBI-dNBR relationship was stronger for forested ecotypes than for shrub lands. The relationship between the field data and the dNBR and dNDMI (differenced NDMI) was nonlinear, while the GeoCBI-dNDVI (differenced NDVI) relationship appeared linear

    Photometric Depth Super-Resolution

    Full text link
    This study explores the use of photometric techniques (shape-from-shading and uncalibrated photometric stereo) for upsampling the low-resolution depth map from an RGB-D sensor to the higher resolution of the companion RGB image. A single-shot variational approach is first put forward, which is effective as long as the target's reflectance is piecewise-constant. It is then shown that this dependency upon a specific reflectance model can be relaxed by focusing on a specific class of objects (e.g., faces), and delegate reflectance estimation to a deep neural network. A multi-shot strategy based on randomly varying lighting conditions is eventually discussed. It requires no training or prior on the reflectance, yet this comes at the price of a dedicated acquisition setup. Both quantitative and qualitative evaluations illustrate the effectiveness of the proposed methods on synthetic and real-world scenarios.Comment: IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI), 2019. First three authors contribute equall

    Computing von Kries Illuminant Changes by Piecewise Inversion of Cumulative Color Histograms

    Get PDF
    We present a linear algorithm for the computation of the illuminant change occurring between two color pictures of a scene. We model the light variations with the von Kries diagonal transform and we estimate it by minimizing a dissimilarity measure between the piecewise inversions of the cumulative color histograms of the considered images. We also propose a method for illuminant invariant image recognition based on our von Kries transform estimate

    Effectiveness of specularity removal from hyperspectral images on the quality of spectral signatures of food products

    Get PDF
    Specularity or highlight problem exists widely in hyperspectral images, provokes reflectance deviation from its true value, and can hide major defects in food objects or detecting spurious false defects causing failure of inspection and detection processes. In this study, a new non-iterative method based on the dichromatic reflection model and principle component analysis (PCA) was proposed to detect and remove specular highlight components from hyperspectral images acquired by various imaging modes and under different configurations for numerous agro-food products. To demonstrate the effectiveness of this approach, the details of the proposed method were described and the experimental results on various spectral images were presented. The results revealed that the method worked well on all hyperspectral and multispectral images examined in this study, effectively reduced the specularity and significantly improves the quality of the extracted spectral data. Besides the spectral images from available databases, the robustness of this approach was further validated with real captured hyperspectral images of different food materials. By using qualitative and quantitative evaluation based on running time and peak signal to noise ratio (PSNR), the experimental results showed that the proposed method outperforms other specularity removal methods over the datasets of hyperspectral and multispectral images.info:eu-repo/semantics/acceptedVersio
    • …
    corecore