51,019 research outputs found

    Simple individual-based models effectively represent Afrotropical forest bird movement in complex landscapes

    Get PDF
    Reliable estimates of dispersal rates between habitat patches (i.e. functional connectivity) are critical for predicting long-term effects of habitat fragmentation on population persistence. Connectivity measures are frequently derived from least cost path or graph-based approaches, despite the fact that these methods make biologically unrealistic assumptions. Individual-based models (IBMs) have been proposed as an alternative as they allow modelling movement behaviour in response to landscape resistance. However, IBMs typically require excessive data to be useful for management. Here, we test the extent to which an IBM requiring only an uncomplicated set of movement rules [the 'stochastic movement simulator' (SMS)] can predict animal movement behaviour in real-world landscapes. Movement behaviour of two forest birds, the Cabanis's greenbul Phyllastrephus cabanisi (a forest specialist) and the white-starred robin Pogonocichla stellata (a habitat generalist), across an Afrotropical matrix was simulated using SMS. Predictions from SMS were evaluated against a set of detailed movement paths collected by radiotracking homing individuals. SMS was capable of generating credible predictions of bird movement, although simulations were sensitive to the cost values and the movement rules specified. Model performance was generally highest when movement was simulated across low-contrasting cost surfaces and when virtual individuals were assigned low directional persistence and limited perceptual range. SMS better predicted movements of the habitat specialist than the habitat generalist, which highlights its potential to model functional connectivity when species movements are affected by the matrix. Synthesis and applications. Modelling the dispersal process with greater biological realism is likely to be critical for improving our predictive capability regarding functional connectivity and population persistence. For more realistic models to be widely applied, it is vital that their application is not overly complicated or data demanding. Here, we show that given relatively basic understanding of a species' dispersal ecology, the stochastic movement simulator represents a promising tool for estimating connectivity, which can help improve the design of functional ecological networks aimed at successful species conservation

    MX-LSTM: mixing tracklets and vislets to jointly forecast trajectories and head poses

    Get PDF
    Recent approaches on trajectory forecasting use tracklets to predict the future positions of pedestrians exploiting Long Short Term Memory (LSTM) architectures. This paper shows that adding vislets, that is, short sequences of head pose estimations, allows to increase significantly the trajectory forecasting performance. We then propose to use vislets in a novel framework called MX-LSTM, capturing the interplay between tracklets and vislets thanks to a joint unconstrained optimization of full covariance matrices during the LSTM backpropagation. At the same time, MX-LSTM predicts the future head poses, increasing the standard capabilities of the long-term trajectory forecasting approaches. With standard head pose estimators and an attentional-based social pooling, MX-LSTM scores the new trajectory forecasting state-of-the-art in all the considered datasets (Zara01, Zara02, UCY, and TownCentre) with a dramatic margin when the pedestrians slow down, a case where most of the forecasting approaches struggle to provide an accurate solution.Comment: 10 pages, 3 figures to appear in CVPR 201

    Temporal Segmentation of Surgical Sub-tasks through Deep Learning with Multiple Data Sources

    Get PDF
    Many tasks in robot-assisted surgeries (RAS) can be represented by finite-state machines (FSMs), where each state represents either an action (such as picking up a needle) or an observation (such as bleeding). A crucial step towards the automation of such surgical tasks is the temporal perception of the current surgical scene, which requires a real-time estimation of the states in the FSMs. The objective of this work is to estimate the current state of the surgical task based on the actions performed or events occurred as the task progresses. We propose Fusion-KVE, a unified surgical state estimation model that incorporates multiple data sources including the Kinematics, Vision, and system Events. Additionally, we examine the strengths and weaknesses of different state estimation models in segmenting states with different representative features or levels of granularity. We evaluate our model on the JHU-ISI Gesture and Skill Assessment Working Set (JIGSAWS), as well as a more complex dataset involving robotic intra-operative ultrasound (RIOUS) imaging, created using the da Vinci® Xi surgical system. Our model achieves a superior frame-wise state estimation accuracy up to 89.4%, which improves the state-of-the-art surgical state estimation models in both JIGSAWS suturing dataset and our RIOUS dataset

    Adaptive intermittent control: A computational model explaining motor intermittency observed in human behavior

    Get PDF
    It is a fundamental question how our brain performs a given motor task in a real-time fashion with the slow sensorimotor system. Computational theory proposed an influential idea of feed-forward control, but it has mainly treated the case that the movement is ballistic (such as reaching) because the motor commands should be calculated in advance of movement execution. As a possible mechanism for operating feed-forward control in continuous motor tasks (such as target tracking), we propose a control model called "adaptive intermittent control" or "segmented control," that brain adaptively divides the continuous time axis into discrete segments and executes feed-forward control in each segment. The idea of intermittent control has been proposed in the fields of control theory, biological modeling and nonlinear dynamical system. Compared with these previous models, the key of the proposed model is that the system speculatively determines the segmentation based on the future prediction and its uncertainty. The result of computer simulation showed that the proposed model realized faithful visuo-manual tracking with realistic sensorimotor delays and with less computational costs (i.e., with fewer number of segments). Furthermore, it replicated "motor intermittency", that is, intermittent discontinuities commonly observed in human movement trajectories. We discuss that the temporally segmented control is an inevitable strategy for brain which has to achieve a given task with small computational (or cognitive) cost, using a slow control system in an uncertain variable environment, and the motor intermittency is the side-effect of this strategy

    History-based action selection bias in posterior parietal cortex.

    Get PDF
    Making decisions based on choice-outcome history is a crucial, adaptive ability in life. However, the neural circuit mechanisms underlying history-dependent decision-making are poorly understood. In particular, history-related signals have been found in many brain areas during various decision-making tasks, but the causal involvement of these signals in guiding behavior is unclear. Here we addressed this issue utilizing behavioral modeling, two-photon calcium imaging, and optogenetic inactivation in mice. We report that a subset of neurons in the posterior parietal cortex (PPC) closely reflect the choice-outcome history and history-dependent decision biases, and PPC inactivation diminishes the history dependency of choice. Specifically, many PPC neurons show history- and bias-tuning during the inter-trial intervals (ITI), and history dependency of choice is affected by PPC inactivation during ITI and not during trial. These results indicate that PPC is a critical region mediating the subjective use of history in biasing action selection

    Big data analyses reveal patterns and drivers of the movements of southern elephant seals

    Full text link
    The growing number of large databases of animal tracking provides an opportunity for analyses of movement patterns at the scales of populations and even species. We used analytical approaches, developed to cope with big data, that require no a priori assumptions about the behaviour of the target agents, to analyse a pooled tracking dataset of 272 elephant seals (Mirounga leonina) in the Southern Ocean, that was comprised of >500,000 location estimates collected over more than a decade. Our analyses showed that the displacements of these seals were described by a truncated power law distribution across several spatial and temporal scales, with a clear signature of directed movement. This pattern was evident when analysing the aggregated tracks despite a wide diversity of individual trajectories. We also identified marine provinces that described the migratory and foraging habitats of these seals. Our analysis provides evidence for the presence of intrinsic drivers of movement, such as memory, that cannot be detected using common models of movement behaviour. These results highlight the potential for big data techniques to provide new insights into movement behaviour when applied to large datasets of animal tracking.Comment: 18 pages, 5 figures, 6 supplementary figure
    • …
    corecore