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Summary

1. Reliable estimates of dispersal rates between habitat patches (i.e. functional connectivity) are
critical for predicting long-term effects of habitat fragmentation on population persistence.
Connectivity measures are frequently derived from least cost path or graph-based approaches,
despite the fact that these methods make biologically unrealistic assumptions. Individual-based
models (IBMs) have been proposed as an alternative as they allow modelling movement behaviour in
response to landscape resistance. However, IBMs typically require excessive data to be useful for
management. Here, we test the extent to which an IBM requiring only an uncomplicated set of
movement rules (the ‘stochastic movement simulator’, SMS) can predict animal movement

behaviour in real-world landscapes.

2. Movement behaviour of two forest birds: the Cabanis’s greenbul Phyllastrephus cabanisi (a forest
specialist) and the white-starred robin Pogonocichla stellata (a habitat generalist), across an
Afrotropical matrix was simulated using SMS. Predictions from SMS were evaluated against a set of

detailed movement paths collected by radio-tracking homing individuals.

3. The SMS was capable of generating credible predictions of bird movement, although simulations
were sensitive to the cost values and the movement rules specified. Model performance was
generally highest when movement was simulated across low-contrasting cost surfaces and when

virtual individuals were assigned low directional persistence and limited perceptual range.

4. The SMS better predicted movements of the habitat specialist than the habitat generalist, which
highlights its potential to model functional connectivity when species movements are affected by the

matrix.

5. Synthesis and applications. Modelling the dispersal process with greater biological realism is likely
to be critical for improving our predictive capability regarding functional connectivity and population
persistence. For more realistic models to be widely applied, it is vital that their application is not

overly complicated or data demanding. Here, we show that given relatively basic understanding of a



53

54

55

56

57

58

59

60

61

species’ dispersal ecology, the stochastic movement simulator represents a promising tool for
estimating connectivity, which can help improve the design of functional ecological networks aimed

at successful species conservation.

Keywords: dispersal, functional connectivity, habitat fragmentation, homing experiment, perceptual

range, True Skill Statistic
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Introduction

Habitat loss has been identified as one of the main factors driving the decline in biodiversity
worldwide (Gibson et al. 2011). In the process, original habitat cover is frequently reduced to isolated
remnants resulting in the spatial segregation of once continuous populations. If the size of these
remnants falls below species-specific thresholds, populations are likely to go extinct due to the
negative effects of declines in genetic diversity (Dixo et al. 2009; Agudo et al. 2012) and the
occurrence of demographic and environmental stochastic events. An important additional factor in
explaining extinction risk of populations in fragmented landscapes is the degree of landscape
connectivity (i.e. the degree to which the landscape facilitates or impedes movement among habitat
patches), as exchange of individuals among patches directly affects local population densities, gene
flow and patch (re)colonization probabilities (Benton & Bowler 2012). Therefore, reliable
connectivity estimates are central for a correct assessment of the dynamics and viability of
fragmented populations and have practical applications in landscape planning and species
conservation by allowing conservation managers to assess the effectiveness of management
scenarios (Baguette et al. 2013). However, connectivity is frequently estimated by using models

which oversimplify the process actually driving the loss of connectivity (Moilanen 2011).

Connectivity is driven by spatial displacement of individuals. For most animals inhabiting terrestrial
fragmented landscapes, spatial displacement involves active locomotion across land-cover types
comprising the intervening landscape (hereafter ‘the matrix’). Empirical studies have demonstrated
that movement patterns across landscapes are not random but rather reflect behavioural responses
to environmental factors. Mainly by using experimental release experiments, these studies have
shown that individuals may alter their movement trajectories in response to boundaries between
different matrix land-cover types (Haddad 1999; Gillies & St. Clair 2010; Aben et al. 2012) and that
permeability of boundaries may be modulated by the width of gaps (Bakker & Van Vuren 2004;

Ibarra-Macias, Robinson & Gaines 2011). These matrix effects on movement behaviour can affect the



87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

length of movement trajectories (Gillies & St. Clair 2008; Hadley & Betts 2009), time spent in the
matrix (Belisle, Desrochers & Fortin 2001; Kennedy & Marra 2010) and return success to the patch of
origin (Gillies & St. Clair 2008; Belisle, Desrochers & Fortin 2001). In line with these behavioural
observations, the degree to which patches are functionally connected is strongly determined by
properties of the matrix (Ferreras 2001; Revilla et al. 2004; Bender & Fahrig 2005). Because the rate
of inter-patch movement is a crucial parameter for the predictions of spatially explicit population
models, connectivity measures that adequately describe landscape effects on the outcome of the

dispersal process are needed to improve their predictive power (Revilla & Wiegand 2008).

However, despite the recognition that animal dispersal is driven by the complex interaction between
movement and external environmental factors, in the context of landscape planning and species
management, connectivity has hitherto almost exclusively been modelled by using simple distance-
based functions (Moilanen & Nieminen 2002), the least cost path (LCP, e.g. Cushman, McKelvey &
Schwartz 2009) or graph-theoretic methodologies (e.g. Alagador et al. 2012) which themselves
typically employ Euclidean or cost distances between patches. The assumption that displacement of
individuals among sites is a deterministic function of Euclidean inter-patch distance implies either
that the inter-patch matrix is homogenous or that animal movement is unaffected by environmental
heterogeneity; conversely, the assumption that animals move along optimal inter-patch linkages
(LCPs) implies that dispersers know the location of a target patch and are able to evaluate potential
routes to it (Palmer, Coulon & Travis 2011). Although these measures can be informative for the
purpose of corridor design on larger geographical scales (Alagador et al. 2012), their limitations in
predicting inter-patch movement rates across landscapes (i.e. functional connectivity sensu Taylor et
al. 1993) severely limit their use to design landscapes aimed at maximizing the persistence of focal

species (Baguette et al. 2013).

A potentially more realistic framework for estimating functional connectivity comprises individual-

based models (IBMs), as these allow explicit simulation of animal movement across realistic
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landscapes (e.g. Zollner & Lima 1999; Barton et al. 2012). By incorporating correlation between
movement steps and bias towards or away from different environments, IBMs can be designed to
reproduce interactions between individual movement behaviour and landscape properties, which are
considered important drivers of functional connectivity. However, although IBMs have been proven
useful for addressing theoretical questions regarding sensitivity of connectivity predictions to
variation in movement parameters (perceptual range [e.g. Pe'er & Kramer-Schadt 2008],
directionality [e.g. Zollner & Lima 1999], properties of the matrix [e.g. Gustafson & Gardner 1996]),
few attempts have been made to make IBMs accessible to landscape managers (but see Pe'er et al.
2011). A principal reason for this is the challenge of obtaining the detailed species-specific movement
data typically required for parameterisation of these models (Baguette et al. 2013). Hence, there is a
need for IBMs that allow estimating functional connectivity in the face of generally poor (empirical)

knowledge of species' movement behaviour.

To address this, Palmer, Coulon & Travis (2011) recently developed a simple IBM, the ‘stochastic
movement simulator’ (SMS). In SMS, mechanistic representation of animal movement is governed by
two critical parameters controlling the degree of correlation between successive steps and the range
over which landscape cost values affect movement behaviour, i.e. the perceptual range. Another
advantage of SMS is that landscape effects on functional connectivity are based on the same
landscape information as used by LCP models (i.e. cost values for each of the matrix elements), which
can be estimated without very extensive data on animal movement (Richard & Armstrong 2010).
Despite its simplicity, by translating landscape effects on animal movement at the appropriate scale
(i.e. the individuals’ perceptual range), SMS relaxes the unrealistic assumptions made by LCP
methodologies and is therefore expected to generate more credible estimates of functional

connectivity.

However, the key question remains whether such a simple model is capable of usefully describing

animal movement across real-world landscapes. To test this, we validated SMS simulations with
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detailed movement paths collected using radio-telemetry on two forest bird species (Cabanis’s
greenbul Phyllastrephus cabanisi and white-starred robin Pogonocichla stellata) in an Afrotropical
matrix. As these species have been shown to differ in overall mobility at the scale of inter-patch
movements (Lens et al. 2002; Callens et al. 2011) and also in their relative preference for matrix land-
cover types at a finer scale (Aben et al. 2012), their movement paths are perfectly suited to test to
what degree SMS can capture species-specific variation in movement behaviour. Because detailed
movement data for spontaneously dispersing animals are generally difficult to obtain, we used
experimentally induced movement data collected during a translocation experiment (Aben et al.
2012). Experimental releases are commonly used to study movement behaviour as a proxy for
natural dispersal behaviour (e.g. Gillies & St. Clair 2010; Kennedy & Marra 2010). However, the
tendency of animals to return to their territory means that movement paths were influenced by

homing behaviour, and we accounted for this in our methods.

Materials and methods

The stochastic movement simulator

The SMS is a stochastic IBM in which virtual animals disperse from a predefined location and move
independently across a gridded landscape according to simplified movement rules until they reach a
habitat patch, emigrate from the landscape under study or die after a given number of steps (Palmer,
Coulon & Travis 2011). Movement rules were specified using a combination of four parameters: the
animal’s perceptual range, its tendency to follow a correlated path (directional persistence), its
tendency to move in the direction of its fragment of origin (goal bias) and the distance over which

directional persistence is maintained (memory size); the original version of SMS (Palmer, Coulon &
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Travis 2011) did not incorporate goal bias and memory size, which we added for reasons described
below. The chosen direction at each step was based on these parameters in combination with the
cost values of the cells surrounding the animals within the specified perceptual range. Code for the

enhanced version of SMS is available on request.

For each empirical movement path collected in the field (see below), we simulated 1000 individuals
from the corresponding release location. Movement decisions at each location (i.e.each5m x5 m
grid cell, see below) are driven by the distribution of selection probabilities for each of the eight
surrounding cells. A cell’s selection probability is proportional to the reciprocal of its ‘effective cost’,
which in turn is the harmonic mean of the cost values of that particular cell and its neighbouring cells
in an array extending to the edge of the animal’s perceptual range (Palmer, Coulon & Travis 2011).
We set the perceptual range at 5, 10 or 20 grid cells, where the maximum value for this parameter
was based on the largest step lengths observed in the field (i.e. the largest distance at which

individuals responded to visual cues of the landscape; JA, unpublished data).

The tendency of animals to move in a straight line is controlled by multiplying effective costs by a
weighting factor, which is lowest for the neighbouring cell located in the same direction as taken in
the previous step and highest for the cell in the opposite direction (i.e. a 180° turn). The weighting is
controlled by the directional persistence parameter; larger values reduce the tendency for the path
to deviate from a straight line (Palmer, Coulon & Travis 2011). In this study we used directional

persistence values 2, 3 and 4.

If directional persistence only considers the direction of the previous step, a sharp turn
corresponding to a single cell can completely change an animal’s direction. Although dispersing
animals typically have no predefined goals, and hence could be suspected to lack an intrinsic
motivation to move along cardinal or ordinal axes, both theoretical studies (Zollner & Lima 1999;
Barton et al. 2012) and empirical observations (Delgado et al. 2009) indicate that dispersing

individuals follow highly correlated paths at scales exceeding those of individual steps. To account for
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this behaviour, the original model was extended by applying DP to the mean direction averaged over
a number of preceding steps determined by an additional parameter (memory size; either 2, 4 or 6
steps in this study). Thus, individuals with a large memory size are more likely to resume their

original movement direction after a temporary change in direction.

To control for the paths used to validate SMS simulations being influenced by homing behaviour of
translocated birds, the goal bias parameter was introduced. This parameter controls the weighting of
surrounding cells in relation to their deviation from the goal (i.e. the bird’s capture location) in a
similar way to directional persistence. We used goal bias values of 1.05, 1.1, 1.2 and 1.3, where
higher values indicate a stronger tendency of the simulated individuals to move towards their

capture location.

Study area and movement paths

Movement paths were collected in a montane Afrotropical landscape (Taita Hills, south-east Kenya
[03°20’S, 38°15E]; Aben et al. 2012), consisting of a fine-grained mosaic of human settlements,
small-holder cultivation plots and indigenous forest remnants (Pellikka et al. 2009). Land-cover
information for the study area was derived from airborne true-colour images converted to image
mosaics at a spatial resolution of 0.5 m (Pellikka et al. 2009). The cost surface was derived from the
land-cover model used by Aben et al. (2012); a grid of 5 m x 5 m cell size and seven land-cover types:
indigenous forest, exotic plantation, agroforestry, bush, field, built-up area and road. The cell size
was chosen corresponding to the accuracy of our bird observations obtained by radio-telemetry. For
the purpose of this study, we created a landscape grid omitting road (replacing it by the bordering
land-cover type) because it was difficult to assign a relevant cost value. This modification is unlikely
to affect SMS performance in predicting actual movement paths, as Aben et al. (2012) showed that
the amount of road intersected by actual movement steps was not different from the amount in 20

random alternative steps.
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The movement data used for SMS validation were represented by detailed movement paths of two
forest bird species (P. cabanisi [n=27] and P. stellata [n=21]). Both species are representative of the
forest bird community of the Taita Hills but they are not equally dependent on intact indigenous
forest; P. cabanisi exclusively occurs in indigenous forest fragments (Callens et al. 2011), whereas P.
stellata also inhabits disturbed and plantation forests (Githiru, Lens & Bennun 2007). Additionally,
movement of P. cabanisi was more affected by the matrix (Aben et al. 2012) and its populations
showed higher genetic differentiation between three forest fragments in the Taita Hills (Callens et al.
2011), suggesting that higher forest dependency results in lower matrix permeability. Henceforth,
based on this information, we will treat P. cabanisi as a forest specialist and P. stellata as a forest

generalist.

Movement paths were generated from successive bird locations recorded during translocation
experiments (see Aben et al. 2012 for methods and example paths). Four individuals (one P. cabanisi
and three P. stellata) were discarded for the purpose of the present study, because large parts of

their paths (>50% of their total length) could not be reliably documented.

Cost values

The SMS algorithm incorporates a cost surface similar to LCP (i.e. cost values are scaled relative to
preferred habitat; see Adriaensen et al. 2003). In our study, cost values were assigned to the five
matrix land-cover types to reflect their hypothesized resistance to movement relative to indigenous
forest. We created seven cost surfaces with cost value of 10 for field, but different values for exotic
plantation, agroforestry and bush (sets 1-7, Table 1). Also, to evaluate the sensitivity of SMS
performance to differences in contrast between woody and non-woody matrix land-cover types, we
created two alternative cost surfaces based on set 2, where field was assigned a cost value of 5 and
20 (set 8 and 9, respectively; Table 1). Built-up area was assigned a cost value 100 times higher than

field in all cost surfaces, as this land-cover type was regarded to be invariably highly resistant to
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movement. Finally, we created a homogeneous cost surface where all land-cover types were

assigned a cost value of 1 (set 0, Table 1).

Assessing IBM performance

Model performance was judged based on the frequency of visits to grid cells by simulated individuals
(henceforth “cell selection probability”). For every grid cell in each simulation we calculated this
probability as the proportion of simulated individuals (out of 1000) that passed through this cell at
least once. To evaluate the spatial fit between simulated movements and actual movement paths,
we compared the cell selection probabilities to the actual movement paths of birds using the True
Skill Statistic (TSS, Allouche, Tsoar & Kadmon 2006). The TSS ranges from - 1 to 1, where evaluation
values of TSS > 0.4 are considered to be indicative of good predictions (Eskildsen et al. 2013). The TSS
is an often used evaluation statistic in species distribution modelling but has also been used to
evaluate predictions based on dispersal simulations (La Morgia et al. 2011). It is based on the
proportion of correctly predicted presences (sensitivity, cells visited by both actual birds and
simulated individuals) and the proportion of correctly predicted absences (specificity, cells neither
visited by actual birds nor by simulated individuals). Predicted absences were only considered if a
particular cell could have been visited by a bird during the duration of the translocation experiment
(i.e. a ‘true’ absence). This applied to all cells that were located within an ellipse with foci on the
release and capture location of each bird and with an eccentricity of 0.68 (cf. Aben et al. 2012) and
that were located within a distance of the release location equalling the maximum observed distance
travelled during a one-day experiment (i.e. 1013 m for P. cabanisi and 945 m for P. stellata). We
classified each grid cell either as a predicted presence or a predicted absence according to the
threshold that maximized the sum of sensitivity and specificity MaxSens+Spec criteria in package
PresenceAbsence (Freeman 2007), and calculated the corresponding TSS (i.e. sensitivity+specificity-1;

Fig. 1).
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In order to assess the effects of movement parameters and cost sets on the simulations, a TSS value
was obtained for each combination of settings (n=108) for each cost set, and averaged over all
simulated paths per species. We then used an ANOVA with TSS as the dependent variable and
examined the variance explained by five main effects (i.e. cost, perceptual range, goal bias,
directional persistence, memory size) and their higher-order interactions. As statistical significance in
itself is relatively uninformative in the case of simulated data, we assessed the strength of the
associations between TSS and the explanatory variables through the examination of partial Eta
squared [r1p2 = SSeffect / (SSeffect+SSerror);R package heplots (Fox et al. 2012)]. Like R%, rlpz isa
measure of effect size that is independent of the degrees of freedom used in the analyses. In
addition, we assessed false positive and false negative error rates in models to interpret better the

sources of prediction error.

Results

SMS simulations were sensitive to the movement rules specified and the cost values assigned to the
landscape which profoundly influenced their accuracy in predicting the movement paths of both
forest bird species (range of TSS-values obtained were 0.297—-0.586 for P. cabanisi and 0.276—-0.481

for P. stellata).

The five-factor ANOVA revealed four significant four-way interactions (Table 2). However, effect sizes
indicated that only the interaction between goal bias, directional persistence, memory size, and the
cost set used (rlp2 0.46 and r1p2 0.44 for P. cabanisi and P. stellata, respectively) and between goal
bias, directional persistence, perceptual range and the cost set used (rlp2 0.42, P. cabanisi only) could

be considered important.

For each species, the most important four-way interaction was examined visually by plotting the TSS

for different cost sets and for each level of goal bias, memory size and directional persistence (Fig. 2).
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The effect of goal bias on model performance differed strongly between species (Fig. 2). For P.
cabanisi, model performance clearly peaked when simulations were only weakly biased towards the
location of capture but decreased markedly when this bias increased, especially when directional
persistence was low and memory size small. For P. stellata, the effect of goal bias was only present
when directional persistence was low and memory size either low or moderate (Fig. 2Ba-b). For both
species, the effect of memory size was relatively small at low levels of directional persistence but had
a strong negative effect on model performance when directional persistence was high (Fig. 2g-i). The
combination of strong directional persistence and a large memory size resulted in the poorest SMS

predictions for both species (Fig. 2i).

The second most important four-way interaction (Fig. 3), showed that model predictions were most
accurate at the smallest perceptual range. At larger PRs model performance decreased. This negative
relationship was most pronounced at low directional persistence and for the cost set which
represented the strongest contrast in cost values between the woody matrix and field (i.e. set 1, Fig.
3). In contrast, model performance was not sensitive to variation in perceptual range when contrast

between land-cover types was low (i.e. set 8, Fig. 3).

Cost sets

Model performance was sensitive to the cost values assigned to the different matrix land-cover
types. In particular, performance peaked when there was a relatively low contrast between woody
matrix land-cover types and field (i.e. set 8) and was poorest when this contrast was strong (i.e. set
1). Inspection of the mean error rates in predictions showed that this was primarily attributable to
differences in the proportion of false negatives (i.e. actual occurrence at predicted absence) between

cost sets, which were lowest when contrasts were low and vice versa (Fig. 4).
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Based on the F-values, results of the original ANOVA indicated that properties of the landscape had a
larger effect on model performance for P. cabanisi compared to P. stellata (Table 2). However,
differences between species in the effect size for the cost set as explanatory variable were small. To
confirm this trend, we repeated the ANOVA for the cost sets which differed only in the ranking of the
woody matrix land-cover types (i.e. sets 2-7). Now, the effect size for the cost set remained high for
P. cabanisi (r1p2= 0.964) but dropped considerably for P. stellata (npz =0.696). Within these costs sets,
best predictions were obtained for set 2 and worst predictions for set 7 (based upon visual inspection

of Fig. 2).

Finally, overall performance of the homogeneous cost set was relatively poor for P. cabanisi but
relatively good for P. stellata (Fig. 2). This difference in performance between species was mainly
attributable to the proportion of false positives (i.e. predicted presence but no actual occurrence)

which was, compared to the other cost sets, highest for P. cabanisi and lowest for P. stellata (Fig. 4).

Discussion

Our results show that a simple IBM coupled to a cost surface is capable of predicting animal
movement across heterogeneous landscapes. SMS thus represents a promising tool for translating
animal-landscape interactions at the individual and local scales into higher-scale ecological and
spatial patterns (e.g. estimating functional connectivity). Given the fact that accurate information on
the landscape and cost surfaces are a core component of modern-day landscape and species
management, SMS represents an attractive alternative to existing methods that typically rely upon
Euclidean or least cost distances, often coupled with graph-theoretic methods. Moreover, IBMs such
as SMS can increase (cost-)efficiency in planning conservation strategies, as they facilitate direct
assessment of the functionality of structural linkages between habitat patches (e.g. the design of
optimal corridors or stepping stones). For example, SMS could readily be used to determine both

how frequently potential new stepping stones would likely to be used by dispersing individuals and
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how the addition of new stepping stones would likely impact inter-patch transfer of individuals. In
this respect, SMS can effectively be used as a stand-alone application to allow ranking of different
management scenarios according to their corresponding contribution to functional connectivity
between habitat patches, but it also has considerable potential to be used as a dispersal sub-model
implemented in spatially-explicit population models to assess the effectiveness of alternative

management interventions at the (meta)population level.

Our validation of SMS by means of detailed movement paths of two forest bird species showed that
simulations were capable of usefully predicting such paths across a relatively complex matrix
landscape. We previously showed (Aben et al. 2012) that actual bird movements were particularly
sensitive to boundaries between woody matrix land-cover types and fields, resulting in stronger
deviation of movement trajectories. However, given the fact that the Taita matrix is very fine-
grained, birds frequently had to cross open agricultural fields in order to return to their fragment of
origin. In line with these observations, the ability of SMS to describe these movements depended
strongly on the way this landscape effect was incorporated in the model. In general, SMS
performance was optimal when the degree of contrast between the woody matrix land-cover types
and field was relatively low. Inspection of error rates in predictions between the different cost sets
suggests that this relationship was predominantly driven by the ability of SMS to predict actual
movements across fields; simulated birds were able to move across fields at low contrast, whereas
higher contrasts prevented these particular movements. The fact that the negative effect of highly
contrasting fields on model performance was largest for the generalist P. stellata confirms this
explanation, as this species is expected to cross this land-cover type more frequently than P.
cabanisi. In contrast to the strong effect of fields on step selection of homing birds, boundaries
between the woody matrix land-cover types invoked less pronounced and consistent behavioural

responses (Aben et al. 2012). The fact that performance of SMS was not very sensitive to the ranking
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of these land-cover types therefore is in line with our expectation. However, besides avoidance of
fields, route decisions of P. cabanisi were also driven by composition of the woody matrix as it
moved in decreasing order of preference through indigenous forest, agroforestry and exotic
plantation/bush, whereas P. stellata exhibited no such behaviour (Aben et al. 2012). The result that
sensitivity of model performance to variation in the ranking of woody land-cover types was larger for
P. cabanisi indicates that SMS simulations were able to capture differences in movement behaviour
of a habitat specialist (whose movements are influenced by avoidance of fields and by the
composition of the woody matrix) and a generalist (whose movements are mainly influenced by an

avoidance of fields only).

Apart from the distribution of cost values, movements of virtual dispersers are affected by the
movement parameters of SMS. Because movements are simulated on a cell-by-cell basis, SMS does
not provide a perfect mechanistic description of field-derived movement rules (e.g. step lengths, turn
angles, c.f. Revilla et al. 2004). Instead, each move results in a spatial displacement determined by
the cell-size of the landscape grid and an angle relative to the preceding step influenced by the
degree of correlation specified. Hence, the ability of SMS to model species-specific movement
patterns across landscapes is strongly dependent on the quality of information in the cost surface.
Our results strongly emphasize this, not only because model fit differed markedly between cost sets
(see above) but also because predictive accuracy of SMS peaked when the influence of the
parameters governing the movement rules was minimized. As cell selection probabilities are
determined by their effective cost value weighted by the parameters controlling degree of
directional persistence and goal bias, increasing the weighting factors of these parameters overrules
landscape effects on simulated movements in favour of increased directionality or goal attraction.
[llustrative of this effect is the clear difference in sensitivity of model performance to variation in the

goal bias parameter between the two species; increasing the effect of homing behaviour on
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simulations strongly decreased the ability of SMS to predict movements of the forest specialist P.
cabanisi (for which movements were strongly influenced by the matrix), while no such effect was
apparent for the generalist P. stellata (for which movements were less consistently affected by the
matrix). Another example is the strong negative effect of the interaction between directional
persistence and memory size on model performance for both species. A strong directional
persistence in combination with a large memory size resulted in a higher proportion of false positives
(data not shown) which indicate that at this combination of parameter settings, simulated individuals
lose their flexibility to react to borders between land-cover types, resulting in an increase of

suboptimal movements as individuals are being “pushed” into high-cost land-cover types.

In contrast to the SMS parameters discussed above, the perceptual range does not directly control
movement, but modifies the scale over which cost values are assessed. Because cell selection
probabilities were based on the harmonic mean of the cost values within the perceptual range, they
were particularly sensitive to prevalence of low costs. For instance, Palmer, Coulon & Travis (2011)
showed that an increased perceptual range resulted in a greater number of virtual dispersers
reaching a target patch, primarily because they were better at locating low-cost stepping stones
embedded in a high cost matrix. We found that perceptual range had little effect on predictive
accuracy when matrix contrast was low, whereas model performance strongly decreased with
perceptual range when contrast was strong. This negative relationship was mainly driven by an
increase in the proportion of false negatives (data not shown). Our interpretation is that the
enhanced detection of low-cost land-cover types by virtual dispersers reduced their use of fields in
comparison with the empirical data, leading to a less accurate fit with actual movement across this
land-cover type. This means that when more information is available for virtual dispersers they are
increasingly capable of finding the least costly option through the matrix. The fact that this negatively
affected model predictions may imply that movement decisions of actual birds were mainly driven by

landscape cues perceived at relatively short distances.
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Synthesis and recommendations for application

There is considerable current interest in the degree of complexity that should be incorporated in
ecological models, both in terms of models used for developing general insight and for models
focussed on application (Evans et al. 2013). Here, we argue that intermediate complexity,
represented in this case by a relatively simple IBM of animal movement, can represent an extremely
promising approach for developing more effective in silico testing of alternative landscape
management scenarios. We have provided a demonstration of how one such movement model can
be parameterised using relatively straightforward data on bird movement. We have deliberately
employed a simple model that has as few parameters as possible, yet overcomes key limiting
assumptions (i.e. omniscience and foreknowledge of a destination) that are inherent within the
methods that remain most used, but are likely to be poor representations of how dispersing
individuals behave (Palmer, Coulon & Travis 2011). Additionally we have chosen to take a relatively
simple approach to model validation, and we believe this is important in terms of encouraging wider

application of IBMs.

Increasingly sophisticated approaches are currently being developed for the validation and inverse
fitting of individual-based models, including pattern-oriented modelling (POM; e.g. Grimm et al.
2005) and approximate Bayesian computation (ABC; e.g. Beaumont 2010). These approaches have
the worthy goal of seeking to make the optimum use of all available data for improving a model for a
particular species. However, there is a clear tension between the use of validation and fitting
methodologies requiring high technical expertise and the desire for ease of application to a broad
number of species and landscapes. Our view is that, for IBMs to be broadly applied in management,
we currently need to be pragmatic. We emphasise the need for some form of ‘sanity check’ of model
output, and a single-criterion validation such as that used in this paper is straightforward to perform.

It lacks the rigour and elegance of POM, or especially a method such as ABC, but it provides a rapid
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and effective insurance that the model specified by the user is not very wrong. Here, we chose to use
the True Skill Statistic for validation of model output against observed data. This is only one of many
possible approaches. Another, which should not be underestimated, is straightforward visual
inspection of animal movement trajectories and of simple summary data such as a distribution of
dispersal distances. This can be particularly valuable when engaging with stakeholders both in terms
of making best use of their knowledge and having them buy into the modelling process. For
example, expert knowledge on occasional long-distance dispersal events might represent useful
information to validate the model. If we are working with a species that is known to sometimes
exhibit dispersal of >5 km and we never in 1000 replicates see simulated individuals disperse >2 km
we might want to consider which parameters can yield at least occasional longer distance dispersal.
Another stakeholder might have observed a species regularly moving along a habitat edge (e.g.
woodland bordering field) yet very rarely recall having seen the species crossing an open field. This
type of information can be used to help adjust parameters such that stakeholders see simulated
individuals behaving in a way that they recognise. This is not formal statistical fitting, but the process
can be an important way of soliciting valuable information from those who know a focal species, and
can also help in increasing confidence in the modelling approach of those who need to have trust in
the recommendations arising from the outputs. We believe that such stakeholder-driven model
fitting will often be at least as important as formal statistical validation, both because it uses a
different form of valuable information and because it engages with those who will potentially benefit

from the modelling in a manner much easier for them to understand than formal statistics.
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goal bias.



465 Table 1. Cost sets used to evaluate sensitivity of SMS simulations to variation in landscape

466 composition and contrast between land-cover types

Relative cost values

Indigenous  Exotic Agro- Built-up
Bush Field

forest plantation forestry area
Set0 1 1 1 1 1 1
Setl 1 1 1 1 10 1000
Set2 1 2 3 4 10 1000
Set3 1 2 4 3 10 1000
Set4 1 3 2 4 10 1000
Set5 1 3 4 2 10 1000
Set6 1 4 3 2 10 1000
Set7 1 4 2 3 10 1000
Set 8 1 2 3 4 5 500
Set9 1 2 3 4 20 1000

467
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Table 2. ANOVA of the effects of goal bias (GB), directional persistence (DP), memory size (MS),
perceptual range (PR) and cost set (Cost) on the spatial agreement (TSS) between SMS simulations
and movement paths of two forest bird species. Significance level of F-tests: * P < 0.05, ** P < 0.01,

*** P <0.001; effect sizes measured as partial Eta squared (r1p2)

P. cabanisi P. stellata
d.f. F-value r1p2 F-value r1p2
Cost 9 1836.7***  0.987 388.8***  0.942
GB 3 12444.5*%**  0.994 158.0***  0.687
DP 2 1001.6***  0.903 2407.0***  0.957
MS 2 3668.5%**  0.971 2512.4***  0.959
PR 2 4673.6***  0.977 3214.9***  0.968
Cost:GB 27 72.9%**  0.901 13.3***  0.624
Cost:DP 18 29.8*%**  0.713 76.4*%**  0.864
GB:DP 6 428.5*%** 0923 241.1***  0.870
Cost:MS 18 29.3***  0.710 59.7*%**  0.833
GB:MS 6 210.0***  0.854 68.8***  0.656
DP:MS 4 858.0***  0.941 330.0***  0.859
Cost:PR 18 223.1***  0.949 90.8***  0.883
GB:PR 6 66.5%**  0.649 228.5***  0.864
DP:PR 4 50.1***  0.481 42.6***  0.441
MS:PR 4 14.1*¥**  0.207 11.6***  0.177
Cost:GB:DP 54 5.0***  0.554 6.0***  0.600
Cost:GB:MS 54 3.4***  0.460 2.8***  0.413
Cost:DP:MS 36 12.2*¥**  0.670 11.4*¥**  0.656

GB:DP:MS 12 10.6%** 0.370 12.9%** 0.417
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Cost:GB:PR

Cost:DP:PR

GB:DP:PR

Cost:MS:PR

GB:MS:PR

DP:MS:PR

Cost:GB:DP:MS

Cost:GB:DP:PR

Cost:GB:MS:PR

Cost:DP:MS:PR

GB:DP:MS:PR

Residuals

54

36

12

36

12

108

108

108

72

24

216

2.7%*

1.6

3.4%*

1.5%*

1.0

0.6

13

0.386

0.484

0.130

0.296

0.080

0.112

0.461

0.422

0.327

0.176

0.126

4.3%%*

4. 1%%*

2.0%**

4.2%**

4.6%**

1.6**

1.0

1.0

1.0

1.6*

0.555

0.418

0.184

0.252

0.190

0.146

0.440

0.329

0.328

0.258

0.154
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Figure 1. Actual movement path overlaid over SMS simulations. Shading indicates the number of
virtual individuals (out of 1000) which visited a particular landscape grid cell. In this case, a threshold
of 17 individuals maximized the proportion of correctly predicted presences and the proportion of

correctly predicted absences which translated into a True Skill Statistic of 0.732.
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Figure 2. The effect for P. cabanisi (A) and P. stellata (B) on the True Skill Statistic of the strength

of goal bias, the cost set (s0-s9), directional persistence (DP: low DP2, moderate DP3, high DP4)

and memory size (MS: low MS2, moderate MS4, high MS6).
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Figure 3. The effect on true skill statistic for P. cabanisi of perceptual range (grid cells), the cost
set (s0-s9) and directional persistence (DP: low DP2, moderate DP3, high DP4). Goal bias was

constant at its lowest level (1.05) (for effects at higher levels of goal bias see Fig. S1 in Supporting

Information).
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Figure 4. Average proportion of false positive and false negative errors (xSE) for each cost set (sO-

s9); grey: P. cabanisi, black: P. stellata.
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