8 research outputs found

    The epithelial splicing regulator ESRP2 is epigenetically repressed by DNA hypermethylation in Wilms tumour and acts as a tumour suppressor

    Get PDF
    This is the author accepted manuscript. The final version is available on open access from Wiley via the DOI in this recordWilms tumour (WT), an embryonal kidney cancer, has been extensively characterised for genetic and epigenetic alterations, but a proportion of WTs still lack identifiable abnormalities. To uncover DNA methylation changes critical for WT pathogenesis, we compared the epigenome of fetal kidney with two WT cell lines, filtering our results to remove common cancer-associated epigenetic changes, and to enrich for genes involved in early kidney development. This identified four hypermethylated genes, of which ESRP2 (epithelial splicing regulatory protein 2) was the most promising for further study. ESRP2 was commonly repressed by DNA methylation in WT, and this occurred early in WT development (in nephrogenic rests). ESRP2 expression was reactivated by DNA methyltransferase inhibition in WT cell lines. When ESRP2 was overexpressed in WT cell lines, it inhibited cellular proliferation in vitro, and in vivo it suppressed tumour growth of orthotopic xenografts in nude mice. RNA-seq of the ESRP2-expressing WT cell lines identified several novel splicing targets. We propose a model in which epigenetic inactivation of ESRP2 disrupts the mesenchymal to epithelial transition in early kidney development to generate WT.Children's Cancer and Leukaemia GroupLittle Princess TrustChildren with Cancer UKCLIC Sargent UKJohn James Bristol Foundatio

    Discovering Novel Hearing Loss Genes: Roles For Esrp1 And Gas2 In Inner Ear Development And Auditory Function

    Get PDF
    Hearing loss is the most common form of congenital birth defect, affecting an estimated 35 million children worldwide. To date, nearly 100 genes have been identified which contribute to a deafness phenotype in humans, however, many cases remain in which a causative mutation has yet to be found. In addition, the exact mechanism by which hearing loss occurs in the presence of many of these mutations is still not understood. This is due, in part, to the complex nature of the development and function of the cochlear duct, the organ of hearing. The cochlea undergoes an intricate morphogenetic development and requires the proper specification and maintenance of dozens of different cell types in order to function correctly. In the mature duct, an interplay between mechanotransducing sensory hair cells, supporting pillar and Dieters\u27 cells, and generation of electrochemical potential by the stria vascularis are necessary to respond to sound stimuli. We utilized exome and RNA-sequencing experiments combined with mouse genetics in order to discover novel genes that play roles in cochlear development and function. Exome sequencing of families with profound hearing loss uncovered mutations in Epithelial Splicing Regulatory Protein 1 (ESRP1), a critical regulator of alternative mRNA splicing. Analysis of Esrp1 mutant mice revealed a shortened cochlear duct, delay in hair cell differentiation and maturation, and loss of the stria vascularis due to inappropriate Fgf ligand usage, stemming from an alternatively spliced receptor, in these cells. To identify additional regulators of inner ear development we performed an RNA-seq experiment comparing the gene expression profiles of control and Smoecko otic vesicles, which lack a cochlear duct. This generated a dataset of hundreds of cochlear enriched transcripts including Growth Arrest Specific 2 (Gas2) a cytoskeletal binding protein with the potential to act as a regulator of cochlear development. We generated a Gas2 null mouse line and discovered that these animals have severe hearing impairment likely due to defects in microtubule organization in the pillar cells. Taken together, these studies implicate Esrp1 and Gas2 as novel hearing loss genes that regulate aspects of cochlear development and function

    EMT Network-based Lung Cancer Prognosis Prediction

    Get PDF
    Network-based feature selection methods on omics data have been developed in recent years. Their performance gain, however, is shown to be affected by the datasets, networks, and evaluation metrics. The reproducibility and robustness of biomarkers await to be improved. In this endeavor, one of the major challenges is the curse of dimensionality. To mitigate this issue, we proposed the Phenotype Relevant Network-based Feature Selection (PRNFS) framework. By employing a much smaller but phenotype relevant network, we could avoid irrelevant information and select robust molecular signatures. The advantages of PRNFS were demonstrated with the application of lung cancer prognosis prediction. Specifically, we constructed epithelial mesenchymal transition (EMT) networks and employed them for feature selection. We mapped multiple types of omics data on it alternatively to select single-omics signatures and further integrated them into multi-omics signatures. Then we introduced a multiplex network-based feature selection method to directly select multi-omics signatures. Both single-omics and multi-omics EMT signatures were evaluated on TCGA data as well as an independent multi-omics dataset. The results showed that EMT signatures achieved significant performance gain, although EMT networks covered less than 2.5% of the original data dimensions. Frequently selected EMT features achieved average AUC values of 0.83 on TCGA data. Employing EMT signatures on the independent dataset stratified the patients into significantly different prognostic groups. Multi-omics features showed superior performance over single-omics features on both TCGA data and the independent data. Additionally, we tested the performance of a few relational and non-relational databases for storing and retrieving omics data. Since biological data have large volume, high velocity, and wide varieties, it is necessary to have database systems that meet the need of integrative omics data analysis. Based on the results, we provided a few advices on building scalable omics data infrastructures

    Evolutionary recruitment of flexible Esrp-dependent splicing programs into diverse embryonic morphogenetic processes

    No full text
    Epithelial-mesenchymal interactions are crucial for the development of numerous animal structures. Thus, unraveling how molecular tools are recruited in different lineages to control interplays between these tissues is key to understanding morphogenetic evolution. Here, we study Esrp genes, which regulate extensive splicing programs and are essential for mammalian organogenesis. We find that Esrp homologs have been independently recruited for the development of multiple structures across deuterostomes. Although Esrp is involved in a wide variety of ontogenetic processes, our results suggest ancient roles in non-neural ectoderm and regulating specific mesenchymal-To-epithelial transitions in deuterostome ancestors. However, consistent with the extensive rewiring of Esrp-dependent splicing programs between phyla, most developmental defects observed in vertebrate mutants are related to other types of morphogenetic processes. This is likely connected to the origin of an event in Fgfr, which was recruited as an Esrp target in stem chordates and subsequently co-opted into the development of many novel traits in vertebrates

    Evolutionary recruitment of flexible Esrp-dependent splicing programs into diverse embryonic morphogenetic processes

    No full text
    Epithelial-mesenchymal interactions are crucial for the development of numerous animal structures. Thus, unraveling how molecular tools are recruited in different lineages to control interplays between these tissues is key to understanding morphogenetic evolution. Here, we study Esrp genes, which regulate extensive splicing programs and are essential for mammalian organogenesis. We find that Esrp homologs have been independently recruited for the development of multiple structures across deuterostomes. Although Esrp is involved in a wide variety of ontogenetic processes, our results suggest ancient roles in non-neural ectoderm and regulating specific mesenchymal-to-epithelial transitions in deuterostome ancestors. However, consistent with the extensive rewiring of Esrp-dependent splicing programs between phyla, most developmental defects observed in vertebrate mutants are related to other types of morphogenetic processes. This is likely connected to the origin of an event in Fgfr, which was recruited as an Esrp target in stem chordates and subsequently co- opted into the development of many novel traits in vertebrates

    Evolutionary recruitment of flexible Esrp-dependent splicing programs into diverse embryonic morphogenetic processes

    Get PDF
    Epithelial-mesenchymal interactions are crucial for the development of numerous animal structures. Thus, unraveling how molecular tools are recruited in different lineages to control interplays between these tissues is key to understanding morphogenetic evolution. Here, we study Esrp genes, which regulate extensive splicing programs and are essential for mammalian organogenesis. We find that Esrp homologs have been independently recruited for the development of multiple structures across deuterostomes. Although Esrp is involved in a wide variety of ontogenetic processes, our results suggest ancient roles in non-neural ectoderm and regulating specific mesenchymal-to-epithelial transitions in deuterostome ancestors. However, consistent with the extensive rewiring of Esrp-dependent splicing programs between phyla, most developmental defects observed in vertebrate mutants are related to other types of morphogenetic processes. This is likely connected to the origin of an event in Fgfr, which was recruited as an Esrp target in stem chordates and subsequently co-opted into the development of many novel traits in vertebrates.© The Author(s) 2017. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

    Evolutionary recruitment of flexible Esrp-dependent splicing programs into diverse embryonic morphogenetic processes

    No full text
    Epithelial-mesenchymal interactions are crucial for the development of numerous animal structures. Thus, unraveling how molecular tools are recruited in different lineages to control interplays between these tissues is key to understanding morphogenetic evolution. Here, we study Esrp genes, which regulate extensive splicing programs and are essential for mammalian organogenesis. We find that Esrp homologs have been independently recruited for the development of multiple structures across deuterostomes. Although Esrp is involved in a wide variety of ontogenetic processes, our results suggest ancient roles in non-neural ectoderm and regulating specific mesenchymal-to-epithelial transitions in deuterostome ancestors. However, consistent with the extensive rewiring of Esrp-dependent splicing programs between phyla, most developmental defects observed in vertebrate mutants are related to other types of morphogenetic processes. This is likely connected to the origin of an event in Fgfr, which was recruited as an Esrp target in stem chordates and subsequently co-opted into the development of many novel traits in vertebrates.This work has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement No ERC-StG-LS2-637591 to M.I.), the Spanish Ministry of Economy and Competitiveness (grant BFU2014-58908P to J.G.-F, BFU2014-55076-P to M.I., and the 'Centro de Excelencia Severo Ochoa 2013-2017', SEV-2012-0208), and ICREA - Generalitat de Catalunya (Academia Prize to J.G.-F). We acknowledge the support of the CERCA Programme/Generalitat de Catalunya. D.B. held an APIF fellowship from University of Barcelona, Y.M. an EMBO Long Term postdoctoral fellowship (ALTF 1505-2015), C.R. an EMBO long-term fellowship (ALTF 1608-2014), ATM an FPI-SO fellowship
    corecore