3,805 research outputs found

    Evaluating the Differences of Gridding Techniques for Digital Elevation Models Generation and Their Influence on the Modeling of Stony Debris Flows Routing: A Case Study From Rovina di Cancia Basin (North-Eastern Italian Alps)

    Get PDF
    Debris \ufb02ows are among the most hazardous phenomena in mountain areas. To cope with debris \ufb02ow hazard, it is common to delineate the risk-prone areas through routing models. The most important input to debris \ufb02ow routing models are the topographic data, usually in the form of Digital Elevation Models (DEMs). The quality of DEMs depends on the accuracy, density, and spatial distribution of the sampled points; on the characteristics of the surface; and on the applied gridding methodology. Therefore, the choice of the interpolation method affects the realistic representation of the channel and fan morphology, and thus potentially the debris \ufb02ow routing modeling outcomes. In this paper, we initially investigate the performance of common interpolation methods (i.e., linear triangulation, natural neighbor, nearest neighbor, Inverse Distance to a Power, ANUDEM, Radial Basis Functions, and ordinary kriging) in building DEMs with the complex topography of a debris \ufb02ow channel located in the Venetian Dolomites (North-eastern Italian Alps), by using small footprint full- waveform Light Detection And Ranging (LiDAR) data. The investigation is carried out through a combination of statistical analysis of vertical accuracy, algorithm robustness, and spatial clustering of vertical errors, and multi-criteria shape reliability assessment. After that, we examine the in\ufb02uence of the tested interpolation algorithms on the performance of a Geographic Information System (GIS)-based cell model for simulating stony debris \ufb02ows routing. In detail, we investigate both the correlation between the DEMs heights uncertainty resulting from the gridding procedure and that on the corresponding simulated erosion/deposition depths, both the effect of interpolation algorithms on simulated areas, erosion and deposition volumes, solid-liquid discharges, and channel morphology after the event. The comparison among the tested interpolation methods highlights that the ANUDEM and ordinary kriging algorithms are not suitable for building DEMs with complex topography. Conversely, the linear triangulation, the natural neighbor algorithm, and the thin-plate spline plus tension and completely regularized spline functions ensure the best trade-off among accuracy and shape reliability. Anyway, the evaluation of the effects of gridding techniques on debris \ufb02ow routing modeling reveals that the choice of the interpolation algorithm does not signi\ufb01cantly affect the model outcomes

    Examination of the seepage face boundary condition in subsurface and coupled surface/subsurface hydrological models

    Get PDF
    A seepage face is a nonlinear dynamic boundary that strongly affects pressure head distributions, water table fluctuations, and flow patterns. Its handling in hydrological models, especially under complex conditions such as heterogeneity and coupled surface/subsurface flow, has not been extensively studied. In this paper, we compare the treatment of the seepage face as a static (Dirichlet) versus dynamic boundary condition, we assess its resolution under conditions of layered heterogeneity, we examine its interaction with a catchment outlet boundary, and we investigate the effects of surface/subsurface exchanges on seepage faces forming at the land surface. The analyses are carried out with an integrated catchment hydrological model. Numerical simulations are performed for a synthetic rectangular sloping aquifer and for an experimental hillslope from the Landscape Evolution Observatory. The results show that the static boundary condition is not always an adequate stand-in for a dynamic seepage face boundary condition, especially under conditions of high rainfall, steep slope, or heterogeneity; that hillslopes with layered heterogeneity give rise to multiple seepage faces that can be highly dynamic; that seepage face and outlet boundaries can coexist in an integrated hydrological model and both play an important role; and that seepage faces at the land surface are not always controlled by subsurface flow. The paper also presents a generalized algorithm for resolving seepage face outflow that handles heterogeneity in a simple way, is applicable to unstructured grids, and is shown experimentally to be equivalent to the treatment of atmospheric boundary conditions in subsurface flow models

    A Conceptual Framework for Integration Development of GSFLOW Model: Concerns and Issues Identified and Addressed for Model Development Efficiency

    Get PDF
    In Coupled Groundwater and Surface-Water Flow (GSFLOW) model, the three-dimensional finite-difference groundwater model (MODFLOW) plays a critical role of groundwater flow simulation, together with which the Precipitation-Runoff Modeling System (PRMS) simulates the surface hydrologic processes. While the model development of each individual PRMS and MODFLOW model requires tremendous time and efforts, further integration development of these two models exerts additional concerns and issues due to different simulation realm, data communication, and computation algorithms. To address these concerns and issues in GSFLOW, the present paper proposes a conceptual framework from perspectives of: Model Conceptualization, Data Linkages and Transference, Model Calibration, and Sensitivity Analysis. As a demonstration, a MODFLOW groundwater flow system was developed and coupled with the PRMS model in the Lehman Creek watershed, eastern Nevada, resulting in a smooth and efficient integration as the hydrogeologic features were well captured and represented. The proposed conceptual integration framework with techniques and concerns identified substantially improves GSFLOW model development efficiency and help better model result interpretations. This may also find applications in other integrated hydrologic modelings

    Predicting floods in a large karst river basin by coupling PERSIANN-CCS QPEs with a physically based distributed hydrological model

    Get PDF
    In general, there are no long-term meteorological or hydrological data available for karst river basins. The lack of rainfall data is a great challenge that hinders the development of hydrological models. Quantitative precipitation estimates (QPEs) based on weather satellites offer a potential method by which rainfall data in karst areas could be obtained. Furthermore, coupling QPEs with a distributed hydrological model has the potential to improve the precision of flood predictions in large karst watersheds. Estimating precipitation from remotely sensed information using an artificial neural network-cloud classification system (PERSIANN-CCS) is a type of QPE technology based on satellites that has achieved broad research results worldwide. However, only a few studies on PERSIANN-CCS QPEs have occurred in large karst basins, and the accuracy is generally poor in terms of practical applications. This paper studied the feasibility of coupling a fully physically based distributed hydrological model, i.e., the Liuxihe model, with PERSIANN-CCS QPEs for predicting floods in a large river basin, i.e., the Liujiang karst river basin, which has a watershed area of 58 270 km-2, in southern China. The model structure and function require further refinement to suit the karst basins. For instance, the sub-basins in this paper are divided into many karst hydrology response units (KHRUs) to ensure that the model structure is adequately refined for karst areas. In addition, the convergence of the underground runoff calculation method within the original Liuxihe model is changed to suit the karst water-bearing media, and the Muskingum routing method is used in the model to calculate the underground runoff in this study. Additionally, the epikarst zone, as a distinctive structure of the KHRU, is carefully considered in the model. The result of the QPEs shows that compared with the observed precipitation measured by a rain gauge, the distribution of precipitation predicted by the PERSIANN-CCS QPEs was very similar. However, the quantity of precipitation predicted by the PERSIANN-CCS QPEs was smaller. A post-processing method is proposed to revise the products of the PERSIANN-CCS QPEs. The karst flood simulation results show that coupling the post-processed PERSIANN-CCS QPEs with the Liuxihe model has a better performance relative to the result based on the initial PERSIANN-CCS QPEs. Moreover, the performance of the coupled model largely improves with parameter re-optimization via the post-processed PERSIANN-CCS QPEs. The average values of the six evaluation indices change as follows: the Nash-Sutcliffe coefficient increases by 14 %, the correlation coefficient increases by 15 %, the process relative error decreases by 8 %, the peak flow relative error decreases by 18 %, the water balance coefficient increases by 8 %, and the peak flow time error displays a 5 h decrease. Among these parameters, the peak flow relative error shows the greatest improvement; thus, these parameters are of page1506 the greatest concern for flood prediction. The rational flood simulation results from the coupled model provide a great practical application prospect for flood prediction in large karst river basins

    Scaling gridded river networks for macroscale hydrology: Development, analysis, and control of error

    Get PDF
    A simple and robust river network scaling algorithm (NSA) is presented to rescale fine‐resolution networks to any coarser resolution. The algorithm was tested over the Danube River basin and the European continent. Coarse‐resolution networks, at 2.5, 5, 10, and 30 min resolutions, were derived from higher‐resolution gridded networks using NSA and geomorphometric attributes, such as river order, shape index, and width function. These parameters were calculated and compared at each resolution. Simple scaling relationships were found to predict decreasing river lengths with coarser‐resolution data. This relationship can be used to correct river length as a function of grid resolution. The length‐corrected width functions of the major river basins in Europe were compared at different resolutions to assess river network performance. The discretization error in representing basin area and river lengths at coarser resolutions were analyzed, and simple relationships were found to calculate the minimum number of grid cells needed to maintain the catchment area and length within a desired level of accuracy. This relationship among geomorphological characteristics, such as shape index and width function (derived from gridded networks at different resolutions), suggests that a minimum of 200–300 grid cells is necessary to maintain the geomorphological characteristics of the river networks with sufficient accuracy

    Final Report of the DAUFIN project

    Get PDF
    DAUFIN = Data Assimulation within Unifying Framework for Improved river basiN modeling (EC 5th framework Project

    Topographic Wetness Index as a Proxy for Soil Moisture : The Importance of Flow-Routing Algorithm and Grid Resolution

    Get PDF
    The Topographic Wetness Index (TWI) is a commonly used proxy for soil moisture. The predictive capability of TWI is influenced by the flow-routing algorithm and the resolution of the Digital Elevation Model (DEM) that TWI is derived from. Here, we examine the predictive capability of TWI using 11 flow-routing algorithms at DEM resolutions 1-30 m. We analyze the relationship between TWI and field-quantified soil moisture using statistical modeling methods and 5,200 study plots with over 46 000 soil moisture measurements. In addition, we test the sensitivity of the flow-routing algorithms against vertical height errors in DEM at different resolutions. The results reveal that the overall predictive capability of TWI was modest. The highest r(2) (23.7%) was reached using a multiple-flow-direction algorithm at 2 m resolution. In addition, the test of sensitivity against height errors revealed that the multiple-flow-direction algorithms were also more robust against DEM errors than single-flow-direction algorithms. The results provide field-evidence indicating that at its best TWI is a modest proxy for soil moisture and its predictive capability is influenced by the flow-routing algorithm and DEM resolution. Thus, we encourage careful evaluation of algorithms and resolutions when using TWI as a proxy for soil moisture.Peer reviewe

    A coupled terrestrial and aquatic biogeophysical model of the Upper Merrimack River watershed, New Hampshire, to inform ecosystem services evaluation and management under climate and land-cover change

    Get PDF
    Accurate quantification of ecosystem services (ES) at regional scales is increasingly important for making informed decisions in the face of environmental change. We linked terrestrial and aquatic ecosystem process models to simulate the spatial and temporal distribution of hydrological and water quality characteristics related to ecosystem services. The linked model integrates two existing models (a forest ecosystem model and a river network model) to establish consistent responses to changing drivers across climate, terrestrial, and aquatic domains. The linked model is spatially distributed, accounts for terrestrial–aquatic and upstream–downstream linkages, and operates on a daily time-step, all characteristics needed to understand regional responses. The model was applied to the diverse landscapes of the Upper Merrimack River watershed, New Hampshire, USA. Potential changes in future environmental functions were evaluated using statistically downscaled global climate model simulations (both a high and low emission scenario) coupled with scenarios of changing land cover (centralized vs. dispersed land development) for the time period of 1980–2099. Projections of climate, land cover, and water quality were translated into a suite of environmental indicators that represent conditions relevant to important ecosystem services and were designed to be readily understood by the public. Model projections show that climate will have a greater influence on future aquatic ecosystem services (flooding, drinking water, fish habitat, and nitrogen export) than plausible changes in land cover. Minimal changes in aquatic environmental indicators are predicted through 2050, after which the high emissions scenarios show intensifying impacts. The spatially distributed modeling approach indicates that heavily populated portions of the watershed will show the strongest responses. Management of land cover could attenuate some of the changes associated with climate change and should be considered in future planning for the region
    corecore