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1.  Introduction
Globally, the availability of high-resolution topographic data has increased due to recent developments in 
remote sensing technologies, such as light detection and ranging (LiDAR). At the same time, a wide selec-
tion of algorithms has become available through free and open-source software. A commonly used appli-
cation of open algorithms and topographic data is the Topographic Wetness Index (TWI), which is a proxy 
for soil moisture (Beven & Kirkby, 1979; Kopecký et al., 2021; Mattivi et al., 2019; Seibert & McGlynn, 2007; 
Wilson, 2018). However, TWI and other static indices have limitations when it comes to predicting soil 
moisture (Crave & Gascuel-Odoux, 1997; Western et al., 1999, 2002; Wilson et al., 2004). Consequently, it is 
important to evaluate how well this proxy relates to field-quantified soil moisture, and how the predictive 
capability of TWI changes depending on a given algorithm and data, such as the Digital Elevation Model 
(DEM), on which TWI is based. Previously, the focus has been on either the algorithm (e.g., Kopecký & 
Čížková, 2010; Kopecký et al., 2021; Sørensen et al., 2006) or DEM resolution (e.g., Gillin et al., 2015; Zhang 
& Montgomery, 1994). However, rarely both algorithm and resolution are considered simultaneously.

Abstract  The Topographic Wetness Index (TWI) is a commonly used proxy for soil moisture. The 
predictive capability of TWI is influenced by the flow-routing algorithm and the resolution of the Digital 
Elevation Model (DEM) that TWI is derived from. Here, we examine the predictive capability of TWI 
using 11 flow-routing algorithms at DEM resolutions 1–30 m. We analyze the relationship between TWI 
and field-quantified soil moisture using statistical modeling methods and 5,200 study plots with over 
46 000 soil moisture measurements. In addition, we test the sensitivity of the flow-routing algorithms 
against vertical height errors in DEM at different resolutions. The results reveal that the overall predictive 
capability of TWI was modest. The highest r2 (23.7%) was reached using a multiple-flow-direction 
algorithm at 2 m resolution. In addition, the test of sensitivity against height errors revealed that the 
multiple-flow-direction algorithms were also more robust against DEM errors than single-flow-direction 
algorithms. The results provide field-evidence indicating that at its best TWI is a modest proxy for soil 
moisture and its predictive capability is influenced by the flow-routing algorithm and DEM resolution. 
Thus, we encourage careful evaluation of algorithms and resolutions when using TWI as a proxy for soil 
moisture.

Plain Language Summary  Soil moisture is a microclimate variable that can vary from 
one meter to another. The spatial variation of soil moisture is related to many patterns in nature. 
Often, soil moisture data is based on single point measurements, which are hard to extend over large 
areas. Therefore, it is useful to have proxies of soil moisture that can be used instead of field data. We 
investigated how well a commonly used moisture proxy, the Topographic Wetness Index, is related to field 
measurements of soil moisture. Our results revealed that at its best, the predictive capability of the proxy 
was modest. We found that algorithm and resolution of the proxy influenced how well the proxy related to 
soil moisture. This is important because a poor choice of algorithm and resolution can underestimate the 
role of soil moisture for instance in ecosystem models. Therefore, we encourage researchers to carefully 
consider which is the most suitable algorithm and resolution for their study.
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TWI was developed for hydrological modeling (Beven & Kirkby, 1979; Wilson, 2018). TWI can be used to 
locate saturated areas that create run-off and to estimate average groundwater levels (Rinderer et al., 2014). 
In addition to hydrological applications, TWI is widely used as a proxy for soil moisture, for instance, in 
carbon research (Mishra & Riley, 2012; Obu et al., 2017; Pei et al., 2010; Virkkala et al., 2021), microclimate 
research (Ashcroft et al., 2009; Greiser et al., 2018; Macek et al., 2019), geomorphology (Aalto et al., 2014; 
Karjalainen et  al.,  2020; Luoto & Hjort,  2005), and vegetation science (Naito & Cairns,  2011; Niittynen 
et al., 2018; Raduła et al., 2018). Despite its common use, relatively few studies have investigated how well 
TWI relates to field-quantified soil moisture (see for instance, Buchanan et al., 2014; Kopecký et al., 2021; 
Raduła et al., 2018; Sørensen et al., 2006), chiefly due to the scarcity of spatially extensive soil moisture 
measurements (Sørensen & Seibert, 2007).

TWI (T in Equation 1) consists of two parts; contributing catchment area per unit contour length (m2/m) 
called the specific catchment area (SAC in the text, S in Equation 1) and the local slope in radians (tan β) 
(Equation 1).


 

  
 

ln ST
tan� (1)

SCA accounts for accumulated water, whereas the local slope accounts for the local gravitational force 
moving the accumulated water downwards (Quinn et al., 1991). Equation 1 assumes that soil transmissivity 
is constant throughout the catchment area. In the original TOPMODEL framework, transmissivity is used 
to control the effect of hydraulic gradient described by tanβ (Equation 1). Several algorithms exist for cal-
culating both the local slope and SCA (Gruber & Peckham, 2009). Many studies use different algorithms 
for calculating TWI, however, they lack detailed descriptions on what algorithm they used (Kopecký & 
Čížková, 2010). This unfortunately decreases the overall reproducibility and comparability of results among 
studies (Kopecký et al., 2021).

The spatial resolution and accuracy of the original elevation data also influence TWI (Zhou & Liu, 2002). 
Inaccurate elevation data may lead to erroneous flow-routing (SCA) and slope values. In addition, DEM res-
olution determines how fine-scale landforms are represented in DEM, and consequently, in TWI. DEM res-
olution should be high enough to represent features, which are vital for the response (Dark & Bram, 2007; 
Quinn et  al.,  1995). For example, the fine-scale spatial variation of soil moisture is influenced by local 
landforms, such as small ridges and depressions (Thomas et al., 2017). However, if the response is chiefly 
influenced by coarse-scale landforms, higher resolution DEM does not automatically result in an improved 
outcome (Gillin et al., 2015; Quinn et al., 1991; Sørensen & Seibert, 2007). For example, groundwater distri-
bution operates on a coarser scale than soil moisture and, thus, it is more related to the catchment area at 
a 3–5 m resolution rather than at a 1 m resolution (Gillin et al., 2015; Sørensen & Seibert, 2007). All in all, 
if the response varies at a fine-scale and DEM resolution does not match that scale, important information 
can be lost (Beven, 1998).

DEM resolution directly affects TWI (Quinn et al., 1995; Sørensen & Seibert, 2007; Vaze et al., 2010). The 
slope values (tan β) of a low-resolution DEM have a narrower distribution in comparison to a high-reso-
lution DEM. This is caused by the loss of topographic detail, that is, averaging of the steepest slopes. Fur-
thermore, flow paths are generally shorter with low-resolution data and less routing takes place. In general, 
larger TWI values are achieved using low-resolution DEMs (Gillin et al., 2015; Quinn et al., 1995). Most 
of the fundamental flow-routing algorithms have been published decades ago, therefore, they are based 
on medium-resolution DEMs (10 m or coarser). However, the recent developments in 3D remote sensing 
have allowed more realistic and accurate modeling of topography in comparison to the traditional medi-
um-resolution DEMs. For example, LiDAR, high resolution RADAR, and Structure-from-Motion can pro-
vide extremely detailed information on topography. High-resolution data capture very fine-scale landforms 
(Barber & Shortridge, 2005; Hasan et al., 2012; Jones et al., 2008; Thomas et al., 2017; Vaze et al., 2010). A 
higher sampling rate offers more control over DEM resolution, as the high-resolution point clouds can be 
gridded to a proper resolution, which tackles some of the key issues in DEM resolution (Quinn et al., 1995).

Several studies have raised the concern of the impact of DEM resolution on TWI (Hancock, 2005; Wolock 
& Price,  1994; Zhang & Montgomery,  1994). Especially high-resolution DEMs have gained attention as 
more DEMs are openly available (Gillin et al., 2015; Hasan et al., 2012; Sørensen & Seibert, 2007; Thomas 
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et al., 2017). However, it is still insufficiently known how DEM resolution and accuracy influence different 
flow-routing algorithms. Moreover, little is known about the performance of TWI as a proxy for soil mois-
ture (Buchanan et al., 2014; Qiu et al., 2017; Radula et al., 2018; Schröter et al., 2015). Here, we (a) quantify 
the predictive capability of TWI as a proxy for soil moisture, (b) compare 11 flow-routing algorithms at dif-
ferent DEM resolutions, and (c) test the sensitivity of the algorithms against vertical height errors in DEM 
at different resolutions.

2.  Materials and Methods
2.1.  Data

2.1.1.  Field Data

We measured soil moisture from 5,200 plots (Riihimäki, Kemppinen et al., 2021) located in the northwest-
ern Fennoscandian mountain tundra, on Mount Saana and Mount Jehkas in Kilpisjärvi, Finland (69.06°N, 
20.82°E; 582–808 meters above seal level (asl)) (Figure 1). The soil moisture measurements were carried 
out in June, July, and August 2016 (Figure 2), when the mean air temperature and precipitation sum for 
each month were as follows: June 7.3°C and 93.6 mm, July 12.3°C and 115.7 mm, and August 9.1°C and 
59.6 mm (Finnish Meteorological Institute, 2019a). The topography of the area is heterogeneous, as the 
landscape is an alternation of hilltops, ridges, depressions, and steep slopes (detailed relief map in Figure 2). 
The surficial deposits in the area consist of peat, fluvial deposits, glacial till, boulders, and rock outcrops 
(Kemppinen et al., 2018). The soil is poorly developed (median 10 cm depth, average 13 cm depth) covered 
with an organic layer (median 4 cm depth, average 6 cm depth) (Kemppinen et al., 2018). Typically seasonal 
frost is present throughout the winter, but not during summer (time of the soil moisture measurements) 
and permafrost can be present in the bedrock above 800 m a.s.l. (above the measurement sites) (King & Sep-
pälä, 1987). The vegetation type in the area is chiefly dwarf shrub tundra (Kemppinen et al., 2021). The an-
nual precipitation sum is 518 mm (1991–2018; Kyläkeskus meteorological station; 69.04 N, 20.80 E; 480 m 
asl) (Finnish Meteorological Institute,  2019a). The mean annual air temperature is −3.1°C (1991–2018; 
Saana meteorological station; 69.04 N, 20.85 E; 1,002 m asl) (Finnish Meteorological Institute, 2019b).

Soil moisture was measured from 6,000 plots (1 m2). First, we situated 1,200 center plots systematically 
at 50 m intervals within an area of 2,000 m × 1,500 m. Then at 5 m from each center plot, we situated 
four more plots at each cardinal direction. We refer to a center plot with the four cardinal plots as a site 
(n = 1,200). In the analyses, we used data from 1,040 sites (n = 5,200 plots), as we excluded sites that lacked 
data (for instance, sites partially under snow). We performed the analyses at two scales: 1 and 100 m2. In the 
first scale, we use volumetric water content (VWC) of the center plot (n = 1,040). In the latter scale, we use 
the plots at the cardinal directions (n = 4,160) to calculate the mean VWC of the four plots (n = 1,040). The 
location of the center plots were located using a hand-held GNSS receiver, with an accuracy up to ≤6 cm 
under optimal circumstances (GeoExplorer GeoXH 6,000 Series; Trimble Inc.).

We measured soil moisture (VWC) at each plot using a hand-held time-domain reflectometry sensor (Field-
Scout TDR 300; Spectrum Technologies Inc.). The accuracy of the instrument is 3.0% VWC% with electrical 
conductivity <2 dS m−1. VWC was measured up to a depth of 7.5 cm. To account for possible spatial varia-
tion within a given plot, we repeated the measurements at three points within each plot and used the aver-
age of the three measurements. To account for possible temporal variation, we repeated the measurements 
on three occasions in 2016 (June, July, August; Figure 2) and used the average of the three measurements 
(see Kemppinen et al., 2018; for further details). Altogether, each plot represents the average of nine meas-
urements, which means that in total, we use 46 800 soil moisture measurements (Riihimäki, Kemppinen 
et al., 2021).

2.1.2.  LiDAR Data

We used DEM data that was based on airborne laser scanning provided by the National Land Survey of 
Finland (2019). The study area was scanned with a Leica ALS60 laser scanner in August 2016 (leaf-on), 
with a pulse density of ∼0.5 pulses/m2, and a nominal pulse spacing of ∼1.4 m. The maximum scan angle 
was set to 20°, beam divergence to (1/e2) 0.22 mrad and flight altitude to cirka 2,200 m above ground level. 
The accuracy of the z-coordinate is <15 cm. The ground-classified point-cloud was converted to DEM by 
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Figure 1.
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using the las2dem tool in LAStools software (version 170302) with an output resolution from 1, 2, … 30 m 
(Isenburg, 2017). The tool first creates a triangulated TIN-model, which is then converted into grid format. 
For DEM resolution ≤2 m, we used all observations inside the pixel. For DEM resolution ≥3 m, we used a 
thinned point cloud by choosing the median point with a sample frequency set to resolution/2 m (that is, 
Nyquist frequency). This step was done using the lasthin tool (Isenburg, 2017).

2.2.  Methods

2.2.1.  Topographic Wetness Index

We used SAGA GIS (v. 2.12) for calculating TWI. First, we used a filled DEM following the algorithm of 
Wang and Liu (2006) and calculated the local slope (Zevenbergen & Thorne, 1987). Then, we calculated the 
total catchment areas from the filled DEMs using the Catchment area-modules available in SAGA GIS (Ta-
ble 1). Lastly, we calculated TWI for each of the 11 flow-routing algorithms and different DEM resolutions 
(1–30 m) using the TWI module.

We used flow-routing algorithms that chiefly followed the methodology and abbreviations in Kopecký and 
Čížková (2010) and Kopecký et al.  (2021). We used 11 algorithms, which were available in the Hydrolo-
gy-module of SAGA GIS (v. 2.12) (Conrad et al., 2015). We did not include more flow-routing algorithms, 
because these algorithms were either not yet available in any GIS software (Orlandini et al., 2003; Pilesjö 
& Hasan, 2014; Shelef & Hilley, 2013) or were available only in commercial softwares, such as Mass Flux 
Method (Gruber & Peckham, 2009). We compare different single-flow-direction and multiple-flow-direc-
tion algorithms, which gives a good general understanding on how these commonly used algorithms affect 
the explanatory power of TWI. We give a brief description on the algorithms, but for a comprehensive re-
view on the algorithms we recommend reading Wilson (2018).

2.2.1.1.  Specific Catchment Area

In SAGA GIS, the output of the most flow-routing algorithms is the total catchment area (TCA). However, 
the TWI formula requires the specific catchment area (SCA), which is calculated as TCA/L, where L is the 
flow-width per unit contour length. With gridded data, a common and effective solution is to assume that 
flow occurs through a pixel, thus, the flow-width is assumed to be identical to the resolution of the input 
data (Chirico et  al.,  2005). In SAGA GIS, this is referred to as pseudo-Specific Catchment Area (pSCA) 
(Conrad et al., 2015).

2.2.1.2.  Creek Initiation Threshold Area

In addition to SCA, other components of TWI are local slope (tan β) and creek initiation threshold area 
(CIT) (Quinn et al., 1995). CIT describes the point in which water-flow forms a distinguishable stream, and 
where normal assumptions of TWI do not hold (Quinn et al., 1995; Sørensen et al., 2006). After CIT criteria 
is met, the flow is routed downward as a “creek area” and flow dispersal of flow does not occur. We decided 
not to use CIT in our analysis due to the lack of channelized flow in the study area throughout the summer. 
In addition, Sørensen et al. (2006) tested various CIT values, but did not find an optimal value (cf. Quinn 
et al., 1995). Sørensen et al. (2006) concluded that the parameter is dependent on multiple factors, such as 
slope, soil type, and seasonality. Also, CIT is influenced by DEM resolution (Quinn et al., 1995; Sørensen & 
Seibert, 2007). A CIT threshold that is too low might cause grid bias error when dispersal-flow still occurs 
after the given threshold. Finally, Quinn et al. (1995) suggest that it may be necessary to analyze optimal 
CIT for each individual catchment and resolution separately.

Figure 1.  Field measurements of soil moisture. The squares represent the mean soil moisture, which is based on three independent measurements collected 
during the growing-season (for individual measurement occasions see Figure 2). Squares on top represent soil moisture measured at the 1 m2-scale, whereas the 
bottom squares represent the 100 m2-scale. This means that if the squares differ in color, there is fine-scale spatial variation in soil moisture. The white square 
represents the zoom-in area represented in Figures 3, 5, and 6. The elevation map with hillshade is based on a Digital Elevation Model provided by the National 
Land Survey of Finland, who also provided the stream network. Volumetric water content = VWC%.
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Figure 2.
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2.2.1.3.  Flow-Routing Algorithms

Deterministic single-flow (D8) algorithm is the simplest of the flow-routing approaches. This method is 
widely used, as it is available in many GIS software (Gruber & Peckham, 2009). In D8, all water-flow is as-
signed to one of the eight neighboring pixels based on the direction of the steepest descent (O'Callaghan & 
Mark, 1984). This approach has several shortcomings. First, divergent flow from a pixel is not considered. 
Second, D8 is prone to grid bias in flat areas or when it is based on low-quality DEMs (Tarboton, 1997). 
Third, water-flow is treated as a one-dimensional feature, occurring only from one cell center to another 
(Costa-Cabral & Burges, 1994). All this makes D8 sensitive to possible errors in DEM. Consequently, vertical 
height errors in DEM may direct all the flow accumulation to a wrong pixel, and hence to all downward 
cells as well.

Stochastic single-flow (Rho8) algorithm is a stochastic extension of the D8 algorithm. It divides wa-
ter-flow randomly to one of the eight neighboring cells by using slope-weighted probabilities (Fairfield 
& Leymarie, 1991). This reduces the grid bias, but this also results in a different outcome in every run, 
which can be problematic especially in small catchments (Gruber & Peckham, 2009). Furthermore, lateral 
flow-channels might merge and converge randomly, causing error to the total catchment area (Costa-Cabral 
& Burges, 1994).

Aspect driven kinematic routing (KRA) algorithm is an aspect-driven approach (Lea, 1992). KRA first fits a 
plane through the pixel center elevations. Next, it calculates aspect vectors in 1° increments, which are used 
to route flow across the pixels. Finally, KRA calculates the contributing area as the number of flow-paths 
passing through the cell multiplied by the cell area (Wilson et al., 2008).

DEM networks (DEMON) is also an aspect-driven approach. The flow is generated uniformly over the cell 
area and directed downslope as a two dimensional “tube”, allowing water-flow to disperse between two 
pixels (Costa-Cabral & Burges, 1994). Thus, in DEMON, the flow does not originate from the pixel center.

Braunschweiger relief model (BR) allows water flow to three neighboring pixels (Bauer et al., 1985). BR 
divides the outflow to a cell with orientation nearest to the aspect of the source cell, and its two neighboring 
cells (Kopecký & Čížková, 2010).

Figure 2.  Field measurements of soil moisture. The study area is located in topographically heterogenous mountain tundra (a). The contour line interval is 
10 meters (a). The squares represent soil moisture, which is collected during the growing-season in June (b), July (c) or August (d). Squares on top represent soil 
moisture measured at the 1 m2-scale, whereas the bottom squares represent the 100 m2-scale. This means that if the squares differ in color, there is fine-scale 
spatial variation in soil moisture. The white square represents the zoom-in area represented in Figures 3, 5, and 6. The elevation map with hillshade is based on 
a Digital Elevation Model provided by the National Land Survey of Finland, who also provided the stream network. Volumetric water content = VWC%.

Algorithm Abbreviation n Reference

Deterministic single-flow D8 1 O'Callaghan & Mark, 1984

Stochastic single-flow Rho8 1 Fairfield & Leymarie, 1991

Aspect driven kinematic routing KRA 1 Lea, 1992

DEM networks DEMON 2 Costa-Cabral & Burges, 1994

Braunschweiger relief model BR 3 Bauer et al., 1985

Deterministic infinity Dinf 2 Tarboton, 1997

Multiple-flow Dinf MDinf 8 Seibert & McGlynn, 2007

Multiple-flow Freeman FD8f 8 Freeman, 1991

Multiple-flow Quinn FD8q 8 Quinn et al., 1991

Multiple-flow Holmgren FD8h 8 Holmgren, 1994

Iteratively modified FD8f SAGA algorithm 8 Böhner & Selige, 2006

Table 1 
Flow-Routing Algorithms. n is the Maximum Number of Cells, to Which Flow can be Dispersed
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Deterministic infinity (Dinf) algorithm was introduced by Tarboton  (1997) to tackle simultaneously the 
over-dispersion of multiple-flow-direction algorithms and the grid bias of the single-flow-direction algo-
rithms. In Dinf, one flow direction is assigned from each cell based on planar triangular facets. Thus, the 
draining area can be divided between two neighboring cells. The proportions of these cells are dependent 
on flow-direction and how the direction-line cuts through the cells. A potential shortcoming of Dinf is that 
the outflow cannot occur in more than one direction, when in reality the given area can drain towards two 
(or more) different directions.

Multiple-flow Dinf (MDinf) algorithm was introduced by Seibert and McGlynn (2007). Similar to the sin-
gle-flow-direction algorithm Dinf, flow is dispersed according to the triangular facets in MDinf. However, 
MDinf allows dispersal to all neighboring cells in certain cases. The flow-routing of MDinf is identical to 
Dinf in planar, convex, or concave landforms, but it responds differently in ridges and saddles (Seibert & 
McGlynn, 2007). In these cases, MDinf behaves as a multiple-flow-direction algorithm, and the dispersion 
can be similarly controlled with the v-value (Equation 2).

Multiple-flow Freeman (FD8f), multiple-flow Quinn (FD8q), and multiple-flow Holmgren (FD8h) are 
multiple-flow-direction algorithms, which are able to divide flow accumulation into all eight neighboring 
pixels. The draining fraction of a pixel (d) to a neighboring cell (NBi) is calculated as follows: (Equation 2)

 
 







 

NBi NBi
NBi 8

1 NBj NBj

tan
,

v

v
j

L
d

tan L
� (2)

where L is the draining contour length and v the exponent, which controls the amount of flow dispersion 
(Gruber & Peckham, 2009; Quinn et al., 1995). Different versions of the algorithm have been published by 
several authors, each with different v-values (FD8f in Freeman, 1991; FD8q in Quinn et al., 1991; FD8h in 
Holmgren, 1994). FD8q uses a v-value of 1 and FD8f a v-value of 1.1. Whereas for FD8h, Holmgren (1994) 
recommends using values between 4 and 6, here we used 4 in FD8h. A higher v-value results in a stronger 
flow towards a steeper slope, whereas a lower value leads to more dispersed flow (Quinn et al., 1995). The 
original FD8q algorithm also included a different L-value for flow routed to diagonal and cardinal cells, 
but the implementation in SAGA GIS uses the same L-value for all directions (Kopecký et al., 2021). The 
ability of these multiple-flow-direction algorithms to divide flow to all of its neighbors is useful in topo-
graphic positions, where water flows to different directions, for example in a saddle or ridge. However, 
multiple-flow-direction algorithms might cause flow over-dispersion, particularly with a low v-value (Cos-
ta-Cabral & Burges, 1994; Tarboton, 1997).

Iteratively modified FD8f (SAGA algorithm, T(mod.) in Equation  3.2) is an algorithm specific to SAGA 
GIS. In SAGA algorithm, FD8f is used for the calculation of catchment area which is then iteratively mod-
ified (Equation 3.1) according to the flow accumulations in the surrounding cells (Böhner & Selige, 2006; 
Kopecký et al., 2021). SAGA algorithm produces a spatially smoothed TWI distribution, which may reduce 
the effect of DEM artifacts and errors that are known to deteriorate spatial representation of hydrologi-
cal models, especially in flat areas (Böhner & Selige, 2006; Wise, 2007). SAGA algorithm uses an iterative 
modification for the SCA (S in Equations 3.1 and 3.2), which simulates flow suction from the pixels in the 
immediate neighborhood (Equations 3.1 and 3.2):

  
 
  

  
 

max
1 for

exp t

MS S
t

�

  
 
  

  
 

max
1 exp t

S S
t

� (3.1)

 


 
  

 
mod. ln ,MST

tan� (3.2)

where t-parameter controls the suction effect (that is, the capillary attraction in the soil voids), β the slope 
angle [arcs], SCA, SCAM, and tan β (local slope). The downside of SAGA algorithm is that the user must 
define the t-parameter subjectively. We used SCA, local slope and default slope weighting set to 1. We cal-
culated the modified catchment area with different t-parameters (t = 2, 4, 8,…,256) to test the effect of this 
parameter. The default t-parameter in SAGA GIS (v 2.12) is t = 10.
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2.2.2.  Sensitivity Against Vertical Height Errors in Digital Elevation Model

LiDAR data is prone to many errors. The LiDAR system itself may cause errors (such as ranging error or po-
sitioning error), but also mapping conditions (atmospheric conditions, wind) and object properties (rough-
ness) can cause errors. Although, several error-sources can be countered by accurate calibration of the sys-
tem and in the post-processing of the data, yet, some errors are still likely to remain (Wei & Bartels, 2012). 
Consequently, any remaining vertical height errors in the input data may significantly affect LiDAR based 
DEMs, and in turn, for instance flow-routing in TWI, as more flow-routing takes place at higher resolutions 
(Woodrow et al., 2016). For example, a one hectare area in a conventional DEM at 10 m resolution has 100 
cells, but in a LiDAR DEM at 1 m resolution it has 10 000 cells. Therefore, proper flow-routing and the qual-
ity of the topographic data is increasingly important as the resolution of the data increases.

We test the sensitivity of the flow-routing algorithms against vertical height errors in DEM. First, we added 
vertical height errors to the original point cloud (Lindsay,  2006). We created a normally distributed er-
ror-vector equal to the number of height observations, with a mean of 0 and a standard deviation of 10 cm, 
which represents a typical height error for airborne LiDAR data (Naesset, 2015; Wei & Bartels, 2012). Then, 
we added the error-vector to the original point cloud, filled all terrain sinks (Wang & Liu, 2006) and calcu-
lated TWI using the same workflow as with the original, unmodified point cloud data. Lastly, we calculated 
Pearson's correlation between (a) TWI based on the original DEM and (b) TWI based on the simulated 
DEM with vertical height errors. A high correlation indicates that the given flow-routing algorithm is not 
sensitive to height errors, whereas a low correlation indicates high sensitivity to height errors in DEM data.

2.2.3.  Statistical Analysis

We used a generalized additive model (GAM) to model soil moisture using TWI as an explanatory variable 
(Hastie & Tibshirani, 1987). The model used a Gaussian error family and a logarithmic link function, and a 
smoothing function with k = 3. The model was run through a 10-fold cross-validation, where the data were 
split randomly to 10 different equally sized parts. For each cross-validation fold, 10% of the data was left 
aside for evaluation and the remaining part (90%) was used as the training set. Here, we reported the results 
as the mean values of the 10 folds. To fit the GAM, we used the mgcv package in R (R Core Team, 2017; 
Wood, 2018).

3.  Results
We report the results of the average of the three measurement occasions (June, July, and August) as well as 
for each occasion separately.

3.1.  TWI as a Proxy for Soil Moisture

The overall predictive capability of TWI as a proxy for soil moisture varied from poor to moderate (Figure 3). 
The highest r2 of the models was 23.7% (1 m2-scale) and 27.2% (100 m2-scale). The lowest r2 was <0.01 (both 
scales). Soil moisture at the two scales had a strong correlation (r = 0.90) and a paired t-test did not show a 
significant difference in soil moisture at the two scales (mean difference 0.017, p-value = 0.918). Therefore, 
here on we report detailed results for only the 1 m2-scale (for main results regarding the 100 m2-scale, see 
Figure S1 in Supporting Information S1). In addition, we also evaluated the goodness of fit using root-mean-
square error and the results were similar as for r2, thus, we report detailed results for only the latter (for 
main results regarding the 1 m2-scale, see Figure S2 in Supporting Information S1).

The maximal explanatory power was highest for soil moisture measured in June (FD8f at 2 m resolution, 
r2 = 24.6%) and the lowest in August (FD8f at 2 m resolution, r2 = 17.6%) (Figure 4). However, the models 
regarding the three time points (June, July, August) were similarly influenced by the flow-routing algo-
rithms and resolutions (Figure  4). Therefore, here on we report detailed results for only the mean soil 
moisture level across the three time points (for main results for June, July, and August at the 1 m2-scale, see 
Figures S3, S4, and S5 in Supporting Information S1).
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The Spearman's correlation between field measurements of soil moisture (1 m2-scale) and TWI values (2 m 
resolution) ranged from 0.12 to 0.48 (Figure S6 in Supporting Information S1). D8 had the lowest correla-
tion and SAGA algorithm (t = 256) the highest.

3.2.  Comparing the Flow-Routing Algorithms

The given flow-routing algorithm and resolution strongly influenced the explanatory power of TWI as a 
proxy for soil moisture (Figures  5a and  5b). Overall, none of the flow-routing algorithms reached their 
highest explanatory power at the 1 m resolution, which was the highest resolution in this comparison (Fig-
ure 5a). Overall, variation in the explanatory power increased at higher resolutions (Figure 5b).

D8 and Rho8 had low explanatory power at <3 m resolutions (Figure 5a). D8 and Rho8 reached slightly 
better explanatory power at lower resolutions, but overall it remained low (r2 < 0.13).

Figure 3.  Topographic Wetness Index (TWI) as a proxy for soil moisture. Here, we present at 2 m resolution an example of a single-flow-direction algorithm 
(namely, D8) and a multiple-flow-direction algorithm (FD8f) as well as SAGA algorithm with two different t-parameters (that is, the suction effect). (a) The 
lines represent model fits of a generalized additive model. Dashed lines represent single-flow-direction algorithms and solid lines multiple-flow-direction 
algorithms. The points represent the bivariate relationship between field measurements of soil moisture (1 m2-scale) and TWI values. (b) A zoom-in into the 
study area (white square in Figures 1 and 2) highlights the differences between algorithms. Squares represent soil moisture measured at the 1 m2-scale. This 
means that the greater the color difference between the squares and the underlying map, the greater the mismatch between soil moisture and the given TWI 
algorithm. Volumetric water content = VWC%.
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Figure 4.
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Figure 4.  Comparing flow-routing algorithms with soil moisture measured at the 1 m2-scale on the three measurement occasions, namely June (a), (b), July (c), 
(d), and August (e), (f). (a), (c), (e) Lines represent the explanatory power of the flow-routing algorithms at different Digital Elevation Model (DEM) resolutions. 
Dashed lines represent single-flow-direction algorithms and solid lines multiple-flow-direction algorithms. At 2 m resolution, FD8f reached the highest 
explanatory power and FD8q had only slightly lower explanatory power. (b), (d), (f) Violin plots represent the overall explanatory power of the flow-routing 
algorithms. In the violin plots (b), (d), (f), the thickness of the violin polygon corresponds to the local density of the values and the points represent the median 
values.

Figure 5.  Comparing flow-routing algorithms and t-parameters (that is, the suction effect) with soil moisture measured at the 1 m2-scale (average of the three 
measurement occasions, namely June, July, and August). (a) Lines represent the explanatory power of the flow-routing algorithms at different Digital Elevation 
Model (DEM) resolutions. Dashed lines represent single-flow-direction algorithms and solid lines multiple-flow-direction algorithms. At 2 m resolution, FD8f 
reached the highest explanatory power and FD8q had only slightly lower explanatory power. (b) Violin plots represent the overall explanatory power of the 
flow-routing algorithms. (c) Lines represent the explanatory power of the t-parameters in SAGA algorithm at different DEM resolutions. At 2 m resolution, 
t-parameter 256 reached the highest explanatory power and 128 had only slightly lower explanatory power. (d) Violin plots represent the overall explanatory 
power of the t-parameters. In the violin plots (b), (d), the thickness of the violin polygon corresponds to the local density of the values and the points represent 
the median values.
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KRA, DEMON, and BR reached similar explanatory power (Figure 5a). All three had low to no explanatory 
power at 1–2 m resolution. At 5–7 m resolution, they reached their maximum explanatory power, which 
decreased towards lower resolutions.

Dinf and MDinf reached similar explanatory power as the aspect-driven algorithms, namely KRA, DE-
MON, and BR (Figure 5a). Dinf reached its maximal explanatory power at 3 m resolution and MDinf had a 
slightly higher explanatory power at >10 m resolution.

FD8f at 2 m resolution reached the highest explanatory power of all algorithms at all resolutions (r2 23.7%) 
(Figure 5a). Overall, FD8f, FD8q, and FD8h showed very similar results and reached explanatory power of 
over 21%.

SAGA algorithm (t = 256) reached its highest explanatory power at ≤2 m resolution and its explanatory pow-
er decreased towards lower resolutions (Figure 5a). SAGA algorithm was tested with various t-parameters, 
that is, the suction effect. The highest t-parameter (t = 256) had the highest explanatory power of all t-pa-
rameters, and in general, higher t-parameters were associated with higher explanatory power (Figure 5c). 
At 1 m resolution, the explanatory power of SAGA algorithm (t = 256) exceeded FD8f by 5.6 percentage 
points (Figure 5a). Overall, variation in the explanatory power increased at higher resolutions (Figure 5d).

The main differences among the flow-routing algorithms and their performance at different resolutions are 
shown in Figure 6. For instance, D8, produced a structured stream network at 1 m resolution and had no 
explanatory power as a soil moisture proxy (r2 = 0.01). The explanatory power of D8 slightly increased at 
10 m resolution. Whereas, FD8f produced a smoother stream network due to its capability to disperse flow 
to multiple neighboring cells (eight cells). FD8f over-dispersed at lower resolutions (>10 m), and this was 
even more obvious in SAGA algorithm, in which the neighboring area also affects the values a pixel is given. 
In SAGA algorithm, low t-parameter (t = 8) at low resolutions produced a smooth stream network and it 
had no explanatory power as a proxy for soil moisture.

3.3.  Sensitivity Against Vertical Height Errors in DEM

In the test of sensitivity of the flow-routing algorithms against vertical height errors in DEM, the results 
indicated that TWI is sensitive to vertical height errors especially at high-resolutions (≤10 m) (Figure 7). 
Overall, the results were similar among all algorithms, but BR, FD8f, FD8q, and SAGA algorithm (t = 256) 
were the most robust algorithms against height errors. At >5 m resolutions, the correlations between TWI 
values calculated from the original DEM and TWI values calculated from the simulated DEM with height 
errors were generally very high (>0.9), except for D8 and Rho8, which performed relatively poorly. SAGA 
algorithm was very robust against height errors (>0.95) regardless of the given t-parameter, therefore, we 
report detailed results for only SAGA algorithm (t = 256).

4.  Discussion
We quantified the predictive capability of TWI as a proxy for soil moisture using 5,200 study plots. The results 
demonstrate that the explanatory power of TWI varied from very low to moderate (Figure 3), depending on 
the given flow-routing algorithm and DEM resolution (Figures 4 and 5). We compared 11 flow-routing al-
gorithms at DEM resolutions 1–30 m. The results revealed that the highest explanatory power was reached 
using a multiple-flow-direction algorithm at high-resolution, namely FD8f at 2 m resolution (Figure 5a). 
However, the flow-routing algorithms reached their highest explanatory power at 4–7 m resolution (Fig-
ure 5b). In addition, we also tested the sensitivity of the algorithms against vertical height errors in DEM. 
The results indicate that TWI is sensitive to height errors and that multiple-flow-direction algorithms were 
more robust against height errors than single-flow-direction algorithms (Figure  7a). Overall, the results 
demonstrate that flow-routing algorithms do matter, especially at high-resolution, at which the flow-routing 
algorithms differ the most (Figure 6).

Previous literature have reported important findings on TWI as a proxy for soil moisture. Yet, it is valuable 
to evaluate the performance of TWI in a variety of different study systems and study designs. For instance, 
Western et al. (1999) was based on data from an temperate system covering 2,060 sites and a relative el-
evation of 25 meters, and Buchanan et al.  (2014) from an agricultural landscape covering five sites and 

 19447973, 2021, 10, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2021W

R
029871 by U

niversity O
f H

elsinki, W
iley O

nline L
ibrary on [13/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Water Resources Research

RIIHIMÄKI ET AL.

10.1029/2021WR029871

14 of 21

relatively flat terrain. Here, the results are based on data from a mountain tundra system covering 5,200 sites 
and a relative elevation of 226 meters. Together these different approaches provide crucial information on 
how well TWI performs as a proxy for soil moisture.

We recommend that researchers using TWI report in detail what flow-routing algorithm and DEM resolu-
tion they use for increasing reproducibility and comparability of their results. Our investigations provide 
motivation to explore other proxies besides TWI, especially to quantify their predictive capability for soil 
moisture and compare their algorithms at different resolutions. It would be interesting and very important 
to investigate for instance the downslope gradient (Hjerdt et al., 2004) and other topography-based alter-
natives to TWI, such as the Depth to Water index (Murphy et al., 2009) and the Height Above the Nearest 

Figure 6.  Flow-routing algorithms at different resolutions. Here, we present a single-flow-direction algorithm (namely, D8) and a multiple-flow-direction 
algorithm (FD8f) as well as SAGA algorithm with two different t-parameters (that is, the suction effect). A zoom-in into the study area (white square in 
Figures 1 and 2) highlights the differences between algorithms. For instance, at 1 m resolution, D8 produces a structured stream network, whereas FD8f a 
smoother stream network. At lower resolutions, FD8f over-disperses, which is further highlighted in SAGA. In SAGA, a small t-parameter (t = 8) and low 
resolution produces a smooth stream network. The stream network overlaid on the panels representing the 30 m resolution is provided by the National Land 
Survey of Finland.
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Drainage index (Nobre et al., 2011), and also reflectance-based alternatives, such as the Tasseled-cap Wet-
ness Index (Crist & Cicone, 1984; von Oppen et al., 2021). In light of our results, it is likely that both algo-
rithm and resolution influence also their predictive capability for soil moisture.

4.1.  TWI as a Proxy for Soil Moisture

At its best, the explanatory power of TWI as a proxy for soil moisture was moderate in the tundra with 
relatively thin soils. TWI is based solely on topographic information, which is only one factor affecting the 
fine-scale spatial variation of soil moisture. Also other topography factors and soil and vegetation factors 
influence the spatial patterns of soil moisture (Kemppinen et al., 2021; Lookingbill & Urban, 2004; Quinn 
et al., 1995). Here, we used soil moisture data that Kemppinen et al. (2018) modeled with TWI (SAGA algo-
rithm, t = 20, 1 m resolution) along with other DEM derived topography factors (namely, elevation, poten-
tial solar radiation, topographic position index) and field-quantified soil factors (surficial deposits, organic 

Figure 7.  Sensitivity of the flow-routing algorithms against vertical height errors in Digital Elevation Model (DEM). (a) The lines represent Pearson's 
correlation between Topographic Wetness Index (TWI) values calculated from the original DEM and TWI values calculated from simulated DEM with vertical 
height errors. High correlation indicates that the algorithm is robust against height errors. Dashed lines represent single-flow-direction algorithms and solid 
lines multiple-flow-direction algorithms. Note that the y-axis starts at 0.5. (b) A zoom-in into the study area (white square in Figures 1 and 2) represents the 
original DEM, simulated height errors, and the simulated DEM, that is the original DEM with simulated height errors.
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soil depth), which resulted in relatively high explanatory power (r2 = 60%) (see Kemppinen et al., 2018). 
Nevertheless, TWI had the highest relative influence on the spatial patterns of soil moisture (Kemppinen 
et al., 2018), which supports the important influence that topography has on soil moisture. In general, the 
spatial patterns of soil moisture remained similar throughout the summer months (June, July, August) 
(Kemppinen et al., 2018). Overall, soil moisture showed strong spatial heterogeneity over short distances, 
highlighting the importance of topographic control over soil moisture patterns and the benefits of high-res-
olution LiDAR data in modeling the spatial variability of soil moisture (Kemppinen et al., 2018). In addi-
tion, the depth of the organic soil layer and surficial deposits influenced the spatial patterns (Kemppinen 
et al., 2018). However, here our aim was not to build the best possible model for soil moisture, but rath-
er examine how well this commonly used soil moisture proxy, namely TWI, explains field-quantified soil 
moisture and to understand how the flow-routing algorithm and DEM resolution influence the predictive 
capability of TWI.

Previous studies have reported that the hydrological response can vary within landscapes (Kaiser & McG-
lynn, 2018; Tague et al.,  2010). For instance, Seibert & McGlynn,  (1997) suggested that the steady state 
assumption of TWI is not valid in all cases. Rinderer et al. (2014) examined if these assumptions are met in 
alpine catchments with shallow groundwater levels, which is similar to in our study area. TWI was found 
useful for predicting median groundwater level and the highest correlation between TWI and groundwater 
level was during the wettest time period (Rinderer et al., 2014). Instead of groundwater levels, here, we used 
TWI to examine soil moisture and found that the explanatory power of TWI was highest in June and lowest 
in August. This is potentially due to the temporal patterns of snow cover and precipitation that both influ-
ence stream flow. Snow cover is uneven in topographically heterogeneous terrains (Niittynen et al., 2018; 
Williams et al., 2009), such as our study area. Soil moisture patterns are influenced by melting snow packs 
on the uplands, which feed meltwater channels throughout the snow melting period (Ayres et al., 2010; 
Blankinship et al., 2014; Harpold & Molotch, 2015). Consequently, hydrological conditions change over the 
summer period as these seasonal channels dry when snow melts in the landscape. In our study area, snow 
cover was most abundant during early summer (beginning of June) and melted relatively fast before mid-
summer (late June). In addition to snow cover, precipitation may have influenced the differences between 
the measurement occasions as most of the summertime precipitation was received in June and July. How-
ever, our soil moisture data is based on three measurement occasions (June, July, August), which do not 
describe the full temporal variation of soil moisture throughout the growing-season (Kopecký et al., 2021). 
Thus, new devices for continuous soil moisture measurements could reveal even greater temporal variation 
in the explanatory power of TWI (Wild et al., 2019).

Overall, there is a demand for quantitative modeling of the fine-scale spatial variation of soil moisture, espe-
cially in vegetation science (Kopecký et al., 2021) and ecosystem studies (Liu et al., 2020). In tundra studies, 
TWI is commonly used as a proxy for soil moisture, for instance for understanding, modeling, and predict-
ing carbon fluxes (Virkkala et al., 2021), soil organic carbon content (Wietrzyk-Pełka et al., 2020), soil nu-
trient content (Obu et al., 2017), permafrost (Karjalainen et al., 2020), soil-vegetation relationships (Mikola 
et al., 2018), ecosystem functions (von Oppen et al., 2021), ecosystem productivity (Riihimäki et al., 2017), 
ecosystem classification (Karami et al., 2018), species distributions (Niittynen et al., 2018), and biodiversity 
hotspots (Niskanen et al., 2017), because all these tundra ecosystem patterns are highly driven by soil mois-
ture. However, studies rarely justify the use of a given flow-routing algorithm or DEM resolution (Kopecký 
et al., 2021) or report their results using different proxies for soil moisture (however, see for instance von 
Oppen et al., 2021).

TWI can lead to erroneous conclusions on the role of soil moisture, if it is used as a direct proxy for soil 
moisture without considering the influence of flow-routing algorithms and DEM resolutions. For exam-
ple, le Roux et al. (2013) used a single-flow-direction algorithm (D8, 1 m resolution DEM based on digi-
tal contour data) in modeling species' distributions and richness patterns and found that TWI decreased 
the explanatory power of the models. In contrast, field-quantified moisture data increased the explanatory 
power of the models, and revealed the importance of soil moisture for fine-scale vegetation patterns (le 
Roux et al., 2013). In another example, Riihimäki et al.  (2017) used a multiple-flow-direction algorithm 
(SAGA algorithm, t = 10, 10 m resolution) in modeling above-ground biomass and productivity. However, 
here our results revealed that that particular algorithm at that resolution has a low explanatory power for 
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soil moisture. In result, Riihimäki et al. (2017) likely underestimated the importance of soil moisture for 
above-ground biomass and productivity. Nevertheless, it must be noted that comparing algorithm perfor-
mance from one area to another can be challenging (however, see Kopecký et al., 2021 and Kopecký & 
Čížková, 2010, who found consistent performance of different algorithms across four different regions). It 
is unlikely that there is an universal flow-routing algorithm at a certain DEM resolution that best describes 
the role of soil moisture across ecosystems, due to the heterogeneity within and across ecosystems (Quinn 
et al., 1995; Sørensen et al., 2006). Nevertheless, these examples (le Roux et al., 2013; Riihimäki et al., 2017) 
stress (a) the importance of quantifying how well a given proxy relates to soil moisture and (b) the influence 
of flow-routing algorithms and DEM resolutions on the explanatory power of TWI.

4.2.  Importance of Flow-Routing Algorithms

The flow-routing algorithm controls how the accumulated water is calculated from DEM, and thus, directly 
affects the TWI values. In our analyses, we investigated different single-flow-direction algorithms, namely 
D8, Rho8, and KRA. The results revealed that these algorithms had very low explanatory power at high-res-
olutions (<5 m), where more flow-routing takes place. The test of sensitivity against vertical height errors 
in DEM also indicated that single-flow-direction algorithms are sensitive to possible height errors. Thus, 
their low explanatory power at high-resolutions is likely due to their sensitivity to height errors (Tarbot-
on, 1997). Height errors in DEM affect single-flow-direction algorithms by increasing the risk of erroneous 
flow-routing, and consequently, errors in the catchment area estimate. For instance, Dinf had higher ex-
planatory power than the single-flow-direction algorithms, which is probably due to the ability of Dinf to 
reduce grid bias by dividing flow accumulation area into two pixels (Tarboton, 1997). Another limitation of 
single-flow-direction algorithms is their inability to model divergent flow (Costa-Cabral & Burges, 1994). 
In addition, DEM resolution also influences the variation of the flow accumulation values and typically 
low-resolution data has lower variation than high-resolution data (Dark & Bram, 2007).

Overall, the multiple-flow-direction algorithms that we investigated had higher explanatory power than the 
single-flow-direction algorithms. Thus, our results from the tundra support previous findings from tem-
perate forests (Kopecký et al., 2021). In agreement with these findings, our results revealed that especially 
FD8f and FD8q had high explanatory power. Multiple-flow-direction algorithms allow divergent outflow 
from a pixel, which can divide the outflow to multiple neighboring cells, which enables a more realistic 
flow. This is important, especially when a pixel contains water-flow dividing landform, such as a ridge or 
a hummock (Erskine et al., 2006; Quinn et al., 1991). The test of sensitivity against vertical height errors 
in DEM indicated that FD8f and FD8q were robust against height errors. Overall, multiple-flow-direction 
algorithms should be less sensitive against height errors than single-flow-direction algorithms, since wa-
ter-flow can be dispersed between multiple neighbors in the multiple-flow-direction algorithms (Kopecký 
& Čížková, 2010). Thus, this is likely the reason why at high-resolutions, multiple-flow-direction algorithms 
have higher explanatory power than the single-flow-direction algorithms.

We also investigated SAGA algorithm, a modified version of the multiple-flow-direction algorithm FD8f. 
In SAGA algorithm, the catchment area is modified according to the maximum flow accumulation values 
in the pixel neighborhood, which should increase robustness against possible DEM errors (Böhner & Se-
lige, 2006). This was indeed evident in the test of sensitivity against vertical height errors, in which SAGA 
algorithm (t = 256) was the most robust of all algorithms at all resolutions. Interestingly, the explanatory 
power of SAGA algorithm at 1 m resolution and FD8f at 3 m resolution were comparable. Thus, it would 
be more efficient to use FD8f at 3 m resolution, at least from a computational point of view. In addition, 
Kopecký et al. (2021) investigated TWI as a proxy for forest soil moisture and reported that the explanatory 
power of SAGA algorithm was less than half of FD8f. Furthermore, using SAGA algorithm at low-resolu-
tions might cause over-dispersion, particularly when using a low t-parameter (that is, the suction effect) 
as is the default in SAGA GIS (t = 10). However, a low t-parameter produces extremely smooth patterns in 
TWI, which can be useful in e.g., modeling air temperature patterns affected by cold-air pooling (Macek 
et al., 2019). Nevertheless, our results indicated that the default t-parameter (t = 10) in SAGA GIS is not 
optimal for calculation of TWI as a proxy for soil moisture in the tundra. Here, we found that the default 
t-parameter causes flow over-dispersion, which decreases the explanatory power of TWI.
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4.3.  Importance of DEM Resolution

Higher DEM resolution does not necessarily result in an improved outcome in the explanatory power of 
TWI (Gillin et al., 2015; Sørensen & Seibert, 2007; Quinn et al., 1991). In our analyses, the highest explan-
atory power was not reached at the highest DEM resolution (1 m), that is, the scale of the soil moisture 
measured at the 1 m2 study plots. In fact, the results indicated that the median explanatory power of all 
algorithms was at its lowest at 1 m resolution. Gillin et al. (2015) arrived at similar conclusions using TWI 
to model groundwater. In our study, it is possible that the fine-scale spatial variation of soil moisture is more 
influenced by general landforms controlling subsurface flow (that is, slopes, ridges, depressions) and less 
influenced by fine-scale topography controlling surface flow (small hummocks, large stones) (Sørensen & 
Seibert, 2007). Our results indicate a strong correlation between the two scales (1 m2, 100 m2), at which we 
measured soil moisture.

Low explanatory power at highest DEM resolution (1 m) can be due to the LiDAR data and its relatively 
low pulse density (∼0.5 pulses/m2). Low sample rate in relation to DEM cell size can cause uncertainty 
in high-resolution DEMs (Hengl & Evans, 2009). In addition, the LiDAR point spacing (∼1.4 m) was only 
slightly larger than the highest DEM resolution, which is not optimal. This is even more important to con-
sider if DEM data contains vertical height errors, as this can affect the final products, such as TWI values 
(Hengl & Evans, 2009; Lindsay & Evans, 2008; Wise, 2007). In our test of sensitivity against vertical height 
errors in DEM, the results demonstrate that the flow-routing algorithms are the most sensitive at high-res-
olutions, but their sensitivity decreased towards lower resolutions. Nevertheless, the robustness against 
height errors varied among the flow-routing algorithms also at low-resolutions. Overall, high-quality DEMs 
(that is, higher sample density and accuracy) are needed to increase the explanatory power and noise-sen-
sitivity of TWI (Hengl & Evans, 2009; Thomas et al., 2017).

5.  Conclusions
Our results from the tundra indicated that TWI as a proxy for soil moisture had very low to moderate explan-
atory power, which depended on flow-routing algorithm and DEM resolution. Generally, multiple-flow-di-
rection algorithms demonstrated higher explanatory power and more robustness against vertical height 
errors in DEM than single-flow-direction algorithms. Overall, our investigations provide field evidence on 
how well a commonly used proxy relates to soil moisture and highlights the importance of considering dif-
ferent algorithms and resolutions. In the case of TWI, the results emphasize that flow-routing algorithms do 
matter, especially at high-resolutions. We encourage researchers in search of a proxy for soil moisture (a) to 
carefully consider and report in detail what algorithm and resolution they use, (b) to evaluate the robustness 
of the algorithm against possible errors in DEM, and (c) to take into account that higher resolutions may 
not always be more suitable.
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