38,445 research outputs found

    Precise dipole moments and quadrupole coupling constants of the cis and trans conformers of 3-aminophenol: Determination of the absolute conformation

    Full text link
    The rotational constants and the nitrogen nuclear quadrupole coupling constants of cis-3-aminophenol and trans-3-aminophenol are determined using Fourier-transform microwave spectroscopy. We examine several J=21J=2\leftarrow{}1 and 101\leftarrow{}0 hyperfine-resolved rotational transitions for both conformers. The transitions are fit to a rigid rotor Hamiltonian including nuclear quadrupole coupling to account for the nitrogen nucleus. For cis-3-aminophenol we obtain rotational constants of A=3734.930 MHz, B=1823.2095 MHz, and C=1226.493 MHz, for trans-3-aminophenol of A=3730.1676 MHz, B=1828.25774 MHz, and C=1228.1948 MHz. The dipole moments are precisely determined using Stark effect measurements for several hyperfine transitions to μa=1.7735\mu_a=1.7735 D, μb=1.5195\mu_b=1.5195 D for cis-3-aminophenol and μa=0.5563\mu_a=0.5563 D, μb=0.5376\mu_b=0.5376 D for trans-3-aminophenol. Whereas the rotational constants and quadrupole coupling constants do not allow to determinate the absolute configuration of the two conformers, this assignment is straight-forward based on the dipole moments. High-level \emph{ab initio} calculations (B3LYP/6-31G^* to MP2/aug-cc-pVTZ) are performed providing error estimates of rotational constants and dipole moments obtained for large molecules by these theoretical methods.Comment: 9 pages, 4 tables, 3 figures (RevTeX

    Microscopic two-fluid theory of rotational constants of the OCS-H2_2 complex in 4^4He droplets

    Full text link
    We present a microscopic quantum analysis for rotational constants of the OCS-H2_2 complex in helium droplets using the local two-fluid theory in conjunction with path integral Monte Carlo simulations. Rotational constants are derived from effective moments of inertia calculated assuming that motion of the H2_2 molecule and the local non-superfluid helium density is rigidly coupled to the molecular rotation of OCS and employing path integral methods to sample the corresponding H2_2 and helium densities. The rigid coupling assumption for H2_2-OCS is calibrated by comparison with exact calculations of the free OCS-H2_2 complex. The presence of the H2_2 molecule is found to induce a small local non-superfluid helium density in the second solvation shell which makes a non-negligible contribution to the moment of inertia of the complex in helium. The resulting moments of inertia for the OCS-H2_2 complex embedded in a cluster of 63 helium atoms are found to be in good agreement with experimentally measured values in large helium droplets. Implications for analysis of rotational constants of larger complexes of OCS with multiple H2_2 molecules in helium are discussed.Comment: 11 pages, 5 figures, accepted for publication in J. Chem. Phy

    The {\it ab initio} calculation of spectra of open shell diatomic molecules

    Get PDF
    The spectra (rotational, rotation-vibrational or electronic) of diatomic molecules due to transitions involving only closed-shell (1Σ^1\Sigma) electronic states follow very regular, simple patterns and their theoretical analysis is usually straightforward. On the other hand, open-shell electronic states lead to more complicated spectral patterns and, moreover, often appear as a manifold of closely lying electronic states, leading to perturbations with even larger complexity. This is especially true when at least one of the atoms is a transition metal. Traditionally these complex cases have been analysed using approaches based on perturbation theory, with semi-empirical parameters determined by fitting to spectral data. Recently the needs of two rather diverse scientific areas have driven the demand for improved theoretical models of open-shell diatomic systems based on an \emph{ab initio} approach, these areas are ultracold chemistry and the astrophysics of "cool" stars, brown dwarfs and most recently extrasolar planets. However, the complex electronic structure of these molecules combined with the accuracy requirements of high-resolution spectroscopy render such an approach particularly challenging. This review describes recent progress in developing methods for directly solving the effective Schr\"odinger equation for open-shell diatomic molecules, with a focus on molecules containing a transtion metal. It considers four aspects of the problem: 1. The electronic structure problem, 2. Non-perturbative treatments of the curve couplings, 3. The solution of the nuclear motion Schr\"odinger equation, 4. The generation of accurate electric dipole transition intensities. Examples of applications are used to illustrate these issues.Comment: Topical Revie

    Electronic spectra of polyatomic molecules with resolved individual rotational transitions

    Get PDF
    The density of rotational transitions for a polyatomic molecule is so large that in general many such transitions are hidden under the Doppler profile, this being a fundamental limit of conventional high resolution electronic spectroscopy. We present here the first Doppler-free cw two-photon spectrum of a polyatomic molecule. In the case of benzene, 400 lines are observed of which 300 are due to single rotational transitions, their spacing being weil below the Doppler profile. The resolution so achieved is 1.5 X 10'. Benzene is a prototype planar molecule taken to have D •• symmetry in the ground as weil as in the first excited state. From our ultra-high resolution results it is found that benzene in the excited SI state i8 a symmetrical rotor to a high degree. A negative inertial defect is found for the excited state. The origin of this inertial defect is discused

    Relativistic Nuclear Energy Density Functionals: Mean-Field and Beyond

    Full text link
    Relativistic energy density functionals (EDF) have become a standard tool for nuclear structure calculations, providing a complete and accurate, global description of nuclear ground states and collective excitations. Guided by the medium dependence of the microscopic nucleon self-energies in nuclear matter, semi-empirical functionals have been adjusted to the nuclear matter equation of state and to bulk properties of finite nuclei, and applied to studies of arbitrarily heavy nuclei, exotic nuclei far from stability, and even systems at the nucleon drip-lines. REDF-based structure models have also been developed that go beyond the static mean-field approximation, and include collective correlations related to the restoration of broken symmetries and to fluctuations of collective variables. These models are employed in analyses of structure phenomena related to shell evolution, including detailed predictions of excitation spectra and electromagnetic transition rates.Comment: To be published in Progress in Particle and Nuclear Physic

    Rotating neutron stars: an invariant comparison of approximate and numerical spacetime models

    Get PDF
    We compare three different models of rotating neutron star spacetimes: the Hartle-Thorne (HT) slow-rotation approximation at second order in rotation, the exact analytic vacuum solution of Manko et al. and a numerical solution of the full Einstein equations. We integrate the HT structure equations for five representative equations of state. Then we match the HT models to numerical solutions of the Einstein equations, imposing that the mass and angular momentum of the models be the same. We estimate the limits of validity of the HT expansion computing relative errors in the spacetime's quadrupole moment Q and in the ISCO radii. We find that ISCO radii computed in the HT approximation are accurate to better than 1%, even for the fastest observed ms pulsar. At the same rotational rates the accuracy on Q is of order 20%. In the second part of the paper we focus on the exterior vacuum spacetimes. We introduce a physically motivated `quasi-Kinnersley' Newman-Penrose frame. In this frame we evaluate the speciality index S, a coordinate-independent quantity measuring the deviation of each model from Petrov Type D. On the equatorial plane this deviation is smaller than 5%, even for the fastest rotating models. Our main conclusion is that the HT approximation is very reliable for most astrophysical applications.Comment: 19 pages, 9 figures, accepted in MNRAS; improved presentation, some new analytical results in Section 5.

    Photodissociation of the {HeH+^+} molecular ion

    Full text link
    The photodissociation cross section of the molecular ion HeH+^+ was calculated within the Born-Oppenheimer approximation for a parallel, a perpendicular, and an isotropic orientation of the molecular axis with respect to the field, considering also different initial vibrational and rotational states. The results were compared to recent data from a free-electron laser experiment performed at the FLASH facility [H.B. Pedersen {\it et al.}, Phys. Rev. Lett. 98, 223202, (2007)]. Within the experimental uncertainties theoretical and experimental results are compatible with each other.Comment: 16 pages, 8 figure
    corecore