research

Microscopic two-fluid theory of rotational constants of the OCS-H2_2 complex in 4^4He droplets

Abstract

We present a microscopic quantum analysis for rotational constants of the OCS-H2_2 complex in helium droplets using the local two-fluid theory in conjunction with path integral Monte Carlo simulations. Rotational constants are derived from effective moments of inertia calculated assuming that motion of the H2_2 molecule and the local non-superfluid helium density is rigidly coupled to the molecular rotation of OCS and employing path integral methods to sample the corresponding H2_2 and helium densities. The rigid coupling assumption for H2_2-OCS is calibrated by comparison with exact calculations of the free OCS-H2_2 complex. The presence of the H2_2 molecule is found to induce a small local non-superfluid helium density in the second solvation shell which makes a non-negligible contribution to the moment of inertia of the complex in helium. The resulting moments of inertia for the OCS-H2_2 complex embedded in a cluster of 63 helium atoms are found to be in good agreement with experimentally measured values in large helium droplets. Implications for analysis of rotational constants of larger complexes of OCS with multiple H2_2 molecules in helium are discussed.Comment: 11 pages, 5 figures, accepted for publication in J. Chem. Phy

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/01/2020