15 research outputs found

    Chordless Cycle Packing Is Fixed-Parameter Tractable

    Get PDF
    A chordless cycle or hole in a graph G is an induced cycle of length at least 4. In the Hole Packing problem, a graph G and an integer k is given, and the task is to find (if exists) a set of k pairwise vertex-disjoint chordless cycles. Our main result is showing that Hole Packing is fixed-parameter tractable (FPT), that is, can be solved in time f(k)n^O(1) for some function f depending only on k

    Tight Bounds for Chordal/Interval Vertex Deletion Parameterized by Treewidth

    Get PDF

    Sunflowers Meet Sparsity: A Linear-Vertex Kernel for Weighted Clique-Packing on Sparse Graphs

    Get PDF
    We study the kernelization complexity of the Weighted H-Packing problem on sparse graphs. For a fixed connected graph H, in the Weighted H-Packing problem the input is a graph G, a vertex-weight function w: V (G) → N, and positive integers k, t. The question is whether there exist k vertex-disjoint subgraphs H 1, ⋯, H k of G such that H i is isomorphic to H for each i ∈ [k] and the total weight of these k · |V (H)| vertices is at least t. It is known that the (unweighted) H-Packing problem admits a kernel with O(k |V (H)|-1) vertices on general graphs, and a linear kernel on planar graphs and graphs of bounded genus. In this work, we focus on case that H is a clique on h ≄ 3 vertices (which captures Triangle Packing) and present a linear-vertex kernel for Weighted Kh-Packing on graphs of bounded expansion, along with a kernel with O(k 1+Ï”) vertices on nowhere-dense graphs for all Ï” &gt; 0. To obtain these results, we combine two powerful ingredients in a novel way: the Erdos-Rado Sunflower lemma and the theory of sparsity.</p

    Sunflowers Meet Sparsity: A Linear-Vertex Kernel for Weighted Clique-Packing on Sparse Graphs

    Get PDF
    We study the kernelization complexity of the Weighted H-Packing problem on sparse graphs. For a fixed connected graph H, in the Weighted H-Packing problem the input is a graph G, a vertex-weight function w: V (G) → N, and positive integers k, t. The question is whether there exist k vertex-disjoint subgraphs H 1, ⋯, H k of G such that H i is isomorphic to H for each i ∈ [k] and the total weight of these k · |V (H)| vertices is at least t. It is known that the (unweighted) H-Packing problem admits a kernel with O(k |V (H)|-1) vertices on general graphs, and a linear kernel on planar graphs and graphs of bounded genus. In this work, we focus on case that H is a clique on h ≄ 3 vertices (which captures Triangle Packing) and present a linear-vertex kernel for Weighted Kh-Packing on graphs of bounded expansion, along with a kernel with O(k 1+Ï”) vertices on nowhere-dense graphs for all Ï” &gt; 0. To obtain these results, we combine two powerful ingredients in a novel way: the Erdos-Rado Sunflower lemma and the theory of sparsity.</p

    Efficient enumeration of graph orientations with sources

    Get PDF
    International audienceAn orientation of an undirected graph is obtained by assigning a direction to each of its edges. It is called cyclic when a directed cycle appears, and acyclic otherwise. We study efficient algorithms for enumerating the orientations of an undirected graph. To get the full picture, we consider both the cases of acyclic and cyclic orientations, under some rules specifying which nodes are the sources (i.e. their incident edges are all directed outwards). Our enumeration algorithms use linear space and provide new bounds for the delay, which is the maximum elapsed time between the output of any two consecutively listed solutions. We obtain a delay of O(m) for acyclic orientations and ˜Oand˜ and˜O(m) for cyclic ones. When just a single source is specified, these delays become O(m · n) and O(m · h + h 3), respectively, where h is the girth of the graph without the given source. When multiple sources are specified, the delays are the same as in the single source case.

    Hitting Meets Packing: How Hard Can it Be?

    Full text link
    We study a general family of problems that form a common generalization of classic hitting (also referred to as covering or transversal) and packing problems. An instance of X-HitPack asks: Can removing k (deletable) vertices of a graph G prevent us from packing ℓ\ell vertex-disjoint objects of type X? This problem captures a spectrum of problems with standard hitting and packing on opposite ends. Our main motivating question is whether the combination X-HitPack can be significantly harder than these two base problems. Already for a particular choice of X, this question can be posed for many different complexity notions, leading to a large, so-far unexplored domain in the intersection of the areas of hitting and packing problems. On a high-level, we present two case studies: (1) X being all cycles, and (2) X being all copies of a fixed graph H. In each, we explore the classical complexity, as well as the parameterized complexity with the natural parameters k+l and treewidth. We observe that the combined problem can be drastically harder than the base problems: for cycles or for H being a connected graph with at least 3 vertices, the problem is \Sigma_2^P-complete and requires double-exponential dependence on the treewidth of the graph (assuming the Exponential-Time Hypothesis). In contrast, the combined problem admits qualitatively similar running times as the base problems in some cases, although significant novel ideas are required. For example, for X being all cycles, we establish a 2^poly(k+l)n^O(1) algorithm using an involved branching method. Also, for X being all edges (i.e., H = K_2; this combines Vertex Cover and Maximum Matching) the problem can be solved in time 2^\poly(tw)n^O(1) on graphs of treewidth tw. The key step enabling this running time relies on a combinatorial bound obtained from an algebraic (linear delta-matroid) representation of possible matchings

    35th Symposium on Theoretical Aspects of Computer Science: STACS 2018, February 28-March 3, 2018, Caen, France

    Get PDF

    On cycles and independence in graphs

    Get PDF
    ï»żDas erste Fachkapitel ist der Berechnung von Kreispackungszahlen, d.h. der maximalen GrĂ¶ĂŸe kanten- bzw. eckendisjunkter Kreispackungen, gewidmet. Da diese Probleme bekanntermaßen sogar fĂŒr subkubische Graphen schwer sind, behandelt der erste Abschnitt die KomplexitĂ€t des Packens von Kreisen einer festen LĂ€nge l in Graphen mit Maximalgrad Delta. Dieses fĂŒr l=3 von Caprara und Rizzi gelöste Problem wird hier auf alle grĂ¶ĂŸeren KreislĂ€ngen l verallgemeinert. Der zweite Abschnitt beschreibt die Struktur von Graphen, fĂŒr die die Kreispackungszahlen einen vorgegebenen Abstand zur zyklomatischen Zahl haben. Die 2-zusammenhĂ€ngenden Graphen mit dieser Eigenschaft können jeweils durch Anwendung einer einfachen Erweiterungsregel auf eine endliche Menge von Graphen erzeugt werden. Aus diesem Strukturergebnis wird ein fpt-Algorithmus abgeleitet. Das zweite Fachkapitel handelt von der GrĂ¶ĂŸenordnung der minimalen Anzahl von KreislĂ€ngen in einem Hamiltongraph mit q Sehnen. Eine Familie von Beispielen zeigt, dass diese Unterschranke höchstens die Wurzel von q+1 ist. Dem Hauptsatz dieses Kapitels zufolge ist die Zahl der KreislĂ€ngen eines beliebigen Hamiltongraphen mit q Sehnen mindestens die Wurzel von 4/7*q. Der Beweis beruht auf einem Lemma von Faudree et al., demzufolge der Graph, der aus einem Weg mit Endecken x und y und q gleichlangen Sehnen besteht, x-y-Wege von mindestens q/3 verschiedenen LĂ€ngen enthĂ€lt. Der erste Abschnitt enthĂ€lt eine Korrektur des ursprĂŒnglich fehlerhaften Beweises und zusĂ€tzliche Schranken. Der zweite Abschnitt leitet daraus die Unterschranke fĂŒr die Anzahl der KreislĂ€ngen ab. Das letzte Fachkapitel behandelt Unterschranken fĂŒr den UnabhĂ€ngigkeitsquotienten, d.h. den Quotienten aus UnabhĂ€ngigkeitszahl und Ordnung eines Graphen, fĂŒr Graphen gegebener Dichte. In der Einleitung werden bestmögliche Schranken fĂŒr die Klasse aller Graphen sowie fĂŒr große zusammenhĂ€ngende Graphen aus bekannten Ergebnissen abgeleitet. Danach wird die Untersuchung auf durch das Verbot kleiner ungerader Kreise eingeschrĂ€nkte Graphenklassen ausgeweitet. Das Hauptergebnis des ersten Abschnitts ist eine Verallgemeinerung eines Ergebnisses von Heckman und Thomas, das die bestmögliche Schranke fĂŒr zusammenhĂ€ngende dreiecksfreie Graphen mit Durchschnittsgrad bis zu 10/3 impliziert und die extremalen Graphen charakterisiert. Der Rest der ersten beiden Abschnitte enthĂ€lt Vermutungen Ă€hnlichen Typs fĂŒr zusammenhĂ€ngende dreiecksfreie Graphen mit Durchschnittsgrad im Intervall [10/3, 54/13] und fĂŒr zusammenhĂ€ngende Graphen mit ungerader Taillenweite 7 mit Durchschnittsgrad bis zu 14/5. Der letzte Abschnitt enthĂ€lt analoge Beobachtungen zum Bipartitionsquotienten. Die Arbeit schließt mit Vermutungen zu Unterschranken und die zugehörigen Klassen extremaler Graphen fĂŒr den Bipartitionsquotienten.This thesis discusses several problems related to cycles and the independence number in graphs. Chapter 2 contains problems on independent sets of cycles. It is known that it is hard to compute the maximum cardinality of edge-disjoint and vertex-disjoint cycle packings, even if restricted to subcubic graphs. Therefore, the first section discusses the complexity of a simpler problem: packing cycles of fixed length l in graphs of maximum degree Delta. The results of Caprara and Rizzi, who have solved this problem for l=3 are generalised to arbitrary lengths. The second section describes the structure of graphs for which the edge-disjoint resp. vertex-disjoint cycle packing number differs from the cyclomatic number by a constant. The corresponding classes of 2-connected graphs can be obtained by a simple extension rules applied to a finite set of graphs. This result implies a fixed-parameter-tractability result for the edge-disjoint and vertex-disjoint cycle packing numbers. Chapter 3 contains an approximation of the minimum number of cycle lengths in a Hamiltonian graph with q chords. A family of examples shows that no more than the square root of q+1 can be guaranteed. The main result is that the square root of 4/7*q cycle lengths can be guaranteed. The proof relies on a lemma by Faudree et al., which states that the graph that contains a path with endvertices x and y and q chords of equal length contains paths between x and y of at least q/3 different lengths. The first section corrects the originally faulty proof and derives additional bounds. The second section uses these bounds to derive the lower bound on the size of the cycle spectrum. Chapter 4 focuses on lower bounds on the independence ratio, i.e. the quotient of independence number and order of a graph, for graphs of given density. In the introduction, best-possible bounds both for arbitrary graphs and large connected graphs are derived from known results. Therefore, the rest of this chapter considers classes of graphs defined by forbidding small odd cycles as subgraphs. The main result of the first section is a generalisation of a result of Heckman and Thomas that determines the best possible lower bound for connected triangle-free graphs with average degree at most 10/3 and characterises the extremal graphs. The rest of the chapter is devoted to conjectures with similar statements on connected triangle-free graphs of average degree in [10/3, 54/13] and on connected graphs of odd girth 7 with average degree up to 14/5, similar conjectures for the bipartite ratio, possible classes of extremal graphs for these conjectures, and observations in support of the conjectures
    corecore